Articles | Volume 13, issue 8
https://doi.org/10.5194/bg-13-2537-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-2537-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests
Fabien H. Wagner
CORRESPONDING AUTHOR
Remote Sensing Division, National Institute for Space Research – INPE, São José dos Campos 12227-010, SP, Brazil
Bruno Hérault
CIRAD, UMR Ecologie des Forêts de Guyane, Kourou 97379, France
Damien Bonal
INRA, UMR EEF 1137, Champenoux 54280, France
Clément Stahl
INRA, UMR Ecologie des Forêts de Guyane, Kourou 97387, France
Department of Biology, University of Antwerp, Wilrijk 2610, Belgium
Liana O. Anderson
National Center for Monitoring and Early Warning of Natural Disasters – CEMADEN, São José dos Campos 12.247-016, SP, Brazil
Timothy R. Baker
School of Geography, University of Leeds, Leeds LS2 9JT, UK
Gabriel Sebastian Becker
Institute of Botany, University of Hohenheim, 70593 Stuttgart, Germany
Hans Beeckman
Laboratory for Wood Biology and Xylarium, Royal Museum for Central Africa, Tervuren 3080, Belgium
Danilo Boanerges Souza
Programa de Pós-graduação em Ciências de Florestas Tropicais, Instituto Nacional de Pesquisas da Amazônia, Manaus 69067-375, AM, Brazil
Paulo Cesar Botosso
Embrapa Florestas, Brazilian Agricultural Research Corporation, Colombo 83411-000, PR, Brazil
David M. J. S. Bowman
School of Biological Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia
Achim Bräuning
Institute of Geography, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
Benjamin Brede
Laboratory of Geo-information Science and Remote Sensing, Wageningen University, Wageningen 6708PB, the Netherlands
Foster Irving Brown
Centro de Ciências Biológicas e da Natureza, Laboratóio de Botânica e Ecologia Vegetal, Universidade Federal Do Acre, Rio Branco 69915-559, AC, Brazil
Jesus Julio Camarero
Instituto Pirenaico de Ecologia, Consejo Superior de Investigaciones Cientificas (IPE-CSIC), Zaragoza 50059, Spain
Instituto Boliviano de Investigacion Forestal (IBIF), Santa Cruz de la Sierra 6204, Bolivia
Plínio Barbosa Camargo
Centro de Energia Nuclear na Agricultura, Laboratóio de Ecologia Isotópica, Universidade de SÃo Paulo, Piracicaba 13416903, SP, Brazil
Fernanda C. G. Cardoso
Departamento de Botânica, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil
Fabrício Alvim Carvalho
Departamento de Botânica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36015-260, MG, Brazil
Wendeson Castro
Programa de Pós-Graduação Ecologia e Manejo de Recursos Naturais, Universidade Federal do Acre, Rio Branco 69915-559, AC, Brazil
Rubens Koloski Chagas
Departamento de Ecologia do Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, SP, Brazil
Jérome Chave
UMR 5174 Laboratoire Evolution et DiversitéBiologique, CNRS & UniversitéPaul Sabatier, Toulouse 31062, France
Emmanuel N. Chidumayo
Biological Sciences Department, University of Zambia, Lusaka Box 32379, Zambia
Deborah A. Clark
Department of Biology, University of Missouri-St. Louis, Saint Louis 63121, MO, USA
Flavia Regina Capellotto Costa
Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus 69080-971, AM, Brazil
Camille Couralet
Laboratory for Wood Biology and Xylarium, Royal Museum for Central Africa, Tervuren 3080, Belgium
Paulo Henrique da Silva Mauricio
Centro de Ciências Biológicas e da Natureza, Laboratóio de Botânica e Ecologia Vegetal, Universidade Federal Do Acre, Rio Branco 69915-559, AC, Brazil
Helmut Dalitz
Institute of Botany, University of Hohenheim, 70593 Stuttgart, Germany
Vinicius Resende de Castro
Departamento de Engenharia Florestal, Universidade Federal de Viçosa (UFV), Viçosa 36570-000, MG, Brazil
Jaçanan Eloisa de Freitas Milani
Departamento de Engenharia Florestal, Universidade Federal do Paraná, Curitiba 80210-170, PR, Brazil
Edilson Consuelo de Oliveira
Centro de Ciêcias Biológicas e da Natureza, Laboratório de Botânica e Ecologia Vegetal, Universidade Federal do Acre, Rio Branco 69915-559, AC, Brazil
Luciano de Souza Arruda
Prefeitura Municipal de Rio Branco, Rio Branco 69900-901, AC, Brazil
Jean-Louis Devineau
Département Hommes, Natures, Sociétés, Centre National de la Recherche Scientifique (CNRS) et UMR 208 Patrimoines Locaux et Gouvernance, Paris 75231 Cedex 05, France
David M. Drew
Dept. Forest and Wood Science, University of Stellenbosch, Stellenbosch 7600, South Africa
Oliver Dünisch
Meisterschule Ebern für das Schreinerhandwerk, 96106 Ebern, Germany
Giselda Durigan
Floresta Estadual de Assis, Assis 19802-970, SP, Brazil
Elisha Elifuraha
Tanzania Forestry Research Institute (TAFORI), Dodoma P.O. Box 1576, Tanzania
Marcio Fedele
Departamento de Ciências Florestais, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba 13418-900, SP, Brazil
Ligia Ferreira Fedele
Departamento de Ciências Florestais, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba 13418-900, SP, Brazil
Afonso Figueiredo Filho
Departamento de Engenharia Florestal – DEF, Universidade Estadual do Centro-Oeste, Irati 84500-000, PR, Brazil
César Augusto Guimarães Finger
Departamento de Ciências Florestais, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria 97105-9000, RS, Brazil
Augusto César Franco
Departamento de Botânica, Laboratório de Fisiologia Vegetal, Universidade de Brasília, Instituto de Ciências Biológicas, Brasília 70904-970, DF, Brazil
João Lima Freitas Júnior
Programa de Pós-Graduação Ecologia e Manejo de Recursos Naturais, Universidade Federal do Acre, Rio Branco 69915-559, AC, Brazil
Franklin Galvão
Departamento de Engenharia Florestal, Universidade Federal do Paraná, Curitiba 80210-170, PR, Brazil
Aster Gebrekirstos
World Agroforestry Centre (ICRAF), Nairobi P.O. Box 30677-00100, Kenya
Robert Gliniars
Institute of Botany, University of Hohenheim, 70593 Stuttgart, Germany
Paulo Maurício Lima de Alencastro Graça
Coordenação de Pesquisa em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus C.P. 478 69011-970, AM, Brazil
Anthony D. Griffiths
Departement of Land Resource Management, Northern Territory Government, Palmerston NT 0831 , Australia
Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin NT 0909, Australia
James Grogan
Department of Biological Sciences, Mount Holyoke College, South Hadley 01075, MA, USA
Kaiyu Guan
Department of Earth System Science, Stanford University, Stanford 94305, CA, USA
Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana Champaign, Champaign 61801, USA
Jürgen Homeier
Department of Plant Ecology, Albrecht von Haller Institute of Plant Sciences, University of Göttingen, 37073 Göttingen, Germany
Maria Raquel Kanieski
Departamento de Engenharia Florestal, Universidade do Estado de Santa Catarina – UDESC, Lages 88520-000, SC, Brazil
Lip Khoon Kho
Tropical Peat Research Institute, Biological Research Division, Malaysian Palm Oil Board, Selangor 43000, Malaysia
Jennifer Koenig
Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin NT 0909, Australia
Sintia Valerio Kohler
Departamento de Engenharia Florestal – DEF, Universidade Estadual do Centro-Oeste, Irati 84500-000, PR, Brazil
Julia Krepkowski
Institute of Geography, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
José Pires Lemos-Filho
Departamento de Botânica, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
Diana Lieberman
Division of Science & Environmental Policy, California State University Monterey Bay, Seaside 93955, CA, USA
Milton Eugene Lieberman
Division of Science & Environmental Policy, California State University Monterey Bay, Seaside 93955, CA, USA
Claudio Sergio Lisi
Departamento de Ciências Florestais, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba 13418-900, SP, Brazil
Departamento de Biologia, Universidade Federal de Sergipe, São Cristóvão 49100-000, Brazil
Tomaz Longhi Santos
Departamento de Engenharia Florestal, Universidade Federal do Paraná, Curitiba 80210-170, PR, Brazil
José Luis López Ayala
Programa Forestal, Colegio de Postgraduados, Montecillo 56230, México
Eduardo Eijji Maeda
Department of Geosciences and Geography, University of Helsinki, Helsinki 00014, Finland
Yadvinder Malhi
School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
Vivian R. B. Maria
Departamento de Ciências Florestais, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba 13418-900, SP, Brazil
Marcia C. M. Marques
Departamento de Botânica, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil
Renato Marques
Departamento de Solos e Engenharia Agrícola, Universidade Federal do Paraná, Curitiba 80035-050, PR, Brazil
Hector Maza Chamba
Laboratoria de Dendrochronologia y Anatomia de Maderas Espinoza, Universidad Nacional de Loja, Loja EC110103, Ecuador
Lawrence Mbwambo
Tanzania Forestry Research Institute (TAFORI), Morogoro P.O. Box 1854, Tanzania
Karina Liana Lisboa Melgaço
Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus 69080-971, AM, Brazil
Hooz Angela Mendivelso
Instituto Pirenaico de Ecologia, Consejo Superior de Investigaciones Cientificas (IPE-CSIC), Zaragoza 50059, Spain
Instituto Boliviano de Investigacion Forestal (IBIF), Santa Cruz de la Sierra 6204, Bolivia
Brett P. Murphy
Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin NT 0909, Australia
Joseph J. O'Brien
Center for Forest Disturbance Science, USDA Forest Service, Athens 30607, GA, USA
Steven F. Oberbauer
Department of Biological Sciences, Florida International University, Miami 33199, FL, USA
Naoki Okada
Graduate School of Agriculture, Kyoto University, Kyoto 606-8501, Japan
Raphaël Pélissier
Institut Français de Pondicherry, Puducherry 6005001, India
UMR AMAP (botAnique et bioinforMatique de l'Architecture des Plantes), IRD, Montpellier 34398, France
Lynda D. Prior
School of Biological Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia
Fidel Alejandro Roig
Tree Ring and Environmental History Laboratory, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales – CONICET, Mendoza 5500, Argentina
Michael Ross
Department of Earth and Environment, Southeast Environmental Research Center, Florida International University, Miami 33199, FL, USA
Davi Rodrigo Rossatto
Departamento de Biologia Aplicada, FCAV, Universidade Estadual Paulista, UNESP, Jaboticabal 14884-000, SP, Brazil
Vivien Rossi
UR B&SEF (Biens et services des écosystèmes forestiers tropicaux), CIRAD, Yaoundé BP 2572, Cameroon
Lucy Rowland
School of Geosciences, University of Edinburgh, Edinburgh EH9 3FF, UK
Ervan Rutishauser
CarboForExpert, Geneva 1211, Switzerland
Hellen Santana
Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus 69080-971, AM, Brazil
Mark Schulze
HJ Andrews Experimental Forest, Oregon State University, Blue River 97413, OR, USA
Diogo Selhorst
Ibama, Rio Branco 69907-150, AC, Brazil
Williamar Rodrigues Silva
PRONAT – Programa de Pós-Graduação em Recurso Naturais, Universidade Federal de Roraima – UFRR, Boa Vista 69310-000, RR, Brazil
Marcos Silveira
Centro de Ciências Biológicas e da Natureza, Laboratóio de Botânica e Ecologia Vegetal, Universidade Federal Do Acre, Rio Branco 69915-559, AC, Brazil
Susanne Spannl
Institute of Geography, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
Michael D. Swaine
School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
José Julio Toledo
Departamento de Ciências Ambientais, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil
Marcos Miranda Toledo
Embrapa Cocais, Brazilian Agricultural Research Corporation, São Luiz 65066-190, MA, Brazil
Marisol Toledo
Instituto Boliviano de Investigacion Forestal (IBIF), Universidad Autonoma Gabriel René Moreno, Santa Cruz de la Sierra CP 6201, Bolivia
Takeshi Toma
Department of Forest Vegetation, Forestry and Forest Products Research Institute (FFPRI), Ibaraki 305-8687, Japan
Mario Tomazello Filho
Departamento de Ciências Florestais, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba 13418-900, SP, Brazil
Juan Ignacio Valdez Hernández
Programa Forestal, Colegio de Postgraduados, Montecillo 56230, México
Jan Verbesselt
Laboratory of Geo-information Science and Remote Sensing, Wageningen University, Wageningen 6708PB, the Netherlands
Simone Aparecida Vieira
Núcleo de Estudos e Pesquisas Ambientais (NEPAM), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-867, SP, Brazil
Grégoire Vincent
UMR AMAP (botAnique et bioinforMatique de l'Architecture des Plantes), IRD, Montpellier 34398, France
Carolina Volkmer de Castilho
Embrapa Roraima, Brazilian Agricultural Research Corporation, Boa Vista 69301-970, RR, Brazil
Franziska Volland
Institute of Geography, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
Martin Worbes
Crop Production Systems in the Tropics, Georg-August-University, 37077 Göttingen, Germany
Magda Lea Bolzan Zanon
Departamento de Engenharia Florestal, Centro de Educação Superior Norte, Universidade Federal de Santa Maria, Frederico Westphalen 98400-000, RS, Brazil
Luiz E. O. C. Aragão
Remote Sensing Division, National Institute for Space Research – INPE, São José dos Campos 12227-010, SP, Brazil
College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK
Related authors
Peter Joyce, Cristina Ruiz Villena, Yahui Huang, Alex Webb, Manuel Gloor, Fabien H. Wagner, Martyn P. Chipperfield, Rocío Barrio Guilló, Chris Wilson, and Hartmut Boesch
Atmos. Meas. Tech., 16, 2627–2640, https://doi.org/10.5194/amt-16-2627-2023, https://doi.org/10.5194/amt-16-2627-2023, 2023
Short summary
Short summary
Methane emissions are responsible for a lot of the warming caused by the greenhouse effect, much of which comes from a small number of point sources. We can identify methane point sources by analysing satellite data, but it requires a lot of time invested by experts and is prone to very high errors. Here, we produce a neural network that can automatically identify methane point sources and estimate the mass of methane that is being released per hour and are able to do so with far smaller errors.
Ricardo Dalagnol, Lênio Soares Galvão, Fabien Hubert Wagner, Yhasmin Mendes de Moura, Nathan Gonçalves, Yujie Wang, Alexei Lyapustin, Yan Yang, Sassan Saatchi, and Luiz Eduardo Oliveira Cruz Aragão
Earth Syst. Sci. Data, 15, 345–358, https://doi.org/10.5194/essd-15-345-2023, https://doi.org/10.5194/essd-15-345-2023, 2023
Short summary
Short summary
The AnisoVeg dataset brings 22 years of monthly satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor for South America at 1 km resolution aimed at vegetation applications. It has nadir-normalized data, which is the most traditional approach to correct satellite data but also unique anisotropy data with strong biophysical meaning, explaining 55 % of Amazon forest height. We expect this dataset to help large-scale estimates of vegetation biomass and carbon.
Ricardo Dalagnol, Fabien Hubert Wagner, Lênio Soares Galvão, Bruce Walker Nelson, and Luiz Eduardo Oliveira e Cruz de Aragão
Biogeosciences, 15, 6087–6104, https://doi.org/10.5194/bg-15-6087-2018, https://doi.org/10.5194/bg-15-6087-2018, 2018
Short summary
Short summary
We used a time series of MODIS (MAIAC) satellite images from 2000 to 2017 to map the distribution of bamboo-dominated forests in the southwest Amazon and detect when the bamboo populations are suffering massive die-offs. The aim was to test if bamboo die-off is associated with higher fire probability, which could impact other plant species while promoting bamboo dominance. Our findings show 15.5 million ha of bamboo forests which are not directly associated with fire, except in drought years.
Eduardo Eiji Maeda, Xuanlong Ma, Fabien Hubert Wagner, Hyungjun Kim, Taikan Oki, Derek Eamus, and Alfredo Huete
Earth Syst. Dynam., 8, 439–454, https://doi.org/10.5194/esd-8-439-2017, https://doi.org/10.5194/esd-8-439-2017, 2017
Short summary
Short summary
The Amazon River basin continuously transfers massive volumes of water from the land surface to the atmosphere, thereby having massive influence on global climate patterns. Nonetheless, the characteristics of ET across the Amazon basin, as well as the relative contribution of the multiple drivers to this process, are still uncertain. This study carries out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers across the Amazon Basin.
F. Wagner, V. Rossi, C. Stahl, D. Bonal, and B. Hérault
Biogeosciences, 10, 7307–7321, https://doi.org/10.5194/bg-10-7307-2013, https://doi.org/10.5194/bg-10-7307-2013, 2013
Mateus Dantas de Paula, Tatiana Reichert, Laynara Lugli, Erica McGale, Kerstin Pierick, João Paulo Darela-Filho, Liam Langan, Jürgen Homeier, Anja Rammig, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3259, https://doi.org/10.5194/egusphere-2024-3259, 2024
Short summary
Short summary
This study explores how plant roots, with different forms and functions, rely on fungal partnerships for nutrient uptake. This relationship was integrated into a vegetation model and was tested in a tropical forest in Ecuador. The model accurately predicted root traits and showed that without fungi, biomass decreased by up to 80 %. The findings highlight the critical role of fungi in ecosystem processes and suggest that root-fungal interactions should be considered in vegetation models.
Kristiina Visakorpi, Sofia Gripenberg, Yadvinder Malhi, and Terhi Riutta
Web Ecol., 24, 97–113, https://doi.org/10.5194/we-24-97-2024, https://doi.org/10.5194/we-24-97-2024, 2024
Short summary
Short summary
Plant-feeding insects can have large impacts on the photosynthetic rate of their host plants. Through reducing photosynthesis, and thus carbon assimilation by the plant, these impacts might have large-scale influences on ecosystem carbon cycling. Nevertheless, these effects are rarely considered in ecosystem-level studies. Here we propose an approach to incorporating these changes in plant physiology into estimates of ecosystem productivity.
Maria Lucia Ferreira Barbosa, Douglas I. Kelley, Chantelle A. Burton, Igor J. M. Ferreira, Renata Moura da Veiga, Anna Bradley, Paulo Guilherme Molin, and Liana O. Anderson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1775, https://doi.org/10.5194/egusphere-2024-1775, 2024
Short summary
Short summary
As fire seasons in Brazil intensify, understanding what drives these fires becomes crucial. We developed a new model, FLAME, to predict fires using environmental and human factors, while also accounting for uncertainties. We found temperature and rainfall to be key factors, with uncertainties higher in some regions. By customizing the model for different regions, we can improve fire management strategies, making FLAME a valuable tool for protecting Brazil's and other region’s landscapes.
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos
Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, https://doi.org/10.5194/essd-16-3601-2024, 2024
Short summary
Short summary
This inaugural State of Wildfires report catalogues extreme fires of the 2023–2024 fire season. For key events, we analyse their predictability and drivers and attribute them to climate change and land use. We provide a seasonal outlook and decadal projections. Key anomalies occurred in Canada, Greece, and western Amazonia, with other high-impact events catalogued worldwide. Climate change significantly increased the likelihood of extreme fires, and mitigation is required to lessen future risk.
Yang Xu, Heli Zhang, Feng Chen, Shijie Wang, Mao Hu, Martín Hadad, and Fidel Roig
Clim. Past, 19, 2079–2092, https://doi.org/10.5194/cp-19-2079-2023, https://doi.org/10.5194/cp-19-2079-2023, 2023
Short summary
Short summary
We reconstructed the monthly mean self-calibrating Palmer drought severity index for May–July in the upper Heilongjiang (Amur) Basin since 1796. Our analysis suggests that the dry/wet variability in this basin is related to several large-scale climate stresses and atmospheric circulation patterns (El Niño–Southern Oscillation). The cause of drought is primarily a reduction in advective water vapor transport, rather than precipitation circulation processes.
Peter Joyce, Cristina Ruiz Villena, Yahui Huang, Alex Webb, Manuel Gloor, Fabien H. Wagner, Martyn P. Chipperfield, Rocío Barrio Guilló, Chris Wilson, and Hartmut Boesch
Atmos. Meas. Tech., 16, 2627–2640, https://doi.org/10.5194/amt-16-2627-2023, https://doi.org/10.5194/amt-16-2627-2023, 2023
Short summary
Short summary
Methane emissions are responsible for a lot of the warming caused by the greenhouse effect, much of which comes from a small number of point sources. We can identify methane point sources by analysing satellite data, but it requires a lot of time invested by experts and is prone to very high errors. Here, we produce a neural network that can automatically identify methane point sources and estimate the mass of methane that is being released per hour and are able to do so with far smaller errors.
Ricardo Dalagnol, Lênio Soares Galvão, Fabien Hubert Wagner, Yhasmin Mendes de Moura, Nathan Gonçalves, Yujie Wang, Alexei Lyapustin, Yan Yang, Sassan Saatchi, and Luiz Eduardo Oliveira Cruz Aragão
Earth Syst. Sci. Data, 15, 345–358, https://doi.org/10.5194/essd-15-345-2023, https://doi.org/10.5194/essd-15-345-2023, 2023
Short summary
Short summary
The AnisoVeg dataset brings 22 years of monthly satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor for South America at 1 km resolution aimed at vegetation applications. It has nadir-normalized data, which is the most traditional approach to correct satellite data but also unique anisotropy data with strong biophysical meaning, explaining 55 % of Amazon forest height. We expect this dataset to help large-scale estimates of vegetation biomass and carbon.
Iris Johanna Aalto, Eduardo Eiji Maeda, Janne Heiskanen, Eljas Kullervo Aalto, and Petri Kauko Emil Pellikka
Biogeosciences, 19, 4227–4247, https://doi.org/10.5194/bg-19-4227-2022, https://doi.org/10.5194/bg-19-4227-2022, 2022
Short summary
Short summary
Tree canopies are strong moderators of understory climatic conditions. In tropical areas, trees cool down the microclimates. Using remote sensing and field measurements we show how even intermediate canopy cover and agroforestry trees contributed to buffering the hottest temperatures in Kenya. The cooling effect was the greatest during hot days and in lowland areas, where the ambient temperatures were high. Adopting agroforestry practices in the area could assist in mitigating climate change.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Félicien Meunier, Sruthi M. Krishna Moorthy, Marc Peaucelle, Kim Calders, Louise Terryn, Wim Verbruggen, Chang Liu, Ninni Saarinen, Niall Origo, Joanne Nightingale, Mathias Disney, Yadvinder Malhi, and Hans Verbeeck
Geosci. Model Dev., 15, 4783–4803, https://doi.org/10.5194/gmd-15-4783-2022, https://doi.org/10.5194/gmd-15-4783-2022, 2022
Short summary
Short summary
We integrated state-of-the-art observations of the structure of the vegetation in a temperate forest to constrain a vegetation model that aims to reproduce such an ecosystem in silico. We showed that the use of this information helps to constrain the model structure, its critical parameters, as well as its initial state. This research confirms the critical importance of the representation of the vegetation structure in vegetation models and proposes a method to overcome this challenge.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Simon Besnard, Sujan Koirala, Maurizio Santoro, Ulrich Weber, Jacob Nelson, Jonas Gütter, Bruno Herault, Justin Kassi, Anny N'Guessan, Christopher Neigh, Benjamin Poulter, Tao Zhang, and Nuno Carvalhais
Earth Syst. Sci. Data, 13, 4881–4896, https://doi.org/10.5194/essd-13-4881-2021, https://doi.org/10.5194/essd-13-4881-2021, 2021
Short summary
Short summary
Forest age can determine the capacity of a forest to uptake carbon from the atmosphere. Yet, a lack of global diagnostics that reflect the forest stage and associated disturbance regimes hampers the quantification of age-related differences in forest carbon dynamics. In this paper, we introduced a new global distribution of forest age inferred from forest inventory, remote sensing and climate data in support of a better understanding of the global dynamics in the forest water and carbon cycles.
Jürgen Homeier and Christoph Leuschner
Biogeosciences, 18, 1525–1541, https://doi.org/10.5194/bg-18-1525-2021, https://doi.org/10.5194/bg-18-1525-2021, 2021
Short summary
Short summary
We studied aboveground productivity in humid tropical montane old-growth forests in two highly diverse Andean regions with large geological and topographic heterogeneity and related productivity to tree diversity and climatic, edaphic and stand structural factors. From our results we conclude that the productivity of highly diverse Neotropical montane forests is primarily controlled by thermal and edaphic factors and stand structural properties, while tree diversity is of minor importance.
Mercy N. Ndalila, Grant J. Williamson, Paul Fox-Hughes, Jason Sharples, and David M. J. S. Bowman
Nat. Hazards Earth Syst. Sci., 20, 1497–1511, https://doi.org/10.5194/nhess-20-1497-2020, https://doi.org/10.5194/nhess-20-1497-2020, 2020
Short summary
Short summary
We analyse the evolution of a pyrocumulonimbus (pyroCb), or fire-induced thunderstorm, during the Forcett–Dunalley fire on 4 January 2013 and relate it to the prevailing fire weather and fire severity patterns. We show that the pyroCb reached an altitude of 15 km, was associated with elevated fire weather, and formed over a severely burned area. Additionally, we show that eastern Tasmania is prone to elevated fire weather which has implications for fire weather forecasting and fire management.
Irene Blanco-Gutiérrez, Rhys Manners, Consuelo Varela-Ortega, Ana M. Tarquis, Lucieta G. Martorano, and Marisol Toledo
Nat. Hazards Earth Syst. Sci., 20, 797–813, https://doi.org/10.5194/nhess-20-797-2020, https://doi.org/10.5194/nhess-20-797-2020, 2020
Short summary
Short summary
The Amazon rainforest is being destroyed, resulting in negative ecological and social impacts. We explore how stakeholders perceive the causes of the Amazon's degradation in Bolivia and Brazil and develop a series of scenarios to help strengthen the balance between human development and environmental conservation. The results suggest that the application of governance and well-integrated technical and social reform strategies encourages positive regional changes even under climate change.
Nidhi Jha, Nitin Kumar Tripathi, Wirong Chanthorn, Warren Brockelman, Anuttara Nathalang, Raphaël Pélissier, Siriruk Pimmasarn, Pierre Ploton, Nophea Sasaki, Salvatore G. P. Virdis, and Maxime Réjou-Méchain
Biogeosciences, 17, 121–134, https://doi.org/10.5194/bg-17-121-2020, https://doi.org/10.5194/bg-17-121-2020, 2020
Short summary
Short summary
Carbon stocks and dynamics are both uncertain in tropical forests, especially in Asia. We here quantify the carbon stock and recovery rate of a Thai landscape using airborne lidar and four decades of Landsat data. We show that the landscape has a high carbon stock despite its disturbance history and that secondary forests are accumulating carbon at high rate. Our study shows the potential synergy of remote sensing and field data to characterize the carbon dynamics of tropical forests.
Sophie Flack-Prain, Patrick Meir, Yadvinder Malhi, Thomas Luke Smallman, and Mathew Williams
Biogeosciences, 16, 4463–4484, https://doi.org/10.5194/bg-16-4463-2019, https://doi.org/10.5194/bg-16-4463-2019, 2019
Short summary
Short summary
Across the Amazon rainforest, trees take in carbon through photosynthesis. However, photosynthesis across the basin is threatened by predicted shifts in rainfall patterns. To unpick how changes in rainfall affect photosynthesis, we use a model which combines climate data with our knowledge of photosynthesis and other plant processes. We find that stomatal constraints are less important, and instead shifts in leaf surface area and leaf properties drive changes in photosynthesis with rainfall.
Marcos Longo, Ryan G. Knox, Naomi M. Levine, Abigail L. S. Swann, David M. Medvigy, Michael C. Dietze, Yeonjoo Kim, Ke Zhang, Damien Bonal, Benoit Burban, Plínio B. Camargo, Matthew N. Hayek, Scott R. Saleska, Rodrigo da Silva, Rafael L. Bras, Steven C. Wofsy, and Paul R. Moorcroft
Geosci. Model Dev., 12, 4347–4374, https://doi.org/10.5194/gmd-12-4347-2019, https://doi.org/10.5194/gmd-12-4347-2019, 2019
Short summary
Short summary
The Ecosystem Demography model calculates the fluxes of heat, water, and carbon between plants and ground and the air, and the life cycle of plants in different climates. To test if our calculations were reasonable, we compared our results with field and satellite measurements. Our model predicts well the extent of the Amazon forest, how much light forests absorb, and how much water forests release to the air. However, it must improve the tree growth rates and how fast dead plants decompose.
Anja Rammig, Jens Heinke, Florian Hofhansl, Hans Verbeeck, Timothy R. Baker, Bradley Christoffersen, Philippe Ciais, Hannes De Deurwaerder, Katrin Fleischer, David Galbraith, Matthieu Guimberteau, Andreas Huth, Michelle Johnson, Bart Krujit, Fanny Langerwisch, Patrick Meir, Phillip Papastefanou, Gilvan Sampaio, Kirsten Thonicke, Celso von Randow, Christian Zang, and Edna Rödig
Geosci. Model Dev., 11, 5203–5215, https://doi.org/10.5194/gmd-11-5203-2018, https://doi.org/10.5194/gmd-11-5203-2018, 2018
Short summary
Short summary
We propose a generic approach for a pixel-to-point comparison applicable for evaluation of models and remote-sensing products. We provide statistical measures accounting for the uncertainty in ecosystem variables. We demonstrate our approach by comparing simulated values of aboveground biomass, woody productivity and residence time of woody biomass from four dynamic global vegetation models (DGVMs) with measured inventory data from permanent plots in the Amazon rainforest.
Ricardo Dalagnol, Fabien Hubert Wagner, Lênio Soares Galvão, Bruce Walker Nelson, and Luiz Eduardo Oliveira e Cruz de Aragão
Biogeosciences, 15, 6087–6104, https://doi.org/10.5194/bg-15-6087-2018, https://doi.org/10.5194/bg-15-6087-2018, 2018
Short summary
Short summary
We used a time series of MODIS (MAIAC) satellite images from 2000 to 2017 to map the distribution of bamboo-dominated forests in the southwest Amazon and detect when the bamboo populations are suffering massive die-offs. The aim was to test if bamboo die-off is associated with higher fire probability, which could impact other plant species while promoting bamboo dominance. Our findings show 15.5 million ha of bamboo forests which are not directly associated with fire, except in drought years.
Matthew N. Hayek, Marcos Longo, Jin Wu, Marielle N. Smith, Natalia Restrepo-Coupe, Raphael Tapajós, Rodrigo da Silva, David R. Fitzjarrald, Plinio B. Camargo, Lucy R. Hutyra, Luciana F. Alves, Bruce Daube, J. William Munger, Kenia T. Wiedemann, Scott R. Saleska, and Steven C. Wofsy
Biogeosciences, 15, 4833–4848, https://doi.org/10.5194/bg-15-4833-2018, https://doi.org/10.5194/bg-15-4833-2018, 2018
Short summary
Short summary
We investigated the roles that weather and forest disturbances like drought play in shaping changes in ecosystem photosynthesis and carbon exchange in an Amazon forest. We discovered that weather largely influenced differences between years, but a prior drought, which occurred 3 years before measurements started, likely hampered photosynthesis in the first year. This is the first atmospheric evidence that drought can have legacy impacts on Amazon forest photosynthesis.
Tommaso Jucker, Gregory P. Asner, Michele Dalponte, Philip G. Brodrick, Christopher D. Philipson, Nicholas R. Vaughn, Yit Arn Teh, Craig Brelsford, David F. R. P. Burslem, Nicolas J. Deere, Robert M. Ewers, Jakub Kvasnica, Simon L. Lewis, Yadvinder Malhi, Sol Milne, Reuben Nilus, Marion Pfeifer, Oliver L. Phillips, Lan Qie, Nathan Renneboog, Glen Reynolds, Terhi Riutta, Matthew J. Struebig, Martin Svátek, Edgar C. Turner, and David A. Coomes
Biogeosciences, 15, 3811–3830, https://doi.org/10.5194/bg-15-3811-2018, https://doi.org/10.5194/bg-15-3811-2018, 2018
Short summary
Short summary
Efforts to protect tropical forests hinge on recognizing the ecosystem services they provide, including their ability to store carbon. Airborne laser scanning (ALS) captures information on the 3-D structure of forests, allowing carbon stocks to be mapped. By combining ALS with data from 173 field plots on the island of Borneo, we develop a simple yet general model for estimating forest carbon stocks from the air. Our model underpins ongoing efforts to restore Borneo's unique tropical forests.
Victoria Meyer, Sassan Saatchi, David B. Clark, Michael Keller, Grégoire Vincent, António Ferraz, Fernando Espírito-Santo, Marcus V. N. d'Oliveira, Dahlia Kaki, and Jérôme Chave
Biogeosciences, 15, 3377–3390, https://doi.org/10.5194/bg-15-3377-2018, https://doi.org/10.5194/bg-15-3377-2018, 2018
Short summary
Short summary
This study shows how a simple lidar-derived metric measuring the area covered by large trees (> 27 m) can explain biomass variations across the Neotropics. The importance of this metric is in its relevance to the structural and ecological characteristics of large trees and their unique contribution in determining the biomass of forests. Our results point toward simplified ground data collection and potential algorithms for future space missions focusing on biomass estimation.
Deborah A. Clark, Shinichi Asao, Rosie Fisher, Sasha Reed, Peter B. Reich, Michael G. Ryan, Tana E. Wood, and Xiaojuan Yang
Biogeosciences, 14, 4663–4690, https://doi.org/10.5194/bg-14-4663-2017, https://doi.org/10.5194/bg-14-4663-2017, 2017
Short summary
Short summary
Improved modeling of tropical-forest carbon cycling is urgently needed to project future climate and to guide global policy for greenhouse gases. Tropical forests store and process immense amounts of carbon, and their carbon cycling may be responding to climate change. Our goal with this paper, a multidisciplinary collaboration between modelers and field ecologists, is to identify reference-level field data from tropical forests that can be used to guide the models for these key ecosystems.
Eduardo Eiji Maeda, Xuanlong Ma, Fabien Hubert Wagner, Hyungjun Kim, Taikan Oki, Derek Eamus, and Alfredo Huete
Earth Syst. Dynam., 8, 439–454, https://doi.org/10.5194/esd-8-439-2017, https://doi.org/10.5194/esd-8-439-2017, 2017
Short summary
Short summary
The Amazon River basin continuously transfers massive volumes of water from the land surface to the atmosphere, thereby having massive influence on global climate patterns. Nonetheless, the characteristics of ET across the Amazon basin, as well as the relative contribution of the multiple drivers to this process, are still uncertain. This study carries out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers across the Amazon Basin.
Laurent Barbiero, Marcos Siqueira Neto, Rosangela Rodrigues Braz, Janaina Braga de Carmo, Ary Tavares Rezende Filho, Edmar Mazzi, Fernando Antonio Fernandes, Sandra Regina Damatto, and Plinio Barbosa de Camargo
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-108, https://doi.org/10.5194/bg-2017-108, 2017
Manuscript not accepted for further review
Short summary
Short summary
Large tropical alkaline wetlands are likely to contribute significantly to the global GHG emissions budget, but little data are available. The study shows the diversity of situations that depend on local biogeochemical processes and their stage of development during the season. Hot moments are identified and must be taken into account for calculating the regional emission budget.
Youven Goulamoussène, Caroline Bedeau, Laurent Descroix, Laurent Linguet, and Bruno Hérault
Biogeosciences, 14, 353–364, https://doi.org/10.5194/bg-14-353-2017, https://doi.org/10.5194/bg-14-353-2017, 2017
Short summary
Short summary
Natural gap disturbances are the dominant form of forest regeneration and dynamics in tropical forests. We highlight strong links between gap size distribution and environment, primarily hydrological conditions and topography, with large gaps being more frequent on floodplains and in wind-exposed areas.
Bradley O. Christoffersen, Manuel Gloor, Sophie Fauset, Nikolaos M. Fyllas, David R. Galbraith, Timothy R. Baker, Bart Kruijt, Lucy Rowland, Rosie A. Fisher, Oliver J. Binks, Sanna Sevanto, Chonggang Xu, Steven Jansen, Brendan Choat, Maurizio Mencuccini, Nate G. McDowell, and Patrick Meir
Geosci. Model Dev., 9, 4227–4255, https://doi.org/10.5194/gmd-9-4227-2016, https://doi.org/10.5194/gmd-9-4227-2016, 2016
Short summary
Short summary
We developed a plant hydraulics model for tropical forests based on established plant physiological theory, and parameterized it by conducting a pantropical hydraulic trait survey. We show that a substantial amount of trait diversity can be represented in the model by a reduced set of trait dimensions. The fully parameterized model is able capture tree-level variation in water status and improves simulations of total ecosystem transpiration, showing how to incorporate hydraulic traits in models.
Pierre Ploton, Nicolas Barbier, Stéphane Takoudjou Momo, Maxime Réjou-Méchain, Faustin Boyemba Bosela, Georges Chuyong, Gilles Dauby, Vincent Droissart, Adeline Fayolle, Rosa Calisto Goodman, Matieu Henry, Narcisse Guy Kamdem, John Katembo Mukirania, David Kenfack, Moses Libalah, Alfred Ngomanda, Vivien Rossi, Bonaventure Sonké, Nicolas Texier, Duncan Thomas, Donatien Zebaze, Pierre Couteron, Uta Berger, and Raphaël Pélissier
Biogeosciences, 13, 1571–1585, https://doi.org/10.5194/bg-13-1571-2016, https://doi.org/10.5194/bg-13-1571-2016, 2016
Short summary
Short summary
Monitoring forest carbon stocks requires understanding how resources allocation within trees varies across tree size, species and environmental conditions. Using data on tree dimensions and mass, we show that the average tree shape varies along ontogeny, with large canopy trees having a greater proportion of carbon in their crowns (up to 50 %). This variation pattern generates important bias in carbon predictions at both tree and stand levels, which can be corrected using simple crown metrics.
Leandro T. dos Santos, Daniel Magnabosco Marra, Susan Trumbore, Plínio B. de Camargo, Robinson I. Negrón-Juárez, Adriano J. N. Lima, Gabriel H. P. M. Ribeiro, Joaquim dos Santos, and Niro Higuchi
Biogeosciences, 13, 1299–1308, https://doi.org/10.5194/bg-13-1299-2016, https://doi.org/10.5194/bg-13-1299-2016, 2016
Short summary
Short summary
In the Amazon forest, wind disturbances can create canopy gaps of many hundreds of hectares. We show that inputs of plant litter associated with large windthrows cause a short-term increase in soil carbon stock. The degree of increase is related to soil clay content and tree mortality intensity. The higher carbon content and potentially higher nutrient availability in soils from areas recovering from windthrows may favor forest regrowth and increase vegetation resilience.
K. E. Clark, A. J. West, R. G. Hilton, G. P. Asner, C. A. Quesada, M. R. Silman, S. S. Saatchi, W. Farfan-Rios, R. E. Martin, A. B. Horwath, K. Halladay, M. New, and Y. Malhi
Earth Surf. Dynam., 4, 47–70, https://doi.org/10.5194/esurf-4-47-2016, https://doi.org/10.5194/esurf-4-47-2016, 2016
Short summary
Short summary
The key findings of this paper are that landslides in the eastern Andes of Peru in the Kosñipata Valley rapidly turn over the landscape in ~1320 years, with a rate of 0.076% yr-1. Additionally, landslides were concentrated at lower elevations, due to an intense storm in 2010 accounting for ~1/4 of the total landslide area over the 25-year remote sensing study. Valley-wide carbon stocks were determined, and we estimate that 26 tC km-2 yr-1 of soil and biomass are stripped by landslides.
M. Aubry-Kientz, V. Rossi, F. Wagner, and B. Hérault
Biogeosciences, 12, 5583–5596, https://doi.org/10.5194/bg-12-5583-2015, https://doi.org/10.5194/bg-12-5583-2015, 2015
Short summary
Short summary
We used a forest dynamic model, calibrated with data from the 20-year study site of Paracou, French Guiana, to test a set of climatic variables on tree growth and mortality probabilities. Severe droughts decreased annual growth and mortality rates, high precipitation increased mortality rates and high temperature decreased tree growth. Best resistance to drought was found for trees with high wood density and for trees with small current diameters.
L. Molina, G. Broquet, P. Imbach, F. Chevallier, B. Poulter, D. Bonal, B. Burban, M. Ramonet, L. V. Gatti, S. C. Wofsy, J. W. Munger, E. Dlugokencky, and P. Ciais
Atmos. Chem. Phys., 15, 8423–8438, https://doi.org/10.5194/acp-15-8423-2015, https://doi.org/10.5194/acp-15-8423-2015, 2015
E. Joetzjer, C. Delire, H. Douville, P. Ciais, B. Decharme, D. Carrer, H. Verbeeck, M. De Weirdt, and D. Bonal
Geosci. Model Dev., 8, 1709–1727, https://doi.org/10.5194/gmd-8-1709-2015, https://doi.org/10.5194/gmd-8-1709-2015, 2015
L. Rowland, A. Harper, B. O. Christoffersen, D. R. Galbraith, H. M. A. Imbuzeiro, T. L. Powell, C. Doughty, N. M. Levine, Y. Malhi, S. R. Saleska, P. R. Moorcroft, P. Meir, and M. Williams
Geosci. Model Dev., 8, 1097–1110, https://doi.org/10.5194/gmd-8-1097-2015, https://doi.org/10.5194/gmd-8-1097-2015, 2015
Short summary
Short summary
This study evaluates the capability of five vegetation models to simulate the response of forest productivity to changes in temperature and drought, using data collected from an Amazonian forest. This study concludes that model consistencies in the responses of net canopy carbon production to temperature and precipitation change were the result of inconsistently modelled leaf-scale process responses and substantial variation in modelled leaf area responses.
G. M. Moulatlet, C. D. Rennó, F. R. C. Costa, T. Emilio, and J. Schietti
Earth Syst. Sci. Data, 7, 29–34, https://doi.org/10.5194/essd-7-29-2015, https://doi.org/10.5194/essd-7-29-2015, 2015
Short summary
Short summary
This work presents two data sets: a digital elevation model in which deforestation effects were minimized over a large area in Central Amazonia and a set of 18 topographic–hydrological descriptors calculated by the use of the Vertical Distance to the Nearest Drainage algorithm (HAND). We describe the methodology to generate and validate the data sets. Moreover, we present a brief discussion about the applicability of the data to fill the gap of environmental data in Amazonian lowland forests.
K. E. Clark, M. A. Torres, A. J. West, R. G. Hilton, M. New, A. B. Horwath, J. B. Fisher, J. M. Rapp, A. Robles Caceres, and Y. Malhi
Hydrol. Earth Syst. Sci., 18, 5377–5397, https://doi.org/10.5194/hess-18-5377-2014, https://doi.org/10.5194/hess-18-5377-2014, 2014
Short summary
Short summary
This paper presents measurements of the balance of water inputs and outputs over 1 year for a river basin in the Andes of Peru. Our results show that the annual water budget is balanced within a few percent uncertainty; that is to say, the amount of water entering the basin was the same as the amount leaving, providing important information for understanding the water cycle. We also show that seasonal storage of water is important in sustaining the flow of water during the dry season.
K. Guan, S. P. Good, K. K. Caylor, H. Sato, E. F. Wood, and H. Li
Biogeosciences, 11, 6939–6954, https://doi.org/10.5194/bg-11-6939-2014, https://doi.org/10.5194/bg-11-6939-2014, 2014
Short summary
Short summary
Climate change is expected to modify the way that rainfall arrives, namely the frequency and intensity of rainfall events and rainy season length. Yet, the quantification of the impact of these possible rainfall changes across large biomes is lacking. Our study fills this gap by developing a new modeling framework, applying it to continental Africa. We show that African ecosystems are highly sensitive to these rainfall variabilities, with esp. large sensitivity to changes in rainy season length.
M. Réjou-Méchain, H. C. Muller-Landau, M. Detto, S. C. Thomas, T. Le Toan, S. S. Saatchi, J. S. Barreto-Silva, N. A. Bourg, S. Bunyavejchewin, N. Butt, W. Y. Brockelman, M. Cao, D. Cárdenas, J.-M. Chiang, G. B. Chuyong, K. Clay, R. Condit, H. S. Dattaraja, S. J. Davies, A. Duque, S. Esufali, C. Ewango, R. H. S. Fernando, C. D. Fletcher, I. A. U. N. Gunatilleke, Z. Hao, K. E. Harms, T. B. Hart, B. Hérault, R. W. Howe, S. P. Hubbell, D. J. Johnson, D. Kenfack, A. J. Larson, L. Lin, Y. Lin, J. A. Lutz, J.-R. Makana, Y. Malhi, T. R. Marthews, R. W. McEwan, S. M. McMahon, W. J. McShea, R. Muscarella, A. Nathalang, N. S. M. Noor, C. J. Nytch, A. A. Oliveira, R. P. Phillips, N. Pongpattananurak, R. Punchi-Manage, R. Salim, J. Schurman, R. Sukumar, H. S. Suresh, U. Suwanvecho, D. W. Thomas, J. Thompson, M. Uríarte, R. Valencia, A. Vicentini, A. T. Wolf, S. Yap, Z. Yuan, C. E. Zartman, J. K. Zimmerman, and J. Chave
Biogeosciences, 11, 6827–6840, https://doi.org/10.5194/bg-11-6827-2014, https://doi.org/10.5194/bg-11-6827-2014, 2014
Short summary
Short summary
Forest carbon mapping may greatly reduce uncertainties in the global carbon budget. Accuracy of such maps depends however on the quality of field measurements. Using 30 large forest plots, we found large local spatial variability in biomass. When field calibration plots are smaller than the remote sensing pixels, this high local spatial variability results in an underestimation of the variance in biomass.
N. M. Fyllas, E. Gloor, L. M. Mercado, S. Sitch, C. A. Quesada, T. F. Domingues, D. R. Galbraith, A. Torre-Lezama, E. Vilanova, H. Ramírez-Angulo, N. Higuchi, D. A. Neill, M. Silveira, L. Ferreira, G. A. Aymard C., Y. Malhi, O. L. Phillips, and J. Lloyd
Geosci. Model Dev., 7, 1251–1269, https://doi.org/10.5194/gmd-7-1251-2014, https://doi.org/10.5194/gmd-7-1251-2014, 2014
T. R. Marthews, C. A. Quesada, D. R. Galbraith, Y. Malhi, C. E. Mullins, M. G. Hodnett, and I. Dharssi
Geosci. Model Dev., 7, 711–723, https://doi.org/10.5194/gmd-7-711-2014, https://doi.org/10.5194/gmd-7-711-2014, 2014
G. P. Asner, C. B. Anderson, R. E. Martin, D. E. Knapp, R. Tupayachi, F. Sinca, and Y. Malhi
Biogeosciences, 11, 843–856, https://doi.org/10.5194/bg-11-843-2014, https://doi.org/10.5194/bg-11-843-2014, 2014
R. Valentini, A. Arneth, A. Bombelli, S. Castaldi, R. Cazzolla Gatti, F. Chevallier, P. Ciais, E. Grieco, J. Hartmann, M. Henry, R. A. Houghton, M. Jung, W. L. Kutsch, Y. Malhi, E. Mayorga, L. Merbold, G. Murray-Tortarolo, D. Papale, P. Peylin, B. Poulter, P. A. Raymond, M. Santini, S. Sitch, G. Vaglio Laurin, G. R. van der Werf, C. A. Williams, and R. J. Scholes
Biogeosciences, 11, 381–407, https://doi.org/10.5194/bg-11-381-2014, https://doi.org/10.5194/bg-11-381-2014, 2014
F. Wagner, V. Rossi, C. Stahl, D. Bonal, and B. Hérault
Biogeosciences, 10, 7307–7321, https://doi.org/10.5194/bg-10-7307-2013, https://doi.org/10.5194/bg-10-7307-2013, 2013
A. D. A. Castanho, M. T. Coe, M. H. Costa, Y. Malhi, D. Galbraith, and C. A. Quesada
Biogeosciences, 10, 2255–2272, https://doi.org/10.5194/bg-10-2255-2013, https://doi.org/10.5194/bg-10-2255-2013, 2013
Related subject area
Biodiversity and Ecosystem Function: Terrestrial
On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results
Crowd-sourced trait data can be used to delimit global biomes
Biomass yield potential, feedstock quality, and nutrient removal of perennial buffer strips under continuous zero fertilizer application
Leaf habit drives leaf nutrient resorption globally alongside nutrient availability and climate
Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Distinguishing mature and immature trees allows estimating forest carbon uptake from stand structure
Enhancing environmental models with a new downscaling method for global radiation in complex terrain
“Blooming” of litter-mixing effects: the role of flower and leaf litter interactions on decomposition in terrestrial and aquatic ecosystems
Combined effects of topography, soil moisture and snow cover regimes on growth responses of grasslands in a low mountain range (Vosges, France)
From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery
Plant functional traits modulate the effects of soil acidification on above- and belowground biomass
Regional effects and local climate jointly shape the global distribution of sexual systems in woody flowering plants
Ideas and perspectives: Sensing energy and matter fluxes in a biota-dominated Patagonian landscape through environmental seismology – introducing the Pumalín Critical Zone Observatory
Comparison of carbon and water fluxes and the drivers of ecosystem water use efficiency in a temperate rainforest and a peatland in southern South America
Kilometre-scale simulations over Fennoscandia reveal a large loss of tundra due to climate warming
Microclimate mapping using novel radiative transfer modelling
Root distributions predict shrub–steppe responses to precipitation intensity
Thermophilisation of Afromontane forest stands demonstrated in an elevation gradient experiment
Soil smoldering in temperate forests: A neglected contributor to fire carbon emissions revealed by atmospheric mixing ratios
Above-treeline ecosystems facing drought: lessons from the 2022 European summer heat wave
Canopy gaps and associated losses of biomass – combining UAV imagery and field data in a central Amazon forest
Ideas and perspectives: Beyond model evaluation – combining experiments and models to advance terrestrial ecosystem science
Primary succession and its driving variables – a sphere-spanning approach applied in proglacial areas in the upper Martell Valley (Eastern Italian Alps)
Contemporary biodiversity pattern is affected by climate change at multiple temporal scales in steppes on the Mongolian Plateau
Quantifying vegetation indices using terrestrial laser scanning: methodological complexities and ecological insights from a Mediterranean forest
Revisiting and attributing the global controls over terrestrial ecosystem functions of climate and plant traits at FLUXNET sites via causal graphical models
Dynamics of short-term ecosystem carbon fluxes induced by precipitation events in a semiarid grassland
Throughfall exclusion and fertilization effects on tropical dry forest tree plantations, a large-scale experiment
Tectonic controls on the ecosystem of the Mara River basin, East Africa, from geomorphological and spectral index analysis
Spruce bark beetles (Ips typographus) cause up to 700 times higher bark BVOC emission rates compared to healthy Norway spruce (Picea abies)
Technical note: Novel estimates of the leaf relative uptake rate of carbonyl sulfide from optimality theory
Observed water and light limitation across global ecosystems
A question of scale: modeling biomass, gain and mortality distributions of a tropical forest
Seed traits and phylogeny explain plants' geographic distribution
Effect of the presence of plateau pikas on the ecosystem services of alpine meadows
Allometric equations and wood density parameters for estimating aboveground and woody debris biomass in Cajander larch (Larix cajanderi) forests of northeast Siberia
Strong influence of trees outside forest in regulating microclimate of intensively modified Afromontane landscapes
Excess radiation exacerbates drought stress impacts on canopy conductance along aridity gradients
Dispersal of bacteria and stimulation of permafrost decomposition by Collembola
Modeling the effects of alternative crop–livestock management scenarios on important ecosystem services for smallholder farming from a landscape perspective
Contrasting strategies of nutrient demand and use between savanna and forest ecosystems in a neotropical transition zone
Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing
Updated estimation of forest biomass carbon pools in China, 1977–2018
Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets
Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks
Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels
Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi
Main drivers of plant diversity patterns of rubber plantations in the Greater Mekong Subregion
Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing
Examining the role of environmental memory in the predictability of carbon and water fluxes across Australian ecosystems
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Simon Scheiter, Sophie Wolf, and Teja Kattenborn
Biogeosciences, 21, 4909–4926, https://doi.org/10.5194/bg-21-4909-2024, https://doi.org/10.5194/bg-21-4909-2024, 2024
Short summary
Short summary
Biomes are widely used to map vegetation patterns at large spatial scales and to assess impacts of climate change, yet there is no consensus on a generally valid biome classification scheme. We used crowd-sourced species distribution data and trait data to assess whether trait information is suitable for delimiting biomes. Although the trait data were heterogeneous and had large gaps with respect to the spatial distribution, we found that a global trait-based biome classification was possible.
Cheng-Hsien Lin, Colleen Zumpf, Chunhwa Jang, Thomas Voigt, Guanglong Tian, Olawale Oladeji, Albert Cox, Rehnuma Mehzabin, and DoKyoung Lee
Biogeosciences, 21, 4765–4784, https://doi.org/10.5194/bg-21-4765-2024, https://doi.org/10.5194/bg-21-4765-2024, 2024
Short summary
Short summary
Riparian areas are subject to environmental issues (nutrient leaching) associated with low productivity. Perennial grasses can improve ecosystem services from riparian zones while producing forage/bioenergy feedstock biomass as potential income for farmers. The forage-type buffer can be an ideal short-term candidate due to its great efficiency of nutrient scavenging; the bioenergy-type buffer showed better sustainability than the forage buffer and a continuous yield supply potential.
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024, https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Short summary
Through an extensive global dataset of leaf nutrient resorption and a multifactorial analysis, we show that the majority of spatial variation in nutrient resorption may be driven by leaf habit and type, with thicker, longer-lived leaves having lower resorption efficiencies. Climate, soil fertility and soil-related factors emerge as strong drivers with an additional effect on its role. These results are essential for comprehending plant nutrient status, plant productivity and nutrient cycling.
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024, https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Short summary
In the Arctic tundra, climate change is transforming the landscape, and this may impact wildlife. We focus on three nesting bird species and the islets they select as refuges from their main predator, the Arctic fox. A geomorphological process, ice-wedge polygon degradation, was found to play a key role in creating these refuges. This process is likely to affect predator–prey dynamics in the Arctic tundra, highlighting the connections between nature's physical and ecological systems.
Samuel M. Fischer, Xugao Wang, and Andreas Huth
Biogeosciences, 21, 3305–3319, https://doi.org/10.5194/bg-21-3305-2024, https://doi.org/10.5194/bg-21-3305-2024, 2024
Short summary
Short summary
Understanding the drivers of forest productivity is key for accurately assessing forests’ role in the global carbon cycle. Yet, despite significant research effort, it is not fully understood how the productivity of a forest can be deduced from its stand structure. We suggest tackling this problem by identifying the share and structure of immature trees within forests and show that this approach could significantly improve estimates of forests’ net productivity and carbon uptake.
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
EGUsphere, https://doi.org/10.5194/egusphere-2024-1800, https://doi.org/10.5194/egusphere-2024-1800, 2024
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem growth. Traditional large-scale data lack the precision needed for complex terrains, e.g. mountainous regions. This study introduces a new model to enhance radiation data resolution using elevation maps, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features. Tested on Mont Ventoux, this method significantly improves radiation estimates, benefiting forest growth and climate risk models.
Mery Ingrid Guimarães de Alencar, Rafael D. Guariento, Bertrand Guenet, Luciana S. Carneiro, Eduardo L. Voigt, and Adriano Caliman
Biogeosciences, 21, 3165–3182, https://doi.org/10.5194/bg-21-3165-2024, https://doi.org/10.5194/bg-21-3165-2024, 2024
Short summary
Short summary
Flowers are ephemeral organs for reproduction, and their litter is functionally different from leaf litter. Flowers can affect decomposition and interact with leaf litter, influencing decomposition non-additively. We show that mixing flower and leaf litter from the Tabebuia aurea tree creates reciprocal synergistic effects on decomposition in both terrestrial and aquatic environments. We highlight that flower litter input can generate biogeochemical hotspots in terrestrial ecosystems.
Pierre-Alexis Herrault, Albin Ullmann, and Damien Ertlen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1935, https://doi.org/10.5194/egusphere-2024-1935, 2024
Short summary
Short summary
Mountain grasslands are impacted by Climate Change and need to adapt. Low mountain grasslands are poorly understood compared to High Mountains massif. Thanks to satellite archives, we found that grasslands occurring in the Vosges Mountains (France) exhibited stable productivity or tended to decrease in specific regions of the massif, a reverse signal observed in High Mountains massif. We also noted a high responsiveness in their growth strategy to soil moisture, snow regimes and topography.
Salim Soltani, Olga Ferlian, Nico Eisenhauer, Hannes Feilhauer, and Teja Kattenborn
Biogeosciences, 21, 2909–2935, https://doi.org/10.5194/bg-21-2909-2024, https://doi.org/10.5194/bg-21-2909-2024, 2024
Short summary
Short summary
In this research, we developed a novel method using citizen science data as alternative training data for computer vision models to map plant species in unoccupied aerial vehicle (UAV) images. We use citizen science plant photographs to train models and apply them to UAV images. We tested our approach on UAV images of a test site with 10 different tree species, yielding accurate results. This research shows the potential of citizen science data to advance our ability to monitor plant species.
Xue Feng, Ruzhen Wang, Tianpeng Li, Jiangping Cai, Heyong Liu, Hui Li, and Yong Jiang
Biogeosciences, 21, 2641–2653, https://doi.org/10.5194/bg-21-2641-2024, https://doi.org/10.5194/bg-21-2641-2024, 2024
Short summary
Short summary
Plant functional traits have been considered as reflecting adaptations to environmental variations, indirectly affecting ecosystem productivity. How soil acidification affects above- and belowground biomass by altering leaf and root traits remains poorly understood. We found divergent trait responses driven by soil environmental conditions in two dominant species, resulting in a decrease in aboveground biomass and an increase in belowground biomass.
Minhua Zhang, Xiaoqing Hu, and Fangliang He
Biogeosciences, 21, 2133–2142, https://doi.org/10.5194/bg-21-2133-2024, https://doi.org/10.5194/bg-21-2133-2024, 2024
Short summary
Short summary
Plant sexual systems are important to understanding the evolution and maintenance of plant diversity. We quantified region effects on their proportions while incorporating local climate factors and evolutionary history. We found regional processes and climate effects both play important roles in shaping the geographic distribution of sexual systems, providing a baseline for predicting future changes in forest communities in the context of global change.
Christian H. Mohr, Michael Dietze, Violeta Tolorza, Erwin Gonzalez, Benjamin Sotomayor, Andres Iroume, Sten Gilfert, and Frieder Tautz
Biogeosciences, 21, 1583–1599, https://doi.org/10.5194/bg-21-1583-2024, https://doi.org/10.5194/bg-21-1583-2024, 2024
Short summary
Short summary
Coastal temperate rainforests, among Earth’s carbon richest biomes, are systematically underrepresented in the global network of critical zone observatories (CZOs). Introducing here a first CZO in the heart of the Patagonian rainforest, Chile, we investigate carbon sink functioning, biota-driven landscape evolution, fluxes of matter and energy, and disturbance regimes. We invite the community to join us in cross-disciplinary collaboration to advance science in this particular environment.
Jorge F. Perez-Quezada, David Trejo, Javier Lopatin, David Aguilera, Bruce Osborne, Mauricio Galleguillos, Luca Zattera, Juan L. Celis-Diez, and Juan J. Armesto
Biogeosciences, 21, 1371–1389, https://doi.org/10.5194/bg-21-1371-2024, https://doi.org/10.5194/bg-21-1371-2024, 2024
Short summary
Short summary
For 8 years we sampled a temperate rainforest and a peatland in Chile to estimate their efficiency to capture carbon per unit of water lost. The efficiency is more related to the water lost than to the carbon captured and is mainly driven by evaporation instead of transpiration. This is the first report from southern South America and highlights that ecosystems might behave differently in this area, likely explained by the high annual precipitation (~ 2100 mm) and light-limited conditions.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Andrew Kulmatiski, Martin C. Holdrege, Cristina Chirvasă, and Karen H. Beard
Biogeosciences, 21, 131–143, https://doi.org/10.5194/bg-21-131-2024, https://doi.org/10.5194/bg-21-131-2024, 2024
Short summary
Short summary
Warmer air and larger precipitation events are changing the way water moves through the soil and into plants. Here we show that detailed descriptions of root distributions can predict plant growth responses to changing precipitation patterns. Shrubs and forbs increased growth, while grasses showed no response to increased precipitation intensity, and these responses were predicted by plant rooting distributions.
Bonaventure Ntirugulirwa, Etienne Zibera, Nkuba Epaphrodite, Aloysie Manishimwe, Donat Nsabimana, Johan Uddling, and Göran Wallin
Biogeosciences, 20, 5125–5149, https://doi.org/10.5194/bg-20-5125-2023, https://doi.org/10.5194/bg-20-5125-2023, 2023
Short summary
Short summary
Twenty tropical tree species native to Africa were planted along an elevation gradient (1100 m, 5.4 °C difference). We found that early-successional (ES) species, especially from lower elevations, grew faster at warmer sites, while several of the late-successional (LS) species, especially from higher elevations, did not respond or grew slower. Moreover, a warmer climate increased tree mortality in LS species, but not much in ES species.
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot
EGUsphere, https://doi.org/10.5194/egusphere-2023-2421, https://doi.org/10.5194/egusphere-2023-2421, 2023
Short summary
Short summary
2022 fire season had a huge impact on European temperate forest, with several large fires exhibiting prolonged soil combustion reported. We analyzed CO and CO2 concentration recorded at nearby atmospheric towers, revealing intense smoldering combustion. We refined a fire emission model to incorporate this process. We estimated 7.95 MteqCO2 fire emission, twice the global estimate. Fires contributed to 1.97 % of the country's annual carbon footprint, reducing forest carbon sink by 30 % this year.
Philippe Choler
Biogeosciences, 20, 4259–4272, https://doi.org/10.5194/bg-20-4259-2023, https://doi.org/10.5194/bg-20-4259-2023, 2023
Short summary
Short summary
The year 2022 was unique in that the summer heat wave and drought led to a widespread reduction in vegetation growth at high elevation in the European Alps. This impact was unprecedented in the southwestern, warm, and dry part of the Alps. Over the last 2 decades, water has become a co-dominant control of vegetation activity in areas that were, so far, primarily controlled by temperature, and the growth of mountain grasslands has become increasingly sensitive to moisture availability.
Adriana Simonetti, Raquel Fernandes Araujo, Carlos Henrique Souza Celes, Flávia Ranara da Silva e Silva, Joaquim dos Santos, Niro Higuchi, Susan Trumbore, and Daniel Magnabosco Marra
Biogeosciences, 20, 3651–3666, https://doi.org/10.5194/bg-20-3651-2023, https://doi.org/10.5194/bg-20-3651-2023, 2023
Short summary
Short summary
We combined 2 years of monthly drone-acquired RGB (red–green–blue) imagery with field surveys in a central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Biomass losses were partially controlled by gap area, with branch fall and snapping contributing the least and greatest relative values, respectively. Our study highlights the potential of drone images for monitoring canopy dynamics in dense tropical forests.
Silvia Caldararu, Victor Rolo, Benjamin D. Stocker, Teresa E. Gimeno, and Richard Nair
Biogeosciences, 20, 3637–3649, https://doi.org/10.5194/bg-20-3637-2023, https://doi.org/10.5194/bg-20-3637-2023, 2023
Short summary
Short summary
Ecosystem manipulative experiments are large experiments in real ecosystems. They include processes such as species interactions and weather that would be omitted in more controlled settings. They offer a high level of realism but are underused in combination with vegetation models used to predict the response of ecosystems to global change. We propose a workflow using models and ecosystem experiments together, taking advantage of the benefits of both tools for Earth system understanding.
Katharina Ramskogler, Bettina Knoflach, Bernhard Elsner, Brigitta Erschbamer, Florian Haas, Tobias Heckmann, Florentin Hofmeister, Livia Piermattei, Camillo Ressl, Svenja Trautmann, Michael H. Wimmer, Clemens Geitner, Johann Stötter, and Erich Tasser
Biogeosciences, 20, 2919–2939, https://doi.org/10.5194/bg-20-2919-2023, https://doi.org/10.5194/bg-20-2919-2023, 2023
Short summary
Short summary
Primary succession in proglacial areas depends on complex driving forces. To concretise the complex effects and interaction processes, 39 known explanatory variables assigned to seven spheres were analysed via principal component analysis and generalised additive models. Key results show that in addition to time- and elevation-dependent factors, also disturbances alter vegetation development. The results are useful for debates on vegetation development in a warming climate.
Zijing Li, Zhiyong Li, Xuze Tong, Lei Dong, Ying Zheng, Jinghui Zhang, Bailing Miao, Lixin Wang, Liqing Zhao, Lu Wen, Guodong Han, Frank Yonghong Li, and Cunzhu Liang
Biogeosciences, 20, 2869–2882, https://doi.org/10.5194/bg-20-2869-2023, https://doi.org/10.5194/bg-20-2869-2023, 2023
Short summary
Short summary
We used random forest models and structural equation models to assess the relative importance of the present climate and paleoclimate as determinants of diversity and aboveground biomass. Results showed that paleoclimate changes and modern climate jointly determined contemporary biodiversity patterns, while community biomass was mainly affected by modern climate. These findings suggest that contemporary biodiversity patterns may be affected by processes at divergent temporal scales.
William Rupert Moore Flynn, Harry Jon Foord Owen, Stuart William David Grieve, and Emily Rebecca Lines
Biogeosciences, 20, 2769–2784, https://doi.org/10.5194/bg-20-2769-2023, https://doi.org/10.5194/bg-20-2769-2023, 2023
Short summary
Short summary
Quantifying vegetation indices is crucial for ecosystem monitoring and modelling. Terrestrial laser scanning (TLS) has potential to accurately measure vegetation indices, but multiple methods exist, with little consensus on best practice. We compare three methods and extract wood-to-plant ratio, a metric used to correct for wood in leaf indices. We show corrective metrics vary with tree structure and variation among methods, highlighting the value of TLS data and importance of rigorous testing.
Haiyang Shi, Geping Luo, Olaf Hellwich, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 20, 2727–2741, https://doi.org/10.5194/bg-20-2727-2023, https://doi.org/10.5194/bg-20-2727-2023, 2023
Short summary
Short summary
In studies on the relationship between ecosystem functions and climate and plant traits, previously used data-driven methods such as multiple regression and random forest may be inadequate for representing causality due to limitations such as covariance between variables. Based on FLUXNET site data, we used a causal graphical model to revisit the control of climate and vegetation traits over ecosystem functions.
Josué Delgado-Balbuena, Henry W. Loescher, Carlos A. Aguirre-Gutiérrez, Teresa Alfaro-Reyna, Luis F. Pineda-Martínez, Rodrigo Vargas, and Tulio Arredondo
Biogeosciences, 20, 2369–2385, https://doi.org/10.5194/bg-20-2369-2023, https://doi.org/10.5194/bg-20-2369-2023, 2023
Short summary
Short summary
In the semiarid grassland, an increase in soil moisture at shallow depths instantly enhances carbon release through respiration. In contrast, deeper soil water controls plant carbon uptake but with a delay of several days. Previous soil conditions, biological activity, and the size and timing of precipitation are factors that determine the amount of carbon released into the atmosphere. Thus, future changes in precipitation patterns could convert ecosystems from carbon sinks to carbon sources.
German Vargas Gutiérrez, Daniel Pérez-Aviles, Nanette Raczka, Damaris Pereira-Arias, Julián Tijerín-Triviño, L. David Pereira-Arias, David Medvigy, Bonnie G. Waring, Ember Morrisey, Edward Brzostek, and Jennifer S. Powers
Biogeosciences, 20, 2143–2160, https://doi.org/10.5194/bg-20-2143-2023, https://doi.org/10.5194/bg-20-2143-2023, 2023
Short summary
Short summary
To study whether nutrient availability controls tropical dry forest responses to reductions in soil moisture, we established the first troughfall exclusion experiment in a tropical dry forest plantation system crossed with a fertilization scheme. We found that the effects of fertilization on net primary productivity are larger than the effects of a ~15 % reduction in soil moisture, although in many cases we observed an interaction between drought and nutrient additions, suggesting colimitation.
Alina Lucia Ludat and Simon Kübler
Biogeosciences, 20, 1991–2012, https://doi.org/10.5194/bg-20-1991-2023, https://doi.org/10.5194/bg-20-1991-2023, 2023
Short summary
Short summary
Satellite-based analysis illustrates the impact of geological processes for the stability of the ecosystem in the Mara River basin (Kenya/Tanzania). Newly detected fault activity influences the course of river networks and modifies erosion–deposition patterns. Tectonic surface features and variations in rock chemistry lead to localized enhancement of clay and soil moisture values and seasonally stabilised vegetation growth patterns in this climatically vulnerable region.
Erica Jaakkola, Antje Gärtner, Anna Maria Jönsson, Karl Ljung, Per-Ola Olsson, and Thomas Holst
Biogeosciences, 20, 803–826, https://doi.org/10.5194/bg-20-803-2023, https://doi.org/10.5194/bg-20-803-2023, 2023
Short summary
Short summary
Increased spruce bark beetle outbreaks were recently seen in Sweden. When Norway spruce trees are attacked, they increase their production of VOCs, attempting to kill the beetles. We provide new insights into how the Norway spruce act when infested and found the emitted volatiles to increase up to 700 times and saw a change in compound blend. We estimate that the 2020 bark beetle outbreak in Sweden could have increased the total monoterpene emissions from the forest by more than 10 %.
Georg Wohlfahrt, Albin Hammerle, Felix M. Spielmann, Florian Kitz, and Chuixiang Yi
Biogeosciences, 20, 589–596, https://doi.org/10.5194/bg-20-589-2023, https://doi.org/10.5194/bg-20-589-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (COS), which is taken up by plant leaves in a process very similar to photosynthesis, is thought to be a promising proxy for the gross uptake of carbon dioxide by plants. Here we propose a new framework for estimating a key metric to that end, the so-called leaf relative uptake rate. The values we deduce by applying principles of plant optimality are considerably lower than published values and may help reduce the uncertainty of the global COS budget.
François Jonard, Andrew F. Feldman, Daniel J. Short Gianotti, and Dara Entekhabi
Biogeosciences, 19, 5575–5590, https://doi.org/10.5194/bg-19-5575-2022, https://doi.org/10.5194/bg-19-5575-2022, 2022
Short summary
Short summary
We investigate the spatial and temporal patterns of light and water limitation in plant function at the ecosystem scale. Using satellite observations, we characterize the nonlinear relationships between sun-induced chlorophyll fluorescence (SIF) and water and light availability. This study highlights that soil moisture limitations on SIF are found primarily in drier environments, while light limitations are found in intermediately wet regions.
Nikolai Knapp, Sabine Attinger, and Andreas Huth
Biogeosciences, 19, 4929–4944, https://doi.org/10.5194/bg-19-4929-2022, https://doi.org/10.5194/bg-19-4929-2022, 2022
Short summary
Short summary
The biomass of forests is determined by forest growth and mortality. These quantities can be estimated with different methods such as inventories, remote sensing and modeling. These methods are usually being applied at different spatial scales. The scales influence the obtained frequency distributions of biomass, growth and mortality. This study suggests how to transfer between scales, when using forest models of different complexity for a tropical forest.
Kai Chen, Kevin S. Burgess, Fangliang He, Xiang-Yun Yang, Lian-Ming Gao, and De-Zhu Li
Biogeosciences, 19, 4801–4810, https://doi.org/10.5194/bg-19-4801-2022, https://doi.org/10.5194/bg-19-4801-2022, 2022
Short summary
Short summary
Why does plants' distributional range size vary enormously? This study provides evidence that seed mass, intraspecific seed mass variation, seed dispersal mode and phylogeny contribute to explaining species distribution variation on a geographic scale. Our study clearly shows the importance of including seed life-history traits in modeling and predicting the impact of climate change on species distribution of seed plants.
Ying Ying Chen, Huan Yang, Gen Sheng Bao, Xiao Pan Pang, and Zheng Gang Guo
Biogeosciences, 19, 4521–4532, https://doi.org/10.5194/bg-19-4521-2022, https://doi.org/10.5194/bg-19-4521-2022, 2022
Short summary
Short summary
Investigating the effect of the presence of plateau pikas on ecosystem services of alpine meadows is helpful to understand the role of the presence of small mammalian herbivores in grasslands. The results of this study showed that the presence of plateau pikas led to higher biodiversity conservation, soil nitrogen and phosphorus maintenance, and carbon sequestration of alpine meadows, whereas it led to lower forage available to livestock and water conservation of alpine meadows.
Clement Jean Frédéric Delcourt and Sander Veraverbeke
Biogeosciences, 19, 4499–4520, https://doi.org/10.5194/bg-19-4499-2022, https://doi.org/10.5194/bg-19-4499-2022, 2022
Short summary
Short summary
This study provides new equations that can be used to estimate aboveground tree biomass in larch-dominated forests of northeast Siberia. Applying these equations to 53 forest stands in the Republic of Sakha (Russia) resulted in significantly larger biomass stocks than when using existing equations. The data presented in this work can help refine biomass estimates in Siberian boreal forests. This is essential to assess changes in boreal vegetation and carbon dynamics.
Iris Johanna Aalto, Eduardo Eiji Maeda, Janne Heiskanen, Eljas Kullervo Aalto, and Petri Kauko Emil Pellikka
Biogeosciences, 19, 4227–4247, https://doi.org/10.5194/bg-19-4227-2022, https://doi.org/10.5194/bg-19-4227-2022, 2022
Short summary
Short summary
Tree canopies are strong moderators of understory climatic conditions. In tropical areas, trees cool down the microclimates. Using remote sensing and field measurements we show how even intermediate canopy cover and agroforestry trees contributed to buffering the hottest temperatures in Kenya. The cooling effect was the greatest during hot days and in lowland areas, where the ambient temperatures were high. Adopting agroforestry practices in the area could assist in mitigating climate change.
Jing Wang and Xuefa Wen
Biogeosciences, 19, 4197–4208, https://doi.org/10.5194/bg-19-4197-2022, https://doi.org/10.5194/bg-19-4197-2022, 2022
Short summary
Short summary
Excess radiation and low temperatures exacerbate drought impacts on canopy conductance (Gs) among transects. The primary determinant of drought stress on Gs was soil moisture on the Loess Plateau (LP) and the Mongolian Plateau (MP), whereas it was the vapor pressure deficit on the Tibetan Plateau (TP). Radiation exhibited a negative effect on Gs via drought stress within transects, while temperature had negative effects on stomatal conductance on the TP but no effect on the LP and MP.
Sylvain Monteux, Janine Mariën, and Eveline J. Krab
Biogeosciences, 19, 4089–4105, https://doi.org/10.5194/bg-19-4089-2022, https://doi.org/10.5194/bg-19-4089-2022, 2022
Short summary
Short summary
Quantifying the feedback from the decomposition of thawing permafrost soils is crucial to establish adequate climate warming mitigation scenarios. Past efforts have focused on abiotic and to some extent microbial drivers of decomposition but not biotic drivers such as soil fauna. We added soil fauna (Collembola Folsomia candida) to permafrost, which introduced bacterial taxa without affecting bacterial communities as a whole but increased CO2 production (+12 %), presumably due to priming.
Mirjam Pfeiffer, Munir P. Hoffmann, Simon Scheiter, William Nelson, Johannes Isselstein, Kingsley Ayisi, Jude J. Odhiambo, and Reimund Rötter
Biogeosciences, 19, 3935–3958, https://doi.org/10.5194/bg-19-3935-2022, https://doi.org/10.5194/bg-19-3935-2022, 2022
Short summary
Short summary
Smallholder farmers face challenges due to poor land management and climate change. We linked the APSIM crop model and the aDGVM2 vegetation model to investigate integrated management options that enhance ecosystem functions and services. Sustainable intensification moderately increased yields. Crop residue grazing reduced feed gaps but not for dry-to-wet season transitions. Measures to improve soil water and nutrient status are recommended. Landscape-level ecosystem management is essential.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Emma Bousquet, Arnaud Mialon, Nemesio Rodriguez-Fernandez, Stéphane Mermoz, and Yann Kerr
Biogeosciences, 19, 3317–3336, https://doi.org/10.5194/bg-19-3317-2022, https://doi.org/10.5194/bg-19-3317-2022, 2022
Short summary
Short summary
Pre- and post-fire values of four climate variables and four vegetation variables were analysed at the global scale, in order to observe (i) the general fire likelihood factors and (ii) the vegetation recovery trends over various biomes. The main result of this study is that L-band vegetation optical depth (L-VOD) is the most impacted vegetation variable and takes the longest to recover over dense forests. L-VOD could then be useful for post-fire vegetation recovery studies.
Chen Yang, Yue Shi, Wenjuan Sun, Jiangling Zhu, Chengjun Ji, Yuhao Feng, Suhui Ma, Zhaodi Guo, and Jingyun Fang
Biogeosciences, 19, 2989–2999, https://doi.org/10.5194/bg-19-2989-2022, https://doi.org/10.5194/bg-19-2989-2022, 2022
Short summary
Short summary
Quantifying China's forest biomass C pool is important in understanding C cycling in forests. However, most of studies on forest biomass C pool were limited to the period of 2004–2008. Here, we used a biomass expansion factor method to estimate C pool from 1977 to 2018. The results suggest that afforestation practices, forest growth, and environmental changes were the main drivers of increased C sink. Thus, this study provided an essential basis for achieving China's C neutrality target.
Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese
Biogeosciences, 19, 2699–2727, https://doi.org/10.5194/bg-19-2699-2022, https://doi.org/10.5194/bg-19-2699-2022, 2022
Short summary
Short summary
Actual maps of grassland traits could improve local farm management and support environmental assessments. We developed, assessed, and applied models to estimate dry biomass and plant nitrogen (N) concentration in pre-Alpine grasslands with drone-based multispectral data and canopy height information. Our results indicate that machine learning algorithms are able to estimate both parameters but reach a better level of performance for biomass.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022, https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary
Short summary
Forest environments contain a wide variety of airborne biological particles (bioaerosols) important for plant and animal health and biosphere–atmosphere interactions. Using low-cost sensors and a free-air carbon dioxide enrichment (FACE) experiment, we monitor the impact of enhanced CO2 on airborne particles. No effect of the enhanced CO2 treatment on total particle concentrations was observed, but a potential suppression of high concentration bioaerosol events was detected under enhanced CO2.
Melanie S. Verlinden, Hamada AbdElgawad, Arne Ven, Lore T. Verryckt, Sebastian Wieneke, Ivan A. Janssens, and Sara Vicca
Biogeosciences, 19, 2353–2364, https://doi.org/10.5194/bg-19-2353-2022, https://doi.org/10.5194/bg-19-2353-2022, 2022
Short summary
Short summary
Zea mays grows in mesocosms with different soil nutrition levels. At low phosphorus (P) availability, leaf physiological activity initially decreased strongly. P stress decreased over the season. Arbuscular mycorrhizal fungi (AMF) symbiosis increased over the season. AMF symbiosis is most likely responsible for gradual reduction in P stress.
Guoyu Lan, Bangqian Chen, Chuan Yang, Rui Sun, Zhixiang Wu, and Xicai Zhang
Biogeosciences, 19, 1995–2005, https://doi.org/10.5194/bg-19-1995-2022, https://doi.org/10.5194/bg-19-1995-2022, 2022
Short summary
Short summary
Little is known about the impact of rubber plantations on diversity of the Great Mekong Subregion. In this study, we uncovered latitudinal gradients of plant diversity of rubber plantations. Exotic species with high dominance result in loss of plant diversity of rubber plantations. Not all exotic species would reduce plant diversity of rubber plantations. Much more effort should be made to balance agricultural production with conservation goals in this region.
Ulrike Hiltner, Andreas Huth, and Rico Fischer
Biogeosciences, 19, 1891–1911, https://doi.org/10.5194/bg-19-1891-2022, https://doi.org/10.5194/bg-19-1891-2022, 2022
Short summary
Short summary
Quantifying biomass loss rates due to stem mortality is important for estimating the role of tropical forests in the global carbon cycle. We analyse the consequences of long-term elevated stem mortality for tropical forest dynamics and biomass loss. Based on simulations, we developed a statistical model to estimate biomass loss rates of forests in different successional states from forest attributes. Assuming a doubling of tree mortality, biomass loss increased from 3.2 % yr-1 to 4.5 % yr-1.
Jon Cranko Page, Martin G. De Kauwe, Gab Abramowitz, Jamie Cleverly, Nina Hinko-Najera, Mark J. Hovenden, Yao Liu, Andy J. Pitman, and Kiona Ogle
Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022, https://doi.org/10.5194/bg-19-1913-2022, 2022
Short summary
Short summary
Although vegetation responds to climate at a wide range of timescales, models of the land carbon sink often ignore responses that do not occur instantly. In this study, we explore the timescales at which Australian ecosystems respond to climate. We identified that carbon and water fluxes can be modelled more accurately if we include environmental drivers from up to a year in the past. The importance of antecedent conditions is related to ecosystem aridity but is also influenced by other factors.
Cited articles
Aerts, R.: Prota 7, Timbers/Bois d'oeuvre 1. [CD-Rom], chap. Afrocarpus falcatus (Thunb.), edited by: Page, C. N., Louppe, D., and Oteng-Amoako, A. A., and Brink, M., PROTA, Wageningen, 38–43, Netherlands, 2008.
Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S., and Houghton, R. A.: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps, Nature Climate Change, 2, 182–185, 2012.
Baker, T., Affum-Baffoe, K., Burslem, D., and Swaine, M.: Phenological differences in tree water use and the timing of tropical forest inventories: conclusions from patterns of dry season diameter change, Forest Ecol. Manag., 171, 261–274, 2002.
Baker, T., Burslem, D., and Swaine, M.: Associations between tree growth, soil fertility and water availability at and regional scales in Ghanian tropical rain forest, J. Trop. Ecol., 19, 109–125, 2003.
Baraloto, C., Paine, T. C. E., Poorter, L., Beauchene, J.and Bonal, D., Domenach, A.-M., Hérault, B., Patiño, S., Roggy, J.-C., and Chave, J.: Decoupled leaf and stem economics in rain forest trees, Ecol. Lett., 13, 1338–1347, 2010.
Becker, G. S., Braun, D., Gliniars, R., and Dalitz, H.: Relations between wood variables and how they relate to tree size variables of tropical African tree species, Trees-Struct. Funct., 26, 1101–1112, 2012.
Bi, J., Knyazikhin, Y., Choi, S., Park, T., Barichivich, J., Ciais, P., Fu, R., Ganguly, S., Hall, F., Hilker, T., Huete, A., Jones, M., Kimball, J., Lyapustin, A. I., ottus, M. M., Nemani, R. R., Piao, S., Poulter, B., Saleska, S. R., Saatchi, S. S., Xu, L., Zhou, L., and Myneni, R. B.: Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests, Environ. Res. Lett., 10, 064014, https://doi.org/10.1088/1748-9326/10/6/064014, 2015.
Boanerges, D. S.: Wood densities measurements of PPBio permanent plots from the Parque Nacional do Viruá (Caracaraí, RR), 2012.
Bonal, D., Bosc, A., Ponton, S., Goret, J. Y., Burban, B., Gross, P., Bonnefond, J. M., Elbers, J., Longdoz, B., Epron, D., Guehl, J. M., and Granier, A.: Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana, Glob. Change Biol., 14, 1917–1933, 2008.
Bonal, D., Ponton, S., Le Thiec, D., Richard, B., Ningre, N., Herault, B., Ogee, J., Gonzalez, S., Pignal, M., Sabatier, D., and Guehl, J.-M.: Leaf functional response to increasing atmospheric CO2 concentrations over the last century in two northern Amazonian tree species: a historical delta C-13 and delta O-18 approach using herbarium samples, Plant Cell Environ., 34, 1332–1344, 2011.
Borchert, R.: Climatic periodicity, phenology, and cambium activity in tropical dry forest trees, IAWA Journal, 20, 239–247, 1999.
Borchert, R., Calle, Z., Strahler, A. H., Baertschi, A., Magill, R. E., Broadhead, J. S., Kamau, J., Njoroge, J., and Muthuri, C.: Insolation and photoperiodic control of tree development near the equator, New Phytol., 205, 7–13, 2015.
Bowman, D. and Prior, L.: Turner review No. 10: Why do evergreen trees dominate the Australian seasonal tropics?, Aust. J. Bot., 53, 379–399, 2005.
Boyle, B., Hopkins, N., Lu, Z., Garay, J. A. R., Mozzherin, D., Rees, T., Matasci, N., Narro, M. L., Piel, W. H., Mckay, S. J., Lowry, S., Freeland, C., Peet, R. K., and Enquist, B. J.: The taxonomic name resolution service: an online tool for automated standardization of plant names, BMC Bioinformatics, 14, 1–15, https://doi.org/10.1186/1471-2105-14-16, 2013.
Brando, P. M., Goetz, S. J., Baccini, A., Nepstad, D. C., Beck, P. S. A., and Christman, M. C.: Seasonal and interannual variability of climate and vegetation indices across the Amazon, P. Natl. Acad. Sci. USA, 107, 14685–14690, 2010.
Brauning, A., Volland-Voigt, F., Burchardt, I., Ganzhi, O., Nauss, T., and Peters, T.: Climatic control of radial growth of Cedrela montana in a humid mountain rainforest in southern Ecuador, Erdkunde, 63, 337–345, 548OB Times Cited:3 Cited References Count: 47, 2009.
Brodribb, T., Bowman, D., Grierson, P., Murphy, B., S, N., and LD, P.: Conservative water management in the widespread conifer genus Callitris, AoB PLANTS, 5, plt052, https://doi.org/10.1093/aobpla/plt052, 2013.
Bunyavejchewin, S.: Ecological studies of tropical semi-evergreen rain forest at Sakaerat, Nakhon Ratchasima, Northeast Thailand, II Litterfall, Nat. Hist. Bull. Siam Soc., 45, 43–52, 1997.
Cardoso, F. C. G., Marques, R., Botosso, P. C., and Marques, M. C. M.: Stem growth and phenology of two tropical trees in contrasting soil conditions, Plant and Soil, 354, 269–281, 2012.
Carvalho, F. A.: Dinâmica da vegetação arbórea de uma floresta estacional decidual sobre afloramentos calcários no Brasil central, Ph.D. thesis, Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Ecologia, Programa de Pós-graduação em Ecologia, 2009.
Castilho, C., Boanerges, D. S., Silva, W. R., and Toledo, J. J.: Dendrometer and litterfall data of PPBio permanent plots from the Parque Nacional do Viruá (Caracaraí, RR), 2012.
Cause, M., Rudder, E., and Kynaston, W.: Technical pamphlet no. 2: Queensland timbers - their nomenclature, density and lyctid susceptibility, Tech. rep., Queensland Forest Service, Brisbane, 1989.
Chagas, R. K., Durigan, G., Contieri, W. A., and Saito, M.: Pesquisas em conservação e recuperação ambiental no oeste paulista: resultados da cooperação Brasil Japão, chap. Crescimento diametral de espécies arbóreas em floresta estacional semidecidual ao longo de seis anos, edited by: Bôas, O. V. and Durigan, G., Inst. Flor. de S. Paulo e JICA, 265–290, 2004.
Chamberlain, S. and Szocs, E.: taxize – taxonomic search and retrieval in R, F1000Research, 2013.
Chambers, J., da Silva, R., Siza Tribuzy, E., dos Santos, J., and N., H.: LBA-ECO CD-08 Tree Diameter Measurements, Jacaranda Plots, Manaus, Brazil, 1999–2001, available at: http://daac.ornl.gov, from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, 2013.
Chavana-Bryant, C., Malhi, Y., Wu, J., Asner, G. P., Anastasiou, A., Enquist, B. J., Cosio Caravasi, E. G., Doughty, C. E., Saleska, S. R., Martin, R. E., and Gerard, F. F.: Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements, New Phytol., in press, https://doi.org/10.1111/nph.13853, 2016.
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., and Zanne, A. E.: Towards a worldwide wood economics spectrum, Ecol. Lett., 12, 351–366, 2009.
Chave, J., Navarrete, D., Almeida, S., Alvarez, E., Aragao, L. E. O. C., Bonal, D., Chatelet, P., Silva-Espejo, J. E., Goret, J. Y., von Hildebrand, P., Jimenez, E., Patino, S., Penuela, M. C., Phillips, O. L., Stevenson, P., and Malhi, Y.: Regional and seasonal patterns of litterfall in tropical South America, Biogeosciences, 7, 43–55, https://doi.org/10.5194/bg-7-43-2010, 2010.
Chave, J., Rejou-Mechain, M., Burquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martinez-Yrizar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., Pelissier, R., Ploton, P., Ryan, C. M., Saldarriaga, J. G., and Vieilledent, G.: Improved allometric models to estimate the aboveground biomass of tropical trees, Glob. Change Biol., 20, 3177–3190, 2014.
Chidumayo, E.: Effects of climate on the growth of exotic and indigenous trees in central Zambia, J. Biogeogr., 32, 111–120, 2005.
Clark, D. A., Cascante, M., Artavia, J., Villegas, D., and Campos, P.: litterfall monitoring in the 18 carbono plots, La Selva Biological Station, Tech. rep., CARBONO PROJECT, 2009.
Clark, D. B., Clark, D. A., and Oberbauer, S. F.: Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2, Global Change Biology, 16, 747–759, 2010.
Couralet, C., Sterck, F. J., Sass-Klaassen, U., Van Acker, J., and Beeckman, H.: Species-Specific Growth Responses to Climate Variations in Understory Trees of a Central African Rain Forest, Biotropica, 42, 503–511, 619OG Times Cited:3 Cited References Count:82, 2010.
Cuny, H. E., Rathgeber, C. B. K., Frank, D., Fonti, P., Makinen, H., Prislan, P., Rossi, S., del Castillo, E. M., Campelo, F., Vavrcik, H., Camarero, J. J., Bryukhanova, M. V., Jyske, T., Gricar, J., Gryc, V., De Luis, M., Vieira, J., Cufar, K., Kirdyanov, A. V., Oberhuber, W., Treml, V., Huang, J.-G., Li, X., Swidrak, I., Deslauriers, A., Liang, E., Nojd, P., Gruber, A., Nabais, C., Morin, H., Krause, C., King, G., and Fournier, M.: Woody biomass production lags stem-girth increase by over one month in coniferous forests, Nature Plants, 1, 11, https://doi.org/10.1038/NPLANTS.2015.160, 2015.
de Castro, V. R.: Efeitos do potássio, sódio e da disponibilidade hídrica no crescimento e qualidade do lenho de árvores de Eucalyptus grandis Hill ex Maiden, Ph.D. thesis, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, 2014.
Detienne, P. and A., M.: Nature et périodicité des cernes dans le bois de Samba, Revue Bois et Forets des Tropiques, 169, 29–35, 1976.
Devineau, J. L.: The variability of girth increment of trees in the semi-deciduous tropical forests of Lamto, Ivory-Coast, Revue d'Ecologie, 46, 95–124, 1991.
Doughty, C. E.: An in situ leaf and branch warming experiment in the Amazon, Biotropica, 43, 658–665, 2011.
Doughty, C. E. and Goulden, M. L.: Are tropical forests near a high temperature threshold?, J. Geophys. Res.-Biogeo., 113, 1–12, 2008.
Doughty, C. E., Malhi, Y., Araujo-Murakami, A., Metcalfe, D. B., Silva-Espejo, J. E., Arroyo, L., Heredia, J. P., Pardo-Toledo, E., Mendizabal, L. M., Rojas-Landivar, V. D., Vega-Martinez, M., Flores-Valencia, M., Sibler-Rivero, R., Moreno-Vare, L., Viscarra, L. J., Chuviru-Castro, T., Osinaga-Becerra, M., and Ledezma, R.: Allocation trade-offs dominate the response of tropical forest growth to seasonal and interannual drought, Ecology, 95, 2192–2201, 2014.
Doughty, C. E., Metcalfe, D. B., Girardin, C. A. J., Amezquita, F. F., Cabrera, D. G., Huasco, W. H., Silva-Espejo, J. E., Araujo-Murakami, A., da Costa, M. C., Rocha, W., Feldpausch, T. R., Mendoza, A. L. M., da Costa, A. C. L., Meir, P., Phillips, O. L., and Malhi, Y.: Drought impact on forest carbon dynamics and fluxes in Amazonia, Nature, 519, 78–82, 2015.
Drew, D. M., Richards, A. E., Downes, G. M., Cook, G. D., and Baker, P.: The development of seasonal tree water deficit in Callitris intratropica, Tree Physiol., 31, 953–964, 2011.
Dünisch, O., Bauch, J., and Gasparotto, L.: Formation of increment zones and intraannual growth dynamics in the xylem of Swietenia macrophylla, Carapa guianensis, and Cedrela odorata (Meliaceae), Iawa J., 23, 101–119, 2002.
Elifuraha, E., Nöjd, P., and Mbwambo, L.: Short term growth of miombo tree species at Kitulangalo, Working Papers of the Finnish Forest Research Institute, 98, 37–45, 2008.
FAO: Forest resources Assessment Working Paper 179, Global Ecological Zones for forest reporting: 2010 update, Tech. Rep., Food and Agriculture Organization of the United Nations, 2012.
Ferreira-Fedele, L., Tomazello Filho, M., Botosso, P. C., and Giannotti, E.: Periodicidade do crescimento de Esenbeckia leiocarpa Engl. (guarantã) em duas áreas da região Sudeste do Estado de São Paulo, Scientia Forestalis, 65, 141–149, 2004.
Figueira, A., Miller, S., de Sousa, C., Menton, M., Maia, A., da Rocha, H., and Goulden, M.: LBA-ECO CD-04 Dendrometry, km 83 Tower Site, Tapajos National Forest, Brazil, Data set, available at: http://daac.ornl.gov, from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, 2011.
Free, C., Landis, R., Grogan, J., Schulze, M., Lentini, M., and Dünisch, O.: Management implications of long-term tree growth and mortality rates: A modeling study of big-leaf mahogany (Swietenia macrophylla) in the Brazilian Amazon, Forest Ecol. Manag., 330, 46–54, 2014.
Gliniars, R., Becker, G. S., Braun, D., and Dalitz, H.: Monthly stem increment in relation to climatic variables during 7 years in an East African rainforest, Trees, 27, 1129–1138, 2013.
Graham, E. A., Mulkey, S. S., Kitajima, K., Phillips, N. G., and Wright, S. J.: Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons, P. Natl. Acad. Sci. USA, 100, 572–576, 2003.
Grogan, J. and Schulze, M.: The Impact of Annual and Seasonal Rainfall Patterns on Growth and Phenology of Emergent Tree Species in Southeastern Amazonia, Brazil, Biotropica, 44, 331–340, 2012.
Guan, K., Pan, M., Li, H., Wolf, A., Wu, J., Medvigy, D., Caylor, K. K., Sheffield, J., Wood, E. F., Malhi, Y., Liang, M., Kimball, J. S., Saleska, S. R., Berry, J., Joiner, J., and Lyapustin, A. I.: Photosynthetic seasonality of global tropical forests constrained by hydroclimate, Nat. Geosci., 8, 284–289, 2015.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R. G.: High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, 342, 850–853, 2013.
Hilker, T., Lyapustin, A. I., Tucker, C. J., Hall, F. G., Myneni, R. B., Wang, Y., Bi, J., de Moura, Y. M., and Sellers, P. J.: Vegetation dynamics and rainfall sensitivity of the Amazon, P. Natl. Acad. Sci. USA, 111, 16041–16046, 2014.
Homeier, J.: Dendrometer data from the Reserva Biologica Alberto Brenes, 2012.
Homeier, J., Hertel, D., Camenzind, T., Cumbicus, N. L., Maraun, M., Martinson, G. O., Poma, L. N., Rillig, M. C., Sandmann, D., Scheu, S., Veldkamp, E., Wilcke, W., Wullaert, H., and Leuschner, C.: Tropical Andean forests are highly susceptible to nutrient inputs – rapid effects of experimental N and P addition to an Ecuadorian montane forest, PLoS ONE, 7, e47128, https://doi.org/10.1371/journal.pone.0047128, 2012.
Homeier, J., Breckle, S.-W., Guenter, S., Rollenbeck, R. T., and Leuschner, C.: Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane, BIOTROPICA, 42, 140–148, 2010.
Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., and Ferreira, L.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195–213, 2002.
Huete, A. R., Didan, K., Shimabukuro, Y. E., Ratana, P., Saleska, S. R., Hutyra, L. R., Yang, W. Z., Nemani, R. R., and Myneni, R.: Amazon rainforests green-up with sunlight in dry season, Geophys. Res. Lett., 33, 1–4, 2006.
Jarvis, A., Reuter, H., Nelson, A., and E., G.: Hole-filled SRTM for the globe Version 4, available at: the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org/), Tech. Rep., CGIAR-CSI, 2008.
Jones, M. O., Kimball, J. S., and Nemani, R. R.: Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability, Environ. Res. Lett., 9, 124021, https://doi.org/10.1088/1748-9326/9/12/124021, 2014.
Justice, C., Vermote, E., Townshend, J., Defries, R., Roy, D., Hall, D., Salomonson, V., Privette, J., Riggs, G., Strahler, A., Lucht, W., Myneni, R., Knyazikhin, Y., Running, S., Nemani, R., Wan, Z., Huete, A., van Leeuwen, W., Wolfe, R., Giglio, L., Muller, J., Lewis, P., and Barnsley, M.: The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research, IEEE T. Geosci. Remote, 36, 1228–1249, 1998.
Kanieski, M. R., Longhi-Santos, T., Neto, J. G., Souza, T., Galvão, F., and Roderjan, C. V.: Influência da precipitação e da temperatura no incremento diamétrico de espécies floreastais aluviais em Araucária-PR, Floresta e Ambiente, 19, 17–25, 2012.
Kanieski, M. R., Longhi-Santos, T., de Freitas Milani, J. E., Miranda, B. P., Galvão, F., Botosso, P. C., and Roderjan, C. V.: Crescimento diamétrico de Blepharocalyx salicifolius em remanescente de floresta ombrófila mista aluvial, Paraná, Floresta e Ambiente, 20, 197–206, 2013.
Kato, S., Rose, F. G., Sun-Mack, S., Miller, W. F., Chen, Y., Rutan, D. A., Stephens, G. L., Loeb, N. G., Minnis, P., Wielicki, B. A., Winker, D. M., Charlock, T. P., Stackhouse, Jr., P. W., Xu, K.-M., and Collins, W. D.: Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties, J. Geophys. Res.-Atmos., 116, D19209, https://doi.org/10.1029/2011JD016050, 2011.
Kho, L. K., Malhi, Y., and Tan, S. K. S.: Annual budget and seasonal variation of aboveground and belowground net primary productivity in a lowland dipterocarp forest in Borneo, J. Geophys. Res.-Biogeo., 118, 1282–1296, 2013.
Koenig, J. and Griffiths, A.: The Population Ecology of Two Tropical Trees, Brachychiton diversifolius (Malvaceae) and Bombax ceiba (Bombaceae), Harvested by Indigenous Woodcarvers in Arnhem Land, Australia, Environ. Manag., 50, 555–565, 2012.
Kohler, S. V., Figueiredo, F. A., Chiquetto, A. L., and Dias, A. N.: Incremento sazonal e anual do diâmetro de espécies arbóreas de uma floresta ombrófila mista do centro-sul do Paraná, in: II Encontro de Iniciação Científica do PROIC/UNICENTRO, 2008, Irati, 1–4, 2008.
Körner, C.: Carbon limitation in trees, J. Ecol., 91, 4–17, 2003.
Krepkowski, J., Brauning, A., Gebrekirstos, A., and Strobl, S.: Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia, Trees-Struct. Funct., 25, 59–70, 2011.
Lieberman, D.: Seasonality and phenology in a dry tropical forest in Ghana, J. Ecol., 70, 791–806, 1982.
Lisi, C. S., Tomazello, M., Botosso, P. C., Roig, F. A., Maria, V. R. B., Ferreira Fedele, L., and Voigt, A. R. A.: Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil, Iawa J., 29, 189–207,
Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M., Canadell, J. G., McCabe, M. F., Evans, J. P., and Wang, G.: Recent reversal in loss of global terrestrial biomass, Nature Climate Change, 5, 470–474, https://doi.org/10.1038/nclimate2581, 2015.
Lloyd, J. and Farquhar, G. D.: Effects of rising temperatures and [CO2] on the physiology of tropical forest trees, Philos. T. R. Soc. B, 363, 1811–1817, 2008.
Loeb, N., Wielicki, B., Doelling, D., Smith, G., Keyes, D., Kato, S., Manalo-Smith, N., and T, W.: Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget, J. Climate, 22, 748–766, 2009.
Lopez-Ayala, J., Valdez-Hernandez, J., Terrazas, T., and Valdez-Lazalde, J.: Diameter growth of tree species in a semideciduous tropical forest at Colima, Mexico, Agrociencia, 40, 139–147, 2006.
Makinen, H., Seo, J.-W., Nojd, P., Schmitt, U., and Jalkanen, R.: Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements, Eur. J. For. Res., 127, 235–245, 2008.
Malhi, Y., Farfan Amezquita, F., Doughty, C. E., Silva-Espejo, J. E., Girardin, C. A. J., Metcalfe, D. B., Aragao, L. E. O. C., Huaraca-Quispe, L. P., Alzamora-Taype, I., Eguiluz-Mora, L., Marthews, T. R., Halladay, K., Quesada, C. A., Robertson, A. L., Fisher, J. B., Zaragoza-Castells, J., Rojas-Villagra, C. M., Pelaez-Tapia, Y., Salinas, N., Meir, P., and Phillips, O. L.: The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia, Peru, Plant Ecol. Div., 7, 85–105, 2014.
Melgaço, K. L. L.: Topografia e densidade da madeira modulam o crescimento sazonal na Amazônia Central, Master's thesis, INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA – INPA, 2014.
Mendivelso, H. A., Julio Camarero, J., Royo Obregon, O., Gutierrez, E., and Toledo, M.: Differential Growth Responses to Water Balance of Coexisting Deciduous Tree Species Are Linked to Wood Density in a Bolivian Tropical Dry Forest, PLOS ONE, 8, https://doi.org/10.1371/journal.pone.0073855, 2013.
Mitchell, T. and Jones, P.: An improved method of constructing a database of monthly climate observations and associated high-resolution grids, Int. J. Climatol., 25, 693–712, 2005.
Morel, H., Mangenet, T., Beauchêne, J., Ruelle, J., Nicolini, E., Heuret, P., and Thibaut, B.: Seasonal variations in phenological traits: leaf shedding and cambial activity in Parkia nitida Miq. and Parkia velutina Benoist (Fabaceae) in tropical rainforest, Trees, 29, 973–984, 2015.
Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., Cook, B. D., Vermote, E. F., Harding, D. J., and North, P. R. J.: Amazon forests maintain consistent canopy structure and greenness during the dry season, Nature, 506, 7487, https://doi.org/10.1038/nature13006, 2014.
Myneni, R. B., Yang, W., Nemani, R. R., Huete, A. R., Dickinson, R. E., Knyazikhin, Y., Didan, K., Fu, R., Juarez, R. I. N., Saatchi, S. S., Hashimoto, H., Ichii, K., Shabanov, N. V., Tan, B., Ratana, P., Privette, J. L., Morisette, J. T., Vermote, E. F., Roy, D. P., Wolfe, R. E., Friedl, M. A., Running, S. W., Votava, P., El-Saleous, N., Devadiga, S., Su, Y., and Salomonson, V. V.: Large seasonal swings in leaf area of Amazon rainforests, P. Natl. Acad. Sci. USA, 104, 4820–4823, 2007.
Nepstad, D. and Moutinho, P.: LBA-ECO LC-14 Biophysical Measurements, Rainfall Exclusion, Tapajos National Forest, Data set, available at: http://daac.ornl.gov, from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, 2013.
O'Brien, J. J., Oberbauer, S. F., Clark, D. B., and Clark, D. A.: Phenology and stem diameter increment seasonality in a Costa Rican wet tropical forest, Biotropica, 40, 151–159, 2008.
Ohashi, S., Okada, N., Nobuchi, T., Siripatanadilok, S., and Veenin, T.: Detecting invisible growth rings of trees in seasonally dry forests in Thailand: isotopic and wood anatomical approaches, Trees-Struct. Funct., 23, 813–822, 2009.
Owusu-Sekyere, E., Cobbina, J., and Wakatsuki, T.: Nutrient cycling in primary, secondary forests and cocoa plantation in the Ashanti region, Ghana, West Afr. J. Appl. Ecol., 9, 1–9, 2006.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D.: A Large and Persistent Carbon Sink in the World's Forests, Science, 333, 988–993, 2011.
Pascal, J.-P.: Les forêts denses humides sempervirentes des Ghâts Occidentaux de l'Inde: écologie, structure, floristique, succession, Ph.D. thesis, Institut Français de Pondichéry, Inde, 1984.
Paula, S. A. D. and Lemos Filho, J. P. D.: Dinâmica do dossel em mata semidecidua no perimetro urbano de Belo Horizonte, MG, Braz. J. Botany, 24, 545–551, 2001.
Pelissier, R. and Pascal, J. P.: Two-year tree growth patterns investigated from monthly girth records using dendrometer bands in a wet evergreen forest in India, J. Trop. Ecol., 16, 429–446, 2000.
Prior, L., Bowman, D., and Eamus, D.: Seasonal differences in leaf attributes in Australian tropical tree species: family and habitat comparisons, Funct. Ecol., 18, 707–718, 2004.
Restrepo-Coupe, N., da Rocha, H. R., Hutyra, L. R., da Araujo, A. C., Borma, L. S., Christoffersen, B., Cabral, O. M. R., de Camargo, P. B., Cardoso, F. L., Lola da Costa, A. C., Fitzjarrald, D. R., Goulden, M. L., Kruijt, B., Maia, J. M. F., Malhi, Y. S., Manzi, A. O., Miller, S. D., Nobre, A. D., von Randow, C., Abreu Sa, L. D., Sakai, R. K., Tota, J., Wofsy, S. C., Zanchi, F. B., and Saleska, S. R.: What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network, Agr. Forest Meteorol., 182, 128–144, 2013.
Roderstein, M., Hertel, D., and Leuschner, C.: Above- and below-ground litter production in three tropical montane forests in southern Ecuador, J. Trop. Ecol., 21, 483–492, 2005.
Ross, M., Coultas, C., and Hsieh, Y.: Soil-productivity relationships and organic matter turnover in dry tropical forests of the Florida Keys, Plant Soil, 253, 479–492, 2003.
Rossatto, D. R., Hoffmann, W. A., and Franco, A. C.: Differences in growth patterns between co-occurring forest and savanna trees affect the forest-savanna boundary, Funct. Ecol., 23, 689–698, 2009.
Rowland, L., da Costa, A. C. L., Galbraith, D. R., Oliveira, R. S., Binks, O. J., Oliveira, A. A. R., Pullen, A. M., Doughty, C. E., Metcalfe, D. B., Vasconcelos, S. S., Ferreira, L. V., Malhi, Y., Grace, J., Mencuccini, M., and Meir, P.: Death from drought in tropical forests is triggered by hydraulics not carbon starvation, Nature, 528, 119–122, 2015.
Rowland, L., Hill, T. C., Stahl, C., Siebicke, L., Burban, B., Zaragoza-Castells, J., Ponton, S., Bonal, D., Meir, P., and Williams, M.: Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest, Glob. Change Biol., 20, 979–991, 2014a.
Rowland, L., Malhi, Y., Silva-Espejo, J. E., Farfan-Amezquita, F., Halladay, K., Doughty, C. E., Meir, P., and Phillips, O. L.: The sensitivity of wood production to seasonal and interannual variations in climate in a lowland Amazonian rainforest, Oecologia, 174, 295–306, 2014b.
Rutishauser, E., Wagner, F., Herault, B., Nicolini, E.-A., and Blanc, L.: Contrasting above-ground biomass balance in a Neotropical rain forest, J. Veget. Sci., 21, 672–682, 2010.
Schöngart, J., Piedade, M., Ludwigshausen, S., Horna, V., and Worbes, M.: Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests, J. Trop. Ecol., 18, 581–597, 2002.
Schwarz, G.: Estimating the dimension of a model, Ann. Stat., 6, 461–464, 1978.
Sheil, D.: Growth assessment in tropical trees: large daily diameter fluctuations and their concealment by dendrometer bands, Can. J. Forest Res., 33, 2027–2035, 2003.
Stahl, C., Burban, B., Bompy, F., Jolin, Z., Sermage, J., and Bonal, D.: Seasonal variation in atmospheric relative humidity contributes to explaining seasonal variation in trunk circumference of tropical rain-forest trees in French Guiana, J. Trop. Ecol., 26, 393–405, 2010.
Stocker, G. C., Thompson, W. A., Irvine, A. K., Fitzsimon, J. D., and Thomas, P. R.: Annual patterns of litterfall in a lowland and tableland rainforest in tropical Australia, Biotropica, 27, 412–420, 1995.
Swaine, M., M., Lieberman, D., and Hall, J.: Structure and dynamics of a tropical dry forest in Ghana, Vegetatio, 88, 31–51, 1990.
Team, R. C.: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2014.
Toledo, M. M., Sousa Paiva, E. A., Lovato, M. B., and de Lemos Filho, J. P.: Stem radial increment of forest and savanna ecotypes of a Neotropical tree: relationships with climate, phenology, and water potential, Trees-Struct. Funct., 26, 1137–1144, 2012.
Toma, T.: Dendrometer data from Pasoh, FFPRI-Japan, 2012.
Trouet, V., Mukelabai, M., Verheyden, A., and Beeckman, H.: Cambial growth season of brevi-deciduous Brachystegia spiciformis trees from South Central Africa restricted to less than four months, PLoS ONE, 7, e47364, https://doi.org/10.1371/journal.pone.0047364, 2012.
van der Sleen, P., Groenendijk, P., Vlam, M., Anten, N. P. R., Boom, A., Bongers, F., Pons, T. L., Terburg, G., and Zuidema, P. A.: No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased, Nat. Geosci., 8, 24–28, 2015.
Vasconcelos, H. and Luizão, F.: Litter production and litter nutrient concentrations in a fragmented Amazonian landscape, Ecol. Appl., 14, 884–892, 2004.
Vieira, S., de Camargo, P. B., Selhorst, D., da Silva, R., Hutyra, L., Chambers, J. Q., Brown, I. F., Higuchi, N., dos Santos, J., Wofsy, S. C., Trumbore, S. E., and Martinelli, L. A.: Forest structure and carbon dynamics in Amazonian tropical rain forests, Oecologia, 140, 468–479, 2004.
Vincent, G.: Dendrometer data from IRD-World Agroforestry Center, 2012.
Wagner, F., Rossi, V., Stahl, C., Bonal, D., and Hérault, B.: Asynchronism in leaf and wood production in tropical forests: a study combining satellite and ground-based measurements, Biogeosciences, 10, 7307–7321, https://doi.org/10.5194/bg-10-7307-2013, 2013.
Wagner, F., Brede, B., Verbesselt, J., and L. E. O. C., A.: Correction of sun-sensor geometry effects from MODIS MCD43A1 product for tropical forest applications, in: Simposio Brasileiro de Sensoriamento Remoto, 17. (SBSR), Joao Pessoa, 2015.
Wagner, F., Rossi, V., Aubry-Kientz, M., Bonal, D., Dalitz, H., Gliniars, R., Stahl, C., Trabucco, A., and Hérault, B.: Pan-Tropical Analysis of Climate Effects on Seasonal Tree Growth, PLOS ONE, 9, e92337, https://doi.org/10.1371/journal.pone.0092337, 2014.
Wieder, K. and Wright, J. S.: Tropical forest litter dynamics and dry season irrigation on Barro Colorado Island, Panama, Ecology, 76, 1971–1979, 1995.
Worbes, M.: Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela, J. Ecol., 87, 391–403, 1999.
Wright, S. J. and Cornejo, F. H.: Seasonal Drought and Leaf Fall in a Tropical Forest., Ecology, 71, 1165–1175, 1990.
Wu, J., Albert, L. P., Lopes, A. P., Restrepo-Coupe, N., Hayek, M., Wiedemann, K. T., Guan, K., Stark, S. C., Christoffersen, B., Prohaska, N., Tavares, J. V., Marostica, S., Kobayashi, H., Ferreira, M. L., Campos, K. S., da Silva, R., Brando, P. M., Dye, D. G., Huxman, T. E., Huete, A. R., Nelson, B. W., and Saleska, S. R.: Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests, Science, 351, 972–976, 2016.
Wurth, M. K. R., Pelaez-Riedl, S., Wright, S. J., and Körner, C.: Non-structural carbohydrate pools in a tropical forest, Oecologia, 143, 11–24, 2005.
Zanne, A., Lopez-Gonzalez, G., Coomes, D., Ilic, J., Jansen, S., Lewis, S., Miller, R., Swenson, N., Wiemann, M., and Chave, J.: Data from: Towards a worldwide wood economics spectrum, Ecol. Lett., 12, 351–366, https://doi.org/10.5061/dryad.234, 2009.
Zanon, M. L. B. and Finger, C. A. G.: Relationship of meteorological variables with the growth of Araucaria angustifolia (Bertol.) Kuntze trees in implanted stands, Ciência Florestal, 20, 467–476, 2010.
Zhang, H., Yuan, W., Dong, W., and Liu, S.: Seasonal patterns of litterfall in forest ecosystem worldwide, Ecol. Complex., 20, 240–247, 2014.
Zomer, R. J., Trabucco, A., Bossio, D. A., and Verchot, L. V.: Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation, Agr. Ecosyst. Environ., 126, 67–80, 2008.
Altmetrics
Final-revised paper
Preprint