Articles | Volume 13, issue 18
https://doi.org/10.5194/bg-13-5171-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-5171-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Autotrophic component of soil respiration is repressed by drought more than the heterotrophic one in dry grasslands
Institute of Botany and Ecophysiology, Szent István
University, Gödöllő, Hungary
Marianna Papp
MTA-SZIE Plant Ecology Research Group, Szent István
University, Gödöllő, Hungary
Krisztina Pintér
MTA-SZIE Plant Ecology Research Group, Szent István
University, Gödöllő, Hungary
Szilvia Fóti
MTA-SZIE Plant Ecology Research Group, Szent István
University, Gödöllő, Hungary
Katalin Posta
Institute of Plant Protection, Szent István
University, Gödöllő, Hungary
Werner Eugster
Grassland Sciences Group, Institute of Agricultural
Sciences, ETH Zurich, Zurich, Switzerland
Zoltán Nagy
Institute of Botany and Ecophysiology, Szent István
University, Gödöllő, Hungary
MTA-SZIE Plant Ecology Research Group, Szent István
University, Gödöllő, Hungary
Related authors
No articles found.
Andreas Riedl, Yafei Li, Jon Eugster, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 26, 91–116, https://doi.org/10.5194/hess-26-91-2022, https://doi.org/10.5194/hess-26-91-2022, 2022
Short summary
Short summary
The aim of this study was to develop a high-accuracy micro-lysimeter system for the quantification of non-rainfall water inputs that overcomes existing drawbacks. The micro-lysimeter system had a high accuracy and allowed us to quantify and distinguish between different types of non-rainfall water inputs, like dew and fog. Non-rainfall water inputs occurred frequently in a Swiss Alpine grassland ecosystem. These water inputs can be an important water source for grasslands during dry periods.
Yafei Li, Franziska Aemisegger, Andreas Riedl, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 25, 2617–2648, https://doi.org/10.5194/hess-25-2617-2021, https://doi.org/10.5194/hess-25-2617-2021, 2021
Short summary
Short summary
During dry spells, dew and fog potentially play an increasingly important role in temperate grasslands. Research on the combined mechanisms of dew and fog inputs to ecosystems and distillation of water vapor from soil to plant surfaces is rare. Our results using stable water isotopes highlight the importance of dew and fog inputs to temperate grasslands during dry spells and reveal the complexity of the local water cycling in such conditions, including different pathways of dew and fog inputs.
Lutz Merbold, Charlotte Decock, Werner Eugster, Kathrin Fuchs, Benjamin Wolf, Nina Buchmann, and Lukas Hörtnagl
Biogeosciences, 18, 1481–1498, https://doi.org/10.5194/bg-18-1481-2021, https://doi.org/10.5194/bg-18-1481-2021, 2021
Short summary
Short summary
Our study investigated the exchange of the three major greenhouse gases (GHGs) over a temperate grassland prior to and after restoration through tillage in central Switzerland. Our results show that irregular management events, such as tillage, have considerable effects on GHG emissions in the year of tillage while leading to enhanced carbon uptake and similar nitrogen losses via nitrous oxide in the years following tillage to those observed prior to tillage.
Cited articles
Adam, G. and Duncan, H.: Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils, Soil Biol. Biochem., 33, 943–951, 2001.
Andrade, G., Mihara, K. L., Linderman, R. G., and Bethlenfalvay, G. J.: Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi, Plant Soil, 192, 71–79, https://doi.org/10.1023/A:1004249629643, 1997.
Bååth, E. and Söderström, B.: The significance of hyphal diameter in calculation of fungal biovolume, Oikos, 33, 11–14, 1979.
Bahn, M., Rodeghiero, M., Anderson-Dunn, M., Dore, S., Gimeno, C., Drösler, M., Williams, M., Ammann, C., Berninger, F., Flechard, C., Jones, S., Balzarolo, M., Kumar, S., Newesely, C., Priwitzer, T., Raschi, A., Siegwolf, R., Susiluoto, S., Tenhunen, J., Wohlfahrt, G., and Cernusca, A.: Soil Respiration in European Grasslands in Relation to Climate and Assimilate Supply, Ecosystems, 11, 1352–1367, https://doi.org/10.1007/s10021-008-9198-0, 2008.
Balogh, J., Pintér, K., Fóti, S., Cserhalmi, D., Papp, M., and Nagy, Z.: Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands, Soil Biol. Biochem., 43, 1006–1013, https://doi.org/10.1016/j.soilbio.2011.01.017, 2011.
Balogh, J., Fóti, S., Pintér, K., Burri, S., Eugster, W., Papp, M., and Nagy, Z.: Soil CO2 efflux and production rates as influenced by evapotranspiration in a dry grassland, Plant Soil, 388, 157–173, https://doi.org/10.1007/s11104-014-2314-3, 2015.
Bao, F., Zhou, G., Wang, F., and Sui, X.: Partitioning soil respiration in a temperate desert steppe in Inner Mongolia using exponential regression method, Soil Biol. Biochem., 42, 2339–2341, https://doi.org/10.1016/j.soilbio.2010.08.033, 2010.
Barcza, Z., Haszpra, L., and Kondo, H.: Carbon exchange of grass in Hungary, Tellus B, 55, 187–196, https://doi.org/10.1034/j.1600-0889.2003.00014.x, 2003.
Bardgett, R. D., Freeman, C., and Ostle, N. J.: Microbial contributions to climate change through carbon cycle feedbacks, ISME J., 2, 805–814, https://doi.org/10.1038/ismej.2008.58, 2008.
Blagodatsky, S. and Smith, P.: Soil physics meets soil biology: Towards better mechanistic prediction of greenhouse gas emissions from soil, Soil Biol. Biochem., 47, 78–92, https://doi.org/10.1016/j.soilbio.2011.12.015, 2012.
Bowling, D., McDowell, N., Bond, B., Law, B., and Ehleringer, J.: 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit, Oecologia, 131, 113–124, https://doi.org/10.1007/s00442-001-0851-y, 2002.
Bowling, D. R., Pataki, D. E., and Randerson, J. T.: Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes, New Phytol., 178, 24–40, https://doi.org/10.1111/j.1469-8137.2007.02342.x, 2008.
Carbone, M. S., Winston, G. C., and Trumbore, S. E.: Soil respiration in perennial grass and shrub ecosystems: Linking environmental controls with plant and microbial sources on seasonal and diel timescales, J. Geophys. Res., 113, G02022, https://doi.org/10.1029/2007JG000611, 2008.
Carbone, M. S., Still, C. J., Ambrose, A. R., Dawson, T. E., Williams, A. P., Boot, C. M., Schaeffer, S. M., and Schimel, J. P.: Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration, Oecologia, 167, 265–78, https://doi.org/10.1007/s00442-011-1975-3, 2011.
Casals, P., Lopez-Sangil, L., Carrara, A., Gimeno, C., and Nogués, S.: Autotrophic and heterotrophic contributions to short-term soil CO2 efflux following simulated summer precipitation pulses in a Mediterranean dehesa, Global Biogeochem. Cy., 25, GB3012, https://doi.org/10.1029/2010GB003973, 2011.
Chen, S., Lin, G., Huang, J., and Jenerette, G. D.: Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe, Glob. Change Biol., 15, 2450–2461, https://doi.org/10.1111/j.1365-2486.2009.01879.x, 2009.
Davidson, E. A., Samanta, S., Caramori, S. S., and Savage, K.: The Dual Arrhenius and Michaelis-Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales, Glob. Change Biol., 18, 371–384, https://doi.org/10.1111/j.1365-2486.2011.02546.x, 2012.
Denef, K., Galdo, I., Venturi, A., and Cotrufo, M.: Assessment of Soil C and N Stocks and Fractions across 11 European Soils under Varying Land Uses, Open J. Soil Sci., 3, 297–313, 2013.
Epron, D.: Separating autotrophic and heterotrophic components of soil respiration: lessons learned from trenching and related root exclusion experiments, in Soil Carbon Dynamics: An Integrated Methodology, edited by: Bahn, M., Heinemeyer, A., and Kutsch, W., Cambridge University Press, 289–310, 2009.
Farkas, C., Alberti, G., Balogh, J., Barcza, Z., Birkas, M., Czobel, S., Davis, K. J., Fuehrer, E., Gelybo, G., Grosz, B., Kljun, N., Koos, S., Machon, A., Marjanovic, H., Nagy, Z., Peressotti, A., Pinter, K., Toth, E., and Horvath, L.: Methodologies, in Atmospheric Greenhouse Gases: The Hungarian Perspective, edited by: Haszpra, L., 65–90, Springer, New York, 2011.
Fassbinder, J. J., Griffis, T. J., and Baker, J. M.: Interannual, seasonal, and diel variability in the carbon isotope composition of respiration in a C3/C4 agricultural ecosystem, Agr. Forest Meteorol., 153, 144–153, https://doi.org/10.1016/j.agrformet.2011.09.018, 2011.
Gamnitzer, U., Moyes, A. B., Bowling, D. R., and Schnyder, H.: Measuring and modelling the isotopic composition of soil respiration: insights from a grassland tracer experiment, Biogeosciences, 8, 1333–1350, https://doi.org/10.5194/bg-8-1333-2011, 2011.
Gomez-Casanovas, N., Matamala, R., Cook, D. R., and Gonzalez-Meler, M. a.: Net ecosystem exchange modifies the relationship between the autotrophic and heterotrophic components of soil respiration with abiotic factors in prairie grasslands, Glob. Change Biol., 18, 2532–2545, https://doi.org/10.1111/j.1365-2486.2012.02721.x, 2012.
Heinemeyer, A., Tortorella, D., Petrovičová, B., and Gelsomino, A.: Partitioning of soil CO2 flux components in a temperate grassland ecosystem, Eur. J. Soil Sci., 63, 249–260, https://doi.org/10.1111/j.1365-2389.2012.01433.x, 2012.
Hiiesalu, I., Partel, M., Davison, J., Gerhold, P., Metsis, M., Moora, M., Öpik, M., Vasar, M., Zobel, M., and Wilson, S. D.: Species richness of arbuscular mycorrhizal fungi: Associations with grassland plant richness and biomass, New Phytol., 203, 233–244, https://doi.org/10.1111/nph.12765, 2014.
Hoover, D., Knapp, A., and Smith, M.: Resistance and resilience of a grassland ecosystem to climate extremes, Ecology, 95, 2646–2656, https://doi.org/10.1890/13-2186.1, 2014.
Hopkins, F., Gonzalez-Meler, M. A., Flower, C. E., Lynch, D. J., Czimczik, C., Tang, J., and Subke, J.-A.: Ecosystem-level controls on root-rhizosphere respiration, New Phytol., 199, 339–51, 2013.
Knohl, A., Werner, R. A., Brand, W. A., and Buchmann, N.: Short-term variations in δ13C of ecosystem respiration reveals link between assimilation and respiration in a deciduous forest, Oecologia, 142, 70–82, https://doi.org/10.1007/s00442-004-1702-4, 2005.
Koncz, P., Besnyői, V., Csathó, A. I., Nagy, J., Szerdahelyi, T., Tóth, Z., Pintér, K., Balogh, J., Nagy, Z., and Bartha, S.: Effect of grazing and mowing on the microcoenological composition of semi-arid grassland in Hungary, Appl. Ecol. Environ. Res., 12, 563–575, https://doi.org/10.15666/aeer/1202_563575, 2014.
Lo, E.: Gaussian Error Propagation Applied To Ecological Data: Post-Ice-Storm-Downed Woody Biomass, Ecol. Monogr., 75, 451–466, https://doi.org/10.1890/05-0030, 2005.
Midwood, A. J. and Millard, P.: Challenges in measuring the δ13C of the soil surface CO2 efflux, Rapid Commun. Mass Spectrom., 25, 232–242, https://doi.org/10.1002/rcm.4857, 2011.
Moyano, F., Kutsch, W., and Schulze, E.: Response of mycorrhizal, rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field, Soil Biol. Biochem., 39, 843–853, https://doi.org/10.1016/j.soilbio.2006.10.001, 2007.
Moyano, F., Atkin, O., Bahn, M., Bruhn, D., Burton, A., Heinemeyer, A., WL, K., and Wieser, G.: Respiration from roots and the mycorrhizosphere, in Soil Carbon Dynamics: An Integrated Methodology, edited by: Bahn, M., Heinemeyer, A., and Kutsch, W. L., 234–288, Cambridge University Press, 2009.
Moyano, F. E., Manzoni, S., and Chenu, C.: Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models, Soil Biol. Biochem., 59, 72–85, https://doi.org/10.1016/j.soilbio.2013.01.002, 2013.
Moyes, A. B., Gaines, S. J., Siegwolf, R. T. W., and Bowling, D. R.: Diffusive fractionation complicates isotopic partitioning of autotrophic and heterotrophic sources of soil respiration, Plant Cell Environ., 33, 1804–19, https://doi.org/10.1111/j.1365-3040.2010.02185.x, 2010.
Mummey, D. L. and Rillig, M. C.: Spatial characterization of arbuscular mycorrhizal fungal molecular diversity at the submetre scale in a temperate grassland, FEMS Microbiol. Ecol., 64, 260–270, https://doi.org/10.1111/j.1574-6941.2008.00475.x, 2008.
Nagy, Z., Pintér, K., Czóbel, S., Balogh, J., Horváth, L., Fóti, S., Barcza, Z., Weidinger, T., Csintalan, Z., Dinh, N. Q., Grosz, B., and Tuba, Z.: The carbon budget of semi-arid grassland in a wet and a dry year in Hungary, Agr. Ecosyst. Environ., 121, 21–29, https://doi.org/10.1016/j.agee.2006.12.003, 2007.
Nagy, Z., Pintér, K., Pavelka, M., Darenová, E., and Balogh, J.: Carbon fluxes of surfaces vs. ecosystems: advantages of measuring eddy covariance and soil respiration simultaneously in dry grassland ecosystems, Biogeosciences, 8, 2523–2534, https://doi.org/10.5194/bg-8-2523-2011, 2011.
Nickerson, N. and Risk, D.: A numerical evaluation of chamber methodologies used in measuring the δ13C of soil respiration, Rapid Commun. Mass Spectrom., 23, 2802–2810, https://doi.org/10.1002/rcm.4189, 2009.
Nickerson, N., Egan, J., and Risk, D.: Iso-FD: A novel method for measuring the isotopic signature of surface flux, Soil Biol. Biochem., 62, 99–106, https://doi.org/10.1016/j.soilbio.2013.03.010, 2013.
Parton, W., Morgan, J., Smith, D., Del Grosso, S., Prihodko, L., Lecain, D., Kelly, R., and Lutz, S.: Impact of precipitation dynamics on net ecosystem productivity, Glob. Change Biol., 18, 915–927, https://doi.org/10.1111/j.1365-2486.2011.02611.x, 2012.
Phillips, C. and Nickerson, N.: Soil moisture effects on the carbon isotope composition of soil respiration, Rapid Commun. Mass Spectrom., 1271–1280, https://doi.org/10.1002/rcm.4511, 2010.
Pintér, K., Balogh, J., and Nagy, Z.: Ecosystem scale carbon dioxide balance of two grasslands in Hungary under different weather conditions, Acta Biol. Hung., 61, 130–135, https://doi.org/10.1556/ABiol.61.2010.Suppl.13, 2010.
Prudhomme, C., Giuntoli, I., Robinson, E. L., Clark, D. B., Arnell, N. W., Dankers, R., Fekete, B. M., Franssen, W., Gerten, D., Gosling, S. N., Hagemann, S., Hannah, D. M., Kim, H., Masaki, Y., Satoh, Y., Stacke, T., Wada, Y., and Wisser, D.: Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment, P. Natl. Acad. Sci. USA, 111, 3262–3267, https://doi.org/10.1073/pnas.1222473110, 2014.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2014.
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., and Wattenbach, M.: Climate extremes and the carbon cycle, Nature, 500, 287–295, https://doi.org/10.1038/nature12350, 2013.
Risk, D., Nickerson, N., Creelman, C., McArthur, G., and Owens, J.: Forced Diffusion soil flux: A new technique for continuous monitoring of soil gas efflux, Agr. Forest Meteorol., 151, 1622–1631, https://doi.org/10.1016/j.agrformet.2011.06.020, 2011.
Risk, D., Nickerson, N., Phillips, C. L., Kellman, L., and Moroni, M.: Drought alters respired δ13CO2 from autotrophic, but not heterotrophic soil respiration, Soil Biol. Biochem., 50, 26–32, https://doi.org/10.1016/j.soilbio.2012.01.025, 2012.
Suseela, V. and Dukes, J.: The responses of soil and rhizosphere respiration to simulated climatic changes vary by season, Ecology, 94, 403–413, https://doi.org/abs/10.1890/12-0150.1, 2013.
Tennant, D.: A test of a modified line intersect method of estimating root length, J. Ecol., 63, 995–1001, 1975.
van der Heijden, M. G. A., Bardgett, R. D., and van Straalen, N. M.: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems, Ecol. Lett., 11, 296–310, https://doi.org/10.1111/j.1461-0248.2007.01139.x, 2008.
van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A., and Sanders, I. R.: Mycorrhizal ecology and evolution: the past, the present, and the future, New Phytol., 205, 1406–1423, https://doi.org/10.1111/nph.13288, 2015.
van der Molen, M. K., Dolman, A. J., Ciais, P., Eglin, T., Gobron, N., Law, B. E., Meir, P., Peters, W., Phillips, O. L., Reichstein, M., Chen, T., Dekker, S. C., Doubková, M., Friedl, M. A., Jung, M., van den Hurk, B. J. J. M., de Jeu, R. A. M., Kruijt, B., Ohta, T., Rebel, K. T., Plummer, S., Seneviratne, S. I., Sitch, S., Teuling, A. J., van der Werf, G. R., and Wang, G.: Drought and ecosystem carbon cycling, Agr. Forest Meteorol., 151, 765–773, https://doi.org/10.1016/j.agrformet.2011.01.018, 2011.
Vargas, R., Detto, M., Baldocchi, D. D., and Allen, M. F.: Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation, Glob. Change Biol., 16, 1589–1605, https://doi.org/10.1111/j.1365-2486.2009.02111.x, 2010.
Yang, F. and Zhou, G.: Sensitivity of temperate desert steppe carbon exchange to seasonal droughts and precipitation variations in Inner Mongolia, China, PLoS One, 8, e55418, https://doi.org/10.1371/journal.pone.0055418, 2013.
Short summary
In the dry grassland investigated in this study the components of the soil CO2 efflux decreased at different rates under drought conditions. During drought the contribution made by the heterotrophic components was the highest and the rhizospheric component was the most sensitive to soil drying. According to our results, the heterotrophic component of soil respiration is the major contributor to the respiration activities during drought events.
In the dry grassland investigated in this study the components of the soil CO2 efflux decreased...
Altmetrics
Final-revised paper
Preprint