Articles | Volume 14, issue 19
Biogeosciences, 14, 4455–4466, 2017
https://doi.org/10.5194/bg-14-4455-2017
Biogeosciences, 14, 4455–4466, 2017
https://doi.org/10.5194/bg-14-4455-2017

Research article 11 Oct 2017

Research article | 11 Oct 2017

Effects of ultraviolet radiation on photosynthetic performance and N2 fixation in Trichodesmium erythraeum IMS 101

Xiaoni Cai et al.

Related authors

Reduced growth with increased quotas of particulate organic and inorganic carbon in the coccolithophore Emiliania huxleyi under future ocean climate change conditions
Yong Zhang, Sinéad Collins, and Kunshan Gao
Biogeosciences, 17, 6357–6375, https://doi.org/10.5194/bg-17-6357-2020,https://doi.org/10.5194/bg-17-6357-2020, 2020
Short summary
Co-occurrence of Fe and P stress in natural populations of the marine diazotroph Trichodesmium
Noelle A. Held, Eric A. Webb, Matthew M. McIlvin, David A. Hutchins, Natalie R. Cohen, Dawn M. Moran, Korinna Kunde, Maeve C. Lohan, Claire Mahaffey, E. Malcolm S. Woodward, and Mak A. Saito
Biogeosciences, 17, 2537–2551, https://doi.org/10.5194/bg-17-2537-2020,https://doi.org/10.5194/bg-17-2537-2020, 2020
Short summary
Light availability modulates the effects of warming in a marine N2 fixer
Xiangqi Yi, Fei-Xue Fu, David A. Hutchins, and Kunshan Gao
Biogeosciences, 17, 1169–1180, https://doi.org/10.5194/bg-17-1169-2020,https://doi.org/10.5194/bg-17-1169-2020, 2020
Short summary
How will the key marine calcifier Emiliania huxleyi respond to a warmer and more thermally variable ocean?
Xinwei Wang, Feixue Fu, Pingping Qu, Joshua D. Kling, Haibo Jiang, Yahui Gao, and David A. Hutchins
Biogeosciences, 16, 4393–4409, https://doi.org/10.5194/bg-16-4393-2019,https://doi.org/10.5194/bg-16-4393-2019, 2019
Short summary
Hyposalinity tolerance inthecoccolithophorid Emiliania huxleyi under the influence of ocean acidification involves enhanced photosynthetic performance
Jiekai Xu, John Beardall, and Kunshan Gao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-4,https://doi.org/10.5194/bg-2019-4, 2019
Revised manuscript not accepted
Short summary

Related subject area

Biogeochemistry: Environmental Microbiology
Hydrothermal trace metal release and microbial metabolism in the northeastern Lau Basin of the South Pacific Ocean
Natalie R. Cohen, Abigail E. Noble, Dawn M. Moran, Matthew R. McIlvin, Tyler J. Goepfert, Nicholas J. Hawco, Christopher R. German, Tristan J. Horner, Carl H. Lamborg, John P. McCrow, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 18, 5397–5422, https://doi.org/10.5194/bg-18-5397-2021,https://doi.org/10.5194/bg-18-5397-2021, 2021
Short summary
Sedimentation rate and organic matter dynamics shape microbiomes across a continental margin
Sabyasachi Bhattacharya, Tarunendu Mapder, Svetlana Fernandes, Chayan Roy, Jagannath Sarkar, Moidu Jameela Rameez, Subhrangshu Mandal, Abhijit Sar, Amit Kumar Chakraborty, Nibendu Mondal, Sumit Chatterjee, Bomba Dam, Aditya Peketi, Ranadhir Chakraborty, Aninda Mazumdar, and Wriddhiman Ghosh
Biogeosciences, 18, 5203–5222, https://doi.org/10.5194/bg-18-5203-2021,https://doi.org/10.5194/bg-18-5203-2021, 2021
Short summary
Disturbance triggers non-linear microbe–environment feedbacks
Aditi Sengupta, Sarah J. Fansler, Rosalie K. Chu, Robert E. Danczak, Vanessa A. Garayburu-Caruso, Lupita Renteria, Hyun-Seob Song, Jason Toyoda, Jacqueline Wells, and James C. Stegen
Biogeosciences, 18, 4773–4789, https://doi.org/10.5194/bg-18-4773-2021,https://doi.org/10.5194/bg-18-4773-2021, 2021
Short summary
Hydrographic fronts shape productivity, nitrogen fixation, and microbial community composition in the southern Indian Ocean and the Southern Ocean
Cora Hörstmann, Eric J. Raes, Pier Luigi Buttigieg, Claire Lo Monaco, Uwe John, and Anya M. Waite
Biogeosciences, 18, 3733–3749, https://doi.org/10.5194/bg-18-3733-2021,https://doi.org/10.5194/bg-18-3733-2021, 2021
Short summary
Microbial and geo-archaeological records reveal the growth rate, origin and composition of desert rock surface communities
Nimrod Wieler, Tali Erickson Gini, Osnat Gillor, and Roey Angel
Biogeosciences, 18, 3331–3342, https://doi.org/10.5194/bg-18-3331-2021,https://doi.org/10.5194/bg-18-3331-2021, 2021
Short summary

Cited articles

Anning, T., Maclntyre, H. L., Sammes, S. M. P. a. P. J., Gibb, S., and Geider, R. J.: Photoacclimation in the marine diatom Skeletonema costatum, Limnol. Oceanogr., 45, 1807–1817, 2000.
Banaszak, A. T.: Photoprotective physiological and biochemical responses of aquatic organisms, in: UV effects in aquatic organisms and ecosystems, edited by: Helbling, E. W. and Zagarese, H. E., Comprehensive Series in Photosciences, Royal Society of Chemistry, Cambridge, UK, 329–356, 2003.
Breitbarth, E., Mills, M. M., Friedrichs, G., and LaRoche, J.: The Bunsen gas solubility coefficient of ethylene as a function of temperature and salinity and its importance for nitrogen fixation assays, Limnol. Oceanogr.-Meth., 2, 282–288, 2004.
Cai, X., Gao, K., Fu, F., Campbell, D., Beardall, J., and Hutchins, D.: Electron transport kinetics in the diazotrophic cyanobacterium Trichodesmium spp. grown across a range of light levels, Photosyn. Res., 124, 45–56, https://doi.org/10.1007/s11120-015-0081-5, 2015.
Campbell, D., Eriksson, M. J., Oquist, G., Gustafsson, P., and Clarke, A. K.: The cyanobacterium Synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins, P. Natl. Acad. Sci. USA, 95, 364–369, 1998.
Download
Short summary
Trichodesmium is significant marine N2 fixer. We conducted short- and long-term UV exposure experiment to investigate how UV affects this organism. Our results showed N2 fixation and carbon fixation rates were significantly reduced under UV radiation. As a defense strategy, Trichodesmium is able to synthesize UV-absorbing compounds to protect from UV damage. Our results suggest that shipboard experiments in UV-opaque containers may have substantially overestimated in situ N2 fixation rate.
Altmetrics
Final-revised paper
Preprint