Articles | Volume 15, issue 16
https://doi.org/10.5194/bg-15-4923-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-4923-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Colony formation in Phaeocystis antarctica: connecting molecular mechanisms with iron biogeochemistry
Sara J. Bender
Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic
Institution, Woods Hole, Massachusetts 02543, USA
current address: Gordon and Betty Moore Foundation, Palo Alto,
California 94304, USA
Dawn M. Moran
Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic
Institution, Woods Hole, Massachusetts 02543, USA
Matthew R. McIlvin
Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic
Institution, Woods Hole, Massachusetts 02543, USA
Hong Zheng
Microbial and Environmental Genomics, J. Craig Venter Institute, La
Jolla, California 92037, USA
John P. McCrow
Microbial and Environmental Genomics, J. Craig Venter Institute, La
Jolla, California 92037, USA
Jonathan Badger
Microbial and Environmental Genomics, J. Craig Venter Institute, La
Jolla, California 92037, USA
current address: Center for Cancer Research, Bethesda, Maryland 20892,
USA
Giacomo R. DiTullio
College of Charleston, Charleston South Carolina 29412, USA
Andrew E. Allen
Microbial and Environmental Genomics, J. Craig Venter Institute, La
Jolla, California 92037, USA
Integrative Oceanography Division, Scripps Institution of
Oceanography, UC San Diego, La Jolla, California 92037, USA
Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic
Institution, Woods Hole, Massachusetts 02543, USA
Related authors
No articles found.
Mak A. Saito, Jaclyn K. Saunders, Matthew R. McIlvin, Erin M. Bertrand, John A. Breier, Margaret Mars Brisbin, Sophie M. Colston, Jaimee R. Compton, Tim J. Griffin, W. Judson Hervey, Robert L. Hettich, Pratik D. Jagtap, Michael Janech, Rod Johnson, Rick Keil, Hugo Kleikamp, Dagmar Leary, Lennart Martens, J. Scott P. McCain, Eli Moore, Subina Mehta, Dawn M. Moran, Jaqui Neibauer, Benjamin A. Neely, Michael V. Jakuba, Jim Johnson, Megan Duffy, Gerhard J. Herndl, Richard Giannone, Ryan Mueller, Brook L. Nunn, Martin Pabst, Samantha Peters, Andrew Rajczewski, Elden Rowland, Brian Searle, Tim Van Den Bossche, Gary J. Vora, Jacob R. Waldbauer, Haiyan Zheng, and Zihao Zhao
Biogeosciences, 21, 4889–4908, https://doi.org/10.5194/bg-21-4889-2024, https://doi.org/10.5194/bg-21-4889-2024, 2024
Short summary
Short summary
The ability to assess the functional capabilities of microbes in the environment is of increasing interest. Metaproteomics, the ability to measure proteins across microbial populations, has been increasing in capability and popularity in recent years. Here, an international team of scientists conducted an intercomparison study using samples collected from the North Atlantic Ocean and observed consistency in the peptides and proteins identified, their functions, and their taxonomic origins.
Robert Lampe, Ariel Rabines, Steffaney Wood, Anne Schulberg, Ralf Goericke, Pratap Venepally, Hong Zheng, Michael Stukel, Michael Landry, Andrew Barton, and Andrew Allen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3285, https://doi.org/10.5194/egusphere-2024-3285, 2024
Short summary
Short summary
With the likely emergence of satellite-based phytoplankton pigment data, it is increasingly important to examine relationships between phytoplankton pigments and other metrics of phytoplankton community composition. By using quantitative approaches, we show that phytoplankton pigments correlate with DNA- and RNA-based abundances, and examine how integration of these data addresses ecological questions relating to diversity patterns, harmful algal blooms, and inferring cellular activity.
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
EGUsphere, https://doi.org/10.5194/egusphere-2024-2085, https://doi.org/10.5194/egusphere-2024-2085, 2024
Short summary
Short summary
Southern Ocean phytoplankton play a pivotal role in regulating the uptake and sequestration of carbon dioxide from the atmosphere. This study describes a new stable zinc isotope uptake rate measurement method used to quantify zinc and cadmium uptake rates within native Southern Ocean phytoplankton communities. This data can better inform biogeochemical model predictions of primary production, carbon export, and atmospheric carbon dioxide flux.
Rebecca J. Chmiel, Riss M. Kell, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 20, 3997–4027, https://doi.org/10.5194/bg-20-3997-2023, https://doi.org/10.5194/bg-20-3997-2023, 2023
Short summary
Short summary
Cobalt is an important micronutrient for plankton, yet it is often scarce throughout the oceans. A 2017/2018 expedition to coastal Antarctica, including regions of the Amundsen Sea and the Ross Sea, discovered lower concentrations of cobalt compared to two past expeditions in 2005 and 2006, particularly for the type of cobalt preferred as a nutrient by phytoplankton. This loss may be due to changing inputs of other nutrients, causing higher uptake of cobalt by plankton over the last decade.
Rebecca Chmiel, Nathan Lanning, Allison Laubach, Jong-Mi Lee, Jessica Fitzsimmons, Mariko Hatta, William Jenkins, Phoebe Lam, Matthew McIlvin, Alessandro Tagliabue, and Mak Saito
Biogeosciences, 19, 2365–2395, https://doi.org/10.5194/bg-19-2365-2022, https://doi.org/10.5194/bg-19-2365-2022, 2022
Short summary
Short summary
Dissolved cobalt is present in trace amounts in seawater and is a necessary nutrient for marine microbes. On a transect from the Alaskan coast to Tahiti, we measured seawater concentrations of dissolved cobalt. Here, we describe several interesting features of the Pacific cobalt cycle including cobalt sources along the Alaskan coast and Hawaiian vents, deep-ocean particle formation, cobalt activity in low-oxygen regions, and how our samples compare to a global biogeochemical model’s predictions.
Natalie R. Cohen, Abigail E. Noble, Dawn M. Moran, Matthew R. McIlvin, Tyler J. Goepfert, Nicholas J. Hawco, Christopher R. German, Tristan J. Horner, Carl H. Lamborg, John P. McCrow, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 18, 5397–5422, https://doi.org/10.5194/bg-18-5397-2021, https://doi.org/10.5194/bg-18-5397-2021, 2021
Short summary
Short summary
A previous study documented an intense hydrothermal plume in the South Pacific Ocean; however, the iron release associated with this plume and the impact on microbiology were unclear. We describe metal concentrations associated with multiple hydrothermal plumes in this region and protein signatures of plume-influenced microbes. Our findings demonstrate that resources released from these systems can be transported away from their source and may alter the physiology of surrounding microbes.
Thomas S. Bianchi, Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson
Biogeosciences, 18, 3005–3013, https://doi.org/10.5194/bg-18-3005-2021, https://doi.org/10.5194/bg-18-3005-2021, 2021
Short summary
Short summary
Better development of interdisciplinary ties between biology, geology, and chemistry advances biogeochemistry through (1) better integration of contemporary (or rapid) evolutionary adaptation to predict changing biogeochemical cycles and (2) universal integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems that span broad geographical regions for use in modeling.
Randelle M. Bundy, Alessandro Tagliabue, Nicholas J. Hawco, Peter L. Morton, Benjamin S. Twining, Mariko Hatta, Abigail E. Noble, Mattias R. Cape, Seth G. John, Jay T. Cullen, and Mak A. Saito
Biogeosciences, 17, 4745–4767, https://doi.org/10.5194/bg-17-4745-2020, https://doi.org/10.5194/bg-17-4745-2020, 2020
Short summary
Short summary
Cobalt (Co) is an essential nutrient for ocean microbes and is scarce in most areas of the ocean. This study measured Co concentrations in the Arctic Ocean for the first time and found that Co levels are extremely high in the surface waters of the Canadian Arctic. Although the Co primarily originates from the shelf, the high concentrations persist throughout the central Arctic. Co in the Arctic appears to be increasing over time and might be a source of Co to the North Atlantic.
Noelle A. Held, Eric A. Webb, Matthew M. McIlvin, David A. Hutchins, Natalie R. Cohen, Dawn M. Moran, Korinna Kunde, Maeve C. Lohan, Claire Mahaffey, E. Malcolm S. Woodward, and Mak A. Saito
Biogeosciences, 17, 2537–2551, https://doi.org/10.5194/bg-17-2537-2020, https://doi.org/10.5194/bg-17-2537-2020, 2020
Short summary
Short summary
Trichodesmium is a globally important marine nitrogen fixer that stimulates primary production in the surface ocean. We surveyed metaproteomes of Trichodesmium populations across the North Atlantic and other oceans, and we found that they experience simultaneous phosphate and iron stress because of the biophysical limits of nutrient uptake. Importantly, nitrogenase was most abundant during co-stress, indicating the potential importance of this phenotype to global nitrogen and carbon cycling.
Kathleen M. Munson, Carl H. Lamborg, Rene M. Boiteau, and Mak A. Saito
Biogeosciences, 15, 6451–6460, https://doi.org/10.5194/bg-15-6451-2018, https://doi.org/10.5194/bg-15-6451-2018, 2018
Short summary
Short summary
Methylmercury accumulates in marine organisms and is produced by bacterial processes in sediment systems. To date, the contribution of these processes to the marine water column is poorly understood. We measured noncellular production and breakdown of methylmercury in equatorial Pacific waters. We observed enhanced production in filtered waters that suggests noncellular processes result in rapid mercury transformations and, in turn, control methylmercury concentrations in the open ocean.
Mak A. Saito, Abigail E. Noble, Nicholas Hawco, Benjamin S. Twining, Daniel C. Ohnemus, Seth G. John, Phoebe Lam, Tim M. Conway, Rod Johnson, Dawn Moran, and Matthew McIlvin
Biogeosciences, 14, 4637–4662, https://doi.org/10.5194/bg-14-4637-2017, https://doi.org/10.5194/bg-14-4637-2017, 2017
Short summary
Short summary
Cobalt has the smallest oceanic inventory of all known inorganic micronutrients, and hence is particularly vulnerable to influence by internal oceanic processes. The stoichiometry of cobalt was studied in the North Atlantic, and interpreted with regard to the context of Redfield theory with a focus on biological uptake, scavenging, and the coupling between dissolved and particulate phases. The stoichiometry of cobalt accelerated towards the surface due to increased biological activity and use.
Abigail E. Noble, Daniel C. Ohnemus, Nicholas J. Hawco, Phoebe J. Lam, and Mak A. Saito
Biogeosciences, 14, 2715–2739, https://doi.org/10.5194/bg-14-2715-2017, https://doi.org/10.5194/bg-14-2715-2017, 2017
Short summary
Short summary
This study examines sources and sinks of dissolved and labile cobalt in the North Atlantic Ocean. The North and South Atlantic are influenced differently by dust, coastal margin sources, biota, and suspended particles. Dissolved cobalt in both basins is driven by a coastal margin source, leading to large plumes emanating from the north and south African coasts. These plumes are comparable in size despite the high dust flux observed in the North Atlantic that is absent in the South Atlantic.
Nicholas J. Hawco, Daniel C. Ohnemus, Joseph A. Resing, Benjamin S. Twining, and Mak A. Saito
Biogeosciences, 13, 5697–5717, https://doi.org/10.5194/bg-13-5697-2016, https://doi.org/10.5194/bg-13-5697-2016, 2016
Short summary
Short summary
Cobalt is a scarce nutrient required by phytoplankton. We report more than 800 measurements of dissolved cobalt in the South Pacific Ocean, which show high cobalt concentrations in anoxic subsurface waters offshore of Peru. Coastal cobalt sources may be stronger under low oxygen and could fluctuate as climate change is expected to alter the extent of these low-oxygen regions.
Related subject area
Biogeochemistry: Environmental Microbiology
Effects of surface water interactions with karst groundwater on microbial biomass, metabolism, and production
Overview: Global change effects on terrestrial biogeochemistry at the plant–soil interface
Changes in diazotrophic community structure associated with Kuroshio succession in the northern South China Sea
Technical note: A comparison of methods for estimating coccolith mass
Fractionation of stable carbon isotopes during formate consumption in anoxic rice paddy soils and lake sediments
Characteristics of bacterial and fungal communities and their associations with sugar compounds in atmospheric aerosols at a rural site in northern China
Responses of globally important phytoplankton species to olivine dissolution products and implications for carbon dioxide removal via ocean alkalinity enhancement
Differentiation of cognate bacterial communities in thermokarst landscapes: implications for ecological consequences of permafrost degradation
A multi-phase biogeochemical model for mitigating earthquake-induced liquefaction via microbially induced desaturation and calcium carbonate precipitation
Phosphorus regulates ectomycorrhizal fungi biomass production in a Norway spruce forest
Reallocation of elemental content and macromolecules in the coccolithophore Emiliania huxleyi to acclimate to climate change
Abrasion of sedimentary rocks as a source of hydrogen peroxide and nutrients to subglacial ecosystems
Nitrous oxide (N2O) synthesis by the freshwater cyanobacterium Microcystis aeruginosa
Interdisciplinary strategy to assess the impact of meteorological variables on the biochemical composition of the rain and the dynamics of a small eutrophic lake under rain forcing
Depth-related patterns in microbial community responses to complex organic matter in the western North Atlantic Ocean
Assessing the influence of ocean alkalinity enhancement on a coastal phytoplankton community
Eddy-enhanced primary production sustains heterotrophic microbial activities in the Eastern Tropical North Atlantic
Composition and niche-specific characteristics of microbial consortia colonizing Marsberg copper mine in the Rhenish Massif
Diversity and assembly processes of microbial eukaryotic communities in Fildes Peninsula Lakes (West Antarctica)
Nitrophobic ectomycorrhizal fungi are associated with enhanced hydrophobicity of soil organic matter in a Norway spruce forest
Physiological control on carbon isotope fractionation in marine phytoplankton
Implementation of mycorrhizal mechanisms into soil carbon model improves the prediction of long-term processes of plant litter decomposition
Impact of dust addition on the microbial food web under present and future conditions of pH and temperature
Fractionation of stable carbon isotopes during acetate consumption by methanogenic and sulfidogenic microbial communities in rice paddy soils and lake sediments
Hydrothermal trace metal release and microbial metabolism in the northeastern Lau Basin of the South Pacific Ocean
Sedimentation rate and organic matter dynamics shape microbiomes across a continental margin
Disturbance triggers non-linear microbe–environment feedbacks
Hydrographic fronts shape productivity, nitrogen fixation, and microbial community composition in the southern Indian Ocean and the Southern Ocean
Microbial and geo-archaeological records reveal the growth rate, origin and composition of desert rock surface communities
Metagenomic insights into the metabolism of microbial communities that mediate iron and methane cycling in Lake Kinneret iron-rich methanic sediments
Spatiotemporal patterns of N2 fixation in coastal waters derived from rate measurements and remote sensing
Biotic and abiotic transformation of amino acids in cloud water: experimental studies and atmospheric implications
Potential bioavailability of organic matter from atmospheric particles to marine heterotrophic bacteria
Microbial functional signature in the atmospheric boundary layer
New insight to niche partitioning and ecological function of ammonia oxidizing archaea in subtropical estuarine ecosystem
Impact of reactive surfaces on the abiotic reaction between nitrite and ferrous iron and associated nitrogen and oxygen isotope dynamics
Reviews and syntheses: Bacterial bioluminescence – ecology and impact in the biological carbon pump
Salinity-dependent algae uptake and subsequent carbon and nitrogen metabolisms of two intertidal foraminifera (Ammonia tepida and Haynesina germanica)
On giant shoulders: how a seamount affects the microbial community composition of seawater and sponges
Spatial variations in sedimentary N-transformation rates in the North Sea (German Bight)
Patterns of (trace) metals and microorganisms in the Rainbow hydrothermal vent plume at the Mid-Atlantic Ridge
Co-occurrence of Fe and P stress in natural populations of the marine diazotroph Trichodesmium
Senescence as the main driver of iodide release from a diverse range of marine phytoplankton
Reviews and syntheses: Biological weathering and its consequences at different spatial levels – from nanoscale to global scale
Deep-sea sponge grounds as nutrient sinks: denitrification is common in boreo-Arctic sponges
Inducing the attachment of cable bacteria on oxidizing electrodes
Bacterial degradation activity in the eastern tropical South Pacific oxygen minimum zone
Macromolecular fungal ice nuclei in Fusarium: effects of physical and chemical processing
Effects of sea animal colonization on the coupling between dynamics and activity of soil ammonia-oxidizing bacteria and archaea in maritime Antarctica
Comprehensive characterization of an aspen (Populus tremuloides) leaf litter sample that maintained ice nucleation activity for 48 years
Adrian Barry-Sosa, Madison K. Flint, Justin C. Ellena, Jonathan B. Martin, and Brent C. Christner
Biogeosciences, 21, 3965–3984, https://doi.org/10.5194/bg-21-3965-2024, https://doi.org/10.5194/bg-21-3965-2024, 2024
Short summary
Short summary
This study examined springs in north central Florida focusing on how interactions between the surface and subsurface affected the properties of groundwater microbes. We found that microbes reproduced at rates that greatly exceed those documented for any other aquifer. Although the groundwater discharged to spring runs contains low concentrations of nutrients, our results indicate that microbes have access to sources of energy and produce new cells at rates similar to surface waterbodies.
Lucia Fuchslueger, Emily Francesca Solly, Alberto Canarini, and Albert Carles Brangarí
Biogeosciences, 21, 3959–3964, https://doi.org/10.5194/bg-21-3959-2024, https://doi.org/10.5194/bg-21-3959-2024, 2024
Short summary
Short summary
This overview of the special issue “Global change effects on terrestrial biogeochemistry at the plant–soil interface” features empirical, conceptual and modelling-based studies and outlines key findings on plant responses to elevated CO2; soil organism responses to warming; impacts on soil organic carbon, nitrogen and mineral nutrient cycling; and water level changes affecting greenhouse gas emissions, from the Arctic to the tropics, which are crucial for deciphering feedbacks to global change.
Han Zhang, Guangming Mai, Weicheng Luo, Meng Chen, Ran Duan, and Tuo Shi
Biogeosciences, 21, 2529–2546, https://doi.org/10.5194/bg-21-2529-2024, https://doi.org/10.5194/bg-21-2529-2024, 2024
Short summary
Short summary
We report taxon-specific biogeography of N2-fixing microbes (diazotrophs) driven by Kuroshio intrusion (Kl) into the South China Sea. We show that the composition and distribution of distinct diazotrophic taxa shift with Kl-induced variations in physicochemical parameters of seawater and that Kl shapes diazotrophic community primarily as a stochastic process. This study thus has implications for the distribution of diazotrophs in a future warming ocean, as Kls are projected to intensify.
Celina Rebeca Valença, Luc Beaufort, Gustaaf Marinus Hallegraeff, and Marius Nils Müller
Biogeosciences, 21, 1601–1611, https://doi.org/10.5194/bg-21-1601-2024, https://doi.org/10.5194/bg-21-1601-2024, 2024
Short summary
Short summary
Coccolithophores contribute to the global carbon cycle and their calcite structures (coccoliths) are used as a palaeoproxy to understand past oceanographic conditions. Here, we compared three frequently used methods to estimate coccolith mass from the model species Emiliania huxleyi and the results allow for a high level of comparability between the methods, facilitating future comparisons and consolidation of mass changes observed from ecophysiological and biogeochemical studies.
Ralf Conrad and Peter Claus
Biogeosciences, 21, 1161–1172, https://doi.org/10.5194/bg-21-1161-2024, https://doi.org/10.5194/bg-21-1161-2024, 2024
Short summary
Short summary
Knowledge of carbon isotope fractionation is important for the assessment of the pathways involved in the degradation of organic matter. Formate is an important intermediate during this process. It was mainly converted to carbon dioxide and acetate both in the presence and absence of sulfate. Methane was only a minor product and was mainly formed from the acetate. The acetate was depleted in the heavy carbon atom relative to formate, while the carbon dioxide was enriched.
Mutong Niu, Shu Huang, Wei Hu, Yajie Wang, Wanyun Xu, Wan Wei, Qiang Zhang, Zihan Wang, Donghuan Zhang, Rui Jin, Libin Wu, Junjun Deng, Fangxia Shen, and Pingqing Fu
Biogeosciences, 20, 4915–4930, https://doi.org/10.5194/bg-20-4915-2023, https://doi.org/10.5194/bg-20-4915-2023, 2023
Short summary
Short summary
Sugar compounds in air can trace the source of bioaerosols that affect public health and climate. In rural north China, we observed increased fungal activity at night and less variable bacterial community diversity. Certain night-increasing sugar compounds were more closely related to fungi than bacteria. The fungal community greatly influenced sugar compounds, while bacteria played a limited role. Caution is advised when using sugar compounds to trace airborne microbes, particularly bacteria.
David A. Hutchins, Fei-Xue Fu, Shun-Chung Yang, Seth G. John, Stephen J. Romaniello, M. Grace Andrews, and Nathan G. Walworth
Biogeosciences, 20, 4669–4682, https://doi.org/10.5194/bg-20-4669-2023, https://doi.org/10.5194/bg-20-4669-2023, 2023
Short summary
Short summary
Applications of the mineral olivine are a promising means to capture carbon dioxide via coastal enhanced weathering, but little is known about the impacts on important marine phytoplankton. We examined the effects of olivine dissolution products on species from three major phytoplankton groups: diatoms, coccolithophores, and cyanobacteria. Growth and productivity were generally either unaffected or stimulated, suggesting the effects of olivine on key phytoplankton are negligible or positive.
Ze Ren, Shudan Ye, Hongxuan Li, Xilei Huang, and Luyao Chen
Biogeosciences, 20, 4241–4258, https://doi.org/10.5194/bg-20-4241-2023, https://doi.org/10.5194/bg-20-4241-2023, 2023
Short summary
Short summary
Permafrost thaw initiates thermokarst landscape formation, resulting in distinct new habitats, including degraded permafrost soil, thermokarst lake sediments, and lake water. These distinct habitats harbored differentiated bacterial communities that originated from the same source, differing in diversity, assembly mechanisms, and environmental influences. The results imply ecological consequences of permafrost degradation in the face of further climate change.
Caitlyn A. Hall, Andre van Turnhout, Edward Kavazanjian Jr., Leon A. van Paassen, and Bruce Rittmann
Biogeosciences, 20, 2903–2917, https://doi.org/10.5194/bg-20-2903-2023, https://doi.org/10.5194/bg-20-2903-2023, 2023
Short summary
Short summary
Earthquake-induced soil liquefaction poses a significant global threat. Microbially induced desaturation and precipitation (MIDP) via denitrification is a potentially sustainable, non-disruptive bacteria-driven ground improvement technique under existing structures. We developed a next-generation biogeochemical model to understand and predict the behavior of MIDP in the natural environment to design field-based hazard mitigation treatments.
Juan Pablo Almeida, Lorenzo Menichetti, Alf Ekblad, Nicholas P. Rosenstock, and Håkan Wallander
Biogeosciences, 20, 1443–1458, https://doi.org/10.5194/bg-20-1443-2023, https://doi.org/10.5194/bg-20-1443-2023, 2023
Short summary
Short summary
In forests, trees allocate a significant amount of carbon belowground to support mycorrhizal symbiosis. In northern forests nitrogen normally regulates this allocation and consequently mycorrhizal fungi growth. In this study we demonstrate that in a conifer forest from Sweden, fungal growth is regulated by phosphorus instead of nitrogen. This is probably due to an increase in nitrogen deposition to soils caused by decades of human pollution that has altered the ecosystem nutrient regime.
Yong Zhang, Yong Zhang, Shuai Ma, Hanbing Chen, Jiabing Li, Zhengke Li, Kui Xu, Ruiping Huang, Hong Zhang, Yonghe Han, and Jun Sun
Biogeosciences, 20, 1299–1312, https://doi.org/10.5194/bg-20-1299-2023, https://doi.org/10.5194/bg-20-1299-2023, 2023
Short summary
Short summary
We found that increasing light intensity compensates for the negative effects of low phosphorus (P) availability on cellular protein and nitrogen contents. Reduced P availability, increasing light intensity, and ocean acidification act synergistically to increase cellular contents of carbohydrate and POC and the allocation of POC to carbohydrate. These regulation mechanisms in Emiliania huxleyi could provide vital information for evaluating carbon cycle in marine ecosystems under global change.
Beatriz Gill-Olivas, Jon Telling, Mark Skidmore, and Martyn Tranter
Biogeosciences, 20, 929–943, https://doi.org/10.5194/bg-20-929-2023, https://doi.org/10.5194/bg-20-929-2023, 2023
Short summary
Short summary
Microbial ecosystems have been found in all subglacial environments sampled to date. Yet, little is known of the sources of energy and nutrients that sustain these microbial populations. This study shows that crushing of sedimentary rocks, which contain organic carbon, carbonate and sulfide minerals, along with previously weathered silicate minerals, produces a range of compounds and nutrients which can be utilised by the diverse suite of microbes that inhabit glacier beds.
Federico Fabisik, Benoit Guieysse, Jonathan Procter, and Maxence Plouviez
Biogeosciences, 20, 687–693, https://doi.org/10.5194/bg-20-687-2023, https://doi.org/10.5194/bg-20-687-2023, 2023
Short summary
Short summary
We show, for the first time, that pure cultures of the cyanobacterium Microcystis aeruginosa can synthesize the potent greenhouse gas N2O using nitrite as substrate. Our findings have broad environmental implications because M. aeruginosa is globally found in freshwater ecosystems and is often the dominant species found in algae blooms. Further research is now needed to determine the occurrence and significance of N2O emissions from ecosystems rich with M. aeruginosa.
Fanny Noirmain, Jean-Luc Baray, Frédéric Tridon, Philippe Cacault, Hermine Billard, Guillaume Voyard, Joël Van Baelen, and Delphine Latour
Biogeosciences, 19, 5729–5749, https://doi.org/10.5194/bg-19-5729-2022, https://doi.org/10.5194/bg-19-5729-2022, 2022
Short summary
Short summary
We present a study linking rain, meteorology, and mountain lake phytoplankton dynamics on the basis of a case study at Aydat (France) in September 2020. The air mass origin mainly influences the rain chemical composition, which depends on the type of rain, convective or stratiform. Our results also highlighted a non-negligible presence of photosynthetic cells in rainwater. The impact of the atmospheric forcing on the lake could play a key role in phytoplankton dynamics in the temperate zone.
Sarah A. Brown, John Paul Balmonte, Adrienne Hoarfrost, Sherif Ghobrial, and Carol Arnosti
Biogeosciences, 19, 5617–5631, https://doi.org/10.5194/bg-19-5617-2022, https://doi.org/10.5194/bg-19-5617-2022, 2022
Short summary
Short summary
Bacteria use extracellular enzymes to cut large organic matter to sizes small enough for uptake. We compared the enzymatic response of surface, mid-water, and deep-ocean bacteria to complex natural substrates. Bacteria in surface and mid-depth waters produced a much wider range of enzymes than those in the deep ocean and may therefore consume a broader range of organic matter. The extent to which organic matter is recycled by bacteria depends in part on its residence time at different depths.
Aaron Ferderer, Zanna Chase, Fraser Kennedy, Kai G. Schulz, and Lennart T. Bach
Biogeosciences, 19, 5375–5399, https://doi.org/10.5194/bg-19-5375-2022, https://doi.org/10.5194/bg-19-5375-2022, 2022
Short summary
Short summary
Ocean alkalinity enhancement has the capacity to remove vast quantities of carbon from the atmosphere, but its effect on marine ecosystems is largely unknown. We assessed the effect of increased alkalinity on a coastal phytoplankton community when seawater was equilibrated and not equilibrated with atmospheric CO2. We found that the phytoplankton community was moderately affected by increased alkalinity and equilibration with atmospheric CO2 had little influence on this effect.
Quentin Devresse, Kevin W. Becker, Arne Bendinger, Johannes Hahn, and Anja Engel
Biogeosciences, 19, 5199–5219, https://doi.org/10.5194/bg-19-5199-2022, https://doi.org/10.5194/bg-19-5199-2022, 2022
Short summary
Short summary
Eddies are ubiquitous in the ocean and alter physical, chemical, and biological processes. However, how they affect organic carbon production and consumption is largely unknown. Here we show how an eddy triggers a cascade effect on biomass production and metabolic activities of phyto- and bacterioplankton. Our results may contribute to the improvement of biogeochemical models used to estimate carbon fluxes in the ocean.
Sania Arif, Heiko Nacke, Elias Schliekmann, Andreas Reimer, Gernot Arp, and Michael Hoppert
Biogeosciences, 19, 4883–4902, https://doi.org/10.5194/bg-19-4883-2022, https://doi.org/10.5194/bg-19-4883-2022, 2022
Short summary
Short summary
The natural enrichment of Chloroflexi (Ktedonobacteria) at the Kilianstollen Marsberg copper mine rocks being exposed to the acidic sulfate-rich leachate led to an investigation of eight metagenomically assembled genomes (MAGs) involved in copper and other transition heavy metal resistance in addition to low pH resistance and aromatic compounds degradation. The present study offers functional insights about a novel cold-adapted Ktedonobacteria MAG extremophily along with other phyla MAGs.
Chunmei Zhang, Huirong Li, Yinxin Zeng, Haitao Ding, Bin Wang, Yangjie Li, Zhongqiang Ji, Yonghong Bi, and Wei Luo
Biogeosciences, 19, 4639–4654, https://doi.org/10.5194/bg-19-4639-2022, https://doi.org/10.5194/bg-19-4639-2022, 2022
Short summary
Short summary
The unique microbial eukaryotic community structure and lower diversity have been demonstrated in five freshwater lakes of the Fildes Peninsula, Antarctica. Stochastic processes and biotic co-occurrence patterns were shown to be important in shaping microbial eukaryotic communities in the area. Our study provides a better understanding of the dynamic patterns and ecological assembly processes of microbial eukaryotic communities in Antarctic oligotrophic lakes (Fildes Peninsula).
Juan Pablo Almeida, Nicholas P. Rosenstock, Susanne K. Woche, Georg Guggenberger, and Håkan Wallander
Biogeosciences, 19, 3713–3726, https://doi.org/10.5194/bg-19-3713-2022, https://doi.org/10.5194/bg-19-3713-2022, 2022
Short summary
Short summary
Fungi living in symbiosis with tree roots can accumulate belowground, forming special tissues than can repel water. We measured the water repellency of organic material incubated belowground and correlated it with fungal growth. We found a positive association between water repellency and root symbiotic fungi. These results are important because an increase in soil water repellency can reduce the release of CO2 from soils into the atmosphere and mitigate the effects of greenhouse gasses.
Karen M. Brandenburg, Björn Rost, Dedmer B. Van de Waal, Mirja Hoins, and Appy Sluijs
Biogeosciences, 19, 3305–3315, https://doi.org/10.5194/bg-19-3305-2022, https://doi.org/10.5194/bg-19-3305-2022, 2022
Short summary
Short summary
Reconstructions of past CO2 concentrations rely on proxy estimates, with one line of proxies relying on the CO2-dependence of stable carbon isotope fractionation in marine phytoplankton. Culturing experiments provide insights into which processes may impact this. We found, however, that the methods with which these culturing experiments are performed also influence 13C fractionation. Caution should therefore be taken when extrapolating results from these experiments to proxy applications.
Weilin Huang, Peter M. van Bodegom, Toni Viskari, Jari Liski, and Nadejda A. Soudzilovskaia
Biogeosciences, 19, 1469–1490, https://doi.org/10.5194/bg-19-1469-2022, https://doi.org/10.5194/bg-19-1469-2022, 2022
Short summary
Short summary
This work focuses on one of the essential pathways of mycorrhizal impact on C cycles: the mediation of plant litter decomposition. We present a model based on litter chemical quality which precludes a conclusive examination of mycorrhizal impacts on soil C. It improves long-term decomposition predictions and advances our understanding of litter decomposition dynamics. It creates a benchmark in quantitatively examining the impacts of plant–microbe interactions on soil C dynamics.
Julie Dinasquet, Estelle Bigeard, Frédéric Gazeau, Farooq Azam, Cécile Guieu, Emilio Marañón, Céline Ridame, France Van Wambeke, Ingrid Obernosterer, and Anne-Claire Baudoux
Biogeosciences, 19, 1303–1319, https://doi.org/10.5194/bg-19-1303-2022, https://doi.org/10.5194/bg-19-1303-2022, 2022
Short summary
Short summary
Saharan dust deposition of nutrients and trace metals is crucial to microbes in the Mediterranean Sea. Here, we tested the response of microbial and viral communities to simulated dust deposition under present and future conditions of temperature and pH. Overall, the effect of the deposition was dependent on the initial microbial assemblage, and future conditions will intensify microbial responses. We observed effects on trophic interactions, cascading all the way down to viral processes.
Ralf Conrad, Pengfei Liu, and Peter Claus
Biogeosciences, 18, 6533–6546, https://doi.org/10.5194/bg-18-6533-2021, https://doi.org/10.5194/bg-18-6533-2021, 2021
Short summary
Short summary
Acetate is an important intermediate during the anaerobic degradation of organic matter. It is consumed by methanogenic and sulfidogenic microorganisms accompanied by stable carbon isotope fractionation. We determined isotope fractionation under different conditions in two paddy soils and two lake sediments and also determined the composition of the microbial communities. Despite a relatively wide range of experimental conditions, the range of fractionation factors was quite moderate.
Natalie R. Cohen, Abigail E. Noble, Dawn M. Moran, Matthew R. McIlvin, Tyler J. Goepfert, Nicholas J. Hawco, Christopher R. German, Tristan J. Horner, Carl H. Lamborg, John P. McCrow, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 18, 5397–5422, https://doi.org/10.5194/bg-18-5397-2021, https://doi.org/10.5194/bg-18-5397-2021, 2021
Short summary
Short summary
A previous study documented an intense hydrothermal plume in the South Pacific Ocean; however, the iron release associated with this plume and the impact on microbiology were unclear. We describe metal concentrations associated with multiple hydrothermal plumes in this region and protein signatures of plume-influenced microbes. Our findings demonstrate that resources released from these systems can be transported away from their source and may alter the physiology of surrounding microbes.
Sabyasachi Bhattacharya, Tarunendu Mapder, Svetlana Fernandes, Chayan Roy, Jagannath Sarkar, Moidu Jameela Rameez, Subhrangshu Mandal, Abhijit Sar, Amit Kumar Chakraborty, Nibendu Mondal, Sumit Chatterjee, Bomba Dam, Aditya Peketi, Ranadhir Chakraborty, Aninda Mazumdar, and Wriddhiman Ghosh
Biogeosciences, 18, 5203–5222, https://doi.org/10.5194/bg-18-5203-2021, https://doi.org/10.5194/bg-18-5203-2021, 2021
Short summary
Short summary
Physicochemical determinants of microbiome architecture across continental shelves–slopes are unknown, so we explored the geomicrobiology along 3 m sediment horizons of seasonal (shallow coastal) and perennial (deep sea) hypoxic zones of the Arabian Sea. Nature, concentration, and fate of the organic matter delivered to the sea floor were found to shape the microbiome across the western Indian margin, under direct–indirect influence of sedimentation rate and water column O2 level.
Aditi Sengupta, Sarah J. Fansler, Rosalie K. Chu, Robert E. Danczak, Vanessa A. Garayburu-Caruso, Lupita Renteria, Hyun-Seob Song, Jason Toyoda, Jacqueline Hager, and James C. Stegen
Biogeosciences, 18, 4773–4789, https://doi.org/10.5194/bg-18-4773-2021, https://doi.org/10.5194/bg-18-4773-2021, 2021
Short summary
Short summary
Conceptual models link microbes with the environment but are untested. We test a recent model using riverbed sediments. We exposed sediments to disturbances, going dry and becoming wet again. As the length of dry conditions got longer, there was a sudden shift in the ecology of microbes, chemistry of organic matter, and rates of microbial metabolism. We propose a new model based on feedbacks initiated by disturbance that cascade across biological, chemical, and functional aspects of the system.
Cora Hörstmann, Eric J. Raes, Pier Luigi Buttigieg, Claire Lo Monaco, Uwe John, and Anya M. Waite
Biogeosciences, 18, 3733–3749, https://doi.org/10.5194/bg-18-3733-2021, https://doi.org/10.5194/bg-18-3733-2021, 2021
Short summary
Short summary
Microbes are the main drivers of productivity and nutrient cycling in the ocean. We present a combined approach assessing C and N uptake and microbial community diversity across ecological provinces in the Southern Ocean and southern Indian Ocean. Provinces showed distinct genetic fingerprints, but microbial activity varied gradually across regions, correlating with nutrient concentrations. Our study advances the biogeographic understanding of microbial diversity across C and N uptake regimes.
Nimrod Wieler, Tali Erickson Gini, Osnat Gillor, and Roey Angel
Biogeosciences, 18, 3331–3342, https://doi.org/10.5194/bg-18-3331-2021, https://doi.org/10.5194/bg-18-3331-2021, 2021
Short summary
Short summary
Biological rock crusts (BRCs) are common microbial-based assemblages covering rocks in drylands. BRCs play a crucial role in arid environments because of the limited activity of plants and soil. Nevertheless, BRC development rates have never been dated. Here we integrated archaeological, microbiological and geological methods to provide a first estimation of the growth rate of BRCs under natural conditions. This can serve as an affordable dating tool in archaeological sites in arid regions.
Michal Elul, Maxim Rubin-Blum, Zeev Ronen, Itay Bar-Or, Werner Eckert, and Orit Sivan
Biogeosciences, 18, 2091–2106, https://doi.org/10.5194/bg-18-2091-2021, https://doi.org/10.5194/bg-18-2091-2021, 2021
Mindaugas Zilius, Irma Vybernaite-Lubiene, Diana Vaiciute, Donata Overlingė, Evelina Grinienė, Anastasija Zaiko, Stefano Bonaglia, Iris Liskow, Maren Voss, Agneta Andersson, Sonia Brugel, Tobia Politi, and Paul A. Bukaveckas
Biogeosciences, 18, 1857–1871, https://doi.org/10.5194/bg-18-1857-2021, https://doi.org/10.5194/bg-18-1857-2021, 2021
Short summary
Short summary
In fresh and brackish waters, algal blooms are often dominated by cyanobacteria, which have the ability to utilize atmospheric nitrogen. Cyanobacteria are also unusual in that they float to the surface and are dispersed by wind-driven currents. Their patchy and dynamic distribution makes it difficult to track their abundance and quantify their effects on nutrient cycling. We used remote sensing to map the distribution of cyanobacteria in a large Baltic lagoon and quantify their contributions.
Saly Jaber, Muriel Joly, Maxence Brissy, Martin Leremboure, Amina Khaled, Barbara Ervens, and Anne-Marie Delort
Biogeosciences, 18, 1067–1080, https://doi.org/10.5194/bg-18-1067-2021, https://doi.org/10.5194/bg-18-1067-2021, 2021
Short summary
Short summary
Our study is of interest to atmospheric scientists and environmental microbiologists, as we show that clouds can be considered a medium where bacteria efficiently degrade and transform amino acids, in competition with chemical processes. As current atmospheric multiphase models are restricted to chemical degradation of organic compounds, our conclusions motivate further model development.
Kahina Djaoudi, France Van Wambeke, Aude Barani, Nagib Bhairy, Servanne Chevaillier, Karine Desboeufs, Sandra Nunige, Mohamed Labiadh, Thierry Henry des Tureaux, Dominique Lefèvre, Amel Nouara, Christos Panagiotopoulos, Marc Tedetti, and Elvira Pulido-Villena
Biogeosciences, 17, 6271–6285, https://doi.org/10.5194/bg-17-6271-2020, https://doi.org/10.5194/bg-17-6271-2020, 2020
Romie Tignat-Perrier, Aurélien Dommergue, Alban Thollot, Olivier Magand, Timothy M. Vogel, and Catherine Larose
Biogeosciences, 17, 6081–6095, https://doi.org/10.5194/bg-17-6081-2020, https://doi.org/10.5194/bg-17-6081-2020, 2020
Short summary
Short summary
The adverse atmospheric environmental conditions do not appear suited for microbial life. We conducted the first global comparative metagenomic analysis to find out if airborne microbial communities might be selected by their ability to resist these adverse conditions. The relatively higher concentration of fungi led to the observation of higher proportions of stress-related functions in air. Fungi might likely resist and survive atmospheric physical stress better than bacteria.
Yanhong Lu, Shunyan Cheung, Ling Chen, Shuh-Ji Kao, Xiaomin Xia, Jianping Gan, Minhan Dai, and Hongbin Liu
Biogeosciences, 17, 6017–6032, https://doi.org/10.5194/bg-17-6017-2020, https://doi.org/10.5194/bg-17-6017-2020, 2020
Short summary
Short summary
Through a comprehensive investigation, we observed differential niche partitioning among diverse ammonia-oxidizing archaea (AOA) sublineages in a typical subtropical estuary. Distinct AOA communities observed at DNA and RNA levels suggested that a strong divergence in ammonia-oxidizing activity among different AOA groups occurs. Our result highlights the importance of identifying major ammonia oxidizers at RNA level in future studies.
Anna-Neva Visser, Scott D. Wankel, Pascal A. Niklaus, James M. Byrne, Andreas A. Kappler, and Moritz F. Lehmann
Biogeosciences, 17, 4355–4374, https://doi.org/10.5194/bg-17-4355-2020, https://doi.org/10.5194/bg-17-4355-2020, 2020
Short summary
Short summary
This study focuses on the chemical reaction between Fe(II) and nitrite, which has been reported to produce high levels of the greenhouse gas N2O. We investigated the extent to which dead biomass and Fe(II) minerals might enhance this reaction. Here, nitrite reduction was highest when both additives were present but less pronounced if only Fe(II) minerals were added. Both reaction systems show distinct differences, rather low N2O levels, and indicated the abiotic production of N2.
Lisa Tanet, Séverine Martini, Laurie Casalot, and Christian Tamburini
Biogeosciences, 17, 3757–3778, https://doi.org/10.5194/bg-17-3757-2020, https://doi.org/10.5194/bg-17-3757-2020, 2020
Short summary
Short summary
Bioluminescent bacteria, the most abundant light-emitting organisms in the ocean, can be free-living, be symbiotic or colonize organic particles. This review suggests that they act as a visual target and may indirectly influence the sequestration of biogenic carbon in oceans by increasing the attraction rate for consumers. We summarize the instrumentation available to quantify this impact in future studies and propose synthetic figures integrating these ecological and biogeochemical concepts.
Michael Lintner, Bianca Biedrawa, Julia Wukovits, Wolfgang Wanek, and Petra Heinz
Biogeosciences, 17, 3723–3732, https://doi.org/10.5194/bg-17-3723-2020, https://doi.org/10.5194/bg-17-3723-2020, 2020
Short summary
Short summary
Foraminifera are unicellular marine organisms that play an important role in the marine element cycle. Changes of environmental parameters such as salinity or temperature have a significant impact on the faunal assemblages. Our experiments show that changing salinity in the German Wadden Sea immediately influences the foraminiferal community. It seems that A. tepida is better adapted to salinity fluctuations than H. germanica.
Kathrin Busch, Ulrike Hanz, Furu Mienis, Benjamin Mueller, Andre Franke, Emyr Martyn Roberts, Hans Tore Rapp, and Ute Hentschel
Biogeosciences, 17, 3471–3486, https://doi.org/10.5194/bg-17-3471-2020, https://doi.org/10.5194/bg-17-3471-2020, 2020
Short summary
Short summary
Seamounts are globally abundant submarine structures that offer great potential to study the impacts and interactions of environmental gradients at a single geographic location. In an exemplary way, we describe potential mechanisms by which a seamount can affect the structure of pelagic and benthic (sponge-)associated microbial communities. We conclude that the geology, physical oceanography, biogeochemistry, and microbiology of seamounts are even more closely linked than currently appreciated.
Alexander Bratek, Justus E. E. van
Beusekom, Andreas Neumann, Tina Sanders, Jana Friedrich, Kay-Christian Emeis, and Kirstin Dähnke
Biogeosciences, 17, 2839–2851, https://doi.org/10.5194/bg-17-2839-2020, https://doi.org/10.5194/bg-17-2839-2020, 2020
Short summary
Short summary
The following paper highlights the importance of benthic N-transformation rates in different sediment types in the southern North Sea as a source of fixed nitrogen for primary producers and also as a sink of fixed nitrogen. Sedimentary fluxes of dissolved inorganic nitrogen support ∼7 to 59 % of the average annual primary production. Semi-permeable and permeable sediments contribute ∼68 % of the total benthic N2 production rates, counteracting eutrophication in the southern North Sea.
Sabine Haalboom, David M. Price, Furu Mienis, Judith D. L. van Bleijswijk, Henko C. de Stigter, Harry J. Witte, Gert-Jan Reichart, and Gerard C. A. Duineveld
Biogeosciences, 17, 2499–2519, https://doi.org/10.5194/bg-17-2499-2020, https://doi.org/10.5194/bg-17-2499-2020, 2020
Short summary
Short summary
Mineral mining in deep-sea hydrothermal settings will lead to the formation of plumes of fine-grained, chemically reactive, suspended matter. Understanding how natural hydrothermal plumes evolve as they disperse from their source, and how they affect their surrounding environment, may help in characterising the behaviour of the diluted part of mining plumes. The natural plume provided a heterogeneous, geochemically enriched habitat conducive to the development of a distinct microbial ecology.
Noelle A. Held, Eric A. Webb, Matthew M. McIlvin, David A. Hutchins, Natalie R. Cohen, Dawn M. Moran, Korinna Kunde, Maeve C. Lohan, Claire Mahaffey, E. Malcolm S. Woodward, and Mak A. Saito
Biogeosciences, 17, 2537–2551, https://doi.org/10.5194/bg-17-2537-2020, https://doi.org/10.5194/bg-17-2537-2020, 2020
Short summary
Short summary
Trichodesmium is a globally important marine nitrogen fixer that stimulates primary production in the surface ocean. We surveyed metaproteomes of Trichodesmium populations across the North Atlantic and other oceans, and we found that they experience simultaneous phosphate and iron stress because of the biophysical limits of nutrient uptake. Importantly, nitrogenase was most abundant during co-stress, indicating the potential importance of this phenotype to global nitrogen and carbon cycling.
Helmke Hepach, Claire Hughes, Karen Hogg, Susannah Collings, and Rosie Chance
Biogeosciences, 17, 2453–2471, https://doi.org/10.5194/bg-17-2453-2020, https://doi.org/10.5194/bg-17-2453-2020, 2020
Short summary
Short summary
Tropospheric iodine takes part in numerous atmospheric chemical cycles, including tropospheric ozone destruction and aerosol formation. Due to its significance for atmospheric processes, it is crucial to constrain its sources and sinks. This paper aims at investigating and understanding features of biogenic iodate-to-iodide reduction in microalgal monocultures. We find that phytoplankton senescence may play a crucial role in the release of iodide to the marine environment.
Roger D. Finlay, Shahid Mahmood, Nicholas Rosenstock, Emile B. Bolou-Bi, Stephan J. Köhler, Zaenab Fahad, Anna Rosling, Håkan Wallander, Salim Belyazid, Kevin Bishop, and Bin Lian
Biogeosciences, 17, 1507–1533, https://doi.org/10.5194/bg-17-1507-2020, https://doi.org/10.5194/bg-17-1507-2020, 2020
Short summary
Short summary
Effects of biological activity on mineral weathering operate at scales ranging from short-term, microscopic interactions to global, evolutionary timescale processes. Microorganisms have had well-documented effects at large spatio-temporal scales, but to establish the quantitative significance of microscopic measurements for field-scale processes, higher-resolution studies of liquid chemistry at local weathering sites and improved upscaling to soil-scale dissolution rates are still required.
Christine Rooks, James Kar-Hei Fang, Pål Tore Mørkved, Rui Zhao, Hans Tore Rapp, Joana R. Xavier, and Friederike Hoffmann
Biogeosciences, 17, 1231–1245, https://doi.org/10.5194/bg-17-1231-2020, https://doi.org/10.5194/bg-17-1231-2020, 2020
Short summary
Short summary
Sponge grounds are known as nutrient sources, providing nitrate and ammonium to the ocean. We found that they also can do the opposite: in six species from Arctic and North Atlantic sponge grounds, we measured high rates of denitrification, which remove these nutrients from the sea. Rates were highest when the sponge tissue got low in oxygen, which happens when sponges stop pumping because of stress. Sponge grounds may become nutrient sinks when exposed to stress.
Cheng Li, Clare E. Reimers, and Yvan Alleau
Biogeosciences, 17, 597–607, https://doi.org/10.5194/bg-17-597-2020, https://doi.org/10.5194/bg-17-597-2020, 2020
Short summary
Short summary
Novel filamentous cable bacteria that grow in the top layer of intertidal mudflat sediment were attracted to electrodes poised at a positive electrical potential. Several diverse morphologies of Desulfobulbaceae filaments, cells, and colonies were observed on the electrode surface. These observations provide information to suggest conditions that will induce cable bacteria to perform electron donation to an electrode, informing future experiments that culture cable bacteria outside of sediment.
Marie Maßmig, Jan Lüdke, Gerd Krahmann, and Anja Engel
Biogeosciences, 17, 215–230, https://doi.org/10.5194/bg-17-215-2020, https://doi.org/10.5194/bg-17-215-2020, 2020
Short summary
Short summary
Little is known about the rates of bacterial element cycling in oxygen minimum zones (OMZs). We measured bacterial production and rates of extracellular hydrolytic enzymes at various in situ oxygen concentrations in the OMZ off Peru. Our field data show unhampered bacterial activity at low oxygen concentrations. Meanwhile bacterial degradation of organic matter substantially contributed to the formation of the OMZ.
Anna T. Kunert, Mira L. Pöhlker, Kai Tang, Carola S. Krevert, Carsten Wieder, Kai R. Speth, Linda E. Hanson, Cindy E. Morris, David G. Schmale III, Ulrich Pöschl, and Janine Fröhlich-Nowoisky
Biogeosciences, 16, 4647–4659, https://doi.org/10.5194/bg-16-4647-2019, https://doi.org/10.5194/bg-16-4647-2019, 2019
Short summary
Short summary
A screening of more than 100 strains from 65 different species revealed that the ice nucleation activity within the fungal genus Fusarium is more widespread than previously assumed. Filtration experiments suggest that the single cell-free Fusarium IN is smaller than 100 kDa (~ 6 nm) and that aggregates can be formed in solution. Exposure experiments, freeze–thaw cycles, and long-term storage tests demonstrate a high stability of Fusarium IN under atmospherically relevant conditions.
Qing Wang, Renbin Zhu, Yanling Zheng, Tao Bao, and Lijun Hou
Biogeosciences, 16, 4113–4128, https://doi.org/10.5194/bg-16-4113-2019, https://doi.org/10.5194/bg-16-4113-2019, 2019
Short summary
Short summary
We investigated abundance, potential activity, and diversity of soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) in five Antarctic tundra patches, including penguin colony, seal colony, and tundra marsh. We have found (1) sea animal colonization increased AOB population size.; (2) AOB contributed to ammonia oxidation rates more than AOA in sea animal colonies; (3) community structures of AOB and AOA were closely related to soil biogeochemical processes associated with animal activities.
Yalda Vasebi, Marco E. Mechan Llontop, Regina Hanlon, David G. Schmale III, Russell Schnell, and Boris A. Vinatzer
Biogeosciences, 16, 1675–1683, https://doi.org/10.5194/bg-16-1675-2019, https://doi.org/10.5194/bg-16-1675-2019, 2019
Short summary
Short summary
Ice nucleation particles (INPs) help ice form at temperatures as high as −4 °C and contribute to the formation of precipitation. Leaf litter contains a high concentration of INPs, but the organisms that produce them are unknown. Here, we cultured two bacteria and one fungus from leaf litter that produce INPs similar to those found in leaf litter. This suggests that leaf litter may be an important habitat of these organisms and supports a role of these organisms as producers of atmospheric INPs.
Cited articles
Abedin, M. and King, N.: Diverse and evolutionary paths to cell adhesion,
Trends Cell Biol., 20, 734–742, 2010.
Alderkamp, A. C., Buma, A. G. J., and Van Rijssel, M.: The carbohydrates of
Phaeocystis and their degradation in the microbial food web, Biogeochemistry, 83,
99–118, 2007.
Alexander, H., Jenkins, B. D., Rynearson, T. A., Saito, M. A., Mercier, M. L., and Dyhrman, S. T.:
Identifying reference genes with stable expression from high throughput sequence data, Front Microbiol.,
9, 385, https://doi.org/10.3389/fmicb.2012.00385, 2012.
Allen, A. E., LaRoche, J., Maheswari, U., Lommer, M., Schauer, N., Lopez, P.
J., Finazzi, G., Fernie, A. R., and Bowler, C.: Whole-cell response of the
pennate diatom Phaeodactylum tricornutum to iron starvation, P. Natl. Acad. Sci. USA, 105, 10438–10443, 2008.
Arrigo, K. R., Worthen, D., Schnell, A., and Lizotte, M. P.: Primary
production in Southern Ocean waters, J. Geophys. Res.,
103, 15587–15600, 1998.
Arrigo, K. R., Robinson, D. H., Worthen, D. L., Dunbar, R. B., R, D. G.,
vanWoert, M. L., and Lizotte, M. P.: Phytoplankton community structure and
the drawdown of nutrients and CO2 in the Southern Ocean, Science, 283,
365–367, https://doi.org/10.1126/science.283.5400.365, 1999.
Arrigo, K. R., DiTullio, G. R., Dunbar, R. B., Robinson, D. H., vanWoert, M. L.,
Worthen, D. L., and Lizotte, M. P.: Phytoplankton taxonomic variability in
nutrient utilization and primary production in the Ross Sea, J. Geophys. Res., 105, 8827–8846, https://doi.org/10.1029/1998JC000289, 2000.
Bender, S. J., Moran, D. M., McIlvin, M. R., Zheng, H., McCrow, J. P., Badger, J., DiTullio, G. R., Allen, A. E.,
and Saito, M. A.: Phaeocystis antarctica transcriptomes under iron limitation,
available at: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA339150 (last access: 16 August 2016), 2018a.
Bender, S. J., Moran, D. M., McIlvin, M. R., Zheng, H., McCrow, J. P., Badger, J., DiTullio, G. R., Allen, A. E.,
and Saito, M. A.: Phaeocystis antarctica Transcriptome or Gene expression,
available at: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA339151 (last access: 16 August 2016), 2018b.
Bender, S. J., Moran, D. M., McIlvin, M. R., Zheng, H., McCrow, J. P., Badger, J., DiTullio, G. R., Allen, A. E.,
and Saito, M. A.: Phaeocystis antarctica CCMP 1871 and CCMP 1374, Ross Sea Phaeocystis bloom, LC-MSMS, https://doi.org/10.6019/PXD005341,
2018c.
Bertrand, E. M., Saito, M. A., Rose, J. M., Riesselman, C. R., Lohan, M. C.,
Noble, A. E., Lee, P. A., and R, D. G.: Vitamin B12 and iron
colimitation of phytoplankton growth in the Ross Sea, Limnol. Oceanogr., 52, 1079–1093, 2007.
Bertrand, E. M., Saito, M. A., Lee, P. A., Dunbar, R. B., Sedwick, P. N., and
R, D. G.: Iron limitation of a springtime bacterial and phytoplankton
community in the Ross Sea: Implications for Vitamin B12 nutrition,
Front. Microbiol., 2, 1–12, https://doi.org/10.3389/fmicb.2011.00160, 2011.
Bertrand, E. M., Moran, D. M., McIlvin, M. R., Hoffman, J. M., Allen, A. E.,
and Saito, M. A.: Methionine synthase interreplacement in diatom cultures
and communities: Implications for the persistence of B12 use by
eukaryotic phytoplankton, Limnol. Oceanogr., 58, 1431–1450,
https://doi.org/10.4319/lo.2013.58.4.1431, 2013.
Bertrand, E. M., McCrow, J. P., Moustafa, A., Zheng, H., McQuaid, J. B.,
Delmont, T. O., Post, A. F., Sipler, R. E., Spackeen, J. L., Xu, K., Bronk,
D. A., Hutchins, D. A., and Allen, A. E.: Phytoplankton–bacterial
interactions mediate micronutrient colimitation at the coastal Antarctic sea
ice edge, P. Natl. Acad. Sci. USA, 112,
9938–9943, https://doi.org/10.1073/pnas.1501615112, 2015.
Boye, M., van den Berg, C., de Jong, J., Leach, H., Croot, P., and de Baar,
H. J. W.: Organic complexation of iron in the Southern Ocean, Deep-Sea Res. Pt. I, 48, 1477–1497, 2001.
Chiovitti, A., Bacic, A., Burke, J., and Wetherbee, R.: Heterogeneous
xylose-rich glycans are associated with extracellular glycoproteins from the
biofouling diatom Craspedostauros australis (Bacillariophyceae), Eur. J. Phycol.,
38, 351–360, https://doi.org/10.1080/09670260310001612637, 2003.
Coale, K. H., Wang, X., Tanner, S. J., and Johnson, K. S.: Phytoplankton
growth and biological response to iron and zinc addition in the Ross Sea and
Antarctic Circumpolar Current along 170∘ W, Deep-Sea Res. Pt. II, 50, 635–653, 2003.
Delmont, T. O., Hammar, K. M., Ducklow, H. W., Yager, P. L., and Post, A. F.:
Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen
Sea polynya, Front. Microbiol., 5, 646, https://doi.org/10.3389/fmicb.2014.00646, 2014.
DiTullio, G. R., Grebmeier, J. M., Arrigo, K. R., Lizotte, M. P., Robinson,
D. H., Leventer, A., Barry, J. P., vanWoert, M. L., and dunbar, R. B.: Rapid
and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica, Nature, 404,
595–598, https://doi.org/10.1038/35007061, 2000.
Drake, J. L., Mass, T., Haramaty, L., Zelzion, E., Bhattacharya, D., and
Falkowski, P. G.: Proteomic analysis of skeletal organic matrix from the
stony coral Stylophora pistillata, P. Natl. Acad. Sci. USA, 110,
3788–3793, 2013.
Ducklow, H. W., Baker, K., Martinson, D. G., Quetin, L. B., Ross, R. M.,
Smith, R. C., Stammerjohn, S. E., Vernet, M., and Fraser, W.: Marine pelagic
ecosystems: the West Antarctic Peninsula, Philos. T. Roy. Soc. B, 362, 67–94, https://doi.org/10.1098/rstb.2006.1955, 2007.
Dunbar, R. B., Leventer, A. R., and Mucciarone, D. A.: Water column sediment
fluxes in the Ross Sea, Antarctica: Atmospheric and sea ice forcing, J. Geophys. Res., 103, 30741–30759, https://doi.org/10.1029/1998JC900001,
1998.
Eng, J. K., McCormack, A. L., and Yates, J. R.: An approach to correlate
tandem mass spectral data of peptides with amino acid sequences in a protein
database, J. Am. Soc. Mass Spectrom., 5, 976–989,
https://doi.org/10.1016/1044-0305(94)80016-2, 1994.
Ewenstein, B. M.: Von Willebrand's disease, Annu. Rev. Med., 48,
525–542, https://doi.org/10.1146/annurev.med.48.1.525, 1997.
Feng, Y., Hare, C. E., Rose, J. M., Handy, S. M., DiTullio, G. R., Lee, P.
A., Smith Jr., W. O., Peloquin, J., Tozzi, S., Sun, J., Zhang, Y., Dunbar,
R. B., Long, M. C., Sohst, B., Lohan, M., and Hutchins, D. A.: Interactive
effects of iron, irradiance and CO2 on Ross Sea phytoplankton, Deep-Sea Res. Pt. I, 57, 368–383, https://doi.org/10.1016/j.dsr.2009.10.013, 2010.
Gäbler-Schwarz, S., Medlin L. K., and Leese, F.: A puzzle with many pieces:
the genetic structure and diversity of Phaeocystis antarctica Karsten (Prymnesiophyta), Eur. J. Phycol., 50, 112–124,
https://doi.org/10.1080/09670262.2014.998295, 2015.
Garcia, N. S., Sedwick, P. N., and DiTullio., G.R.: Influence of irradiance
and iron on the growth of colonial Phaeocystis antarctica: implications for seasonal bloom
dynamics in the Ross Sea, Antarctica, Aquat. Microb. Ecol., 57,
203–220, 2009.
Garrison, D. L., Gibson, A., Kunze, H., Gowing, M. M., Vickers, C. L., Mathot, S., and Bayre, R. C.: The Ross Sea Polynya Project: Diatom-
and Phaeocystis-dominated phytoplankton assemblages in the Ross Sea, Antarctica, 1994–1996, Biogeochemistry of the Ross Sea, 53–76, 2003.
Hallmann, A.: Extracellular matrix and sex-inducing pheromone in Volvox,
Int. Rev. Cytol., 227, 131–182, 2003.
Hamm, C. E.: Architecture, ecology and biogeochemistry of Phaeocystis colonies, J. Sea Res., 43, 307–315, 2000.
Hamm, C. E., Simson, D. A., Merkel, R., and Smetacek, V.: Colonies of
Phaeocystis globosa are protected by a thin but tough skin, Mar. Ecol.-Prog. Ser.,
187, 101–111, 1999.
Hayward, D. C., Hetherington, S., Behm, C. A., Grasso, L. C., Forêt, S.,
Miller, D. J., and Ball, E. E.: Differential gene expression at coral
settlement and metamorphosis - A subtractive hybridization study, PLoS ONE,
6, e26411, https://doi.org/10.1371/journal.pone.0026411, 2011.
Jacobsen, A., Larsen, A., Martínez-Martínez, J., Verity, P. G., and
Frischer, M. E.: Susceptibility of colonies and colonial cells of
Phaeocystis pouchetii (Haptophyta) to viral infection, Aquat. Microb. Ecol., 48, 105–112,
2007.
King, N., Hittinger, C. T., and Carroll, S. B.: Evolution of key cell
signaling and adhesion protein families predates animal origins, Science,
301, 361–363, https://doi.org/10.1126/science.1083853, 2003.
Kröger, N., Bergsdorf, C., and Sumper, M.: A new calcium binding
glycoprotein family constitutes a major diatom cell wall component, EMBO J., 13, 4676–4683, 1994.
Lagerheim, G.: Ueber Phaeocystis poucheti (Har.) Lagerh., eine
Plankton-Flagellate, Oeivers af Vet Akad Foerhandl, 4, 277–288, 1896.
Lange, M., Chen, Y.-Q., and Medlin, L. K.: Molecular genetic delineation of
Phaeocystis species (Prymnesiophyceae) using coding and non-coding regions of nuclear
and plastid genomes, Eur. J. Phycol., 37, 77–92,
https://doi.org/10.1017/S0967026201003481, 2002.
Lê, S., Josse, J., and Husson, F.: FactoMineR: an R package for
multivariate analysis, J. Stat. Softw., 25, 1–18, https://doi.org/10:18637/JSS.v025:01, 2008.
Long, J. D., Smalley, G. W., Barsby, T., Anderson, J. T., and Hay, M. E.:
Chemical cues induce consumer-specific defenses in a bloom-forming marine
phytoplankton, P. Natl. Acad. Sci. USA, 104,
10512–10517, 2007.
Lovenduski, N. S., Gruber, N., and Doney, S. C.: Toward a mechanistic
understanding of the decadal trends in the Southern Ocean carbon sink,
Global Biogeochem. Cy., 22, GB3016, https://doi.org/10.1029/2007GB003139, 2008.
Lubbers, G., Gieskes, W., Del Castilho, P., Salomons, W., and Bril, J.:
Manganese accumulation in the high pH microenvironment of Phaeocystis sp. (Haptophyceae)
colonies from the North Sea, Mar. Ecol.-Prog. Ser., 59, 285–293,
1990.
Luxem, K. E., Ellwood, M. J., and Strzepek, R. F.: Intraspecific variability
in Phaeocystis antarctica's response to iron and light stress, PLoS ONE, 12, e0179751, https://doi.org/10.10.1371/journal.pone.0179751, 2017.
Martin, J. H., Fitzwater, S. E., and Gordon, R. M.: Iron deficiency limits
phytoplankton growth in Antarctic waters, Global Biogeochem. Cy.,
4, 5–12, https://doi.org/10.1029/GB004i001p00005, 1990.
Matrai, P. A., Vernet, M., Hood, R., Jennings, A., Brody, E., and
Saemundsdottir, S.: Light-dependence of carbon and sulfur production by
polar clones of the genus Phaeocystis, Mar. Biol., 124, 157–167, 1995.
Maucher, J. M. and DiTullio, G. R.: Flavodoxin as a Diagnostic
Indicator of Chronic Fe-Limitation in the Ross Sea and New Zealand Sector of
the Southern Ocean, Biogeochemistry in the Ross Sea, edited by:
DiTullio, G. R. and Dunbar, R. B., Washington DC, AGU, 209–220, 2003.
Michel, G., Tonon, T., Scornet, D., Cock, J. M., and Kloareg, B.: The cell
wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the
evolution of extracellular matrix polysaccharides in Eukaryotes, New
Phytol., 188, 82–97, 2010.
Morris, R. M., Nunn, B. L., Frazar, C., Goodlett, D. R., Ting, Y. S., and
Rocap, G.: Comparative metaproteomics reveals ocean-scale shifts in
microbial nutrient utilization and energy transduction, ISME J.,
4, 673–685, https://doi.org/10.1038/ismej.2010.4, 2010.
Morrissey, J., Sutak, R., Paz-Yepes, J., Tanaka, A., Moustafa, A.,
Veluchamy, A., Thomas, Y., Botebol, H., Bouget, F.-Y., McQuaid, J. B.,
Tirichine, L., Allen, A. E., Lesuisse, E., and Bowler, C.: A novel protein,
ubiquitous in marine phytoplankton, concentrates iron at the cell surface
and facilitates uptake, Curr. Biol., 25, 364–371,
https://doi.org/10.1016/j.cub.2014.12.004, 2015.
Murray, A. E. and Grzymski, J. J.: Diversity and genomics of Antarctic
marine micro-organisms, Philos. T. Roy. Soc. B, 362, 2259–2271, https://doi.org/10.1098/rstb.2006.1944,
2007.
Noble, A. E., Moran, D. M., Allen, A. E., and Saito, M. A.: Dissolved and
particulate trace metal micronutrients under the McMurdo Sound seasonal sea
ice: basal sea ice communities as a capacitor for iron, Front. Chem., 1, 1–18, https://doi.org/10.3389/fchem.2013.00025, 2013.
Peers, G. and Price, N. M.: Copper-containing plastocyanin used for electron
transport by an oceanic diatom, Nature, 441, 341–344,
https://doi.org/10.1038/nature04630, 2006.
Podell, S. and Gaasterland, T.: DarkHorse: a method for genome-wide
prediction of horizontal gene transfer, Genome Biol., 8, R16,
https://doi.org/10.1186/gb-2007-8-2-r16, 2007.
Ram, R. J., VerBerkmoes, N. C., Thelen, M. P., Tyson, G. W., Baker, B. J.,
Blake, R. C., Shah, M., Hettich, R., and Banfield, J.: Community proteomics
of a natural microbial biofilm, Science, 308, 1915–1920,
https://doi.org/10.1126/science, 2005.
Rho, M., Tang, H., and Ye, Y.: FragGeneScan: predicting genes in short and
error-prone reads, Nucleic Acids Res., 38, e191–e191,
https://doi.org/10.1093/nar/gkq747, 2010.
Riegman, R. and van Boekel, W.: The ecophysiology of Phaeocystis globosa: a review, J. Sea Res., 35, 235–242, 1996.
Riegman, R., Noordeloos, A. A. M., and Cadee, G. C.: Phaeocystis blooms and
eutrophication of the continental coastal zones of the North Sea, Mar.
Biol., 112, 479–484, https://doi.org/10.1007/BF00356293, 1992.
Roche, J. L., Boyd, P. W., McKay, R. M. L., and Geider, R. J.: Flavodoxin as
an in situ marker for iron stress in phytoplankton, Nature, 382, 802–805,
https://doi.org/10.1038/382802a0, 1996.
Rousseau, V., Mathot, S., and Lancelot, C.: Calculating carbon biomass of
Phaeocystis sp. from microscopic observations, Mar. Biol., 107, 305–314, 1990.
Rousseau, V., Vaulot, D., Casotti, R., Cariou, V., Lenz, J., Gunkel, J., and
Baumann, M. The Life Cycle of Phaeocystis (Prymnesiophyceae): Evidence and
Hypotheses,
J. Marine Syst., 5, 23–39, 10.1016/0924-7963(94)90014-0, 1994.
Rousseau, V., Chrétiennot-Dinet, M.-J., Jacobsen, A., Verity, P. G., and
Whipple, S.: The life cycle of Phaeocystis: state of knowledge and presumptive role in
ecology, Biogeochemistry, 83, 29–47, https://doi.org/10.1007/s10533-007-9085-3, 2007.
Saito, M. A., Goepfert, T. J., Noble, A. E., Bertrand, E. M., Sedwick, P. N., and DiTullio, G. R.: A seasonal study of
dissolved cobalt in the Ross Sea, Antarctica: micronutrient behavior, absence of scavenging, and relationships with Zn, Cd, and P,
Biogeosciences, 7, 4059–4082, https://doi.org/10.5194/bg-7-4059-2010, 2010.
Saito, M. A., McIlvin, M. R., Moran, D. M., Goepfert, T. J., R, D. G., Post,
A. F., and Lamborg, C. H.: Multiple nutrient stresses at intersecting Pacific
Ocean biomes detected by protein biomarkers, Science, 345, 1173–1177,
2014.
Saito, M. A., Dorsk, A., Post, A. F., McIlvin, M. R., Rappé, M. S., R,
D. G., and Moran, D. M.: Needles in the blue sea: Sub-species specificity in
targeted protein biomarker analyses within the vast oceanic microbial
metaproteome, Proteomics, 15, 3521–3531, https://doi.org/10.1002/pmic.201400630,
2015.
Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J., and Manabe, S.:
Simulated response of the ocean carbon cycle to anthropogenic climate
warming, Nature, 393, 245–249, https://doi.org/10.1038/30455, 1998.
Schoemann, V., Wollast, R., Chou, L., and Lancelot, C.: Effects of
photosynthesis on the accumulation of Mn and Fe by Phaeocystis colonies, Limnol. Oceanogr., 46, 1065–1076, 2001.
Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V., and Lancelot, C.:
Phaeocystis blooms in the global ocean and their controlling mechanisms: a review,
J. Sea Res., 53, 43–66, 2005.
Sedwick, P. N. and DiTullio, G. R.: Regulation of algal blooms in Antarctic
shelf waters by the release of iron from melting sea ice, Geophys. Res.
Lett., 24, 2515–2518, https://doi.org/10.1029/97GL02596, 1997.
Sedwick, P. N., DiTullio, G. R., and Mackey, D. J.: Iron and manganese in the
Ross Sea, Antarctica: Seasonal iron limitation in Antarctic shelf waters,
J. Geophys. Res., 105, 11321–11336,
https://doi.org/10.1029/2000JC000256, 2000.
Sedwick, P. N., Garcia, N. S., Riseman, S. F., Marsay, C. M., and DiTullio,
G. R.: Evidence for high iron requirements of colonial Phaeocystis antarctica at low irradiance,
Biogeochemistry, 83, 83–97, https://doi.org/10.1007/s10533-007-9081-7, 2007.
Sedwick, P. N., Marsay, C. M., Sohst, B. M., Aguilar Islas, A. M., Lohan, M.
C., Long, M. C., Arrigo, K. R., Dunbar, R. B., Saito, M. A., Smith, W. O.,
and DiTullio, G. R.: Early season depletion of dissolved iron in the Ross
Sea polynya: Implications for iron dynamics on the Antarctic continental
shelf, J. Geophys. Res., 116, C12019, https://doi.org/10.1029/2010JC006553, 2011.
Smith Jr., W. O., Codispoti, L. A., Nelson, D. M., Manley, T., Buskey, E.
J., Niebauer, H. J., and Cota, G. F.: Importance of Phaeocystis blooms in the
high-latitude ocean carbon cycle, Nature, 352, 514–516, 1991.
Smith Jr., W. O., Dennett, M. R., Mathot, S., and Caron, D. A.: The temporal
dynamics of the flagellated and colonial stages of Phaeocystis antarctica in the Ross Sea,
Deep-Sea Res. Pt. II, 50, 605–617, 2003.
Smith, W. O., Tozzi, S., Long, M. C., Sedwick, P. N., Peloquin, J. A.,
Dunbar, R. B., Hutchins, D. A., Kolber, Z., and R, D. G.: Spatial and
temporal variations in variable fluorescence in the Ross Sea (Antarctica):
Oceanographic correlates and bloom dynamics, Deep-Sea Res. Pt. I, 79,
141–155, 2013.
Solomon, C. M., Lessard, E. J., Keil, R. G., and Foy, M. S.: Characterization
of extracellular polymers of Phaeocystis globosa and P. antarctica, Mar. Ecol.-Prog. Ser., 250,
81–89, 2003.
Sowell, S. M., Wilhelm, L. J., Norbeck, A. D., Lipton, M. S., Nicora, C. D.,
Barofsky, D. F., H, C., Smith, R. D., and Giovanonni, S. J.: Transport
functions dominate the SAR11 metaproteome at low-nutrient extremes in the
Sargasso Sea, ISME J., 3, 93–105, https://doi.org/10.1038/ismej.2008.83,
2008.
Stingl, U., Desiderio, R. A., Cho, J. C., Vergin, K. L., and Giovannoni, S.
J.: The SAR92 Clade: an Abundant Coastal Clade of Culturable Marine Bacteria
Possessing Proteorhodopsin, Appl. Environ. Microbiol., 73,
2290–2296, https://doi.org/10.1128/AEM.02559-06, 2007.
Strzepek, R. F., Maldonado, M. T., Hunter, K. A., Frew, R. D., and Boyd, P.
W.: Adaptive strategies by Southern Ocean phytoplankton to lessen iron
limitation: Uptake of organically complexed iron and reduced cellular iron
requirements, Limnol. Oceanogr., 56, 1983–2002,
https://doi.org/10.4319/lo.2011.56.6.1983, 2011.
Sunda, W. and Huntsman, S.: Effect of pH, light, and temperature on Fe–EDTA
chelation and Fe hydrolysis in seawater, Mar. Chem., 84, 35–47,
https://doi.org/10.1016/S0304-4203(03)00101-4, 2003.
Sunda, W. G. and Huntsman, S. A.: Iron uptake and growth limitation in
oceanic and coastal phytoplankton, Mar. Chem., 50, 189–206, 1995.
Thingstad, F. and Billen, G.: Microbial degradation of Phaeocystis material in the
water column, J. Marine Syst., 5, 55–65,
https://doi.org/10.1016/0924-7963(94)90016-7, 1994.
Tzarfati-Majar, V., Burstyn-Cohen, T., and Klar, A.: F-spondin is a
contact-repellent molecule for embryonic motor neurons, P. Natl. Acad. Sci. USA, 98, 4722–4727, 2011.
van Boekel, W.: Phaeocystis colony mucus components and the importance of calcium ions
for colony stability, Mar. Ecol.-Prog. Ser., 87, 301–305, 1992.
Vardi, A.: Cell signaling in marine diatoms, Communicative & Integrative
Biology, 1, 134–136, https://doi.org/10.1016/j.cub.2008.05.037, 2008.
VerBerkmoes, N. C., Hervey, W. J., Shah, M., Land, M., Hauser, L., Larimer,
F. W., Van Berkel, G. J., and Goeringer, D. E.: Evaluation of “shotgun”
proteomics for identification of biological threat agents in complex
environmental matrixes: experimental simulations, Anal. Chem., 77,
923–932, 2005.
Verity, P. G., Brussaard, C. P., Nejstgaard, J. C., van Leeuwe, M. A.,
Lancelot, C., and Medlin, L. K.: Current understanding of Phaeocystis ecology and
biogeochemistry, and perspectives for future research, Biogeochemistry, 83,
311–330, https://doi.org/10.1007/s10533-007-9090-6, 2007.
Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Huber, W., Liaw,
A., Lumley, T., Maechler, M., Magnusson, A., Moeller, S., and Schwartz, M.:
gplots: Various R programming tools for plotting data, R package version, 2, 2009.
Watanabe, Y., Hayashi, M., Yagi, T., and Kamiya, R.: Turnover of actin in
Chlamydomonas flagella detected by fluorescence recovery after photobleaching (frap),
Cell, 29, 67–72, https://doi.org/10.1247/csf.29.67, 2004.
Whitney, L. P., Lins, J. J., Hughes, M. P., Wells, M. L., Chappell, P. D.,
and Jenkins, B. D.: Characterization of putative iron responsive genes as
species-specific indicators of iron stress in Thalassiosiroid diatoms, Front. Microbiol., 2, 1–14,
https://doi.org/10.3389/fmicb.2011.00234, 2011.
Williams, T. J., Long, E., Evans, F., DeMaere, M. Z., Lauro, F. M., Raftery,
M. J., Ducklow, H., Grzymski, J. J., Murray, A. E., and Cavicchioli, R.: A
metaproteomic assessment of winter and summer bacterioplankton from
Antarctic Peninsula coastal surface waters, ISME J., 6,
1883–1900, https://doi.org/10.1038/ismej.2012.28, 2012.
Wu, Z., Jenkins, B. D., Rynearson, T. A., Dyhrman, S. T., Saito, M. A.,
Mercier, M., and Whitney, L. P.: Empirical bayes analysis of sequencing-based
transcriptional profiling without replicates, BMC Bioinformatics, 11, 564,
https://doi.org/10.1186/1471-2105-11-564, 2010.
Zilliges, Y., Kehr, J. C., Mikkat, S., Bouchier, C., de Marsac, N. T.,
Borner, T., and Dittmann, E.: An extracellular glycoprotein is implicated in
cell-cell contacts in the toxic cyanobacterium Microcystis aeruginosa PCC 7806,
J.
Bacteriol., 190, 2871–2879, https://doi.org/10.1128/JB.01867-07, 2008.
Zingone, A., Chrétiennot-Dinet, M.-J., Lange, M., and Medlin, L.:
Morphological and genetic characterization of Phaeocystis cordata and P. jahnii (prymnesiophyceae), two
new species from the Mediterranean Sea, J. Phycol., 35,
1322–1337, https://doi.org/10.1046/j.1529-8817.1999.3561322.x, 1999.
Zurbriggen, M. D., Tognetti, V. B., Fillat, M. F., Hajirezaei, M.-R., Valle,
E. M., and Carrillo, N.: Combating stress with flavodoxin: a promising route
for crop improvement, Trends Biotechnol., 26, 531–537, 2008.
Short summary
Phaeocystis antarctica is an important phytoplankter of the Antarctic coastal environment where it dominates the early season bloom after sea ice retreat. Iron nutrition was found to be an important factor that results in Phaeocystis colony formation and a large restructuring of the proteome, including changes associated with the flagellate to colonial transition and adaptive responses to iron scarcity. Analysis of Phaeocystis proteins from the Ross Sea revealed the presence of both cell types.
Phaeocystis antarctica is an important phytoplankter of the Antarctic coastal environment where...
Altmetrics
Final-revised paper
Preprint