Articles | Volume 15, issue 17
https://doi.org/10.5194/bg-15-5287-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-5287-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions
Department of Geography, Colgate University, Hamilton, NY 13346, USA
Benjamin W. Abbott
Department of Plant and Wildlife Sciences, Brigham Young University,
Provo, UT 84602, USA
Daan Blok
Department of Physical Geography and Ecosystem Science, Lund
University, 223 62 Lund, Sweden
Thomas A. Douglas
U.S. Army Cold Regions Research and Engineering Laboratory Fort
Wainwright, Alaska 99703, USA
Howard E. Epstein
Department of Environmental Sciences, University of Virginia,
Charlottesville, VA 22904, USA
Bruce C. Forbes
Arctic Centre, University of Lapland, 96101, Rovaniemi, Finland
Benjamin M. Jones
Institute of Northern Engineering, Water & Environmental Research Center, University of Alaska,
Fairbanks, AK 99775, USA
Alexander L. Kholodov
Geophysical Institute, University of Alaska Fairbanks, Fairbanks,
AK,
99775 USA
Heather Kropp
Department of Geography, Colgate University, Hamilton, NY 13346, USA
Avni Malhotra
Environmental Sciences Division and Climate Change Science Institute,
Oak Ridge National Laboratory, Oak Ridge, 37831-6301, USA
Steven D. Mamet
Department of Soil Science, University of Saskatchewan, Saskatoon, SK
S7N 5A8, Canada
Isla H. Myers-Smith
School of GeoSciences, University of Edinburgh, Edinburgh, UK
Susan M. Natali
Woods Hole Research Center, Falmouth, MA 02540, USA
Jonathan A. O'Donnell
Arctic Network, National Park Service, Anchorage, AK 99501, USA
Gareth K. Phoenix
Department of Animal and Plant Sciences, University of Sheffield,
Western Bank, Sheffield, S10 2TN, UK
Adrian V. Rocha
Department of Biological Sciences and the Environmental Change
Initiative, University of Notre Dame, Notre Dame 46556, USA
Oliver Sonnentag
Département de géographie, Université de Montréal,
Montréal, H2V 2B8, Canada
Ken D. Tape
Institute of Northern Engineering, Water & Environmental Research Center, University of Alaska,
Fairbanks, AK 99775, USA
Donald A. Walker
Institute of Arctic Biology, University of Alaska Fairbanks, AK
99775, USA
Related authors
Anna Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-526, https://doi.org/10.5194/essd-2024-526, 2024
Preprint under review for ESSD
Short summary
Short summary
Wildfires have the potential to accelerate permafrost thaw and the associated feedbacks to climate change. We assembled a data set of permafrost thaw depth measurements from burned and unburned sites contributed by researchers from across the northern high latitude region. We estimated maximum thaw depth for each measurement, which addresses a key challenge: the ability to assess impacts of wildfire on maximum thaw depth when measurement timing varies.
Lucas R. Diaz, Clement J. F. Delcourt, Moritz Langer, Michael M. Loranty, Brendan M. Rogers, Rebecca C. Scholten, Tatiana A. Shestakova, Anna C. Talucci, Jorien E. Vonk, Sonam Wangchuk, and Sander Veraverbeke
Earth Syst. Dynam., 15, 1459–1482, https://doi.org/10.5194/esd-15-1459-2024, https://doi.org/10.5194/esd-15-1459-2024, 2024
Short summary
Short summary
Our study in eastern Siberia investigated how fires affect permafrost thaw depth in larch forests. We found that fire induces deeper thaw, yet this process was mediated by topography and vegetation. By combining field and satellite data, we estimated summer thaw depth across an entire fire scar. This research provides insights into post-fire permafrost dynamics and the use of satellite data for mapping fire-induced permafrost thaw.
Konstantin Muzalevskiy, Zdenek Ruzicka, Alexandre Roy, Michael Loranty, and Alexander Vasiliev
The Cryosphere, 17, 4155–4164, https://doi.org/10.5194/tc-17-4155-2023, https://doi.org/10.5194/tc-17-4155-2023, 2023
Short summary
Short summary
A new all-weather method for determining the frozen/thawed (FT) state of soils in the Arctic region based on satellite data was proposed. The method is based on multifrequency measurement of brightness temperatures by the SMAP and GCOM-W1/AMSR2 satellites. The created method was tested at sites in Canada, Finland, Russia, and the USA, based on climatic weather station data. The proposed method identifies the FT state of Arctic soils with better accuracy than existing methods.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Elizabeth E. Webb, Kathryn Heard, Susan M. Natali, Andrew G. Bunn, Heather D. Alexander, Logan T. Berner, Alexander Kholodov, Michael M. Loranty, John D. Schade, Valentin Spektor, and Nikita Zimov
Biogeosciences, 14, 4279–4294, https://doi.org/10.5194/bg-14-4279-2017, https://doi.org/10.5194/bg-14-4279-2017, 2017
Short summary
Short summary
Permafrost soils store massive amounts of C, yet estimates of soil C storage in this region are highly uncertain, primarily due to undersampling at all spatial scales; circumpolar soil C estimates lack sufficient continental spatial diversity, regional intensity, and replication at the field-site level. We aim to reduce the uncertainty of regional C estimates by providing a comprehensive assessment of vegetation, active-layer, and permafrost C stocks in a watershed in northeast Siberia, Russia.
Amey Tilak, Alina Premrov, Ruchita Ingle, Nigel Roulet, Benjamin R. K. Runkle, Matthew Saunders, Avni Malhotra, and Kenneth Byrne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3852, https://doi.org/10.5194/egusphere-2024-3852, 2024
Short summary
Short summary
For the future model users, 16 peatland and wetland models reviewed to identify individual model operational scale (spatial and temporal), stabilization timeframes of different carbon pools, model specific advantages and limitations, common and specific model driving inputs, critical inputs of individual models impacting CH4 plant mediated, CH4 diffusion and CH4 ebullition. Finally, we qualitatively ranked the process representations in each model for CH4 production, oxidation and transport.
Anna Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-526, https://doi.org/10.5194/essd-2024-526, 2024
Preprint under review for ESSD
Short summary
Short summary
Wildfires have the potential to accelerate permafrost thaw and the associated feedbacks to climate change. We assembled a data set of permafrost thaw depth measurements from burned and unburned sites contributed by researchers from across the northern high latitude region. We estimated maximum thaw depth for each measurement, which addresses a key challenge: the ability to assess impacts of wildfire on maximum thaw depth when measurement timing varies.
Lucas R. Diaz, Clement J. F. Delcourt, Moritz Langer, Michael M. Loranty, Brendan M. Rogers, Rebecca C. Scholten, Tatiana A. Shestakova, Anna C. Talucci, Jorien E. Vonk, Sonam Wangchuk, and Sander Veraverbeke
Earth Syst. Dynam., 15, 1459–1482, https://doi.org/10.5194/esd-15-1459-2024, https://doi.org/10.5194/esd-15-1459-2024, 2024
Short summary
Short summary
Our study in eastern Siberia investigated how fires affect permafrost thaw depth in larch forests. We found that fire induces deeper thaw, yet this process was mediated by topography and vegetation. By combining field and satellite data, we estimated summer thaw depth across an entire fire scar. This research provides insights into post-fire permafrost dynamics and the use of satellite data for mapping fire-induced permafrost thaw.
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
The Cryosphere, 18, 4671–4686, https://doi.org/10.5194/tc-18-4671-2024, https://doi.org/10.5194/tc-18-4671-2024, 2024
Short summary
Short summary
Computer models, like those used in climate change studies, are written by modellers who have to decide how best to construct the models in order to satisfy the purpose they serve. Using snow modelling as an example, we examine the process behind the decisions to understand what motivates or limits modellers in their decision-making. We find that the context in which research is undertaken is often more crucial than scientific limitations. We argue for more transparency in our research practice.
Xiaoran Zhu, Dong Chen, Maruko Kogure, Elizabeth Hoy, Logan T. Berner, Amy L. Breen, Abhishek Chatterjee, Scott J. Davidson, Gerald V. Frost, Teresa N. Hollingsworth, Go Iwahana, Randi R. Jandt, Anja N. Kade, Tatiana V. Loboda, Matt J. Macander, Michelle Mack, Charles E. Miller, Eric A. Miller, Susan M. Natali, Martha K. Raynolds, Adrian V. Rocha, Shiro Tsuyuzaki, Craig E. Tweedie, Donald A. Walker, Mathew Williams, Xin Xu, Yingtong Zhang, Nancy French, and Scott Goetz
Earth Syst. Sci. Data, 16, 3687–3703, https://doi.org/10.5194/essd-16-3687-2024, https://doi.org/10.5194/essd-16-3687-2024, 2024
Short summary
Short summary
The Arctic tundra is experiencing widespread physical and biological changes, largely in response to warming, yet scientific understanding of tundra ecology and change remains limited due to relatively limited accessibility and studies compared to other terrestrial biomes. To support synthesis research and inform future studies, we created the Synthesized Alaskan Tundra Field Dataset (SATFiD), which brings together field datasets and includes vegetation, active-layer, and fire properties.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Luke D. Schiferl, Clayton Elder, Olli Peltola, Annett Bartsch, Amanda Armstrong, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-84, https://doi.org/10.5194/essd-2024-84, 2024
Preprint under review for ESSD
Short summary
Short summary
We present daily methane fluxes of northern wetlands at 10-km resolution during 2016–2022 (WetCH4) derived from a novel machine-learning framework with improved accuracy. We estimated an average annual CH4 emissions of 20.8 ±2.1 Tg CH4 yr-1. Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variations coming from West Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Carolina Voigt, Nick Rutter, Paul Mann, Jean-Daniel Sylvain, and Alexandre Roy
Biogeosciences, 20, 5087–5108, https://doi.org/10.5194/bg-20-5087-2023, https://doi.org/10.5194/bg-20-5087-2023, 2023
Short summary
Short summary
We present an analysis of soil CO2 emissions in boreal and tundra regions during the non-growing season. We show that when the soil is completely frozen, soil temperature is the main control on CO2 emissions. When the soil is around the freezing point, with a mix of liquid water and ice, the liquid water content is the main control on CO2 emissions. This study highlights that the vegetation–snow–soil interactions must be considered to understand soil CO2 emissions during the non-growing season.
Konstantin Muzalevskiy, Zdenek Ruzicka, Alexandre Roy, Michael Loranty, and Alexander Vasiliev
The Cryosphere, 17, 4155–4164, https://doi.org/10.5194/tc-17-4155-2023, https://doi.org/10.5194/tc-17-4155-2023, 2023
Short summary
Short summary
A new all-weather method for determining the frozen/thawed (FT) state of soils in the Arctic region based on satellite data was proposed. The method is based on multifrequency measurement of brightness temperatures by the SMAP and GCOM-W1/AMSR2 satellites. The created method was tested at sites in Canada, Finland, Russia, and the USA, based on climatic weather station data. The proposed method identifies the FT state of Arctic soils with better accuracy than existing methods.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Jennifer L. Baltzer, Christophe Kinnard, and Alexandre Roy
Biogeosciences, 20, 2941–2970, https://doi.org/10.5194/bg-20-2941-2023, https://doi.org/10.5194/bg-20-2941-2023, 2023
Short summary
Short summary
This review supports the integration of microwave spaceborne information into carbon cycle science for Arctic–boreal regions. The microwave data record spans multiple decades with frequent global observations of soil moisture and temperature, surface freeze–thaw cycles, vegetation water storage, snowpack properties, and land cover. This record holds substantial unexploited potential to better understand carbon cycle processes.
Bo Qu, Alexandre Roy, Joe R. Melton, Jennifer L. Baltzer, Youngryel Ryu, Matteo Detto, and Oliver Sonnentag
EGUsphere, https://doi.org/10.5194/egusphere-2023-1167, https://doi.org/10.5194/egusphere-2023-1167, 2023
Preprint archived
Short summary
Short summary
Accurately simulating photosynthesis and evapotranspiration challenges terrestrial biosphere models across North America’s boreal biome, in part due to uncertain representation of the maximum rate of photosynthetic carboxylation (Vcmax). This study used forest stand scale observations in an optimization framework to improve Vcmax values for representative vegetation types. Several stand characteristics well explained spatial Vcmax variability and were useful to improve boreal forest modelling.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Hould Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Phillip Marsh, Joshua King, and Julia Boike
The Cryosphere, 16, 4201–4222, https://doi.org/10.5194/tc-16-4201-2022, https://doi.org/10.5194/tc-16-4201-2022, 2022
Short summary
Short summary
Measurements of the properties of the snow and soil were compared to simulations of the Community Land Model to see how well the model represents snow insulation. Simulations underestimated snow thermal conductivity and wintertime soil temperatures. We test two approaches to reduce the transfer of heat through the snowpack and bring simulated soil temperatures closer to measurements, with an alternative parameterisation of snow thermal conductivity being more appropriate.
Katherine E. O. Todd-Brown, Rose Z. Abramoff, Jeffrey Beem-Miller, Hava K. Blair, Stevan Earl, Kristen J. Frederick, Daniel R. Fuka, Mario Guevara Santamaria, Jennifer W. Harden, Katherine Heckman, Lillian J. Heran, James R. Holmquist, Alison M. Hoyt, David H. Klinges, David S. LeBauer, Avni Malhotra, Shelby C. McClelland, Lucas E. Nave, Katherine S. Rocci, Sean M. Schaeffer, Shane Stoner, Natasja van Gestel, Sophie F. von Fromm, and Marisa L. Younger
Biogeosciences, 19, 3505–3522, https://doi.org/10.5194/bg-19-3505-2022, https://doi.org/10.5194/bg-19-3505-2022, 2022
Short summary
Short summary
Research data are becoming increasingly available online with tantalizing possibilities for reanalysis. However harmonizing data from different sources remains challenging. Using the soils community as an example, we walked through the various strategies that researchers currently use to integrate datasets for reanalysis. We find that manual data transcription is still extremely common and that there is a critical need for community-supported informatics tools like vocabularies and ontologies.
Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, and Yiqi Luo
Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, https://doi.org/10.5194/bg-19-2245-2022, 2022
Short summary
Short summary
The relative ratio of wetland methane (CH4) emission pathways determines how much CH4 is oxidized before leaving the soil. We found an ebullition modeling approach that has a better performance in deep layer pore water CH4 concentration. We suggest using this approach in land surface models to accurately represent CH4 emission dynamics and response to climate change. Our results also highlight that both CH4 flux and belowground concentration data are important to constrain model parameters.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Arial J. Shogren, Jay P. Zarnetske, Benjamin W. Abbott, Samuel Bratsman, Brian Brown, Michael P. Carey, Randy Fulweber, Heather E. Greaves, Emma Haines, Frances Iannucci, Joshua C. Koch, Alexander Medvedeff, Jonathan A. O'Donnell, Leika Patch, Brett A. Poulin, Tanner J. Williamson, and William B. Bowden
Earth Syst. Sci. Data, 14, 95–116, https://doi.org/10.5194/essd-14-95-2022, https://doi.org/10.5194/essd-14-95-2022, 2022
Short summary
Short summary
Rapidly sampling multiple points in an entire river network provides a high-resolution snapshot in time that can reveal where nutrients and carbon are being taken up and released. Here, we describe two such datasets of river network chemistry in six Arctic watersheds in northern Alaska. We describe how these repeated snapshots can be used as an indicator of ecosystem response to climate change and to improve predictions of future release of carbon, nutrient, and other solutes.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
Torben Windirsch, Guido Grosse, Mathias Ulrich, Bruce C. Forbes, Mathias Göckede, Juliane Wolter, Marc Macias-Fauria, Johan Olofsson, Nikita Zimov, and Jens Strauss
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-227, https://doi.org/10.5194/bg-2021-227, 2021
Revised manuscript not accepted
Short summary
Short summary
With global warming, permafrost thaw and associated carbon release are of increasing importance. We examined how large herbivorous animals affect Arctic landscapes and how they might contribute to reduction of these emissions. We show that over a short timespan of roughly 25 years, these animals have already changed the vegetation and landscape. On pastures in a permafrost area in Siberia we found smaller thaw depth and higher carbon content than in surrounding non-pasture areas.
Thomas A. Douglas, Christopher A. Hiemstra, John E. Anderson, Robyn A. Barbato, Kevin L. Bjella, Elias J. Deeb, Arthur B. Gelvin, Patricia E. Nelsen, Stephen D. Newman, Stephanie P. Saari, and Anna M. Wagner
The Cryosphere, 15, 3555–3575, https://doi.org/10.5194/tc-15-3555-2021, https://doi.org/10.5194/tc-15-3555-2021, 2021
Short summary
Short summary
Permafrost is actively degrading across high latitudes due to climate warming. We combined thousands of end-of-summer active layer measurements, permafrost temperatures, geophysical surveys, deep borehole drilling, and repeat airborne lidar to quantify permafrost warming and thawing at sites across central Alaska. We calculate the mass of permafrost soil carbon potentially exposed to thaw over the past 7 years (0.44 Pg) is similar to the yearly carbon dioxide emissions of Australia.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Christopher R. Taylor, Victoria Janes-Bassett, Gareth K. Phoenix, Ben Keane, Iain P. Hartley, and Jessica A. C. Davies
Biogeosciences, 18, 4021–4037, https://doi.org/10.5194/bg-18-4021-2021, https://doi.org/10.5194/bg-18-4021-2021, 2021
Short summary
Short summary
We used experimental data to model two phosphorus-limited grasslands and investigated their response to nitrogen (N) deposition. Greater uptake of organic P facilitated a positive response to N deposition, stimulating growth and soil carbon storage. Where organic P access was less, N deposition exacerbated P demand and reduced plant C input to the soil. This caused more C to be released into the atmosphere than is taken in, reducing the climate-mitigation capacity of the modelled grassland.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Erin Trochim, Lei Cai, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere, 15, 2451–2471, https://doi.org/10.5194/tc-15-2451-2021, https://doi.org/10.5194/tc-15-2451-2021, 2021
Short summary
Short summary
Climate warming puts infrastructure built on permafrost at risk of failure. There is a growing need for appropriate model-based risk assessments. Here we present a modelling study and show an exemplary case of how a gravel road in a cold permafrost environment in Alaska might suffer from degrading permafrost under a scenario of intense climate warming. We use this case study to discuss the broader-scale applicability of our model for simulating future Arctic infrastructure failure.
William R. Wieder, Derek Pierson, Stevan Earl, Kate Lajtha, Sara G. Baer, Ford Ballantyne, Asmeret Asefaw Berhe, Sharon A. Billings, Laurel M. Brigham, Stephany S. Chacon, Jennifer Fraterrigo, Serita D. Frey, Katerina Georgiou, Marie-Anne de Graaff, A. Stuart Grandy, Melannie D. Hartman, Sarah E. Hobbie, Chris Johnson, Jason Kaye, Emily Kyker-Snowman, Marcy E. Litvak, Michelle C. Mack, Avni Malhotra, Jessica A. M. Moore, Knute Nadelhoffer, Craig Rasmussen, Whendee L. Silver, Benjamin N. Sulman, Xanthe Walker, and Samantha Weintraub
Earth Syst. Sci. Data, 13, 1843–1854, https://doi.org/10.5194/essd-13-1843-2021, https://doi.org/10.5194/essd-13-1843-2021, 2021
Short summary
Short summary
Data collected from research networks present opportunities to test theories and develop models about factors responsible for the long-term persistence and vulnerability of soil organic matter (SOM). Here we present the SOils DAta Harmonization database (SoDaH), a flexible database designed to harmonize diverse SOM datasets from multiple research networks.
Yonghong Yi, John S. Kimball, Jennifer D. Watts, Susan M. Natali, Donatella Zona, Junjie Liu, Masahito Ueyama, Hideki Kobayashi, Walter Oechel, and Charles E. Miller
Biogeosciences, 17, 5861–5882, https://doi.org/10.5194/bg-17-5861-2020, https://doi.org/10.5194/bg-17-5861-2020, 2020
Short summary
Short summary
We developed a 1 km satellite-data-driven permafrost carbon model to evaluate soil respiration sensitivity to recent snow cover changes in Alaska. Results show earlier snowmelt enhances growing-season soil respiration and reduces annual carbon uptake, while early cold-season soil respiration is linked to the number of snow-free days after the land surface freezes. Our results also show nonnegligible influences of subgrid variability in surface conditions on model-simulated CO2 seasonal cycles.
Hang Wen, Julia Perdrial, Benjamin W. Abbott, Susana Bernal, Rémi Dupas, Sarah E. Godsey, Adrian Harpold, Donna Rizzo, Kristen Underwood, Thomas Adler, Gary Sterle, and Li Li
Hydrol. Earth Syst. Sci., 24, 945–966, https://doi.org/10.5194/hess-24-945-2020, https://doi.org/10.5194/hess-24-945-2020, 2020
Short summary
Short summary
Lateral carbon fluxes from terrestrial to aquatic systems remain central uncertainties in determining ecosystem carbon balance. This work explores how temperature and hydrology control production and export of dissolved organic carbon (DOC) at the catchment scale. Results illustrate the asynchrony of DOC production, controlled by temperature, and export, governed by flow paths; concentration–discharge relationships are determined by the relative contribution of shallow versus groundwater flow.
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
Andrew M. Cunliffe, George Tanski, Boris Radosavljevic, William F. Palmer, Torsten Sachs, Hugues Lantuit, Jeffrey T. Kerby, and Isla H. Myers-Smith
The Cryosphere, 13, 1513–1528, https://doi.org/10.5194/tc-13-1513-2019, https://doi.org/10.5194/tc-13-1513-2019, 2019
Short summary
Short summary
Episodic changes of permafrost coastlines are poorly understood in the Arctic. By using drones, satellite images, and historic photos we surveyed a permafrost coastline on Qikiqtaruk – Herschel Island. We observed short-term coastline retreat of 14.5 m per year (2016–2017), exceeding long-term average rates of 2.2 m per year (1952–2017). Our study highlights the value of these tools to assess understudied episodic changes of eroding permafrost coastlines in the context of a warming Arctic.
Kang Wang, Elchin Jafarov, Irina Overeem, Vladimir Romanovsky, Kevin Schaefer, Gary Clow, Frank Urban, William Cable, Mark Piper, Christopher Schwalm, Tingjun Zhang, Alexander Kholodov, Pamela Sousanes, Michael Loso, and Kenneth Hill
Earth Syst. Sci. Data, 10, 2311–2328, https://doi.org/10.5194/essd-10-2311-2018, https://doi.org/10.5194/essd-10-2311-2018, 2018
Short summary
Short summary
Ground thermal and moisture data are important indicators of the rapid permafrost changes in the Arctic. To better understand the changes, we need a comprehensive dataset across various sites. We synthesize permafrost-related data in the state of Alaska. It should be a valuable permafrost dataset that is worth maintaining in the future. On a wider level, it also provides a prototype of basic data collection and management for permafrost regions in general.
Gustaf Granath, Håkan Rydin, Jennifer L. Baltzer, Fia Bengtsson, Nicholas Boncek, Luca Bragazza, Zhao-Jun Bu, Simon J. M. Caporn, Ellen Dorrepaal, Olga Galanina, Mariusz Gałka, Anna Ganeva, David P. Gillikin, Irina Goia, Nadezhda Goncharova, Michal Hájek, Akira Haraguchi, Lorna I. Harris, Elyn Humphreys, Martin Jiroušek, Katarzyna Kajukało, Edgar Karofeld, Natalia G. Koronatova, Natalia P. Kosykh, Mariusz Lamentowicz, Elena Lapshina, Juul Limpens, Maiju Linkosalmi, Jin-Ze Ma, Marguerite Mauritz, Tariq M. Munir, Susan M. Natali, Rayna Natcheva, Maria Noskova, Richard J. Payne, Kyle Pilkington, Sean Robinson, Bjorn J. M. Robroek, Line Rochefort, David Singer, Hans K. Stenøien, Eeva-Stiina Tuittila, Kai Vellak, Anouk Verheyden, James Michael Waddington, and Steven K. Rice
Biogeosciences, 15, 5189–5202, https://doi.org/10.5194/bg-15-5189-2018, https://doi.org/10.5194/bg-15-5189-2018, 2018
Short summary
Short summary
Peat constitutes a long-term archive for climate reconstruction by using the isotopic composition of carbon and oxygen. We analysed isotopes in two peat moss species across North America and Eurasia. Peat (moss tissue) isotope composition was predicted by soil moisture and isotopic composition of the rainwater but differed between species. Our results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.
Alex Mavrovic, Alexandre Roy, Alain Royer, Bilal Filali, François Boone, Christoforos Pappas, and Oliver Sonnentag
Geosci. Instrum. Method. Data Syst., 7, 195–208, https://doi.org/10.5194/gi-7-195-2018, https://doi.org/10.5194/gi-7-195-2018, 2018
Short summary
Short summary
To improve microwave satellite and airborne observation products in forest environments, a precise and reliable estimation of the permittivity of trees is required. We developed a probe suitable to measure the permittivity of tree trunks at L band in the field. The system is easily transportable in the field, low energy consuming, operational at low temperatures and weatherproof. The permittivity of seven tree species in both frozen and thawed states was measured, showing important contrast.
Edmund M. Ryan, Kiona Ogle, Heather Kropp, Kimberly E. Samuels-Crow, Yolima Carrillo, and Elise Pendall
Geosci. Model Dev., 11, 1909–1928, https://doi.org/10.5194/gmd-11-1909-2018, https://doi.org/10.5194/gmd-11-1909-2018, 2018
Short summary
Short summary
Our work evaluated the appropriateness of the common steady-state (SS) assumption, for example when partitioning soil respiration of CO2 into recently photosynthesized carbon (C) and older C. Using a new model of soil CO2 production and transport we found that the SS assumption is valid most of the time, especially in sand/silt soils. Non-SS conditions occurred mainly for the few days following large rain events in all soil types, but the non-SS period was prolonged and magnified in clay soils.
Elizabeth E. Webb, Kathryn Heard, Susan M. Natali, Andrew G. Bunn, Heather D. Alexander, Logan T. Berner, Alexander Kholodov, Michael M. Loranty, John D. Schade, Valentin Spektor, and Nikita Zimov
Biogeosciences, 14, 4279–4294, https://doi.org/10.5194/bg-14-4279-2017, https://doi.org/10.5194/bg-14-4279-2017, 2017
Short summary
Short summary
Permafrost soils store massive amounts of C, yet estimates of soil C storage in this region are highly uncertain, primarily due to undersampling at all spatial scales; circumpolar soil C estimates lack sufficient continental spatial diversity, regional intensity, and replication at the field-site level. We aim to reduce the uncertainty of regional C estimates by providing a comprehensive assessment of vegetation, active-layer, and permafrost C stocks in a watershed in northeast Siberia, Russia.
Sina Muster, Kurt Roth, Moritz Langer, Stephan Lange, Fabio Cresto Aleina, Annett Bartsch, Anne Morgenstern, Guido Grosse, Benjamin Jones, A. Britta K. Sannel, Ylva Sjöberg, Frank Günther, Christian Andresen, Alexandra Veremeeva, Prajna R. Lindgren, Frédéric Bouchard, Mark J. Lara, Daniel Fortier, Simon Charbonneau, Tarmo A. Virtanen, Gustaf Hugelius, Juri Palmtag, Matthias B. Siewert, William J. Riley, Charles D. Koven, and Julia Boike
Earth Syst. Sci. Data, 9, 317–348, https://doi.org/10.5194/essd-9-317-2017, https://doi.org/10.5194/essd-9-317-2017, 2017
Short summary
Short summary
Waterbodies are abundant in Arctic permafrost lowlands. Most waterbodies are ponds with a surface area smaller than 100 x 100 m. The Permafrost Region Pond and Lake Database (PeRL) for the first time maps ponds as small as 10 x 10 m. PeRL maps can be used to document changes both by comparing them to historical and future imagery. The distribution of waterbodies in the Arctic is important to know in order to manage resources in the Arctic and to improve climate predictions in the Arctic.
Wei Li, Howard E. Epstein, Zhongming Wen, Jie Zhao, Jingwei Jin, Guanghua Jing, Jimin Cheng, and Guozhen Du
Solid Earth, 8, 137–147, https://doi.org/10.5194/se-8-137-2017, https://doi.org/10.5194/se-8-137-2017, 2017
Short summary
Short summary
This is an interesting piece of work and makes a nice contribution to the knowledge on how aboveground vegetation can control belowground soil properties through functional traits and functional diversity. Functional traits are the center of recent attempts to unify key ecological theories on species coexistence and assembly in communities. The results presented are valuable for understanding the relationship between species traits, functional diversity, and soil properties.
Benjamin M. Jones, Carson A. Baughman, Vladimir E. Romanovsky, Andrew D. Parsekian, Esther L. Babcock, Eva Stephani, Miriam C. Jones, Guido Grosse, and Edward E. Berg
The Cryosphere, 10, 2673–2692, https://doi.org/10.5194/tc-10-2673-2016, https://doi.org/10.5194/tc-10-2673-2016, 2016
Short summary
Short summary
We combined field data collection with remote sensing data to document the presence and rapid degradation of permafrost in south-central Alaska during 1950–present. Ground temperature measurements confirmed permafrost presence in the region, but remotely sensed images showed that permafrost plateau extent decreased by 60 % since 1950. Better understanding these vulnerable permafrost deposits is important for predicting future permafrost extent across all permafrost regions that are warming.
Lei Cai, Vladimir A. Alexeev, Christopher D. Arp, Benjamin M. Jones, Anna Liljedahl, and Anne Gädeke
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2016-31, https://doi.org/10.5194/essd-2016-31, 2016
Preprint withdrawn
Short summary
Short summary
This study produced a high-resolution dynamical downscaling data set for the Alaskan North Slope and surrounding areas. It helps to resolve the problem of the sparse observation over this region, where routinely and accurately measuring climatic variables is extremely difficult. This data set boosts up multiple research projects that explore the various climatic impacts over the Alaskan North Slope of the past and the future.
Lei Cai, Vladimir A. Alexeev, Christopher D. Arp, Benjamin M. Jones, Anna Liljedahl, and Anne Gädeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-87, https://doi.org/10.5194/tc-2016-87, 2016
Preprint withdrawn
Short summary
Short summary
This paper introduces the development process of a data set that specifically made for climatic impacts research over the Alaskan North Slope. This data set can offset to some extent the sparseness of observation on spatial and temporal scales, retrieving high-resolution climatic backgrounds that enable various studies in the fields of climatology, hydrology, ecology, etc.
Zahra Thomas, Benjamin W. Abbott, Olivier Troccaz, Jacques Baudry, and Gilles Pinay
Biogeosciences, 13, 1863–1875, https://doi.org/10.5194/bg-13-1863-2016, https://doi.org/10.5194/bg-13-1863-2016, 2016
Short summary
Short summary
Direct human impact on a catchment (fertilizer input, soil disturbance, urbanization) is asymmetrically linked with inherent catchment properties (geology, soil, topography), which together determine catchment vulnerability to human activity. To quantify the influence of physical, hydrologic, and anthropogenic controls on surface water quality, we used a 5-year high-frequency water chemistry data set from three contrasting headwater catchments in western France.
J. E. Vonk, S. E. Tank, P. J. Mann, R. G. M. Spencer, C. C. Treat, R. G. Striegl, B. W. Abbott, and K. P. Wickland
Biogeosciences, 12, 6915–6930, https://doi.org/10.5194/bg-12-6915-2015, https://doi.org/10.5194/bg-12-6915-2015, 2015
Short summary
Short summary
We found that dissolved organic carbon (DOC) in arctic soils and aquatic systems is increasingly degradable with increasing permafrost extent. Also, DOC seems less degradable when moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly bioavailable DOC is lost in headwater streams. We also recommend a standardized DOC incubation protocol to facilitate future comparison on processing and transport of DOC in a changing Arctic.
J. R. Larouche, B. W. Abbott, W. B. Bowden, and J. B. Jones
Biogeosciences, 12, 4221–4233, https://doi.org/10.5194/bg-12-4221-2015, https://doi.org/10.5194/bg-12-4221-2015, 2015
B. W. Abbott, J. B. Jones, S. E. Godsey, J. R. Larouche, and W. B. Bowden
Biogeosciences, 12, 3725–3740, https://doi.org/10.5194/bg-12-3725-2015, https://doi.org/10.5194/bg-12-3725-2015, 2015
Short summary
Short summary
As high latitudes warm, carbon and nitrogen stored in permafrost soil will be vulnerable to erosion and transport to Arctic streams and rivers. We sampled outflow from 83 permafrost collapse features in Alaska. Permafrost collapse caused substantial increases in dissolved organic carbon and inorganic nitrogen but decreased methane concentration by 90%. Upland thermokarst may be a dominant linkage transferring carbon and nutrients from terrestrial to aquatic ecosystems as the Arctic warms.
A. Malhotra and N. T. Roulet
Biogeosciences, 12, 3119–3130, https://doi.org/10.5194/bg-12-3119-2015, https://doi.org/10.5194/bg-12-3119-2015, 2015
Short summary
Short summary
We found that the dominant abiotic and biotic correlates of CO2 and CH4 fluxes change in strength and interactions as permafrost thaw progresses in a sub-arctic peatland. Our results emphasize the importance of incorporating transitional stages of thaw in landscape-level C budgets and highlight that end-member thaw stages do not adequately describe the variability in structure-function relationships present along a thaw gradient.
C. D. Arp, M. S. Whitman, B. M. Jones, G. Grosse, B. V. Gaglioti, and K. C. Heim
Biogeosciences, 12, 29–47, https://doi.org/10.5194/bg-12-29-2015, https://doi.org/10.5194/bg-12-29-2015, 2015
Short summary
Short summary
Beaded streams have deep elliptical pools connected by narrow runs that we show are common landforms in the continuous permafrost zone. These fluvial systems often initiate from lakes and occur predictably in headwater portions of moderately sloping watersheds. Snow capture along stream courses reduces ice thickness allowing thawed sediment to persist under most pools. Interpool thermal variability and hydrologic regimes provide important aquatic habitat and connectivity in Arctic landscapes.
H. N. Mbufong, M. Lund, M. Aurela, T. R. Christensen, W. Eugster, T. Friborg, B. U. Hansen, E. R. Humphreys, M. Jackowicz-Korczynski, L. Kutzbach, P. M. Lafleur, W. C. Oechel, F. J. W. Parmentier, D. P. Rasse, A. V. Rocha, T. Sachs, M. K. van der Molen, and M. P. Tamstorf
Biogeosciences, 11, 4897–4912, https://doi.org/10.5194/bg-11-4897-2014, https://doi.org/10.5194/bg-11-4897-2014, 2014
L. Liu, K. Schaefer, A. Gusmeroli, G. Grosse, B. M. Jones, T. Zhang, A. D. Parsekian, and H. A. Zebker
The Cryosphere, 8, 815–826, https://doi.org/10.5194/tc-8-815-2014, https://doi.org/10.5194/tc-8-815-2014, 2014
A. Steffen, J. Bottenheim, A. Cole, T. A. Douglas, R. Ebinghaus, U. Friess, S. Netcheva, S. Nghiem, H. Sihler, and R. Staebler
Atmos. Chem. Phys., 13, 7007–7021, https://doi.org/10.5194/acp-13-7007-2013, https://doi.org/10.5194/acp-13-7007-2013, 2013
Related subject area
Earth System Science/Response to Global Change: Climate Change
Responses of field-grown maize to different soil types, water regimes, and contrasting vapor pressure deficit
Effect of the 2022 summer drought across forest types in Europe
Effect of terrestrial nutrient limitation on the estimation of the remaining carbon budget
Projected changes in forest fire season, the number of fires, and burnt area in Fennoscandia by 2100
New ozone–nitrogen model shows early senescence onset is the primary cause of ozone-induced reduction in grain quality of wheat
Ocean alkalinity enhancement approaches and the predictability of runaway precipitation processes: results of an experimental study to determine critical alkalinity ranges for safe and sustainable application scenarios
Variations of polyphenols and carbohydrates of Emiliania huxleyi grown under simulated ocean acidification conditions
Modelling the nutritional implications of ozone on wheat protein and amino acids
Global and regional hydrological impacts of global forest expansion
The biological and preformed carbon pumps in perpetually slower and warmer oceans
The Effectiveness of Agricultural Carbon Dioxide Removal using the University of Victoria Earth System Climate Model
Toward more robust NPP projections in the North Atlantic Ocean
The Southern Ocean as the climate's freight train – driving ongoing global warming under zero-emission scenarios with ACCESS-ESM1.5
Review and syntheses: Ocean alkalinity enhancement and carbon dioxide removal through coastal enhanced silicate weathering with olivine
Mapping the future afforestation distribution of China constrained by a national afforestation plan and climate change
Southern Ocean phytoplankton under climate change: a shifting balance of bottom-up and top-down control
Coherency and time lag analyses between MODIS vegetation indices and climate across forests and grasslands in the European temperate zone
Direct foliar phosphorus uptake from wildfire ash
Unifying framework for assessing sensitivity for marine calcifiers to ocean alkalinity enhancement identifies winners, losers and biological thresholds – importance of caution with precautionary principle
The effect of forest cover changes on the regional climate conditions in Europe during the period 1986–2015
Carbon cycle feedbacks in an idealized simulation and a scenario simulation of negative emissions in CMIP6 Earth system models
Divergent responses of evergreen needle-leaf forests in Europe to the 2020 warm winter
Spatiotemporal heterogeneity in the increase in ocean acidity extremes in the northeastern Pacific
Particle fluxes by subtropical pelagic communities under ocean alkalinity enhancement
Anthropogenic climate change drives non-stationary phytoplankton internal variability
The response of wildfire regimes to Last Glacial Maximum carbon dioxide and climate
Simulated responses of soil carbon to climate change in CMIP6 Earth system models: the role of false priming
Alkalinity biases in CMIP6 Earth system models and implications for simulated CO2 drawdown via artificial alkalinity enhancement
Experiments of the efficacy of tree ring blue intensity as a climate proxy in central and western China
Burned area and carbon emissions across northwestern boreal North America from 2001–2019
Quantifying land carbon cycle feedbacks under negative CO2 emissions
The potential of an increased deciduous forest fraction to mitigate the effects of heat extremes in Europe
Ideas and perspectives: Alleviation of functional limitations by soil organisms is key to climate feedbacks from arctic soils
A comparison of the climate and carbon cycle effects of carbon removal by afforestation and an equivalent reduction in fossil fuel emissions
Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches – consequences for durability of CO2 storage
Ideas and perspectives: Land–ocean connectivity through groundwater
Bioclimatic change as a function of global warming from CMIP6 climate projections
Reconciling different approaches to quantifying land surface temperature impacts of afforestation using satellite observations
Drivers of intermodel uncertainty in land carbon sink projections
Reviews and syntheses: A framework to observe, understand and project ecosystem response to environmental change in the East Antarctic Southern Ocean
Acidification impacts and acclimation potential of Caribbean benthic foraminifera assemblages in naturally discharging low-pH water
Monitoring vegetation condition using microwave remote sensing: the standardized vegetation optical depth index (SVODI)
Evaluation of soil carbon simulation in CMIP6 Earth system models
Diazotrophy as a key driver of the response of marine net primary productivity to climate change
Impact of negative and positive CO2 emissions on global warming metrics using an ensemble of Earth system model simulations
Acidification, deoxygenation, and nutrient and biomass declines in a warming Mediterranean Sea
Ocean alkalinity enhancement – avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution
Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models
Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil
The European forest carbon budget under future climate conditions and current management practices
Thuy Huu Nguyen, Thomas Gaiser, Jan Vanderborght, Andrea Schnepf, Felix Bauer, Anja Klotzsche, Lena Lärm, Hubert Hüging, and Frank Ewert
Biogeosciences, 21, 5495–5515, https://doi.org/10.5194/bg-21-5495-2024, https://doi.org/10.5194/bg-21-5495-2024, 2024
Short summary
Short summary
Leaf water potential was at certain thresholds, depending on soil type, water treatment, and weather conditions. In rainfed plots, the lower water availability in the stony soil resulted in fewer roots with a higher root tissue conductance than the silty soil. In the silty soil, higher stress in the rainfed soil led to more roots with a lower root tissue conductance than in the irrigated plot. Crop responses to water stress can be opposite, depending on soil water conditions that are compared.
Mana Gharun, Ankit Shekhar, Jingfeng Xiao, Xing Li, and Nina Buchmann
Biogeosciences, 21, 5481–5494, https://doi.org/10.5194/bg-21-5481-2024, https://doi.org/10.5194/bg-21-5481-2024, 2024
Short summary
Short summary
In 2022, Europe's forests faced unprecedented dry conditions. Our study aimed to understand how different forest types respond to extreme drought. Using meteorological data and satellite imagery, we compared 2022 with two previous extreme years, 2003 and 2018. Despite less severe drought in 2022, forests showed a 30 % greater decline in photosynthesis compared to 2018 and 60 % more than 2003. This suggests an alarming level of vulnerability of forests across Europe to more frequent droughts.
Makcim L. De Sisto and Andrew H. MacDougall
Biogeosciences, 21, 4853–4873, https://doi.org/10.5194/bg-21-4853-2024, https://doi.org/10.5194/bg-21-4853-2024, 2024
Short summary
Short summary
The remaining carbon budget (RCB) represents the allowable future CO2 emissions before a temperature target is reached. Understanding the uncertainty in the RCB is critical for effective climate regulation and policy-making. One major source of uncertainty is the representation of the carbon cycle in Earth system models. We assessed how nutrient limitation affects the estimation of the RCB. We found a reduction in the estimated RCB when nutrient limitation is taken into account.
Outi Kinnunen, Leif Backman, Juha Aalto, Tuula Aalto, and Tiina Markkanen
Biogeosciences, 21, 4739–4763, https://doi.org/10.5194/bg-21-4739-2024, https://doi.org/10.5194/bg-21-4739-2024, 2024
Short summary
Short summary
Climate change is expected to increase the risk of forest fires. Ecosystem process model simulations are used to project changes in fire occurrence in Fennoscandia under six climate projections. The findings suggest a longer fire season, more fires, and an increase in burnt area towards the end of the century.
Jo Cook, Clare Brewster, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, Håkan Pleijel, and Lisa Emberson
Biogeosciences, 21, 4809–4835, https://doi.org/10.5194/bg-21-4809-2024, https://doi.org/10.5194/bg-21-4809-2024, 2024
Short summary
Short summary
At ground level, the air pollutant ozone (O3) damages wheat yield and quality. We modified the DO3SE-Crop model to simulate O3 effects on wheat quality and identified onset of leaf death as the key process affecting wheat quality upon O3 exposure. This aligns with expectations, as the onset of leaf death aids nutrient transfer from leaves to grains. Breeders should prioritize wheat varieties resistant to protein loss from delayed leaf death, to maintain yield and quality under O3 exposure.
Niels Suitner, Giulia Faucher, Carl Lim, Julieta Schneider, Charly A. Moras, Ulf Riebesell, and Jens Hartmann
Biogeosciences, 21, 4587–4604, https://doi.org/10.5194/bg-21-4587-2024, https://doi.org/10.5194/bg-21-4587-2024, 2024
Short summary
Short summary
Recent studies described the precipitation of carbonates as a result of alkalinity enhancement in seawater, which could adversely affect the carbon sequestration potential of ocean alkalinity enhancement (OAE) approaches. By conducting experiments in natural seawater, this study observed uniform patterns during the triggered runaway carbonate precipitation, which allow the prediction of safe and efficient local application levels of OAE scenarios.
Milagros Rico, Paula Santiago-Díaz, Guillermo Samperio-Ramos, Melchor González-Dávila, and Juana Magdalena Santana-Casiano
Biogeosciences, 21, 4381–4394, https://doi.org/10.5194/bg-21-4381-2024, https://doi.org/10.5194/bg-21-4381-2024, 2024
Short summary
Short summary
Changes in pH generate stress conditions, either because high pH drastically decreases the availability of trace metals such as Fe(II), a restrictive element for primary productivity, or because reactive oxygen species are increased with low pH. The metabolic functions and composition of microalgae can be affected. These modifications in metabolites are potential factors leading to readjustments in phytoplankton community structure and diversity and possible alteration in marine ecosystems.
Jo Cook, Durgesh Singh Yadav, Felicity Hayes, Nathan Booth, Sam Bland, Pritha Pande, Samarthia Thankappan, and Lisa Emberson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2968, https://doi.org/10.5194/egusphere-2024-2968, 2024
Short summary
Short summary
Ozone (O3) pollution reduces wheat yields and quality in India, affecting amino acids essential for nutrition, like lysine and methionine. Here, we improve the DO3SE-CropN model to simulate wheat’s protective processes against O3 and their impact on protein and amino acid concentrations. While the model captures O3-induced yield losses, it underestimates amino acid reductions. Further research is needed to refine the model, enabling future risk assessments of O3's impact on yields and nutrition.
James A. King, James Weber, Peter Lawrence, Stephanie Roe, Abigail L. S. Swann, and Maria Val Martin
Biogeosciences, 21, 3883–3902, https://doi.org/10.5194/bg-21-3883-2024, https://doi.org/10.5194/bg-21-3883-2024, 2024
Short summary
Short summary
Tackling climate change by adding, restoring, or enhancing forests is gaining global support. However, it is important to investigate the broader implications of this. We used a computer model of the Earth to investigate a future where tree cover expanded as much as possible. We found that some tropical areas were cooler because of trees pumping water into the atmosphere, but this also led to soil and rivers drying. This is important because it might be harder to maintain forests as a result.
Benoît Pasquier, Mark Holzer, and Matthew A. Chamberlain
Biogeosciences, 21, 3373–3400, https://doi.org/10.5194/bg-21-3373-2024, https://doi.org/10.5194/bg-21-3373-2024, 2024
Short summary
Short summary
How do perpetually slower and warmer oceans sequester carbon? Compared to the preindustrial state, we find that biological productivity declines despite warming-stimulated growth because of a lower nutrient supply from depth. This throttles the biological carbon pump, which still sequesters more carbon because it takes longer to return to the surface. The deep ocean is isolated from the surface, allowing more carbon from the atmosphere to pass through the ocean without contributing to biology.
Rebecca Chloe Evans and H. Damon Matthews
EGUsphere, https://doi.org/10.5194/egusphere-2024-1810, https://doi.org/10.5194/egusphere-2024-1810, 2024
Short summary
Short summary
To mitigate our impact on the climate, research suggests that we will need to both drastically reduce emissions and perform carbon dioxide removal (CDR). We simulated future climates under three emissions scenarios, in which we removed some carbon from the air and put it into agricultural soil at varying rates. We found that agricultural CDR is much more effective at reducing global temperatures if done in a low emissions scenario and at a high rate, and it becomes less effective with time.
Stéphane Doléac, Marina Lévy, Roy El Hourany, and Laurent Bopp
EGUsphere, https://doi.org/10.5194/egusphere-2024-1820, https://doi.org/10.5194/egusphere-2024-1820, 2024
Short summary
Short summary
Phytoplankton net primary production (NPP) is influenced by many processes, and their representation varies across Earth-system models. This leads to differing projections for NPP's future under climate change, especially in the North Atlantic. To address this, we identified and assessed the processes controlling NPP in each model. This assessment helped us select the most reliable models, significantly improving NPP projections in the region.
Matthew A. Chamberlain, Tilo Ziehn, and Rachel M. Law
Biogeosciences, 21, 3053–3073, https://doi.org/10.5194/bg-21-3053-2024, https://doi.org/10.5194/bg-21-3053-2024, 2024
Short summary
Short summary
This paper explores the climate processes that drive increasing global average temperatures in zero-emission commitment (ZEC) simulations despite decreasing atmospheric CO2. ACCESS-ESM1.5 shows the Southern Ocean to continue to warm locally in all ZEC simulations. In ZEC simulations that start after the emission of more than 1000 Pg of carbon, the influence of the Southern Ocean increases the global temperature.
Luna J. J. Geerts, Astrid Hylén, and Filip J. R. Meysman
EGUsphere, https://doi.org/10.5194/egusphere-2024-1824, https://doi.org/10.5194/egusphere-2024-1824, 2024
Short summary
Short summary
Coastal enhanced silicate weathering (CESW) with olivine is a promising method for capturing CO2 from the atmosphere, yet studies in field conditions are lacking. We bridge the gap between theoretical studies and the real-world environment by estimating the predictability of CESW parameters and identifying aspects to consider when applying CESW. A major source of uncertainty is the lack of experimental studies with sediment, which can heavily influence the speed and efficiency of CO2 drawdown.
Shuaifeng Song, Xuezhen Zhang, and Xiaodong Yan
Biogeosciences, 21, 2839–2858, https://doi.org/10.5194/bg-21-2839-2024, https://doi.org/10.5194/bg-21-2839-2024, 2024
Short summary
Short summary
We mapped the distribution of future potential afforestation regions based on future high-resolution climate data and climate–vegetation models. After considering the national afforestation policy and climate change, we found that the future potential afforestation region was mainly located around and to the east of the Hu Line. This study provides a dataset for exploring the effects of future afforestation.
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024, https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Short summary
Phytoplankton play a crucial role in marine ecosystems. However, climate change's impact on phytoplankton biomass remains uncertain, particularly in the Southern Ocean. In this region, phytoplankton biomass within the water column is likely to remain stable in response to climate change, as supported by models. This stability arises from a shallower mixed layer, favoring phytoplankton growth but also increasing zooplankton grazing due to phytoplankton concentration near the surface.
Kinga Kulesza and Agata Hościło
Biogeosciences, 21, 2509–2527, https://doi.org/10.5194/bg-21-2509-2024, https://doi.org/10.5194/bg-21-2509-2024, 2024
Short summary
Short summary
We present coherence and time lags in spectral response of three vegetation types in the European temperate zone to the influencing meteorological factors and teleconnection indices for the period 2002–2022. Vegetation condition in broadleaved forest, coniferous forest and pastures was measured with MODIS NDVI and EVI, and the coherence between NDVI and EVI and meteorological elements was described using the methods of wavelet coherence and Pearson’s linear correlation with time lag.
Anton Lokshin, Daniel Palchan, and Avner Gross
Biogeosciences, 21, 2355–2365, https://doi.org/10.5194/bg-21-2355-2024, https://doi.org/10.5194/bg-21-2355-2024, 2024
Short summary
Short summary
Ash particles from wildfires are rich in phosphorus (P), a crucial nutrient that constitutes a limiting factor in 43 % of the world's land ecosystems. We hypothesize that wildfire ash could directly contribute to plant nutrition. We find that fire ash application boosts the growth of plants, but the only way plants can uptake P from fire ash is through the foliar uptake pathway and not through the roots. The fertilization impact of fire ash was also maintained under elevated levels of CO2.
Nina Bednaršek, Greg Pelletier, Hanna van de Mortel, Marisol García-Reyes, Richard Feely, and Andrew Dickson
EGUsphere, https://doi.org/10.5194/egusphere-2024-947, https://doi.org/10.5194/egusphere-2024-947, 2024
Short summary
Short summary
The environmental impacts of ocean alkalinity enhancement (OAE) are unknown. A conceptual framework was developed showing 40 % of species to respond positively, 20 % negatively and 40 % with neutral response upon alkalinity addition. Biological thresholds were found between 10 to 500 µmol/kg NaOH addition, emphasizing lab experiments to be conducted at lower dosages. A precautionary approach is warranted to avoid potential risks.
Marcus Breil, Vanessa K. M. Schneider, and Joaquim G. Pinto
Biogeosciences, 21, 811–824, https://doi.org/10.5194/bg-21-811-2024, https://doi.org/10.5194/bg-21-811-2024, 2024
Short summary
Short summary
The general impact of afforestation on the regional climate conditions in Europe during the period 1986–2015 is investigated. For this purpose, a regional climate model simulation is performed, in which afforestation during this period is considered, and results are compared to a simulation in which this is not the case. Results show that afforestation had discernible impacts on the climate change signal in Europe, which may have mitigated the local warming trend, especially in summer in Europe.
Ali Asaadi, Jörg Schwinger, Hanna Lee, Jerry Tjiputra, Vivek Arora, Roland Séférian, Spencer Liddicoat, Tomohiro Hajima, Yeray Santana-Falcón, and Chris D. Jones
Biogeosciences, 21, 411–435, https://doi.org/10.5194/bg-21-411-2024, https://doi.org/10.5194/bg-21-411-2024, 2024
Short summary
Short summary
Carbon cycle feedback metrics are employed to assess phases of positive and negative CO2 emissions. When emissions become negative, we find that the model disagreement in feedback metrics increases more strongly than expected from the assumption that the uncertainties accumulate linearly with time. The geographical patterns of such metrics over land highlight that differences in response between tropical/subtropical and temperate/boreal ecosystems are a major source of model disagreement.
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2964, https://doi.org/10.5194/egusphere-2023-2964, 2024
Short summary
Short summary
Effect of winter warming on forest CO2 fluxes has rarely been investigated. We tested the effect of the warm winter in 2020 on the forest CO2 fluxes across 14 sites in Europe and found that in colder sites net ecosystem productivity (NEP) declined during the warm winter, while in the warmer sites NEP increased. Warming leads to increased respiration fluxes but if not translated into a direct warming of the soil might not enhance productivity, if the soil within the rooting zone remains frozen.
Flora Desmet, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 20, 5151–5175, https://doi.org/10.5194/bg-20-5151-2023, https://doi.org/10.5194/bg-20-5151-2023, 2023
Short summary
Short summary
Ocean acidity extremes in the upper 250 m depth of the northeastern Pacific rapidly increase with atmospheric CO2 rise, which is worrisome for marine organisms that rapidly experience pH levels outside their local environmental conditions. Presented research shows the spatiotemporal heterogeneity in this increase between regions and depths. In particular, the subsurface increase is substantially slowed down by the presence of mesoscale eddies, often not resolved in Earth system models.
Philipp Suessle, Jan Taucher, Silvan Goldenberg, Moritz Baumann, Kristian Spilling, Andrea Noche-Ferreira, Mari Vanharanta, and Ulf Riebesell
EGUsphere, https://doi.org/10.5194/egusphere-2023-2800, https://doi.org/10.5194/egusphere-2023-2800, 2023
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a negative emission technology which may alter marine communities and the particle export they drive. Here, impacts of carbonate-based OAE on the flux and attenuation of sinking particles in an oligotrophic plankton community are presented. Whilst biological parameters remained unaffected, abiotic carbonate precipitation occurred. Among counteracting OAE’s efficiency, it influenced mineral ballasting and particle sinking velocities, requiring monitoring.
Geneviève W. Elsworth, Nicole S. Lovenduski, Kristen M. Krumhardt, Thomas M. Marchitto, and Sarah Schlunegger
Biogeosciences, 20, 4477–4490, https://doi.org/10.5194/bg-20-4477-2023, https://doi.org/10.5194/bg-20-4477-2023, 2023
Short summary
Short summary
Anthropogenic climate change will influence marine phytoplankton over the coming century. Here, we quantify the influence of anthropogenic climate change on marine phytoplankton internal variability using an Earth system model ensemble and identify a decline in global phytoplankton biomass variance with warming. Our results suggest that climate mitigation efforts that account for marine phytoplankton changes should also consider changes in phytoplankton variance driven by anthropogenic warming.
Olivia Haas, Iain Colin Prentice, and Sandy P. Harrison
Biogeosciences, 20, 3981–3995, https://doi.org/10.5194/bg-20-3981-2023, https://doi.org/10.5194/bg-20-3981-2023, 2023
Short summary
Short summary
We quantify the impact of CO2 and climate on global patterns of burnt area, fire size, and intensity under Last Glacial Maximum (LGM) conditions using three climate scenarios. Climate change alone did not produce the observed LGM reduction in burnt area, but low CO2 did through reducing vegetation productivity. Fire intensity was sensitive to CO2 but strongly affected by changes in atmospheric dryness. Low CO2 caused smaller fires; climate had the opposite effect except in the driest scenario.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, Simon Jones, Andy J. Wiltshire, and Peter M. Cox
Biogeosciences, 20, 3767–3790, https://doi.org/10.5194/bg-20-3767-2023, https://doi.org/10.5194/bg-20-3767-2023, 2023
Short summary
Short summary
This study evaluates soil carbon projections during the 21st century in CMIP6 Earth system models. In general, we find a reduced spread of changes in global soil carbon in CMIP6 compared to the previous CMIP5 generation. The reduced CMIP6 spread arises from an emergent relationship between soil carbon changes due to change in plant productivity and soil carbon changes due to changes in turnover time. We show that this relationship is consistent with false priming under transient climate change.
Claudia Hinrichs, Peter Köhler, Christoph Völker, and Judith Hauck
Biogeosciences, 20, 3717–3735, https://doi.org/10.5194/bg-20-3717-2023, https://doi.org/10.5194/bg-20-3717-2023, 2023
Short summary
Short summary
This study evaluated the alkalinity distribution in 14 climate models and found that most models underestimate alkalinity at the surface and overestimate it in the deeper ocean. It highlights the need for better understanding and quantification of processes driving alkalinity distribution and calcium carbonate dissolution and the importance of accounting for biases in model results when evaluating potential ocean alkalinity enhancement experiments.
Yonghong Zheng, Huanfeng Shen, Rory Abernethy, and Rob Wilson
Biogeosciences, 20, 3481–3490, https://doi.org/10.5194/bg-20-3481-2023, https://doi.org/10.5194/bg-20-3481-2023, 2023
Short summary
Short summary
Investigations in central and western China show that tree ring inverted latewood intensity expresses a strong positive relationship with growing-season temperatures, indicating exciting potential for regions south of 30° N that are traditionally not targeted for temperature reconstructions. Earlywood BI also shows good potential to reconstruct hydroclimate parameters in some humid areas and will enhance ring-width-based hydroclimate reconstructions in the future.
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023, https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary
Short summary
Here we developed a new burned-area detection algorithm between 2001–2019 across Alaska and Canada at 500 m resolution. We estimate 2.37 Mha burned annually between 2001–2019 over the domain, emitting 79.3 Tg C per year, with a mean combustion rate of 3.13 kg C m−2. We found larger-fire years were generally associated with greater mean combustion. The burned-area and combustion datasets described here can be used for local- to continental-scale applications of boreal fire science.
V. Rachel Chimuka, Claude-Michel Nzotungicimpaye, and Kirsten Zickfeld
Biogeosciences, 20, 2283–2299, https://doi.org/10.5194/bg-20-2283-2023, https://doi.org/10.5194/bg-20-2283-2023, 2023
Short summary
Short summary
We propose a new method to quantify carbon cycle feedbacks under negative CO2 emissions. Our method isolates the lagged carbon cycle response to preceding positive emissions from the response to negative emissions. Our findings suggest that feedback parameters calculated with the novel approach are larger than those calculated with the conventional approach whereby carbon cycle inertia is not corrected for, with implications for the effectiveness of carbon dioxide removal in reducing CO2 levels.
Marcus Breil, Annabell Weber, and Joaquim G. Pinto
Biogeosciences, 20, 2237–2250, https://doi.org/10.5194/bg-20-2237-2023, https://doi.org/10.5194/bg-20-2237-2023, 2023
Short summary
Short summary
A promising strategy for mitigating burdens of heat extremes in Europe is to replace dark coniferous forests with brighter deciduous forests. The consequence of this would be reduced absorption of solar radiation, which should reduce the intensities of heat periods. In this study, we show that deciduous forests have a certain cooling effect on heat period intensities in Europe. However, the magnitude of the temperature reduction is quite small.
Gesche Blume-Werry, Jonatan Klaminder, Eveline J. Krab, and Sylvain Monteux
Biogeosciences, 20, 1979–1990, https://doi.org/10.5194/bg-20-1979-2023, https://doi.org/10.5194/bg-20-1979-2023, 2023
Short summary
Short summary
Northern soils store a lot of carbon. Most research has focused on how this carbon storage is regulated by cold temperatures. However, it is soil organisms, from minute bacteria to large earthworms, that decompose the organic material. Novel soil organisms from further south could increase decomposition rates more than climate change does and lead to carbon losses. We therefore advocate for including soil organisms when predicting the fate of soil functions in warming northern ecosystems.
Koramanghat Unnikrishnan Jayakrishnan and Govindasamy Bala
Biogeosciences, 20, 1863–1877, https://doi.org/10.5194/bg-20-1863-2023, https://doi.org/10.5194/bg-20-1863-2023, 2023
Short summary
Short summary
Afforestation and reducing fossil fuel emissions are two important mitigation strategies to reduce the amount of global warming. Our work shows that reducing fossil fuel emissions is relatively more effective than afforestation for the same amount of carbon removed from the atmosphere. However, understanding of the processes that govern the biophysical effects of afforestation should be improved before considering our results for climate policy.
Jens Hartmann, Niels Suitner, Carl Lim, Julieta Schneider, Laura Marín-Samper, Javier Arístegui, Phil Renforth, Jan Taucher, and Ulf Riebesell
Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, https://doi.org/10.5194/bg-20-781-2023, 2023
Short summary
Short summary
CO2 can be stored in the ocean via increasing alkalinity of ocean water. Alkalinity can be created via dissolution of alkaline materials, like limestone or soda. Presented research studies boundaries for increasing alkalinity in seawater. The best way to increase alkalinity was found using an equilibrated solution, for example as produced from reactors. Adding particles for dissolution into seawater on the other hand produces the risk of losing alkalinity and degassing of CO2 to the atmosphere.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Morgan Sparey, Peter Cox, and Mark S. Williamson
Biogeosciences, 20, 451–488, https://doi.org/10.5194/bg-20-451-2023, https://doi.org/10.5194/bg-20-451-2023, 2023
Short summary
Short summary
Accurate climate models are vital for mitigating climate change; however, projections often disagree. Using Köppen–Geiger bioclimate classifications we show that CMIP6 climate models agree well on the fraction of global land surface that will change classification per degree of global warming. We find that 13 % of land will change climate per degree of warming from 1 to 3 K; thus, stabilising warming at 1.5 rather than 2 K would save over 7.5 million square kilometres from bioclimatic change.
Huanhuan Wang, Chao Yue, and Sebastiaan Luyssaert
Biogeosciences, 20, 75–92, https://doi.org/10.5194/bg-20-75-2023, https://doi.org/10.5194/bg-20-75-2023, 2023
Short summary
Short summary
This study provided a synthesis of three influential methods to quantify afforestation impact on surface temperature. Results showed that actual effect following afforestation was highly dependent on afforestation fraction. When full afforestation is assumed, the actual effect approaches the potential effect. We provided evidence the afforestation faction is a key factor in reconciling different methods and emphasized that it should be considered for surface cooling impacts in policy evaluation.
Ryan S. Padrón, Lukas Gudmundsson, Laibao Liu, Vincent Humphrey, and Sonia I. Seneviratne
Biogeosciences, 19, 5435–5448, https://doi.org/10.5194/bg-19-5435-2022, https://doi.org/10.5194/bg-19-5435-2022, 2022
Short summary
Short summary
The answer to how much carbon land ecosystems are projected to remove from the atmosphere until 2100 is different for each Earth system model. We find that differences across models are primarily explained by the annual land carbon sink dependence on temperature and soil moisture, followed by the dependence on CO2 air concentration, and by average climate conditions. Our insights on why each model projects a relatively high or low land carbon sink can help to reduce the underlying uncertainty.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Daniel François, Adina Paytan, Olga Maria Oliveira de Araújo, Ricardo Tadeu Lopes, and Cátia Fernandes Barbosa
Biogeosciences, 19, 5269–5285, https://doi.org/10.5194/bg-19-5269-2022, https://doi.org/10.5194/bg-19-5269-2022, 2022
Short summary
Short summary
Our analysis revealed that under the two most conservative acidification projections foraminifera assemblages did not display considerable changes. However, a significant decrease in species richness was observed when pH decreases to 7.7 pH units, indicating adverse effects under high-acidification scenarios. A micro-CT analysis revealed that calcified tests of Archaias angulatus were of lower density in low pH, suggesting no acclimation capacity for this species.
Leander Moesinger, Ruxandra-Maria Zotta, Robin van der Schalie, Tracy Scanlon, Richard de Jeu, and Wouter Dorigo
Biogeosciences, 19, 5107–5123, https://doi.org/10.5194/bg-19-5107-2022, https://doi.org/10.5194/bg-19-5107-2022, 2022
Short summary
Short summary
The standardized vegetation optical depth index (SVODI) can be used to monitor the vegetation condition, such as whether the vegetation is unusually dry or wet. SVODI has global coverage, spans the past 3 decades and is derived from multiple spaceborne passive microwave sensors of that period. SVODI is based on a new probabilistic merging method that allows the merging of normally distributed data even if the data are not gap-free.
Rebecca M. Varney, Sarah E. Chadburn, Eleanor J. Burke, and Peter M. Cox
Biogeosciences, 19, 4671–4704, https://doi.org/10.5194/bg-19-4671-2022, https://doi.org/10.5194/bg-19-4671-2022, 2022
Short summary
Short summary
Soil carbon is the Earth’s largest terrestrial carbon store, and the response to climate change represents one of the key uncertainties in obtaining accurate global carbon budgets required to successfully militate against climate change. The ability of climate models to simulate present-day soil carbon is therefore vital. This study assesses soil carbon simulation in the latest ensemble of models which allows key areas for future model development to be identified.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Negar Vakilifard, Richard G. Williams, Philip B. Holden, Katherine Turner, Neil R. Edwards, and David J. Beerling
Biogeosciences, 19, 4249–4265, https://doi.org/10.5194/bg-19-4249-2022, https://doi.org/10.5194/bg-19-4249-2022, 2022
Short summary
Short summary
To remain within the Paris climate agreement, there is an increasing need to develop and implement carbon capture and sequestration techniques. The global climate benefits of implementing negative emission technologies over the next century are assessed using an Earth system model covering a wide range of plausible climate states. In some model realisations, there is continued warming after emissions cease. This continued warming is avoided if negative emissions are incorporated.
Marco Reale, Gianpiero Cossarini, Paolo Lazzari, Tomas Lovato, Giorgio Bolzon, Simona Masina, Cosimo Solidoro, and Stefano Salon
Biogeosciences, 19, 4035–4065, https://doi.org/10.5194/bg-19-4035-2022, https://doi.org/10.5194/bg-19-4035-2022, 2022
Short summary
Short summary
Future projections under the RCP8.5 and RCP4.5 emission scenarios of the Mediterranean Sea biogeochemistry at the end of the 21st century show different levels of decline in nutrients, oxygen and biomasses and an acidification of the water column. The signal intensity is stronger under RCP8.5 and in the eastern Mediterranean. Under RCP4.5, after the second half of the 21st century, biogeochemical variables show a recovery of the values observed at the beginning of the investigated period.
Charly A. Moras, Lennart T. Bach, Tyler Cyronak, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, https://doi.org/10.5194/bg-19-3537-2022, 2022
Short summary
Short summary
This research presents the first laboratory results of quick and hydrated lime dissolution in natural seawater. These two minerals are of great interest for ocean alkalinity enhancement, a strategy aiming to decrease atmospheric CO2 concentrations. Following the dissolution of these minerals, we identified several hurdles and presented ways to avoid them or completely negate them. Finally, we proceeded to various simulations in today’s oceans to implement the strategy at its highest potential.
Taraka Davies-Barnard, Sönke Zaehle, and Pierre Friedlingstein
Biogeosciences, 19, 3491–3503, https://doi.org/10.5194/bg-19-3491-2022, https://doi.org/10.5194/bg-19-3491-2022, 2022
Short summary
Short summary
Biological nitrogen fixation is the largest natural input of new nitrogen onto land. Earth system models mainly represent global total terrestrial biological nitrogen fixation within observational uncertainties but overestimate tropical fixation. The model range of increase in biological nitrogen fixation in the SSP3-7.0 scenario is 3 % to 87 %. While biological nitrogen fixation is a key source of new nitrogen, its predictive power for net primary productivity in models is limited.
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Roberto Pilli, Ramdane Alkama, Alessandro Cescatti, Werner A. Kurz, and Giacomo Grassi
Biogeosciences, 19, 3263–3284, https://doi.org/10.5194/bg-19-3263-2022, https://doi.org/10.5194/bg-19-3263-2022, 2022
Short summary
Short summary
To become carbon neutral by 2050, the European Union (EU27) forest C sink should increase to −450 Mt CO2 yr-1. Our study highlights that under current management practices (i.e. excluding any policy scenario) the forest C sink of the EU27 member states and the UK may decrease to about −250 Mt CO2eq yr-1 in 2050. The expected impacts of future climate change, however, add a considerable uncertainty, potentially nearly doubling or halving the sink associated with forest management.
Cited articles
Abbott, B. W. and Jones, J. B.: Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra, Glob. Change Biol., 21, 4570–4587, https://doi.org/10.1111/gcb.13069, 2015.
Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R., and Bowden, W. B.: Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost, Biogeosciences, 12, 3725–3740, https://doi.org/10.5194/bg-12-3725-2015, 2015.
Abbott, B. W., Jones, J. B., Schuur, E. A. G., Chapin III, F. S., Bowden, W. B., Bret-Harte, M. S., Epstein, H. E., Flannigan, M. D., Harms, T. K., Hollingsworth, T. N., Mack, M. C., Mcguire, A. D., Natali, S. M., Rocha, A. V., Tank, S. E., Turetsky, M. R., Vonk, J. E., Wickland, K. P., Aiken, G. R., Alexander, H. D., Amon, R. M. W., BENSCOTER, B. W., Bergeron, Y., Bishop, K., Blarquez, O., Bond-Lamberty, B., Breen, A. L., Buffam, I., Cai, Y., Carcaillet, C., Carey, S. K., Chen, J. M., Chen, H. Y. H., Christensen, T. R., Cooper, L. W., Cornelissen, J. H. C., de Groot, W. J., Deluca, T. H., Dorrepaal, E., Fetcher, N., Finlay, J. C., Forbes, B. C., French, N. H. F., Gauthier, S., Girardin, M. P., Goetz, S. J., Goldammer, J. G., Gough, L., Grogan, P., Guo, L., Higuera, P. E., Hinzman, L., Hu, F. S., Hugelius, G., Jafarov, E. E., Jandt, R., Johnstone, J. F., Karlsson, J., Kasischke, E. S., Kattner, G., Kelly, R., Keuper, F., Kling, G. W., Kortelainen, P., Kouki, J., Kuhry, P., Laudon, H., Laurion, I., Macdonald, R. W., Mann, P. J., Martikainen, P. J., McClelland, J. W., Molau, U., Oberbauer, S. F., Olefeldt, D., Pare, D., Parisien, M.-A., Payette, S., Peng, C., Pokrovsky, O. S., Rastetter, E. B., Raymond, P. A., Raynolds, M. K., Rein, G., Reynolds, J. F., Robards, M., Rogers, B. M., Schädel, C., Schaefer, K., Schmidt, I. K., Shvidenko, A., Sky, J., Spencer, R. G. M., Starr, G., Striegl, R. G., Teisserenc, R., Tranvik, L. J., Virtanen, T., Welker, J. M., and Zimov, S. A.: Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment, Environ. Res. Lett., 11, 1–13, https://doi.org/10.1088/1748-9326/11/3/034014, 2016.
Ackerman, D., Griffin, D., Hobbie, S. E., and Finlay, J. C.: Arctic shrub growth trajectories differ across soil moisture levels, Glob. Change Biol., 69, 130–139, https://doi.org/10.1111/gcb.13677, 2017.
Alexander, H. D. and Mack, M. C.: A Canopy Shift in Interior Alaskan Boreal Forests: Consequences for Above-and Belowground Carbon and Nitrogen Pools during Post-fire Succession, Ecosystems, 19, 98–114, https://doi.org/10.1007/s10021-015-9920-7, 2015.
Alexander, H. D., Mack, M. C., Goetz, S. J., Beck, P. S. A., and Belshe, E. F.: Implications of increased deciduous cover on stand structure and aboveground carbon pools of Alaskan boreal forests, Ecosphere, 3, 1–21, https://doi.org/10.1890/ES11-00364.1, 2012a.
Alexander, H. D., Mack, M. C., Goetz, S. J., Loranty, M. M., Beck, P. S., Earl, K., Zimov, S., Davydov, S., and Thompson, C. C.: Carbon Accumulation Patterns During Post-Fire Succession in Cajander Larch (Larix cajanderi) Forests of Siberia, Ecosystems, 15, 1065–1082, https://doi.org/10.1007/s10021-012-9567-6, 2012b.
Alexander, H. D., Natali, S. M., Loranty, M. M., Ludwig, S. M., Spektor, V. V., Davydov, S., Zimov, N. S., Trujillo, I., and Mack, M. C.: Impacts of increased soil burn severity on larch forest regeneration on permafrost soils of far northeastern Siberia, Forest Ecol. Manag., 417, 144–153, https://doi.org/10.1016/j.foreco.2018.03.008, 2018.
Algesten, G., Sobek, S., Bergström, A. K., Ågren, A., Tranvik, L. J., and Jansson, M.: Role of lakes for organic carbon cycling in the boreal zone, Glob. Change Biol., 10, 141–147, 2004.
Anthony, K. M. W., Zimov, S. A., Grosse, G., Jones, M. C., Anthony, P. M., III, F. S. C., Finlay, J. C., Mack, M. C., Davydov, S., Frenzel, P., and Frolking, S.: A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch, Nature, 511, 452–456, https://doi.org/10.1038/nature13560, 2014.
Auerbach, N. A., Walker, M. D., and Walker, D. A.: Effects of Roadside Disturbance on Substrate and Vegetation Properties in Arctic Tundra, Ecol. Appl., 7, 218–235, 1997.
Baldocchi, D., Kelliher, F., Black, T., and Jarvis, P.: Climate and vegetation controls on boreal zone energy exchange, Glob. Change Biol., 6, 69–83, 2000.
Baltzer, J. L., Veness, T., Chasmer, L. E., Sniderhan, A. E., and Quinton, W. L.: Forests on thawing permafrost: fragmentation, edge effects, and net forest loss, Glob. Change Biol., 20, 824–834, https://doi.org/10.1111/gcb.12349, 2014.
Barber, V. A., Juday, G. P., and Finney, B. P.: Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress, Nature, 405, 668–673, https://doi.org/10.1139/x88-010, 2000.
Bardgett, R. D., Mommer, L., and De Vries, F. T.: Going underground: root traits as drivers of ecosystem processes, Trends Ecol. Evol., 29, 692–699, https://doi.org/10.1016/j.tree.2014.10.006, 2014.
Barrett, K., Rocha, A. V., van de Weg, M. J., and Shaver, G.: Vegetation shifts observed in arctic tundra 17 years after fire, Remote Sens. Lett., 3, 729–736, https://doi.org/10.1080/2150704X.2012.676741, 2012.
Beck, P. S. A. and Goetz, S. J.: Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences, Environ. Res. Lett., 6, 045501, https://doi.org/10.1088/1748-9326/7/2/029501, 2011.
Beck, P. S. A., Juday, G. P., Alix, C., Barber, V. A., Winslow, S. E., Sousa, E. E., Heiser, P., Herriges, J. D., and Goetz, S. J.: Changes in forest productivity across Alaska consistent with biome shift, Ecol. Lett., 14, 373–379, https://doi.org/10.1111/j.1461-0248.2011.01598.x, 2011.
Belshe, E. F., Schuur, E. A. G., and Grosse, G.: Quantification of upland thermokarst features with high resolution remote sensing, Environ. Res. Lett., 8, 035016, https://doi.org/10.1088/1748-9326/8/3/035016, 2013.
Beringer, J., Chapin, F. S., Thompson, C. C., and Mcguire, A. D.: Surface energy exchanges along a tundra-forest transition and feedbacks to climate, Agr. Forest Meteorol., 131, 143–161, https://doi.org/10.1016/j.agrformet.2005.05.006, 2005.
Berner, L. T., Beck, P. S. A., Bunn, A. G., Lloyd, A. H., and Goetz, S. J.: High-latitude tree growth and satellite vegetation indices: Correlations and trends in Russia and Canada (1982–2008), J. Geophys. Res., 116, G01015, https://doi.org/10.1029/2010jg001475, 2011.
Berner, L. T., Beck, P. S. A., Loranty, M. M., Alexander, H. D., Mack, M. C., and Goetz, S. J.: Cajander larch (Larix cajanderi) biomass distribution, fire regime and post-fire recovery in northeastern Siberia, Biogeosciences, 9, 3943–3959, https://doi.org/10.5194/bg-9-3943-2012, 2012.
Berner, L. T., Beck, P. S. A., Bunn, A. G., and Goetz, S. J.: Plant response to climate change along the forest-tundra ecotone in northeastern Siberia, Glob. Change Biol., 19, 3449–3462, https://doi.org/10.1111/gcb.12304, 2013.
Betts, A. K. and Ball, J.: Albedo over the boreal forest, J. Geophys. Res., 102, 28901–28909, 1997.
Betts, A. K., Goulden, M., and Wofsy, S.: Controls on evaporation in a boreal spruce forest, J. Climate, 12, 1601–1618, 1999.
Bewley, D., Pomeroy, J., and Essery, R.: Solar Radiation Transfer Through a Subarctic Shrub Canopy, Arct. Antarct. Alp. Res., 39, 365–374, 2007.
Bhatt, U., Walker, D., Raynolds, M., Bieniek, P., Epstein, H., Comiso, J., Pinzon, J., Tucker, C., and Polyakov, I.: Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra, Remote Sensing, 5, 4229–4254, https://doi.org/10.3390/rs5094229, 2013.
Bjerke, J. W., Karlsen, S. R., Høgda, K. A., Malnes, E., Jepsen, J. U., Lovibond, S., Vikhamar-Schuler, D., and Tømmervik, H.: Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks, Environ. Res. Lett., 9, 084006, https://doi.org/10.1088/1748-9326/9/8/084006, 2014.
Blok, D., Heijmans, M., Schaepman-Strub, G., Kononov, A., Maximov, T., and Berendse, F.: Shrub expansion may reduce summer permafrost thaw in Siberian tundra, Glob. Change Biol., 16, 1296–1305, 2010.
Blok, D., Heijmans, M. M. P. D., Schaepman-Strub, G., Ruijven, J., Parmentier, F. J. W., Maximov, T. C., and Berendse, F.: The Cooling Capacity of Mosses: Controls on Water and Energy Fluxes in a Siberian Tundra Site, Ecosystems, 14, 1055–1065, https://doi.org/10.1007/s10021-011-9463-5, 2011a.
Blok, D., Schaepman-Strub, G., Bartholomeus, H., Heijmans, M. M., Maximov, T. C., and Berendse, F.: The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature, Environ. Res. Lett., 6, 035502, https://doi.org/10.1088/1748-9326/6/3/035502, 2011b.
Blume-Werry, G., Wilson, S. D., Kreyling, J., and Milbau, A.: The hidden season: growing season is 50 % longer below than above ground along an arctic elevation gradient, New Phytol., 209, 978–986, https://doi.org/10.1111/nph.13655, 2015.
Boike, J., Roth, K., and Overduin, P. P.: Thermal and hydrologic dynamics of the active layer at a continuous permafrost site (Taymyr Peninsula, Siberia), Water Resour. Res., 34, 355–363, https://doi.org/10.1029/97WR03498, 1998.
Boike, J., Wille, C., and Abnizova, A.: Climatology and summer energy and water balance of polygonal tundra in the Lena River Delta, Siberia, J. Geophys. Res., 113, G03025, https://doi.org/10.1029/2007JG000540, 2008.
Bond-Lamberty, B., Rocha, A. V., Calvin, K., Holmes, B., Wang, C., and Goulden, M. L.: Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest, Glob. Change Biol., 20, 216–227, https://doi.org/10.1111/gcb.12404, 2013.
Bonfils, C. J. W., Phillips, T. J., Lawrence, D. M., Cameron-Smith, P., Riley, W. J., and Subin, Z. M.: On the influence of shrub height and expansion on northern high latitude climate, Environ. Res. Lett., 7, 015503, https://doi.org/10.1088/1748-9326/7/1/015503, 2012.
Bret-Harte, M. S., Mack, M. C., Shaver, G. R., Huebner, D. C., Johnston, M., Mojica, C. A., Pizano, C., and Reiskind, J. A.: The response of Arctic vegetation and soils following an unusually severe tundra fire, Philos. T. Roy. Soc. B, 368, 20120490–20120490, https://doi.org/10.1111/j.1365-2745.2008.01378.x, 2013.
Briggs, M. A., Walvoord, M. A., and McKenzie, J. M.: New permafrost is forming around shrinking Arctic lakes, but will it last?, Geophys. Res. Lett., 41, 1585–1592, https://doi.org/10.1002/2014gl059251, 2014.
Brown, D., Jorgenson, M. T., Douglas, T. A., Romanovsky, V. E., Kielland, K., Hiemstra, C. A., Euskirchen, E. S., and Ruess, R. W.: Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests, J. Geophys. Res.-Biogeo., 120, 1619–1637, https://doi.org/10.1002/2015jg003033, 2015.
Brown, J., Ferrians, O. J., Heginbottom, J. A., and Melinikov, E. S.: Circum-arctic map of permafrost and ground ice conditions, available at: https://nsidc.org/data/ggd318 (last access: 29 August 2018), 1998.
Bunn, A. G. and Goetz, S. J.: Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: The influence of seasonality, cover type, and vegetation density, Earth Interact., 10, 1–19, 2006.
Burn, C. R.: The response (1958–1997) of permafrost and near-surface ground temperatures to forest fire, Takhini River valley, southern Yukon Territory, Can. J. Earth Sci., 35, 184–199, https://doi.org/10.1139/e97-105, 1998.
Cable, W. L., Romanovsky, V. E., and Jorgenson, M. T.: Scaling-up permafrost thermal measurements in western Alaska using an ecotype approach, The Cryosphere, 10, 2517–2532, https://doi.org/10.5194/tc-10-2517-2016, 2016.
Chapin III, F. S., Eugster, W., McFadden, J., Lynch, A., and Walker, D.: Summer differences among arctic ecosystems in regional climate forcing, J. Climate, 13, 2002–2010, 2000a.
Chapin III, F. S., McGuire, A., Randerson, J., Pielke, R., Baldocchi, D., Hobbie, S., Roulet, N., Eugster, W., Kasischke, E., and Rastetter, E.: Arctic and boreal ecosystems of western North America as components of the climate system, Glob. Change Biol., 6, 211–223, 2000b.
Chapin III, F. S., Sturm, M., Serreze, M. C., McFadden, J. P., Key, J. R., Lloyd, A. H., McGuire, A. D., Rupp, T. S., Lynch, A. H., Schimel, J. P., Beringer, J., Chapman, W. L., Epstein, H. E., Euskirchen, E. S., Hinzman, L. D., Jia, G., Ping, C.-L., Tape, K. D., Thompson, C. D. C., Walker, D. A., and Welker, J. M.: Role of land-surface changes in Arctic summer warming, Science, 310, 657–660, https://doi.org/10.1126/science.1117368, 2005.
Christiansen, C. T., Mack, M. C., DeMarco, J., and Grogan, P.: Decomposition of Senesced Leaf Litter is Faster in Tall Compared to Low Birch Shrub Tundra, Ecosystems, 170, 809–816, https://doi.org/10.1007/s10021-018-0240-6, 2018.
Commane, R., Lindaas, J., Benmergui, J., Luus, K. A., Chang, R. Y. W., Daube, B. C., Euskirchen, E. S., Henderson, J. M., Karion, A., Miller, J. B., Miller, S. M., Parazoo, N. C., Randerson, J. T., Sweeney, C., Tans, P., Thoning, K., Veraverbeke, S., Miller, C. E., and Wofsy, S. C.: Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra, P. Natl. Acad. Sci. USA, 114, 5361–5366, https://doi.org/10.1073/pnas.1618567114, 2017.
Comyn-Platt, E., Hayman, G., huntingford, C., Chadburn, S. E., Burke, E. J., Harper, A. B., Collins, W. J., Webber, C. P., Powell, T., Cox, P. M., Gedney, N., and Sitch, S.: Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks, Nat. Geosci., 11, 568–573, https://doi.org/10.1038/s41561-018-0174-9, 2018.
Cornelissen, J. H., Van Bodegom, P. M., Aerts, R., Callaghan, T. V., Van Logtestijn, R. S., Alatalo, J., Stuart Chapin, F., Gerdol, R., Gudmundsson, J., Gwynn-Jones, D., Hartley, A. E., Hik, D. S., Hofgaard, A., Jónsdóttir, I. S., Karlsson, S., Klein, J. A., Laundre, J., Magnusson, B., Michelsen, A., Molau, U., Onipchenko, V. G., Quested, H. M., Sandvik, S. M., Schmidt, I. K., Shaver, G. R., Solheim, B., Soudzilovskaia, N. A., Stenström, A., Tolvanen, A., Totland, Ø., Wada, N., Welker, J. M., and Zhao, X.: Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes, Ecol. Lett., 10, 619–627, https://doi.org/10.1111/j.1461-0248.2007.01051.x, 2007.
Crampton, C. B.: A study of the dynamics of hummocky microrelief in the Canadian north, Can. J. Earth Sci., 14, 639–649, 1977.
Curasi, S. R., Loranty, M. M., and Natali, S. M.: Water track distribution and effects on carbon dioxide flux in an eastern Siberian upland tundra landscape, Environ. Res. Lett., 11, 1–12, https://doi.org/10.1088/1748-9326/11/4/045002, 2016.
de Grandpré, I., Fortier, D., and Stephani, E.: Degradation of permafrost beneath a road embankment enhanced by heat advected in groundwater, Can. J. Earth Sci., 49, 953–962, https://doi.org/10.1016/0148-9062(79)90657-0, 2012.
Domine, F., Barrere, M., Sarrazin, D., Morin, S., and Arnaud, L.: Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra, The Cryosphere, 9, 1265–1276, https://doi.org/10.5194/tc-9-1265-2015, 2015.
Douglas, T. A., Jones, M. C., Hiemstra, C. A., and Arnold, J. R.: Sources and sinks of carbon in boreal ecosystems of interior Alaska: A review, Elem. Sci. Anth., 2, 000032, https://doi.org/10.12952/journal.elementa.000032, 2014.
Douglas, T. A., Jorgenson, M. T., Brown, D. R. N., Campbell, S. W., Hiemstra, C. A., Saari, S. P., Bjella, K., and Liljedahl, A. K.: Degrading permafrost mapped with electrical resistivity tomography, airborne imagery and LiDAR, and seasonal thaw measurements, Geophysics, 81, WA71–WA85, https://doi.org/10.1190/geo2015-0149.1, 2016.
Eaton, A. K., Rouse, W. R., Lafleur, P. M., Marsh, P., and Blanken, P. D.: Surface Energy Balance of the Western and Central Canadian Subarctic: Variations in the Energy Balance among Five Major Terrain Types, J. Climate, 14, 3692–3703, https://doi.org/10.1175/1520-0442(2001)014<3692:sebotw>2.0.co;2, 2001.
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Bjorkman, A. D., Callaghan, T. V., Collier, L. S., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., Fosaa, A. M., Gould, W. A., Grétarsdóttir, J., Harte, J., Hermanutz, L., Hik, D. S., Hofgaard, A., Jarrad, F., Jónsdóttir, I. S., Keuper, F., Klanderud, K., Klein, J. A., Koh, S., Kudo, G., Lang, S. I., Loewen, V., May, J. L., Mercado, J., Michelsen, A., Molau, U., Myers-Smith, I. H., Oberbauer, S. F., Pieper, S., Post, E., Rixen, C., Robinson, C. H., Schmidt, N. M., Shaver, G. R., Stenström, A., Tolvanen, A., Totland, Ø., Troxler, T., Wahren, C.-H., Webber, P. J., Welker, J. M., and Wookey, P. A.: Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time, Ecol. Lett., 15, 164–175, https://doi.org/10.1111/j.1461-0248.2011.01716.x, 2012a.
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Boulanger-Lapointe, N., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., Dorrepaal, E., Elumeeva, T. G., Gill, M., Gould, W. A., Harte, J., Hik, D. S., Hofgaard, A., Johnson, D. R., Johnstone, J. F., Jónsdóttir, I. S., Jorgenson, J. C., Klanderud, K., Klein, J. A., Koh, S., Kudo, G., Lara, M., Lévesque, E., Magnusson, B., May, J. L., Mercado-Dýìaz, J. A., Michelsen, A., Molau, U., Myers-Smith, I. H., Oberbauer, S. F., Onipchenko, V. G., Rixen, C., Schmidt, N. M., Shaver, G. R., Spasojevic, M. J., Þórhallsdóttir, Þ. E., Tolvanen, A., Troxler, T., Tweedie, C. E., Villareal, S., Wahren, C.-H., Walker, X., Webber, P. J., Welker, J. M., and Wipf, S.: Plot-scale evidence of tundra vegetation change and links to recent summer warming, Nat. Clim. Change, 2, 1–5, https://doi.org/10.1038/nclimate1465, 2012b.
Essery, R. and Pomeroy, J.: Vegetation and topographic control of wind-blown snow distributions in distributed and aggregated simulations for an Arctic tundra basin, J. Hydrometeorol., 5, 735–744, https://doi.org/10.1175/1525-7541(2004)005<0735:vatcow>2.0.co;2, 2004.
Eugster, W., Rouse, W., Pielke, R., Sr, Joseph, P., Mcfadden, D., Baldocchi, T., Kittel, F., Chapin, S., Liston, G. E., Vidale, P. L., Vaganov, E., and Chambers, S.: Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate, Glob. Change Biol., 6, 84–115, 2000.
Fan, Z., Neff, J. C., Harden, J. W., Zhang, T., Veldhuis, H., Czimczik, C. I., Winston, G. C., and O'Donnell, J. A.: Water and heat transport in boreal soils: Implications for soil response to climate change, Sci. Total Environ., 409, 1836–1842, https://doi.org/10.1016/j.scitotenv.2011.02.009, 2011.
Fauria, M. M., Helle, T., and Niva, A.: Removal of the lichen mat by reindeer enhances tree growth in a northern Scots pine forest, Can. J. Forest Res., 38, 2981–2993, 2008.
Fedorov, A. N., Iwahana, G., Konstantinov, P. Y., Machimura, T., Argunov, R. N., Efremov, P. V., Lopez, L. M. C., and Takakai, F.: Variability of Permafrost and Landscape Conditions Following Clear Cutting of Larch Forest in Central Yakutia, Permafrost Periglac., 28, 331–338, https://doi.org/10.1002/ppp.1897, 2016.
Filhol, S. and Sturm, M.: Snow bedforms: A review, new data, and a formation model, J. Geophys. Res.-Earth, 120, 1645–1669, https://doi.org/10.1002/2015jf003529, 2015.
Fisher, J. P., Estop Aragonés, C., Thierry, A., Charman, D. J., Wolfe, S. A., Hartley, I. P., Murton, J. B., Williams, M., and Phoenix, G. K.: The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest, Glob. Change Biol., 22, 3127–3140, https://doi.org/10.1111/gcb.13248, 2016.
Forbes, B. C.: Aspects of natural recovery of soils, hydrology and vegetation at an abandoned high arctic settlement, Baffin Island, Canada, Proceedings of the Sixth International Conference on Permafrost, 1, 176–181, 1993.
Forbes, B. C.: Tundra disturbance studies, III: Short-term effects of Aeolian sand and dust, Yamal Region, Northwest Siberia, Environ. Conserv., 22, 335–344, 1995.
Forbes, B. C.: Cumulative impacts of vehicle traffic on high arctic tundra: soil temperature, plant biomass, species richness and mineral nutrition, Yellowknife, Proceedings of the Seventh International Conference on permafrost, CA, 1998.
Forbes, B. C. and Kumpula, T.: The Ecological Role and Geography of Reindeer (Rangifer tarandus) in Northern Eurasia, Geography Compass, 3, 1356–1380, https://doi.org/10.1111/j.1749-8198.2009.00250.x, 2009.
Forbes, B. C., Ebersole, J. J., and Strandberg, B.: Anthropogenic disturbance and patch dynamics in circumpolar arctic ecosystems, Conserv. Biol., 15, 954–969, https://doi.org/10.1046/j.1523-1739.2001.015004954.x, 2001.
Forbes, B. C., Fauria, M. M., and Zetterberg, P.: Russian Arctic warming and “greening” are closely tracked by tundra shrub willows, Glob. Change Biol., 16, 1542–1554, https://doi.org/10.1111/j.1365-2486.2009.02047.x, 2010.
Forkel, M., Carvalhais, N., Roedenbeck, C., Keeling, R., Heimann, M., Thonicke, K., Zaehle, S., and Reichstein, M.: Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems, Science, 351, 696–699, https://doi.org/10.1126/science.aac4971, 2016.
Francis, J. A., White, D. M., Cassano, J. J., Gutowski, W. J., Hinzman, L. D., Holland, M. M., Steele, M. A., and Vörösmarty, C. J.: An arctic hydrologic system in transition: Feedbacks and impacts on terrestrial, marine, and human life, J. Geophys. Res., 114, G04019, https://doi.org/10.1029/2008JG000902, 2009.
French, N. H., Whitley, M. A., and Jenkins, L. K.: Fire disturbance effects on land surface albedo in Alaskan tundra, J. Geophys. Res.-Biogeo., 121, 841–854, https://doi.org/10.1002/2015jg003177, 2016.
Froese, D. G., Westgate, J. A., Reyes, A. V., Enkin, R. J., and Preece, S. J.: Ancient Permafrost and a Future, Warmer Arctic, Science, 321, 1648–1648, https://doi.org/10.1126/science.1157525, 2008.
Frolking, S., Roulet, N., and Fuglestvedt, J.: How northern peatlands influence the Earth's radiative budget: Sustained methane emission versus sustained carbon sequestration, J. Geophys. Res., 111, G01008, https://doi.org/10.1029/2005JG000091, 2006.
Frost, G. V. and Epstein, H. E.: Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s, Glob. Change Biol., 20, 1264–1277, https://doi.org/10.1111/gcb.12406, 2014.
Furayev, V., Vaganov, E. A., Tchebakova, N. M., and Valendik, E. N.: Effects of Fire and Climate on Successions and Structural Changes in The Siberian Boreal Forest, Eurasian Journal of Forest Research, 2, 1–15, 2001.
Gamon, J. A., Kershaw, G. P., Williamson, S., and Hik, D. S.: Microtopographic patterns in an arctic baydjarakh field: do fine-grain patterns enforce landscape stability?, Environ. Res. Lett., 7, 015502, https://doi.org/10.1088/1748-9326/7/1/015502, 2012.
Genet, H., Mcguire, A. D., Barrett, K., Breen, A., Euskirchen, E. S., Johnstone, J. F., Kasischke, E. S., Melvin, A. M., Bennett, A., Mack, M. C., Rupp, T. S., Schuur, A. E. G., Turetsky, M. R., and Yuan, F.: Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska, Environ. Res. Lett., 8, 045016, https://doi.org/10.1088/1748-9326/8/4/045016, 2013.
Gill, H. K., Lantz, T. C., O'Neill, B., and Kokelj, S. V.: Cumulative Impacts and Feedbacks of a Gravel Road on Shrub Tundra Ecosystems in the Peel Plateau, Northwest Territories, Canada, Arct. Antarct. Alp. Res., 46, 947–961, https://doi.org/10.1657/1938-4246-46.4.947, 2014.
Goodrich, L. E.: The influence of snow cover on the ground thermal regime, Can. Geotech. J., 19, 421–432, https://doi.org/10.1139/t82-047, 1982.
Gouttevin, I., Ménégoz, M., Domine, F., Krinner, G., Koven, C., Ciais, P., Tarnocai, C., and Boike, J.: How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area, J. Geophys. Res., 117, G02020, https://doi.org/10.1029/2011JG001916, 2012.
Göckede, M., Kittler, F., Kwon, M. J., Burjack, I., Heimann, M., Kolle, O., Zimov, N., and Zimov, S.: Shifted energy fluxes, increased Bowen ratios, and reduced thaw depths linked with drainage-induced changes in permafrost ecosystem structure, The Cryosphere, 11, 2975–2996, https://doi.org/10.5194/tc-11-2975-2017, 2017.
Graven, H. D., Keeling, R. F., Piper, S. C., Patra, P. K., Stephens, B. B., Wofsy, S. C., Welp, L. R., Sweeney, C., Tans, P. P., Kelley, J. J., Daube, B. C., Kort, E. A., Santoni, G. W., and Bent, J. D.: Enhanced Seasonal Exchange of CO2 by Northern Ecosystems Since 1960, Science, 341, 1085–1089, https://doi.org/10.1126/science.1239207, 2013.
Guay, K. C., Beck, P. S. A., Berner, L. T., Goetz, S. J., Baccini, A., and Buermann, W.: Vegetation productivity patterns at high northern latitudes: a multi-sensor satellite data assessment, Glob. Change Biol., 20, 3147–3158, https://doi.org/10.1111/gcb.12647, 2014.
Halsey, L. A., Vitt, D. H., and Zoltai, S. C.: Disequilibrium response of permafrost in boreal continental western Canada to climate change, Climatic Change, 30, 57–73, https://doi.org/10.1007/BF01093225, 1995.
Harden, J. W., Trumbore, S. E., Stocks, B. J., Hirsch, A., Gower, S. T., O'neill, K. P., and Kasischke, E. S.: The role of fire in the boreal carbon budget, Glob. Change Biol., 6, 174–184, https://doi.org/10.1046/j.1365-2486.2000.06019.x, 2000.
Harms, T. K., Abbott, B. W., and Jones, J. B.: Thermo-erosion gullies increase nitrogen available for hydrologic export, Biogeochemistry, 117, 299–311, https://doi.org/10.1007/s10533-013-9862-0, 2014.
Hayes, D. J., Mcguire, A. D., Kicklighter, D. W., Gurney, K. R., Burnside, T. J., and Melillo, J. M.: Is the northern high-latitude land-based CO2 sink weakening?, 25, GB3018, https://doi.org/10.1029/2010GB003813, 2011.
Heijmans, M. M. P. D., Arp, W. J., and Chapin III, F. S.: Carbon dioxide and water vapour exchange from understory species in boreal forest, Agr. Forest Meteorol., 123, 135–147, https://doi.org/10.1016/j.agrformet.2003.12.006, 2004a.
Heijmans, M. M. P. D., Arp, W. J., and Chapin, F. S.: Controls on moss evaporation in a boreal black spruce forest, Global Biogeochem. Cy., 18, GB2004, https://doi.org/10.1029/2003GB002128, 2004b.
Helbig, M., Pappas, C., and Sonnentag, O.: Permafrost thaw and wildfire: Equally important drivers of boreal tree cover changes in the Taiga Plains, Canada, Geophys. Res. Lett., 43, 1598–1606, https://doi.org/10.1002/2015GL067193, 2016a.
Helbig, M., Wischnewski, K., Kljun, N., Chasmer, L. E., Quinton, W. L., Detto, M., and Sonnentag, O.: Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss, Glob. Change Biol., 22, 4048–4066, https://doi.org/10.1111/gcb.13348, 2016b.
Higgins, K. L. and Garon-Labrecque, M.-È.: Fine-scale influences on thaw depth in a forested peat plateau landscape in the Northwest Territories, Canada: Vegetation trumps microtopography, Permafrost Periglac., 29, 60–70, https://doi.org/10.1002/ppp.1961, 2018.
Hinkel, K. M. and Nelson, F. E.: Spatial and temporal patterns of active layer thickness at Circumpolar Active Layer Monitoring (CALM) sites in northern Alaska, 1995–2000, J. Geophys. Res., 108, 8168, https://doi.org/10.1029/2001jd000927, 2003.
Hinkel, K. M. and Outcalt, S. I.: Identification of heat-transfer processes during soil cooling, freezing, and thaw in central Alaska, Permafrost Periglac., 5, 217–235, https://doi.org/10.1002/ppp.3430050403, 1994.
Hinkel, K. M., Paetzold, F., Nelson, F. E., and Bockheim, J. G.: Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999, Global Planet. Change, 29, 293–309, 2001.
Hinzman, L. D., Kane, D. L., Gieck, R. E., and Everett, K. R.: Hydrologic and thermal properties of the active layer in the Alaskan Arctic, Cold Reg. Sci. Technol., 19, 95–110, https://doi.org/10.1016/0165-232X(91)90001-W, 1991.
Hobbie, S.: Temperature and Plant Species Control Over Litter Decomposition in Alaskan Tundra, Ecol. Monogr., 66, 503–522, 1996.
Hobbie, S. E. and Gough, L.: Litter decomposition in moist acidic and non-acidic tundra with different glacial histories, Oecologia, 140, 113–124, https://doi.org/10.1007/s00442-004-1556-9, 2004.
Hu, F. S., Higuera, P. E., Walsh, J. E., Chapman, W. L., Duffy, P. A., Brubaker, L. B., and Chipman, M. L.: Tundra burning in Alaska: Linkages to climatic change and sea ice retreat, J. Geophys. Res., 115, G04002, https://doi.org/10.1029/2009JG001270, 2010.
Huntington, H., Arnbom, T., Danielson, F., Enghoff, M., Euskirchen, E., Forbes, B., Kurvits, T., Levermann, N., Lovstrom, P., Mustonen, K., Mustonen, T., Schiots, M., Sommerkorn, M., Svoboda, M., Topp-Jorgenson, E., and York, G.: Disturbance, feedbacks and conservation, in Arctic Biodiversity Assessment Status and trends in Arctic biodiversity, Akureyri: Conservation of Arctic Flora and Fauna, available at: https://oaarchive.arctic-council.org/handle/11374/223 (last access: 30 August 2018), 2013.
Iijima, Y., Fedorov, A. N., Park, H., Suzuki, K., Yabuki, H., Maximov, T. C., and Ohata, T.: Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia, Permafrost Periglac., 21, 30–41, https://doi.org/10.1002/ppp.662, 2010.
Iijima, Y., Ohta, T., Kotani, A., Fedorov, A. N., Kodama, Y., and Maximov, T. C.: Sap flow changes in relation to permafrost degradation under increasing precipitation in an eastern Siberian larch forest, Ecohydrology, 7, 177–187, https://doi.org/10.1002/eco.1366, 2014.
Iversen, C. M., Sloan, V. L., Sullivan, P. F., Euskirchen, E. S., Mcguire, A. D., Norby, R. J., Walker, A. P., Warren, J. M., and Wullschleger, S. D.: The unseen iceberg: plant roots in arctic tundra, New Phytol., 205, 34–58, https://doi.org/10.1111/nph.13003, 2015.
Iwahana, G., Machimura, T., and Kobayashi, Y.: Influence of forest clear-cutting on the thermal and hydrological regime of the active layer near Yakutsk, eastern Siberia, J. Geophys. Res.-Earth, 110, G02004, https://doi.org/10.1029/2005JG000039, 2005.
Jafarov, E. E., Romanovsky, V. E., Genet, H., David McGuire, A., and Marchenko, S. S.: The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate, Environ. Res. Lett., 8, 035030, https://doi.org/10.1088/1748-9326/8/3/035030, 2013.
Jean, M. and Payette, S.: Dynamics of active layer in wooded palsas of northern Quebec, Geomorphology, 206, 87–96, https://doi.org/10.1016/j.geomorph.2013.10.001, 2014a.
Jean, M. and Payette, S.: Effect of Vegetation Cover on the Ground Thermal Regime of Wooded and Non-Wooded Palsas, Permafrost Periglac., 25, 281–294, https://doi.org/10.1002/ppp.1817, 2014b.
Jia, G., Epstein, H., and Walker, D.: Greening of arctic Alaska, 1981–2001, Geophys. Res. Lett., 30, 2067, https://doi.org/10.1029/2003GL018268, 2003.
Jiang, Y., Rocha, A. V., O'Donnell, J. A., Drysdale, J. A., Rastetter, E. B., Shaver, G. R., and Zhuang, Q.: Contrasting soil thermal responses to fire in Alaskan tundra and boreal forest, J. Geophys. Res.-Earth, 120, 363–378, https://doi.org/10.1002/2014jf003180, 2015.
Jin, Y., SCHAAF, C., Gao, F., Li, X., STRAHLER, A., Zeng, X., and Dickinson, R.: How does snow impact the albedo of vegetated land surfaces as analyzed with MODIS data?, Geophys. Res. Lett., 29, 12–11, 2002.
Jin, Y., Randerson, J. T., Goetz, S. J., Beck, P. S. A., Loranty, M. M., and Goulden, M. L.: The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests, J. Geophys. Res., 117, G01036, https://doi.org/10.1029/2011JG001886, 2012.
Johansen, O.: Thermal conductivity of soils (No. CRREL-TL-637), Cold Regions Research and Engineering Lab Hanover NH, 1977.
Johansson, T., Malmer, N., Crill, P. M., Friborg, T., ÅKERMAN, J. H., Mastepanov, M., and Christensen, T. R.: Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing, Glob. Change Biol., 12, 2352–2369, https://doi.org/10.1111/j.1365-2486.2006.01267.x, 2006.
Johnstone, J. F., Hollingsworth, T. N., Chapin III, F. S., and Mack, M. C.: Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest, Glob. Change Biol., 16, 1281–1295, https://doi.org/10.1111/j.1365-2486.2009.02051.x, 2010.
Jones, B. M., Kolden, C. A., Jandt, R., Abatzoglou, J. T., Urban, F., and Arp, C. D.: Fire Behavior, Weather, and Burn Severity of the 2007 Anaktuvuk River Tundra Fire, North Slope, Alaska, Arct. Antarct. Alp. Res., 41, 309–316, https://doi.org/10.1657/1938-4246-41.3.309, 2009.
Jones, B. M., Breen, A. L., Gaglioti, B. V., Mann, D. H., Rocha, A. V., Grosse, G., Arp, C. D., Kunz, M. L., and Walker, D. A.: Identification of unrecognized tundra fire events on the north slope of Alaska, J. Geophys. Res.-Biogeosci., 118, 1334–1344, https://doi.org/10.1002/jgrg.20113, 2013.
Jones, B. M., Grosse, G., Arp, C. D., Miller, E., Liu, L., Hayes, D. J., and Larsen, C. F.: Recent Arctic tundra fire initiates widespread thermokarst development, Scientific Reports, 5, 15865, https://doi.org/10.1038/srep15865, 2015.
Jones, M. C., Grosse, G., Jones, B. M., and Walter Anthony, K.: Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska, J. Geophys. Res., 117, G00M07, https://doi.org/10.1029/2011JG001766, 2012.
Jorgensen, C. J., Johansen, K. M. L., Westergaard-Nielsen, A., and Elberling, B.: Net regional methane sink in High Arctic soils of northeast Greenland, Nat. Geosci., 8, 20–23, https://doi.org/10.1038/NGEO2305, 2015.
Jorgenson, M. T. and Osterkamp, T. E.: Response of boreal ecosystems to varying modes of permafrost degradation, Can. J. Forest Res., 35, 2100–2111, https://doi.org/10.1139/x05-153, 2005.
Jorgenson, M. T., Racine, C. H., Walters, J. C., and Osterkamp, T. E.: Permafrost degradation and ecological changes associated with a warming climate in central Alaska, Climatic Change, 48, 551–579, 2001.
Jorgenson, M. T., Shur, Y. L., and Pullman, E. R.: Abrupt increase in permafrost degradation in Arctic Alaska, Geophys. Res. Lett., 33, L02503, https://doi.org/10.1029/2005GL024960, 2006.
Jorgenson, M. T., Romanovsky, V., Harden, J., Shur, Y., O'Donnell, J., Schuur, E. A. G., Kanevskiy, M., and Marchenko, S.: Resilience and vulnerability of permafrost to climate change, Can. J. Forest Res., 40, 1219–1236, 2010.
Jorgenson, M. T., HARDEN, J., and Kanevskiy, M.: Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes, Environ. Res. Lett., 8, 035017, https://doi.org/10.1088/1748-9326/8/3/035017, 2013.
Juday, G. P., Alix, C., and Grant III, T. A.: Spatial coherence and change of opposite white spruce temperature sensitivities on floodplains in Alaska confirms early-stage boreal biome shift, Forest Ecol. Manag., 350, 46–61, https://doi.org/10.1016/j.foreco.2015.04.016, 2015.
Juszak, I., Erb, A. M., Maximov, T. C., and Schaepman-Strub, G.: Arctic shrub effects on NDVI, summer albedo and soil shading, Remote Sens. Environ., 153, 79–89, https://doi.org/10.1016/j.rse.2014.07.021, 2014.
Juszak, I., Eugster, W., Heijmans, M. M. P. D., and Schaepman-Strub, G.: Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra, Biogeosciences, 13, 4049–4064, https://doi.org/10.5194/bg-13-4049-2016, 2016.
Kane, D. L., Hinzman, L. D., Benson, C. S., and Everett, K. R.: Hydrology of Imnavait Creek, an arctic watershed, Ecography, 12, 262–269, https://doi.org/10.1111/j.1600-0587.1989.tb00845.x, 1989.
Kane, D. L., Hinkel, K. M., Goering, D. J., Hinzman, L. D., and Outcalt, S. I.: Non-conductive heat transfer associated with frozen soils, Global Planet. Change, 29, 275–292, 2001.
Kane, E. S., Kasischke, E. S., Valentine, D. W., Turetsky, M. R., and Mcguire, A. D.: Topographic influences on wildfire consumption of soil organic carbon in interior Alaska: Implications for black carbon accumulation, J. Geophys. Res., 112, G03017, https://doi.org/10.1029/2007JG000458, 2007.
Kasischke, E. and Johnstone, J.: Variation in postfire organic layer thickness in a black spruce forest complex in interior Alaska and its effects on soil temperature and moisture, Can. J. For. Res., 35, 2164–2177, 2005.
Kasischke, E. and Turetsky, M.: Recent changes in the fire regime across the North American boreal region-spatial and temporal patterns of burning across Canada and Alaska, Geophys. Res. Lett., 33, L09703, https://doi.org/10.1029/2006GL025677, 2006.
Kasurinen, V., Alfredsen, K., Kolari, P., Mammarella, I., Alekseychik, P., Rinne, J., Vesala, T., Bernier, P., Boike, J., Langer, M., Belelli Marchesini, L., van Huissteden, K., Dolman, H., Sachs, T., Ohta, T., Varlagin, A., Rocha, A., Arain, A., Oechel, W., Lund, M., Grelle, A., Lindroth, A., Black, A., Aurela, M., Laurila, T., Lohila, A., and Berninger, F.: Latent heat exchange in the boreal and arctic biomes, Glob. Change Biol., 20, 3439–3456, https://doi.org/10.1111/gcb.12640, 2014.
Kelly, R., Chipman, M. L., Higuera, P. E., Stefanova, I., Brubaker, L. B., and Hu, F. S.: Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years, P. Natl. Acad. Sci. USA, 110, 13055–13060, https://doi.org/10.1073/pnas.1305069110, 2013.
Kershaw, G. P.: Some abiotic consequences of the CANOL Crude Oil Pipeline Project, 35 years after abandonment, Proceedings of the Fourth International Conference on Permafrost, 595–600, 1983.
Kershaw, G. P.: Snowpack Characteristics Following Wildfire on a Simulated Transport Corridor and Adjacent Subarctic Forest, Tulita, N.W.T., Canada, Arct. Antarct. Alp. Res., 33, 131–139, https://doi.org/10.2307/1552213, 2001.
Kershaw, G. P. and McCulloch, J.: Midwinter Snowpack Variation Across the Arctic Treeline, Churchill, Manitoba, Canada, Arct. Antarct. Alp. Res., 39, 9–15, https://doi.org/10.1657/1523-0430(2007)39[9:msvata]2.0.co;2, 2007.
Keuper, F., Bodegom, P. M., Dorrepaal, E., Weedon, J. T., Hal, J., Logtestijn, R. S. P., and Aerts, R.: A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands, Glob. Change Biol., 18, 1998–2007, https://doi.org/10.1111/j.1365-2486.2012.02663.x, 2012.
Kharuk, V. I., Ranson, K. J., and Dvinskaya, M. L.: Wildfires dynamic in the larch dominance zone, Geophys. Res. Lett., 35, L01402, https://doi.org/10.1029/2007GL032291, 2008.
Kharuk, V. I., Dvinskaya, M. L., and Ranson, K. J.: Fire return intervals within the northern boundary of the larch forest in Central Siberia, Int. J. Wildland Fire, 22, 207–6, https://doi.org/10.1071/WF11181, 2013.
Kholodov, A., Gilichinsky, D., Ostroumov, V., Sorokovikov, V. A., Abramov, A. A., Davydov, S., and Romanovsky, V.: Regional and local variability of modern natural changes in permafrost temperature in the Yakutian coastal lowlands, Northeastern Siberia, Proceedings of the Tenth International Conference on Permafrost, 2012.
Kling, G. W., Kipphut, G. W., and Miller, M. C.: Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets, Science, 251, 298–301, 1991.
Kokelj, S. V. and Jorgenson, M. T.: Advances in Thermokarst Research, Permafrost Periglac., 24, 108–119, https://doi.org/10.1002/ppp.1779, 2013.
Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P., Khvorostyanov, D., Krinner, G., and Tarnocai, C.: Permafrost carbon-climate feedbacks accelerate global warming, P. Natl. Acad. Sci., 108, 14769–14774, https://doi.org/10.1073/pnas.1103910108, 2011.
Kropp, H., Loranty, M., Alexander, H. D., Berner, L. T., Natali, S. M., and Spawn, S. A.: Environmental constraints on transpiration and stomatal conductance in a Siberian Arctic boreal forest, J. Geophys. Res.-Biogeo., 122, 487–497, https://doi.org/10.1002/2016JG003709, 2017.
Kukavskaya, E. A., Soja, A. J., Petkov, A. P., Ponomarev, E. I., Ivanova, G. A., and Conard, S. G.: Fire emissions estimates in Siberia: evaluation of uncertainties in area burned, land cover, and fuel consumption, Can. J. Forest Res., 43, 493–506, https://doi.org/10.1139/cjfr-2012-0367, 2012.
Landhäusser, S. M., and Wein, R. W.: Postfire Vegetation Recovery and Tree Establishment at the Arctic Treeline: Climate-Change-Vegetation-Response Hypotheses, J. Ecol., 81, 665–672, https://doi.org/10.2307/2261664, 1993.
Langer, M., Westermann, S., Muster, S., Piel, K., and Boike, J.: The surface energy balance of a polygonal tundra site in northern Siberia – Part 2: Winter, The Cryosphere, 5, 509–524, https://doi.org/10.5194/tc-5-509-2011, 2011a.
Langer, M., Westermann, S., Muster, S., Piel, K., and Boike, J.: The surface energy balance of a polygonal tundra site in northern Siberia – Part 1: Spring to fall, The Cryosphere, 5, 151–171, https://doi.org/10.5194/tc-5-151-2011, 2011b.
Lantz, T. C. and Kokelj, S. V.: Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, N.W.T., Canada, Geophys. Res. Lett., 35, L06502, https://doi.org/10.1029/2007GL032433, 2008.
Lantz, T. C., Marsh, P., and Kokelj, S. V.: Recent shrub proliferation in the Mackenzie Delta uplands and microclimatic implications, Ecosystems, 16, 47–59, https://doi.org/10.1007/s10021-012-9595-2, 2013.
Lara, M. J., Genet, H., McGuire, A. D., Euskirchen, E. S., Zhang, Y., Brown, D. R. N., Jorgenson, M. T., Romanovsky, V., Breen, A., and Bolton, W. R.: Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland, Glob. Change Biol., 22, 816–829, https://doi.org/10.1111/gcb.13124, 2016.
Lawrence, D. M. and Swenson, S. C.: Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming, Environ. Res. Lett., 6, 045504, https://doi.org/10.1088/1748-9326/6/4/045504, 2011.
Lee, X., Goulden, M. L., Hollinger, D. Y., Barr, A., and Black, T. A.: Observed increase in local cooling effect of deforestation at higher latitudes, Nature, 479, 384–387, https://doi.org/10.1038/nature10588, 2011.
Leibman, M., Khomutov, A., and Kizyakov, A.: Cryogenic landslides in the West-Siberian plain of Russia: classification, mechanisms, and landforms, in Landslides in Cold Regions in the Context of Climate Change, edited by: Shan, W., Guo, Y., Mauri, H., and Strom, A., Springer, 143–162, 2014.
Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E., and Li, S.: Local cooling and warming effects of forests based on satellite observations, Nat. Commun., 6, 1–8, https://doi.org/10.1038/ncomms7603, 2015.
Liljedahl, A., Hinzman, L., Busey, R., and Yoshikawa, K.: Physical short-term changes after a tussock tundra fire, Seward Peninsula, Alaska, J. Geophys. Res., 112, F02S07, https://doi.org/10.1029/2006JF000554, 2007.
Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V., Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. C., Matveyeva, N., Necsoiu, M., Raynolds, M. K., Romanovsky, V. E., Schulla, J., Tape, K. D., Walker, D. A., Wilson, C. J., Yabuki, H., and Zona, D.: Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology, Nat. Geosci., 9, 312–318, https://doi.org/10.1038/ngeo2674, 2016.
Liston, G. E., McFadden, J., Sturm, M., and Pielke, R.: Modelled changes in arctic tundra snow, energy and moisture fluxes due to increased shrubs, Glob. Change Biol., 8, 17–32, 2002.
Lloyd, A. H., Bunn, A. G., and Berner, L.: A latitudinal gradient in tree growth response to climate warming in the Siberian taiga, Glob. Change Biol., 17, 1935–1945, https://doi.org/10.1111/j.1365-2486.2010.02360.x, 2010.
Lopez C, M. L., Saito, H., Kobayashi, Y., Shirota, T., Iwahana, G., Maximov, T. C., and Fukuda, M.: Interannual environmental-soil thawing rate variation and its control on transpiration from Larix cajanderi, Central Yakutia, Eastern Siberia, J. Hydrol., 338, 251–260, https://doi.org/10.1016/j.jhydrol.2007.02.039, 2007.
Loranty, M. and Alexander, H. D.: RUI: Collaborative Research: Fire regime influences on carbon dynamics of Siberian boreal forests, Arctic Data Center, https://doi.org/10.18739/A2CD3V, 2014.
Loranty, M. M., Goetz, S. J., and Beck, P. S. A.: Tundra vegetation effects on pan-Arctic albedo, Environ. Res. Lett., 6, 024014, https://doi.org/10.1088/1748-9326/6/2/024014, 2011.
Loranty, M. M., Berner, L. T., Goetz, S. J., Jin, Y., and Randerson, J. T.: Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations, Glob. Change Biol., 20, 594–606, https://doi.org/10.1111/gcb.12391, 2014a.
Loranty, M. M., Natali, S. M., Berner, L. T., Goetz, S. J., Holmes, R. M., Davydov, S. P., Zimov, N. S., and Zimov, S. A.: Siberian tundra ecosystem vegetation and carbon stocks four decades after wildfire, J. Geophys. Res.-Biogeo., 119, 2144–2154, https://doi.org/10.1002/2014jg002730, 2014b.
Loranty, M. M., Liberman-Cribbin, W., Berner, L. T., Natali, S. M., Goetz, S. J., Alexander, H. D., and Kholodov, A. L.: Spatial variation in vegetation productivity trends, fire disturbance, and soil carbon across arctic-boreal permafrost ecosystems, Environ. Res. Lett., 11, 1–13, https://doi.org/10.1088/1748-9326/11/9/095008, 2016.
Loranty, M. M., Berner, L. T., Taber, E. D., Kropp, H., Natali, S. M., Alexander, H. D., Davydov, S. P., and Zimov, N. S.: Understory vegetation mediates permafrost active layer dynamics and carbon dioxide fluxes in open-canopy larch forests of northeastern Siberia, edited by: Rinnan, R., PLoS ONE, 13, e0194014, https://doi.org/10.1371/journal.pone.0194014, 2018.
Lynch, L. M., Machmuller, M. B., Cotrufo, M. F., Paul, E. A., and Wallenstein, M. D.: Tracking the fate of fresh carbon in the Arctic tundra: Will shrub expansion alter responses of soil organic matter to warming?, Soil Biol. Biochem., 120, 134–144, 2018.
Lyons, E. A., Jin, Y., and Randerson, J. T.: Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations, J. Geophys. Res., 113, 1–15, https://doi.org/10.1029/2007JG000606, 2008.
Macias-Fauria, M., Forbes, B. C., Zetterberg, P., and Kumpula, T.: Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems, Nat. Clim. Change, 2, 1–6, https://doi.org/10.1038/nclimate1558, 2012.
Mack, M. C., Treseder, K. K., Manies, K. L., Harden, J. W., Schuur, E. A. G., Vogel, J. G., Randerson, J. T., and Stuart Chapin, F.: Recovery of Aboveground Plant Biomass and Productivity After Fire in Mesic and Dry Black Spruce Forests of Interior Alaska, Ecosystems, 11, 209–225, https://doi.org/10.1007/s10021-007-9117-9, 2008.
Mack, M. C., Bret-Harte, M. S., Hollingsworth, T. N., Jandt, R. R., Schuur, E. A. G., Shaver, G. R., and Verbyla, D. L.: Carbon loss from an unprecedented Arctic tundra wildfire, Nature, 475, 489–492, https://doi.org/10.1038/nature10283, 2011.
Malhotra, A. and Roulet, N. T.: Environmental correlates of peatland carbon fluxes in a thawing landscape: do transitional thaw stages matter?, Biogeosciences, 12, 3119–3130, https://doi.org/10.5194/bg-12-3119-2015, 2015.
Malmer, N., Johansson, T., Olsrud, M., and Christensen, T. R.: Vegetation, climatic changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30 years, Glob. Change Biol., 11, 1895–1909, https://doi.org/10.1111/j.1365-2486.2005.01042.x, 2005.
Mamet, S. D. and Kershaw, G. P.: Multi-scale Analysis of Environmental Conditions and Conifer Seedling Distribution Across the Treeline Ecotone of Northern Manitoba, Canada, Ecosystems, 16, 295–309, https://doi.org/10.1007/s10021-012-9614-3, 2013.
Mamet, S. D., Chun, K. P., Kershaw, G. G. L., Loranty, M. M., and Peter Kershaw, G.: Recent Increases in Permafrost Thaw Rates and Areal Loss of Palsas in the Western Northwest Territories, Canada, Permafrost Periglac., 28, 619–633, https://doi.org/10.1002/ppp.1951, 2017.
Marsh, P., Bartlett, P., MackKay, M., Pohl, S., and Lantz, T.: Snowmelt energetics at a shrub tundra site in the western Canadian Arctic, Hydrol. Process, 24, 3603–3620, https://doi.org/10.1002/hyp.7786, 2010.
Ménard, C. B., Essery, R., and Pomeroy, J.: Modelled sensitivity of the snow regime to topography, shrub fraction and shrub height, Hydrol. Earth Syst. Sci., 18, 2375–2392, https://doi.org/10.5194/hess-18-2375-2014, 2014.
Morse, P. D., Wolfe, S. A., Kokelj, S. V., and Gaanderse, A. J. R.: The Occurrence and Thermal Disequilibrium State of Permafrost in Forest Ecotopes of the Great Slave Region, Northwest Territories, Canada, Permafrost Periglac., 27, 145–162, https://doi.org/10.1002/ppp.1858, 2015.
Mu, C. C., Abbott, B. W., Zhao, Q., Su, H., Wang, S. F., Wu, Q. B., Zhang, T. J., and Wu, X. D.: Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau, Geophys. Res. Lett., 44, 8945–8952, https://doi.org/10.1002/2017GL074338, 2017.
Myers-Smith, I. H. and Hik, D. S.: Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of tundra snow-shrub interactions, Ecol. Evol., 3, 3683–3700, https://doi.org/10.1002/ece3.710, 2013.
Myers-Smith, I. H., Arnesen, B. K., Thompson, R. M., and Chapin, F. S. I.: Cumulative impacts on Alaskan arctic tundra of a quarter century of road dust, Ecoscience, 13, 503–510, 2006.
Myers-Smith, I. H., Elmendorf, S. C., Beck, P. S. A., Wilmking, M., Hallinger, M., Blok, D., Tape, K. D., Rayback, S. A., Macias-Fauria, M., Forbes, B. C., Speed, J. D. M., Boulanger-Lapointe, N., Rixen, C., Lévesque, E., Schmidt, N. M., Baittinger, C., Trant, A. J., Hermanutz, L., Collier, L. S., Dawes, M. A., Lantz, T. C., Weijers, S., Jørgensen, R. H., Buchwal, A., Buras, A., Naito, A. T., Ravolainen, V., Schaepman-Strub, G., Wheeler, J. A., Wipf, S., Guay, K. C., Hik, D. S., and Vellend, M.: Climate sensitivity of shrub growth across the tundra biome, Nat. Clim. Change, 5, 887–891, https://doi.org/10.1038/nclimate2697, 2015.
Myneni, R., Keeling, C., Tucker, C., Asrar, G., and Nemani, R.: Increased plant growth in the northern high latitudes from 1981 to 1991, Nature, 386, 698–701, 1997.
Natali, S. M., Schuur, E. A. G., Trucco, C., Hicks Pries, C. E., Crummer, K. G., and Baron Lopez, A. F.: Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra, Glob. Change Biol., 17, 1394–1407, https://doi.org/10.1111/j.1365-2486.2010.02303.x, 2011.
Natali, S. M., Schuur, E. A. G., Mauritz, M., Schade, J. D., Celis, G., Crummer, K. G., Johnston, C., Krapek, J., Pegoraro, E., Salmon, V. G., and Webb, E. E.: Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra, J. Geophys. Res.-Biogeosci., 120, 525–537, https://doi.org/10.1002/2014jg002872, 2015.
Nauta, A. L., Heijmans, M. M. P. D., Blok, D., Limpens, J., Elberling, B., Gallagher, A., Li, B., Petrov, R. E., Maximov, T. C., van Huissteden, J., and Berendse, F.: Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source, Nat. Clim. Change, 5, 67–70, https://doi.org/10.1038/nclimate2446, 2014.
Nauta, A. L., Heijmans, M. M. P. D., Blok, D., Limpens, J., Elberling, B., Gallagher, A., Li, B., Petrov, R. E., Maximov, T. C., van Huissteden, J., and Berendse, F.: Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source, Nat. Clim. Change, 5, 67–70, https://doi.org/10.1038/nclimate2446, 2015.
Nossov, D. R., Torre Jorgenson, M., Kielland, K., and Kanevskiy, M. Z.: Edaphic and microclimatic controls over permafrost response to fire in interior Alaska, Environ. Res. Lett., 8, 035013, https://doi.org/10.1088/1748-9326/8/3/035013, 2013.
O'Donnell, J. A., Romanovsky, V. E., Harden, J. W., and Mcguire, A. D.: The Effect of Moisture Content on the Thermal Conductivity of Moss and Organic Soil Horizons From Black Spruce Ecosystems in Interior Alaska, Soil Science, 174, 646–651, https://doi.org/10.1097/ss.0b013e3181c4a7f8, 2009a.
O'Donnell, J. A., Turetsky, M., Harden, J., Manies, K., Pruett, L., Shetler, G., and Neff, J.: Interactive Effects of Fire, Soil Climate, and Moss on CO2 Fluxes in Black Spruce Ecosystems of Interior Alaska, Ecosystems, 12, 57–72, 2009b.
O'Donnell, J. A., Harden, J. W., McGuire, A. D., and Romanovsky, V. E.: Exploring the sensitivity of soil carbon dynamics to climate change, fire disturbance and permafrost thaw in a black spruce ecosystem, Biogeosciences, 8, 1367–1382, https://doi.org/10.5194/bg-8-1367-2011, 2011a.
O'Donnell, J. A., Harden, J. W., Mcguire, A. D., Kanevskiy, M. Z., Jorgenson, M. T., and Xu, X.: The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss, Glob. Change Biol., 17, 1461–1474, https://doi.org/10.1111/j.1365-2486.2010.02358.x, 2011b.
O'Donnell, J. A., Jorgenson, M. T., Harden, J. W., Mcguire, A. D., Kanevskiy, M. Z., and Wickland, K. P.: The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland, Ecosystems, 15, 213–229, https://doi.org/10.1007/s10021-011-9504-0, 2012.
Olefeldt, D., Turetsky, M. R., Crill, P. M., and Mcguire, A. D.: Environmental and physical controls on northern terrestrial methane emissions across permafrost zones, Glob. Change Biol., 19, 589–603, https://doi.org/10.1111/gcb.12071, 2012.
Olefeldt, D., Goswami, S., Grosse, G., and Hayes, D.: Circumpolar distribution and carbon storage of thermokarst landscapes, Nature, 7, 13043, https://doi.org/10.1038/ncomms13043, 2016.
Olofsson, J.: Short- and long-term effects of changes in reindeer grazing pressure on tundra heath vegetation, J. Ecol., 94, 431–440, https://doi.org/10.1111/j.1365-2745.2006.01100.x, 2006.
Olofsson, J., Kitti, H., Rautiainen, P., and Stark, S.: Effects of summer grazing by reindeer on composition of vegetation, productivity and nitrogen cycling, Ecography, 24, 13–24, https://doi.org/10.1034/j.1600-0587.2001.240103.x, 2001.
Olofsson, J., Hulme, P. E., Oksanen, L., and Suominen, O.: Importance of large and small mammalian herbivores for the plant community structure in the forest tundra ecotone, Oikos, 106, 324–334, https://doi.org/10.1111/j.0030-1299.2004.13224.x, 2004a.
Olofsson, J., Stark, S., and Oksanen, L.: Reindeer influence on ecosystem processes in the tundra, Oikos, 105, 386–396, https://doi.org/10.1111/j.0030-1299.2004.13048.x, 2004b.
Olofsson, J., Oksanen, L., Callaghan, T., Hulme, P. E., Oksanen, T., and Suominen, O.: Herbivores inhibit climate-driven shrub expansion on the tundra, Glob. Change Biol., 15, 2681–2693, https://doi.org/10.1111/j.1365-2486.2009.01935.x, 2009.
Osterkamp, T. E., Viereck, L., Shur, Y., Jorgenson, M. T., Racine, C., Doyle, A., and Boone, R. D.: Observations of thermokarst and its impact on boreal forests in Alaska, USA, Arct. Antarct. Alp. Res., 32, 303–315, 2000.
Osterkamp, T. E., Jorgenson, M. T., Schuur, E. A. G., Shur, Y. L., Kanevskiy, M. Z., Vogel, J. G., and Tumskoy, V. E.: Physical and ecological changes associated with warming permafrost and thermokarst in Interior Alaska, Permafrost Periglac., 20, 235–256, https://doi.org/10.1002/ppp.656, 2009.
Outcalt, S. I., Nelson, F. E., and Hinkel, K. M.: The zero-curtain effect: Heat and mass transfer across an isothermal region in freezing soil, Water Resour. Res., 26, 1509–1516, https://doi.org/10.1029/wr026i007p01509, 1990.
Park, H., Walsh, J., Fedorov, A. N., Sherstiukov, A. B., Iijima, Y., and Ohata, T.: The influence of climate and hydrological variables on opposite anomaly in active-layer thickness between Eurasian and North American watersheds, The Cryosphere, 7, 631–645, https://doi.org/10.5194/tc-7-631-2013, 2013.
Pearson, R. G., Phillips, S. J., Loranty, M. M., Beck, P. S. A., Damoulas, T., Knight, S. J., and Goetz, S. J.: Shifts in Arctic vegetation and associated feedbacks under climate change, Nat. Clim. Change, 3, 673–677, https://doi.org/10.1038/nclimate1858, 2013.
Peng, C., Ma, Z., Lei, X., Zhu, Q., Chen, H., Wang, W., Liu, S., Li, W., Fang, X., and Zhou, X.: A drought-induced pervasive increase in tree mortality across Canada's boreal forests, Nat. Clim. Change, 1, 467–471, https://doi.org/10.1038/nclimate1293, 2011.
Phoenix, G. K. and Bjerke, J. W.: Arctic browning: extreme events and trends reversing arctic greening, Glob. Change Biol., 22, 2960–2962, https://doi.org/10.1111/gcb.13261, 2016.
Plante, S., Champagne, E., Ropars, P., Boudreau, S., Lévesque, E., Tremblay, B., and Tremblay, J.-P.: Shrub cover in northern Nunavik: can herbivores limit shrub expansion?, Polar Biol., 37, 611–619, 2014.
Pomeroy, J. W., Bewley, D. S., Essery, R. L. H., Hedstrom, N. R., Link, T., Granger, R. J., Sicart, J. E., Ellis, C. R., and Janowicz, J. R.: Shrub tundra snowmelt, Hydrol. Process, 20, 923–941, https://doi.org/10.1002/hyp.6124, 2006.
Ponomarev, E. I., Kharuk, V. I., and Ranson, K. J.: Wildfires dynamics in siberian larch forests, Forests, 7, 125, https://doi.org/10.3390/f7060125, 2016.
Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., and Mommer, L.: Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control, New Phytol., 193, 30–50, 2012.
Racine, C., Jandt, R., Meyers, C., and Dennis, J.: Tundra fire and vegetation change along a hillslope on the Seward Peninsula, Alaska, USA, Arct. Antarct. Alp. Res., 36, 1–10, 2004.
Radville, L., McCormack, M. L., Post, E., and Eissenstat, D. M.: Root phenology in a changing climate, J. Exp. Bot., 67, 3617–3628, https://doi.org/10.1093/jxb/erw062, 2016.
Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess, P. G., Pfister, G., Mack, M. C., Treseder, K. K., Welp, L. R., Chapin, F. S., III, Harden, J. W., Goulden, M. L., Lyons, E., Neff, J. C., Schuur, E. A. G., and Zender, C. S.: The Impact of Boreal Forest Fire on Climate Warming, Science, 314, 1130–1132, https://doi.org/10.1126/science.1132075, 2006.
Rasmus, S., Lundell, R., and Saarinen, T.: Interactions between snow, canopy, and vegetation in a boreal coniferous forest, Plant Ecol. Divers., 4, 55–65, https://doi.org/10.1080/17550874.2011.558126, 2011.
Raynolds, M. K., Walker, D. A., Ambrosius, K. J., Brown, J., Everett, K. R., Kanevskiy, M., Kofinas, G. P., Romanovsky, V. E., Shur, Y., and Webber, P. J.: Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska, Glob. Change Biol., 20, 1211–1224, https://doi.org/10.1111/gcb.12500, 2014.
Robinson, S. D. and Moore, T. R.: The influence of permafrost and fire upon carbon accumulation in high boreal peatlands, Northwest Territories, Canada, Arct. Antarct. Alp. Res., 32, 155–f166, https://doi.org/10.2307/1552447, 2000.
Rocha, A. V. and Shaver, G. R.: Postfire energy exchange in arctic tundra: the importance and climatic implications of burn severity, Glob. Change Biol., 17, 2831–2841, https://doi.org/10.1111/j.1365-2486.2011.02441.x, 2011.
Rocha, A. V., Loranty, M. M., Higuera, P. E., Mack, M. C., Hu, F. S., Jones, B. M., Breen, A. L., Rastetter, E. B., Goetz, S. J., and Shaver, G. R.: The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing, Environ. Res. Lett., 7, 044039, https://doi.org/10.1088/1748-9326/7/4/044039, 2012.
Romanovsky, V. E. and Osterkamp, T. E.: Interannual variations of the thermal regime of the active layer and near-surface permafrost in northern Alaska, Permafrost Periglac., 6, 313–335, https://doi.org/10.1002/ppp.3430060404, 1995.
Romanovsky, V. E. and Osterkamp, T. E.: Thawing of the active layer on the coastal plain of the Alaskan Arctic, Permafrost Periglac., 8, 1–22, 1997.
Romanovsky, V. E. and Osterkamp, T. E.: Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost, Permafrost Periglac., 11, 219–239, 2000.
Romanovsky, V. E., Smith, S. L., and Christiansen, H. H.: Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007-2009: a synthesis, Permafrost Periglac., 21, 106–116, https://doi.org/10.1002/ppp.689, 2010.
Roy-Léveillée, P., Burn, C. R., and McDonald, I. D.: Vegetation-Permafrost Relations within the Forest-Tundra Ecotone near Old Crow, Northern Yukon, Canada, Permafrost Periglac., 25, 127–135, https://doi.org/10.1002/ppp.1805, 2014.
Rydén, B. E. and Kostov, L.: Thawing and freezing in tundra soils, Ecol. Bull., 30, 251–281, 1980.
Schulze, E.-D., Wirth, C., Mollicone, D., von Lüpke, N., Ziegler, W., Achard, F., Mund, M., Prokushkin, A., and Scherbina, S.: Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers, Biogeosciences, 9, 1405–1421, https://doi.org/10.5194/bg-9-1405-2012, 2012.
Schuur, E. A. G., Crummer, K. G., Vogel, J. G., and Mack, M. C.: Plant Species Composition and Productivity following Permafrost Thaw and Thermokarst in Alaskan Tundra, Ecosystems, 10, 280–292, https://doi.org/10.1007/s10021-007-9024-0, 2007.
Schuur, E. A. G., Abbott, B. W., Bowden, W. B., Brovkin, V., Camill, P., Canadell, J. G., Chanton, J. P., Chapin, F. S., Christensen, T. R., Ciais, P., Crosby, B. T., Czimczik, C. I., Grosse, G., HARDEN, J., Hayes, D. J., Hugelius, G., Jastrow, J. D., Jones, J. B., Kleinen, T., Koven, C. D., Krinner, G., Kuhry, P., Lawrence, D. M., Mcguire, A. D., Natali, S. M., O'Donnell, J. A., Ping, C. L., Riley, W. J., Rinke, A., Romanovsky, V. E., Sannel, A. B. K., Schädel, C., Schaefer, K., Sky, J., Subin, Z. M., Tarnocai, C., Turetsky, M. R., WALDROP, M. P., Anthony, K. M. W., WICKLAND, K. P., Wilson, C. J., and Zimov, S. A.: Expert assessment of vulnerability of permafrost carbon to climate change, Climatic Change, 119, 359–374, https://doi.org/10.1007/s10584-013-0730-7, 2013.
Schuur, E. A. G., Mcguire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Shiklomanov, N. I., Streletskiy, D. A., Nelson, F. E., Hollister, R. D., Romanovsky, V. E., Tweedie, C. E., Bockheim, J. G., and Brown, J.: Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska, J. Geophys. Res., 115, G00I04, https://doi.org/10.1029/2009JG001248, 2010.
Shur, Y. L. and Jorgenson, M. T.: Patterns of permafrost formation and degradation in relation to climate and ecosystems, Permafrost Periglac., 18, 7–19, https://doi.org/10.1002/ppp.582, 2007.
Sjöberg, Y., Coon, E., K Sannel, A. B., Pannetier, R., Harp, D., Frampton, A., Painter, S. L., and Lyon, S. W.: Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling, Water Resour. Res., 52, 1591–1606, https://doi.org/10.1002/2015WR017571, 2016.
Slater, A. G. and Lawrence, D. M.: Diagnosing Present and Future Permafrost from Climate Models, J. Climate, 26, 5608–5623, https://doi.org/10.1175/JCLI-D-12-00341.1, 2013.
Smith, M. W.: Microclimatic Influences on Ground Temperatures and Permafrost Distribution, Mackenzie Delta, Northwest Territories, Can. J. Earth Sci., 12, 1421–1438, https://doi.org/10.1139/e75-129, 1975.
Sofronov, M. and Volokitina, A.: Wildfire Ecology in Continuous Permafrost Zone, in Permafrost Ecosystems Siberian Larch Forests, edited by: Osawa, A., Zyryanova, O. A., Matsuura, Y., Kajimoto, T., and Wein, R. W., Springer, New York, 2010.
Soudzilovskaia, N. A., Van Bodegom, P. M., and Cornelissen, J. H. C.: Dominant bryophyte control over high-latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation, edited by: Schweitzer, J., Funct. Ecol., 27, 1442–1454, https://doi.org/10.1111/1365-2435.12127, 2013.
Stiegler, C., Johansson, M., Christensen, T. R., Mastepanov, M., and Lindroth, A.: Tundra permafrost thaw causes significant shifts in energy partitioning, Tellus B, 68, 1–11, https://doi.org/10.3402/tellusb.v68.30467, 2016a.
Stiegler, C., Lund, M., Christensen, T. R., Mastepanov, M., and Lindroth, A.: Two years with extreme and little snowfall: effects on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem, The Cryosphere, 10, 1395–1413, https://doi.org/10.5194/tc-10-1395-2016, 2016b.
Stieglitz, M.: The role of snow cover in the warming of arctic permafrost, Geophys. Res. Lett., 30, 1–4, https://doi.org/10.1029/2003GL017337, 2003.
Stoy, P. C., Street, L. E., Johnson, A. V., Prieto-Blanco, A., and Ewing, S. A.: Temperature, Heat Flux, and Reflectance of Common Subarctic Mosses and Lichens under Field Conditions: Might Changes to Community Composition Impact Climate-Relevant Surface Fluxes?, Arct. Antarct. Alp. Res., 44, 500–508, https://doi.org/10.1657/1938-4246-44.4.500, 2012.
Sturm, M., Holmgren, J., and Liston, G. E.: A seasonal snow cover classification system for local to global applications, J. Climate, 8, 1261–1283, https://doi.org/10.1175/1520-0442(1995)008<1261:assccs>2.0.co;2, 1995.
Sturm, M., McFadden, J., Liston, G. E., and Chapin III, F. S.: Snow–Shrub Interactions in Arctic Tundra: A Hypothesis with Climatic Implications, J. Climate, 14, 336–344, 2001.
Sturm, M., Douglas, T., Racine, C., and Liston, G. E.: Changing snow and shrub conditions affect albedo with global implications, J. Geophys. Res., 110, G01004, https://doi.org/10.1029/2005jg000013, 2005.
Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B., and Doney, S. C.: Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect, P. Natl. Acad. Sci. USA, 107, 1295–1300, https://doi.org/10.1073/pnas.0913846107, 2010.
Tape, K., Sturm, M., and Racine, C.: The evidence for shrub expansion in Northern Alaska and the Pan-Arctic, Glob. Change Biol., 12, 686–702, https://doi.org/10.1111/gcb.2006.12.issue-4, 2006.
Tchebakova, N., Parfenova, E., and Soja, A.: The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate, Environ. Res. Lett., 4, 045013, https://doi.org/10.1088/1748-9326/4/4/045013, 2009.
te Beest, M., Sitters, J., Ménard, C. B., and Olofsson, J.: Reindeer grazing increases summer albedo by reducing shrub abundance in Arctic tundra, Environ. Res. Lett., 11, 125013–125014, https://doi.org/10.1088/1748-9326/aa5128, 2016.
Turetsky, M. R., Kane, E. S., Harden, J. W., Ottmar, R. D., Manies, K. L., Hoy, E., and Kasischke, E. S.: Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands, Nat. Geosci., 4, 27–31, https://doi.org/10.1038/ngeo1027, 2011.
Urban, M., Forkel, M., Schmullius, C., Hese, S., Hüttich, C., and Herold, M.: Identification of land surface temperature and albedo trends in AVHRR Pathfinder data from 1982 to 2005 for northern Siberia, Int. J. Remote Sens., 34, 4491–4507, 2013.
van der Wal, R., van Lieshout, S. M. J., and Loonen, M. J. J. E.: Herbivore impact on moss depth, soil temperature and arctic plant growth, Polar Biol., 24, 29–32, https://doi.org/10.1007/s003000000170, 2001.
Vavrek, M. C., Fetcher, N., McGraw, J. B., Shaver, G. R., Chapin III, F. S., and Bovard, B.: Recovery of productivity and species diversity in tussock tundra following disturbance, Arct. Antarct. Alp. Res., 31, 254–258, 1999.
Väisänen, M., Ylänne, H., Kaarlejärvi, E., Sjögersten, S., Olofsson, J., Crout, N., and Stark, S.: Consequences of warming on tundra carbon balance determined by reindeer grazing history, Nat. Clim. Change, 4, 384–388, https://doi.org/10.1038/nclimate2147, 2014.
Viereck, L. A., Werdin-Pfisterer, N. R., Adams, P. C., and Yoshikawa, K.: Effect of wildfire and fireline construction on the annual depth of thaw in a black spruce permafrost forest in interior Alaska: a 36-year record of recovery, Proceedings of the Ninth International Conference on Permafrost, 1845–1850, 2008.
Voigt, C., Marushchak, M. E., Lamprecht, R. E., Jackowicz-Korczynski, M., Lindgren, A., Mastepanov, M., Granlund, L., Christensen, T. R., Tahvanainen, T., Martikainen, P. J., and Biasi, C.: Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw, P. Natl. Acad. Sci. USA, 114, 6238–6243, https://doi.org/10.1073/pnas.1702902114, 2017.
Wagner, A. M., Lindsey, N. J., Dou, S., Gelvin, A., Saari, S., Williams, C., Ekblaw, I., Ulrich, C., Borglin, S., Morales, A., and Ajo-Franklin, J.: Permafrost Degradation and Subsidence Observations during a Controlled Warming Experiment, Scientific Reports, 8, 10908, https://doi.org/10.1038/s41598-018-29292-y, 2018.
Walker, D. A. and Everett, K. R.: Road dust and its environmental impact on Alaskan taiga and tundra, Arct. Alp. Res., 19, 479–489, 1987.
Walker, D. A., Webber, P. J., Binnian, E. F., Everett, K. R., Lederer, N. D., Nordstrand, E. A., and Walker, M. D.: Cumulative impacts of oil fields on northern Alaskan landscapes, Science, 238, 757–761, 1987.
Walker, D. and Everett, K.: Loess ecosystems of northern Alaska: regional gradient and toposequence at Prudhoe Bay, Ecol. Monogr., 61, 437–464, 1991.
Walker, D. A., Billings, W. D., and De Molenaar, J. G.: Snow–vegetation interactions in tundra environments, Snow ecology: an interdisciplinary examination of snow-covered ecosystems, 266–324, 2001.
Walker, M., Wahren, C., Hollister, R., Henry, G., Ahlquist, L. E., Alatalo, J. M., Bret-Harte, M. S., Calef, M. P., Callaghan, T. V., Carroll, A. B., Epstein, H. E., Jonsdottir, I. S., Klein, J. A., Magnusson, B., Molau, U., Oberbauer, S. F., Rewa, S. P., Robinson, C. H., Shaver, G. R., Suding, K. N., Thompson, C. C., Tolvanen, A., Totland, O., Turner, P. L., Webber, C. E. T. J., and Wookey, P. A.: Plant community responses to experimental warming across the tundra biome, P. Natl. Acad. Sci. USA, 103, 1342–1346, 2006.
Walker, X. and Johnstone, J. F.: Widespread negative correlations between black spruce growth and temperature across topographic moisture gradients in the boreal forest, Environ. Res. Lett., 9, 064016, https://doi.org/10.1088/1748-9326/9/6/064016, 2014.
Walker, X. J., Mack, M. C., and Johnstone, J. F.: Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests, Glob. Change Biol., 21, 3102–3113, https://doi.org/10.1111/gcb.12893, 2015.
Walter, K. M., Smith, L. C., and Stuart Chapin, F.: Methane bubbling from northern lakes: present and future contributions to the global methane budget, Philos. T. Roy. Soc. A, 365, 1657–1676, https://doi.org/10.1098/rsta.2007.2036, 2007.
Walter, K. M., Chanton, J. P., Chapin, F. S., Schuur, E. A. G., and Zimov, S. A.: Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages, J. Geophys. Res., 113, G00A08, https://doi.org/10.1029/2007JG000569, 2008.
Webb, E. E., Heard, K., Natali, S. M., Bunn, A. G., Alexander, H. D., Berner, L. T., Kholodov, A., Loranty, M. M., Schade, J. D., Spektor, V., and Zimov, N.: Variability in above- and belowground carbon stocks in a Siberian larch watershed, Biogeosciences, 14, 4279–4294, https://doi.org/10.5194/bg-14-4279-2017, 2017.
Webster, C., Rutter, N., Zahner, F., and Jonas, T.: Measurement of Incoming Radiation below Forest Canopies: A Comparison of Different Radiometer Configurations, J. Hydrometeorol., 17, 853–864, https://doi.org/10.1175/JHM-D-15-0125.1, 2016.
Welp, L. R., Patra, P. K., Rödenbeck, C., Nemani, R., Bi, J., Piper, S. C., and Keeling, R. F.: Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI, Atmos. Chem. Phys., 16, 9047–9066, https://doi.org/10.5194/acp-16-9047-2016, 2016.
Williamson, S. N., Barrio, I. C., Hik, D. S., and Gamon, J. A.: Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic, Glob. Change Biol., 22, 3621–3631, https://doi.org/10.1111/gcb.13297, 2016.
Woo, M.: Consequences of climatic change for hydrology in permafrost zones, J. Cold Reg. Eng., 4, 15–20, https://doi.org/10.1061/(ASCE)0887-381X(1990)4:1(15), 1990.
Woo, M.-K., Mollinga, M., and Smith, S. L.: Climate warming and active layer thaw in the boreal and tundra environments of the Mackenzie Valley, Can. J. Earth Sci., 44, 733–743, https://doi.org/10.1139/e06-121, 2007.
Xue, X., Peng, F., You, Q., Xu, M., and Dong, S.: Belowground carbon responses to experimental warming regulated by soil moisture change in an alpine ecosystem of the Qinghai–Tibet Plateau, Ecol. Evol., 5, 4063–4078, 2015.
Yi, S., Mcguire, A. D., Harden, J., Kasischke, E., Manies, K., Hinzman, L., Liljedahl, A., Randerson, J., Liu, H., Romanovsky, V., Marchenko, S., and Kim, Y.: Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance, J. Geophys. Res., 114, 1–20, https://doi.org/10.1029/2008JG000841, 2009.
Yoshikawa, K. and Hinzman, L. D.: Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska, Permafrost Periglac., 14, 151–160, https://doi.org/10.1002/ppp.451, 2003.
Yoshikawa, K., Bolton, W. R., Romanovsky, V. E., Fukuda, M., and Hinzman, L. D.: Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska, J. Geophys. Res., 108, 8148, https://doi.org/10.1029/2001JD000438, 2003.
Zamin, T. J. and Grogan, P.: Birch shrub growth in the low Arctic: the relative importance of experimental warming, enhanced nutrient availability, snow depth and caribou exclusion, Environ. Res. Lett., 7, 034027–10, https://doi.org/10.1088/1748-9326/7/3/034027, 2012.
Zeng, Z., Piao, S., Li, L. Z. X., Zhou, L., Ciais, P., Wang, T., Li, Y., Lian, X., Wood, E. F., Friedlingstein, P., Mao, J., Estes, L. D., Myneni, R. B., Peng, S., Shi, X., Seneviratne, S. I., and Wang, Y.: Climate mitigation from vegetation biophysical feedbacks during the past three decades, Nat. Clim. Change, 351, 600–608, https://doi.org/10.1038/nclimate3299, 2017.
Zhang, K., Kimball, J. S., Mu, Q., Jones, L. A., Goetz, S. J., and Running, S. W.: Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005, J. Hydrol., 379, 92–110, https://doi.org/10.1016/j.jhydrol.2009.09.047, 2009.
Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime: An overview, Rev. Geophys., 43, RG4002, https://doi.org/10.1029/2004RG000157, 2005.
Zhang, T., Heginbottom, J. A., Barry, R. G., and Brown, J.: Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere, Polar Geography, 24, 126–131, 2000.
Zimov, S. A., Zimov, N. S., Tikhonov, A. N., and Chapin III, F. S.: Mammoth steppe: a high-productivity phenomenon, Quaternary Sci. Rev., 57, 26–45, https://doi.org/10.1016/j.quascirev.2012.10.005, 2012.
Short summary
Vegetation and soils strongly influence ground temperature in permafrost ecosystems across the Arctic and sub-Arctic. These effects will cause differences rates of permafrost thaw related to the distribution of tundra and boreal forests. As the distribution of forests and tundra change, the effects of climate change on permafrost will also change. We review the ecosystem processes that will influence permafrost thaw and outline how they will feed back to climate warming.
Vegetation and soils strongly influence ground temperature in permafrost ecosystems across the...
Altmetrics
Final-revised paper
Preprint