Articles | Volume 16, issue 22
Biogeosciences, 16, 4377–4391, 2019
https://doi.org/10.5194/bg-16-4377-2019
Biogeosciences, 16, 4377–4391, 2019
https://doi.org/10.5194/bg-16-4377-2019

Research article 19 Nov 2019

Research article | 19 Nov 2019

Shifts in dimethylated sulfur concentrations and microbiome composition in the red-tide causing dinoflagellate Alexandrium minutum during a simulated marine heatwave

Elisabeth Deschaseaux et al.

Related authors

Coral reef origins of atmospheric dimethylsulfide at Heron Island, southern Great Barrier Reef, Australia
Hilton B. Swan, Graham B. Jones, Elisabeth S. M. Deschaseaux, and Bradley D. Eyre
Biogeosciences, 14, 229–239, https://doi.org/10.5194/bg-14-229-2017,https://doi.org/10.5194/bg-14-229-2017, 2017
Short summary

Related subject area

Biogeochemistry: Coastal Ocean
A Lagrangian study of the contribution of the Canary coastal upwelling to the nitrogen budget of the open North Atlantic
Derara Hailegeorgis, Zouhair Lachkar, Christoph Rieper, and Nicolas Gruber
Biogeosciences, 18, 303–325, https://doi.org/10.5194/bg-18-303-2021,https://doi.org/10.5194/bg-18-303-2021, 2021
Short summary
Denitrification by benthic foraminifera and their contribution to N-loss from a fjord environment
Constance Choquel, Emmanuelle Geslin, Edouard Metzger, Helena L. Filipsson, Nils Risgaard-Petersen, Patrick Launeau, Manuel Giraud, Thierry Jauffrais, Bruno Jesus, and Aurélia Mouret
Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021,https://doi.org/10.5194/bg-18-327-2021, 2021
Short summary
A numerical model study of the main factors contributing to hypoxia and its interannual and short-term variability in the East China Sea
Haiyan Zhang, Katja Fennel, Arnaud Laurent, and Changwei Bian
Biogeosciences, 17, 5745–5761, https://doi.org/10.5194/bg-17-5745-2020,https://doi.org/10.5194/bg-17-5745-2020, 2020
Short summary
The effects of decomposing invasive jellyfish on biogeochemical fluxes and microbial dynamics in an ultra-oligotrophic sea
Tamar Guy-Haim, Maxim Rubin-Blum, Eyal Rahav, Natalia Belkin, Jacob Silverman, and Guy Sisma-Ventura
Biogeosciences, 17, 5489–5511, https://doi.org/10.5194/bg-17-5489-2020,https://doi.org/10.5194/bg-17-5489-2020, 2020
Short summary
Using 226Ra and 228Ra isotopes to distinguish water mass distribution in the Canadian Arctic Archipelago
Chantal Mears, Helmuth Thomas, Paul B. Henderson, Matthew A. Charette, Hugh MacIntyre, Frank Dehairs, Christophe Monnin, and Alfonso Mucci
Biogeosciences, 17, 4937–4959, https://doi.org/10.5194/bg-17-4937-2020,https://doi.org/10.5194/bg-17-4937-2020, 2020
Short summary

Cited articles

Alcolombri, U., Ben-Dor, S., Feldmesser, E., Levin, Y., Tawfik, D. S., and Vardi, A.: Identification of the algal dimethyl sulfide-releasing enzyme: A missing link in the marine sulfur cycle, Science, 348, 1466–1469, https://doi.org/10.1126/science.aab1586, 2015. 
Anderson, D. M.: Physiology and bloom dynamics of toxic Alexandrium species, with emphasis on life cycle transitions, Nato Asi Series G Ecological Sciences, 41, 29–48, 1998. 
Anderson, D. M., Alpermann, T. J., Cembella, A. D., Collos, Y., Masseret, E., and Montresor, M.: The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health, Harmful Algae, 14, 10–35, 2012. 
Berdalet, E., Llaveria, G., and Simó, R.: Modulation of dimethylsulfoniopropionate (DMSP) concentration in an Alexandrium minutum (Dinophyceae) culture by small-scale turbulence: A link to toxin production?, Harmful Algae, 11, 88–95, https://doi.org/10.1016/j.hal.2011.08.003, 2011. 
Brimblecombe, P. and Shooter, D.: Photooxidation of dimethylsulfide in aqueous-solution, Mar. Chem., 19, 343–353, 1986. 
Download
Short summary
Here we report that abrupt increases in temperature–simulating marine heatwaves might have the potential to shape the physiological state and biogenic sulfur production in microalgae involved in harmful algal blooms. Changes in physiology and biochemistry seem to trigger a shift in the bacteria community associated with these microalgae. Since microalgae and associated bacteria play an important role in climate regulation, this could have serious consequences for our future ocean and climate.
Altmetrics
Final-revised paper
Preprint