Articles | Volume 17, issue 7
https://doi.org/10.5194/bg-17-1805-2020
https://doi.org/10.5194/bg-17-1805-2020
Research article
 | 
03 Apr 2020
Research article |  | 03 Apr 2020

Distribution and flux of dissolved iron in the peatland-draining rivers and estuaries of Sarawak, Malaysian Borneo

Xiaohui Zhang, Moritz Müller, Shan Jiang, Ying Wu, Xunchi Zhu, Aazani Mujahid, Zhuoyi Zhu, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang

Related authors

Distribution and fluxes of marine particles in the South China Sea continental slope: implications for carbon export
Shujin Guo, Mingliang Zhu, Wenlong Xu, Shan Zheng, Sumei Liu, Ying Wu, Juan Du, Chenhao Zhao, and Xiaoxia Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-2034,https://doi.org/10.5194/egusphere-2025-2034, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Nitrous oxide (N2O) in Macquarie Harbour, Tasmania
Johnathan Daniel Maxey, Neil D. Hartstein, Hermann W. Bange, and Moritz Müller
Biogeosciences, 21, 5613–5637, https://doi.org/10.5194/bg-21-5613-2024,https://doi.org/10.5194/bg-21-5613-2024, 2024
Short summary
Spatial and temporal dynamics of suspended sediment concentrations in coastal waters of the South China Sea, off Sarawak, Borneo: ocean colour remote sensing observations and analysis
Jenny Choo, Nagur Cherukuru, Eric Lehmann, Matt Paget, Aazani Mujahid, Patrick Martin, and Moritz Müller
Biogeosciences, 19, 5837–5857, https://doi.org/10.5194/bg-19-5837-2022,https://doi.org/10.5194/bg-19-5837-2022, 2022
Short summary
The influence of mesoscale climate drivers on hypoxia in a fjord-like deep coastal inlet and its potential implications regarding climate change: examining a decade of water quality data
Johnathan Daniel Maxey, Neil David Hartstein, Aazani Mujahid, and Moritz Müller
Biogeosciences, 19, 3131–3150, https://doi.org/10.5194/bg-19-3131-2022,https://doi.org/10.5194/bg-19-3131-2022, 2022
Short summary
CO2 emissions from peat-draining rivers regulated by water pH
Alexandra Klemme, Tim Rixen, Denise Müller-Dum, Moritz Müller, Justus Notholt, and Thorsten Warneke
Biogeosciences, 19, 2855–2880, https://doi.org/10.5194/bg-19-2855-2022,https://doi.org/10.5194/bg-19-2855-2022, 2022
Short summary

Related subject area

Biogeochemistry: Rivers & Streams
Temporal dynamics and environmental controls of carbon dioxide and methane fluxes measured by the eddy covariance method over a boreal river
Aki Vähä, Timo Vesala, Sofya Guseva, Anders Lindroth, Andreas Lorke, Sally MacIntyre, and Ivan Mammarella
Biogeosciences, 22, 1651–1671, https://doi.org/10.5194/bg-22-1651-2025,https://doi.org/10.5194/bg-22-1651-2025, 2025
Short summary
Shifts in organic matter character and microbial assemblages from glacial headwaters to downstream reaches in the Canadian Rocky Mountains
Hayley F. Drapeau, Suzanne E. Tank, Maria A. Cavaco, Jessica A. Serbu, Vincent L. St. Louis, and Maya P. Bhatia
Biogeosciences, 22, 1369–1391, https://doi.org/10.5194/bg-22-1369-2025,https://doi.org/10.5194/bg-22-1369-2025, 2025
Short summary
Molecular-level characterization of supraglacial dissolved and water-extractable organic matter along a hydrological flow path in a Greenland Ice Sheet micro-catchment
Eva L. Doting, Ian T. Stevens, Anne M. Kellerman, Pamela E. Rossel, Runa Antony, Amy M. McKenna, Martyn Tranter, Liane G. Benning, Robert G. M. Spencer, Jon R. Hawkings, and Alexandre M. Anesio
Biogeosciences, 22, 41–53, https://doi.org/10.5194/bg-22-41-2025,https://doi.org/10.5194/bg-22-41-2025, 2025
Short summary
Seasonal and spatial pattern of dissolved organic matter biodegradation and photodegradation in boreal humic waters
Artem V. Chupakov, Natalia V. Neverova, Anna A. Chupakova, Svetlana A. Zabelina, Liudmila S. Shirokova, Taissia Ya. Vorobyeva, and Oleg S. Pokrovsky
Biogeosciences, 21, 5725–5743, https://doi.org/10.5194/bg-21-5725-2024,https://doi.org/10.5194/bg-21-5725-2024, 2024
Short summary
The role of nitrogen and iron biogeochemical cycles in the production and export of dissolved organic matter in agricultural headwater catchments
Thibault Lambert, Rémi Dupas, and Patrick Durand
Biogeosciences, 21, 4533–4547, https://doi.org/10.5194/bg-21-4533-2024,https://doi.org/10.5194/bg-21-4533-2024, 2024
Short summary

Cited articles

Aucour, A. M., Tao, F. X., Moreiraturcq, P., Seyler, P., and Sheppard, S.: The Amazon River: behaviour of metals (Fe, Al, Mn) and dissolved organic matter in the initial mixing at the Rio Negro/Solimões confluence, Chem. Geol., 197, 271–285, 2003. 
Banfield, J. F., Barker, W. W., Welch, S. A., and Taunton, A.: Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere, P. Natl. Acad. Sci. USA, 96, 3404–3411, 1999. 
Batchelli, S., Muller, F. L. L., Chang, K. C., and Lee, C. L.: Evidence for strong but dynamic iron-humic colloidal associations in humic-rich coastal waters, Environ. Sci. Technol., 44, 8485–8490, 2010. 
Bergquist, B. A. and Boyle, E. A.: Iron isotopes in the Amazon River system: weathering and transport signatures, Earth Planet. Sc. Lett., 248, 54–68, 2006. 
Benoit, G.: Evidence of the particle concentration effect for lead and other metals in fresh waters based on ultraclean technique analyses, Geochim. Cosmochim. Ac., 59, 2677–2687, 1995. 
Download
Short summary
This study offered detailed information on dFe concentrations, distribution and the magnitude of yield in the Rajang River, the largest river in Malaysia. Three blackwater rivers, draining from peatlands, were also included in our study. Compared with the Rajang River, the dFe concentrations and yield from three blackwater rivers were much higher. The precipitation and agricultural activities, such as palm oil plantations, may markedly increase the concentration dFe in these tropical rivers.
Share
Altmetrics
Final-revised paper
Preprint