Articles | Volume 17, issue 22
https://doi.org/10.5194/bg-17-5513-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5513-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
N2O isotope approaches for source partitioning of N2O production and estimation of N2O reduction – validation with the 15N gas-flux method in laboratory and field studies
Dominika Lewicka-Szczebak
CORRESPONDING AUTHOR
Centre for Stable Isotope Research and Analysis, University of
Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
Institute of Geological Sciences, University of Wrocław, pl. M.
Borna 9, 50-204 Wrocław, Poland
Maciej Piotr Lewicki
Institute of Theoretical Physics, University of Wrocław, pl. M.
Borna 9, 50-204 Wrocław, Poland
Reinhard Well
Climate-Smart Agriculture, Thünen-Institut,
Bundesallee 65, 38116 Braunschweig, Germany
Related authors
Sushmita Deb, Mikk Espenberg, Reinhard Well, Michał Bucha, Marta Jakubiak, Ülo Mander, Mariusz-Orion Jędrysek, and Dominika Lewicka-Szczebak
Biogeosciences, 22, 5535–5556, https://doi.org/10.5194/bg-22-5535-2025, https://doi.org/10.5194/bg-22-5535-2025, 2025
Short summary
Short summary
This study investigates nitrogen cycling in groundwater from an agricultural area using organic fertilizer. The research combines isotope and microbial studies to track transformations. High-nitrate samples were incubated with a low addition of 15N tracer. Results showed a shift from archaeal nitrification to bacterial denitrification under low oxygen with glucose, confirmed by isotope and microbial analyses. The findings offer insights for improving water quality and pollution management.
Michał Bucha, Dominika Lewicka-Szczebak, and Piotr Wójtowicz
Atmos. Meas. Tech., 18, 897–908, https://doi.org/10.5194/amt-18-897-2025, https://doi.org/10.5194/amt-18-897-2025, 2025
Short summary
Short summary
We present a method for the determination of greenhouse gases (CH4, CO2, N2O) using a chromatographic system with a barrier ion discharge detector (BID) and a Carboxen 1010 capillary column. The system omits the need for an electron capture detector (ECD) containing radiogenic components for N2O analysis and a flame ionisation detector (FID) with a methaniser for CO2 samples. This simplification reduces analytical costs, facilitates instrument maintenance and improves measurement robustness.
Michal Bucha, Piotr Siupka, Anna Detman-Ignatowska, Sushmita Deb, Agnieszka Bylina, Daria Kaim, Aleksandra Chojnacka, Dominika Kufka, Dominika Lewicka-Szczebak, Anna Sikora, and Leszek Marynowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-236, https://doi.org/10.5194/egusphere-2025-236, 2025
Short summary
Short summary
In this work, we show the evidences of anaerobic activity of nitrogen-processing microorganisms that naturally occurred in outcropped organic-rich sediments as Miocene lignites. The results presented in this paper indicate the important role of nitrogen supply processes in environments depleted in this element and at the same time rich in humic substances, such as peat bogs, wetlands, immature sediments containing organic carbon (e.g. gyttja, fossil wood, coal).
Eliza Harris, Philipp Fischer, Maciej P. Lewicki, Dominika Lewicka-Szczebak, Stephen J. Harris, and Fernando Perez-Cruz
Biogeosciences, 21, 3641–3663, https://doi.org/10.5194/bg-21-3641-2024, https://doi.org/10.5194/bg-21-3641-2024, 2024
Short summary
Short summary
Greenhouse gases are produced and consumed via a number of pathways. Quantifying these pathways helps reduce the climate and environmental footprint of anthropogenic activities. The contribution of the pathways can be estimated from the isotopic composition, which acts as a fingerprint for these pathways. We have developed the Time-resolved FRactionation And Mixing Evaluation (TimeFRAME) model to simplify interpretation and estimate the contribution of different pathways and their uncertainty.
Lena Rohe, Traute-Heidi Anderson, Heinz Flessa, Anette Goeske, Dominika Lewicka-Szczebak, Nicole Wrage-Mönnig, and Reinhard Well
Biogeosciences, 18, 4629–4650, https://doi.org/10.5194/bg-18-4629-2021, https://doi.org/10.5194/bg-18-4629-2021, 2021
Short summary
Short summary
This is the first experimental setup combining a complex set of methods (microbial inhibitors and isotopic approaches) to differentiate between N2O produced by fungi or bacteria during denitrification in three soils. Quantifying the fungal fraction with inhibitors was not successful due to large amounts of uninhibited N2O production. All successful methods suggested a small or missing fungal contribution. Artefacts occurring with microbial inhibition to determine N2O fluxes are discussed.
Sushmita Deb, Mikk Espenberg, Reinhard Well, Michał Bucha, Marta Jakubiak, Ülo Mander, Mariusz-Orion Jędrysek, and Dominika Lewicka-Szczebak
Biogeosciences, 22, 5535–5556, https://doi.org/10.5194/bg-22-5535-2025, https://doi.org/10.5194/bg-22-5535-2025, 2025
Short summary
Short summary
This study investigates nitrogen cycling in groundwater from an agricultural area using organic fertilizer. The research combines isotope and microbial studies to track transformations. High-nitrate samples were incubated with a low addition of 15N tracer. Results showed a shift from archaeal nitrification to bacterial denitrification under low oxygen with glucose, confirmed by isotope and microbial analyses. The findings offer insights for improving water quality and pollution management.
Michał Bucha, Dominika Lewicka-Szczebak, and Piotr Wójtowicz
Atmos. Meas. Tech., 18, 897–908, https://doi.org/10.5194/amt-18-897-2025, https://doi.org/10.5194/amt-18-897-2025, 2025
Short summary
Short summary
We present a method for the determination of greenhouse gases (CH4, CO2, N2O) using a chromatographic system with a barrier ion discharge detector (BID) and a Carboxen 1010 capillary column. The system omits the need for an electron capture detector (ECD) containing radiogenic components for N2O analysis and a flame ionisation detector (FID) with a methaniser for CO2 samples. This simplification reduces analytical costs, facilitates instrument maintenance and improves measurement robustness.
Michal Bucha, Piotr Siupka, Anna Detman-Ignatowska, Sushmita Deb, Agnieszka Bylina, Daria Kaim, Aleksandra Chojnacka, Dominika Kufka, Dominika Lewicka-Szczebak, Anna Sikora, and Leszek Marynowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-236, https://doi.org/10.5194/egusphere-2025-236, 2025
Short summary
Short summary
In this work, we show the evidences of anaerobic activity of nitrogen-processing microorganisms that naturally occurred in outcropped organic-rich sediments as Miocene lignites. The results presented in this paper indicate the important role of nitrogen supply processes in environments depleted in this element and at the same time rich in humic substances, such as peat bogs, wetlands, immature sediments containing organic carbon (e.g. gyttja, fossil wood, coal).
Eliza Harris, Philipp Fischer, Maciej P. Lewicki, Dominika Lewicka-Szczebak, Stephen J. Harris, and Fernando Perez-Cruz
Biogeosciences, 21, 3641–3663, https://doi.org/10.5194/bg-21-3641-2024, https://doi.org/10.5194/bg-21-3641-2024, 2024
Short summary
Short summary
Greenhouse gases are produced and consumed via a number of pathways. Quantifying these pathways helps reduce the climate and environmental footprint of anthropogenic activities. The contribution of the pathways can be estimated from the isotopic composition, which acts as a fingerprint for these pathways. We have developed the Time-resolved FRactionation And Mixing Evaluation (TimeFRAME) model to simplify interpretation and estimate the contribution of different pathways and their uncertainty.
Balázs Grosz, Reinhard Well, Rene Dechow, Jan Reent Köster, Mohammad Ibrahim Khalil, Simone Merl, Andreas Rode, Bianca Ziehmer, Amanda Matson, and Hongxing He
Biogeosciences, 18, 5681–5697, https://doi.org/10.5194/bg-18-5681-2021, https://doi.org/10.5194/bg-18-5681-2021, 2021
Short summary
Short summary
To assure quality predictions biogeochemical models must be current. We use data measured using novel incubation methods to test the denitrification sub-modules of three models. We aim to identify limitations in the denitrification modeling to inform next steps for development. Several areas are identified, most urgently improved denitrification control parameters and further testing with high-temporal-resolution datasets. Addressing these would significantly improve denitrification modeling.
Lena Rohe, Traute-Heidi Anderson, Heinz Flessa, Anette Goeske, Dominika Lewicka-Szczebak, Nicole Wrage-Mönnig, and Reinhard Well
Biogeosciences, 18, 4629–4650, https://doi.org/10.5194/bg-18-4629-2021, https://doi.org/10.5194/bg-18-4629-2021, 2021
Short summary
Short summary
This is the first experimental setup combining a complex set of methods (microbial inhibitors and isotopic approaches) to differentiate between N2O produced by fungi or bacteria during denitrification in three soils. Quantifying the fungal fraction with inhibitors was not successful due to large amounts of uninhibited N2O production. All successful methods suggested a small or missing fungal contribution. Artefacts occurring with microbial inhibition to determine N2O fluxes are discussed.
Lena Rohe, Bernd Apelt, Hans-Jörg Vogel, Reinhard Well, Gi-Mick Wu, and Steffen Schlüter
Biogeosciences, 18, 1185–1201, https://doi.org/10.5194/bg-18-1185-2021, https://doi.org/10.5194/bg-18-1185-2021, 2021
Short summary
Short summary
Total denitrification, i.e. N2O and (N2O + N2) fluxes, of repacked soil cores were analysed for different combinations of soils and water contents. Prediction accuracy of (N2O + N2) fluxes was highest with combined proxies for oxygen demand (CO2 flux) and oxygen supply (anaerobic soil volume fraction). Knowledge of denitrification completeness (product ratio) improved N2O predictions. Substitutions with cheaper proxies (soil organic matter, empirical diffusivity) reduced prediction accuracy.
Cited articles
Aulakh, M. S., Doran, J. W., and Mosier, A. R.: Field-Evaluation of 4
Methods for Measuring Denitrification, Soil Sci. Soc. Am. J., 55, 1332–1338,
1991.
Baily, A., Watson, C. J., Laughlin, R., Matthews, D., McGeough, K., and
Jordan, P.: Use of the 15N gas flux method to measure the source and
level of N2O and N2 emissions from grazed grassland, Nutr. Cycl.
Agroecosys., 94, 287–298, 2012.
Barford, C. C., Montoya, J. P., Altabet, M. A., and Mitchell, R.:
Steady-state nitrogen isotope effects of N2 and N2O production in
Paracoccus denitrificans, Appl. Environ. Microb., 65, 989–994, 1999.
Baumgärtel, B. and Benke, M.: Düngeempfehlungen Stickstoff:
Getreide, Raps, Hackfrüchte, Landwirtschaftskammer Niedersachsen –
Geschäftsbereich Landwirtschaft, Hannover, 2009.
Bergsma, T. T., Ostrom, N. E., Emmons, M., and Robertson, G. P.: Measuring
simultaneous fluxes from soil of N2O and N2 in the field using the 15N-Gas “nonequilihrium” technique, Environ. Sci. Technol., 35, 4307–4312,
2001.
Bergstermann, A., Cardenas, L., Bol, R., Gilliam, L., Goulding, K., Meijide, A., Scholefield, D., Vallejo, A., and Well, R.: Effect of antecedent soil
moisture conditions on emissions and isotopologue distribution of N2O during
denitrification, Soil Biol. Biochem., 43, 240–250, 2011.
Böhlke, J. K., Smith, R. L., and Hannon, J. E.: Isotopic analysis of N
and O in nitrite and nitrate by sequential selective bacterial reduction to N2O, Anal. Chem., 79, 5888–5895, 2007.
Bouwman, A. F., Beusen, A. H. W., Griffioen, J., Van Groenigen, J. W.,
Hefting, M. M., Oenema, O., Van Puijenbroek, P. J. T. M., Seitzinger, S.,
Slomp, C. P., and Stehfest, E.: Global trends and uncertainties in
terrestrial denitrification and N2O emissions, Philos. T. R. Soc. B, 368, https://doi.org/10.1098/rstb.2013.0112,
2013.
Brenninkmeijer, C. A. M. and Röckmann, T.: Mass spectrometry of the
intramolecular nitrogen isotope distribution of environmental nitrous oxide
using fragment-ion analysis, Rapid Commun. Mass Sp., 13, 2028–2033, 1999.
Buchen, C., Lewicka-Szczebak, D., Fuß, R., Helfrich, M., Flessa, H., and
Well, R.: Fluxes of N2 and N2O and contributing processes in
summer after grassland renewal and grassland conversion to maize cropping on
a Plaggic Anthrosol and a Histic Gleysol, Soil Biol. Biochem., 101, 6–19,
2016.
Buchen, C., Lewicka-Szczebak, D., Flessa, H., and Well, R.: Estimating N2O processes during grassland renewal and grassland conversion to
maize cropping using N2O isotopocules, Rapid Commun. Mass Sp., 32 (13),
1053–1067, 2018.
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and
Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: how well do
we understand the processes and their controls?, Philos. T. R. Soc. B, 368, https://doi.org/10.1098/rstb.2013.0122,
2013.
Cardenas, L. M., Bol, R., Lewicka-Szczebak, D., Gregory, A. S., Matthews, G. P., Whalley, W. R., Misselbrook, T. H., Scholefield, D., and Well, R.: Effect of soil saturation on denitrification in a grassland soil, Biogeosciences, 14, 4691–4710, https://doi.org/10.5194/bg-14-4691-2017, 2017.
Casciotti, K. L., Sigman, D. M., Hastings, M. G., Bohlke, J. K., and
Hilkert, A.: Measurement of the oxygen isotopic composition of nitrate in
seawater and freshwater using the denitrifier method, Anal. Chem., 74,
4905–4912, 2002.
Castellano-Hinojosa, A., Loick, N., Dixon, E., Matthews, G. P.,
Lewicka-Szczebak, D., Well, R., Bol, R., Charteris, A., and Cardenas, L.:
Improved isotopic model based on 15N tracing and Rayleigh-type isotope
fractionation for simulating differential sources of N2O emissions in a
clay grassland soil, Rapid Commun. Mass Sp., 33, 449–460,
2019.
Decock, C. and Six, J.: An assessment of N-cycling and sources of N2O
during a simulated rain event using natural abundance 15N, Agr. Ecosyst.
Environ., 165, 141–150, 2013.
Eschenbach, W., Lewicka-Szczebak, D., Stange, C. F., Dyckmans, J., and Well, R.: Measuring 15N Abundance and Concentration of Aqueous Nitrate,
Nitrite, and Ammonium by Membrane Inlet Quadrupole Mass Spectrometry, Anal.
Chem., 89, 6076–6081, 2017.
Felix, J. D., Elliott, E. M., Gish, T. J., McConnell, L. L., and Shaw, S. L.: Characterizing the isotopic composition of atmospheric ammonia emission
sources using passive samplers and a combined oxidation-bacterial
denitrifier approach, Rapid Commun. Mass Sp., 27,
2239–2246, 2013.
Firestone, M. K. and Davidson, E. A.: Microbial basis of NO and N2O
production and consumption in soil, in: Exchange of trace gases between
terrestial ecosystems and the atmosphere, edited by: Andreae, M. O. and Schimel, D. S., John Wiley and Sons, New York, 1989.
Frame, C. H. and Casciotti, K. L.: Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium, Biogeosciences, 7, 2695–2709, https://doi.org/10.5194/bg-7-2695-2010, 2010.
Fuß, R.: R-Package: Gasfluxes, available at: https://bitbucket.org/ecoRoland/gasfluxes (last access: 10 January 2020), 2015.
Groffman, P. M.: Terrestial denitrification: challenges and opportunities,
Ecol. Process., 1, 1–11, 2012.
Groffman, P. M., Altabet, M. A., Bohlke, J. K., Butterbach-Bahl, K., David, M. B., Firestone, M. K., Giblin, A. E., Kana, T. M., Nielsen, L. P., and
Voytek, M. A.: Methods for measuring denitrification: Diverse approaches to
a difficult problem, Ecol. Appl., 16, 2091–2122, 2006.
Hink, L., Lycus, P., Gubry-Rangin, C., Frostegård, A., Nicol, G. W.,
Prosser, J. I., and Bakken, L. R.: Kinetics of NH oxidation,
NO− turnover, N2O− production and electron flow during oxygen
depletion in model bacterial and archaeal ammonia oxidisers, Environ.
Microbiol., 19, 4882–4896, 2017.
Hutchinson, G. L. and Mosier, A. R.: Improved Soil Cover Method for Field Measurement of Nitrous Oxide Fluxes, Soil Sci. Soc. Am. J., 45, 311–316, 1981.
Ibraim, E., Wolf, B., Harris, E., Gasche, R., Wei, J., Yu, L., Kiese, R., Eggleston, S., Butterbach-Bahl, K., Zeeman, M., Tuzson, B., Emmenegger, L., Six, J., Henne, S., and Mohn, J.: Attribution of N2O sources in a grassland soil with laser spectroscopy based isotopocule analysis, Biogeosciences, 16, 3247–3266, https://doi.org/10.5194/bg-16-3247-2019, 2019.
IPCC: Climate Change 2007: The Physical Science Basis. Contribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change, IPCC, Geneva, 2007.
Jinuntuya-Nortman, M., Sutka, R. L., Ostrom, P. H., Gandhi, H., and Ostrom, N. E.: Isotopologue fractionation during microbial reduction of N2O
within soil mesocosms as a function of water-filled pore space, Soil Biol.
Biochem., 40, 2273–2280, 2008.
Kato, T., Toyoda, S., Yoshida, N., Tang, Y. H., and Wada, E.: Isotopomer and
isotopologue signatures of N2O produced in alpine ecosystems on the
Qinghai-Tibetan Plateau, Rapid Commun. Mass Sp., 27, 1517–1526, 2013.
Knowles, R.: Denitrification, Microbiol. Rev., 46, 43–70, 1982.
Koba, K., Osaka, K., Tobari, Y., Toyoda, S., Ohte, N., Katsuyama, M.,
Suzuki, N., Itoh, M., Yamagishi, H., Kawasaki, M., Kim, S. J., Yoshida, N.,
and Nakajimag, T.: Biogeochemistry of nitrous oxide in groundwater in a
forested ecosystem elucidated by nitrous oxide isotopomer measurements,
Geochim. Cosmochim. Ac., 73, 3115–3133, 2009.
Kool, D. M., Wrage, N., Oenema, O., Dolfing, J., and Van Groenigen, J. W.:
Oxygen exchange between (de) nitrification intermediates and H2O and
its implications for source determination of and N2O: a
review, Rapid Commun. Mass Sp., 21, 3569–3578, 2007.
Kool, D. M., Wrage, N., Oenema, O., Harris, D., and Van Groenigen, J. W.:
The 18O signature of biogenic nitrous oxide is determined by O exchange
with water, Rapid Commun. Mass Sp., 23, 104–108, 2009.
Kramps-Alpmann, D., Ruoss, N., Korte K., Ernst, U., and Schäfer, B. C.:
Klimaoptimierte Anpassungsstrategien in der Landwirtschaft (optimierter
Klimabetrieb) II., unpublished project report, 2017.
Kulkarni, M. V., Burgin, A. J., Groffman, P. M., and Yavitt, J. B.: Direct
flux and 15N tracer methods for measuring denitrification in forest
soils, Biogeochemistry, 117, 359–373, 2013.
Lewicka-Szczebak, D. and Well, R.: The 15N gas-flux method to determine
N2 flux : a comparison of different tracer addition approaches, Soil,
6, 145–152, 2020.
Lewicka-Szczebak, D., Well, R., Giesemann, A., Rohe, L., and Wolf, U.: An
enhanced technique for automated determination of 15N signatures of
N2, (N2+N2O) and N2O in gas samples, Rapid Commun. Mass
Sp., 27, 1548–1558, 2013.
Lewicka-Szczebak, D., Well, R., Koster, J. R., Fuss, R., Senbayram, M.,
Dittert, K., and Flessa, H.: Experimental determinations of isotopic
fractionation factors associated with N2O production and reduction
during denitrification in soils, Geochim. Cosmochim. Ac., 134, 55–73, 2014.
Lewicka-Szczebak, D., Well, R., Bol, R., Gregory, A., Matthews, P.,
Misselbrook, T., Whalley, R., and Cardenas, L.: Isotope fractionation
factors controlling isotopocule signatures of soil-emitted N2O produced
by denitrification processes of various rates, Rapid Commun. Mass Sp., 29,
269–282, 2015.
Lewicka-Szczebak, D., Dyckmans, J., Kaiser, J., Marca, A., Augustin, J., and Well, R.: Oxygen isotope fractionation during N2O production by soil denitrification, Biogeosciences, 13, 1129–1144, https://doi.org/10.5194/bg-13-1129-2016, 2016.
Lewicka-Szczebak, D., Augustin, J., Giesemann, A., and Well, R.: Quantifying N2O reduction to N2 based on N2O isotopocules validation with independent methods (helium incubation and 15N gas flux method), Biogeosciences, 14, 711–732, https://doi.org/10.5194/bg-14-711-2017, 2017.
Maeda, K., Spor, A., Edel-Hermann, V., Heraud, C., Breuil, M. C., Bizouard, F., Toyoda, S., Yoshida, N., Steinberg, C., and Philippot, L.: N2O
production, a widespread trait in fungi, Sci. Rep.-UK, 5, 9697, 9691–9697,
2015.
Mandernack, K. W., Mills, C. T., Johnson, C. A., Rahn, T., and Kinney, C.:
The δ15N and δ18O values of N2O produced during the
co-oxidation of ammonia by methanotrophic bacteria, Chem. Geol., 267, 96–107,
2009.
Mathieu, O., Leveque, J., Henault, C., Milloux, M. J., Bizouard, F., and
Andreux, F.: Emissions and spatial variability of N2O, N2 and
nitrous oxide mole fraction at the field scale, revealed with 15N
isotopic techniques, Soil Biol. Biochem., 38, 941–951, 2006.
Menyailo, O. V. and Hungate, B. A.: Stable isotope discrimination during
soil denitrification: Production and consumption of nitrous oxide, Global
Biogeochem. Cy., 20, GB3025, https://doi.org/10.1029/2005GB002527, 2006.
Mohn, J., Wolf, B., Toyoda, S., Lin, C. T., Liang, M. C., Bruggemann, N., Wissel, H., Steiker, A. E., Dyckmans, J., Szwec, L., Ostrom, N. E., Casciotti, K. L., Forbes, M., Giesemann, A., Well, R., Doucett, R. R., Yarnes, C. T., Ridley, A. R., Kaiser, J., and Yoshida, N.: Interlaboratory assessment of nitrous oxide isotopomer analysis by isotope ratio mass spectrometry and laser spectroscopy: current status and perspectives, Rapid Commun. Mass Sp., 28, 1995–2007, 2014.
Moore, J. W. and Semmens, B. X.: Incorporating uncertainty and prior
information into stable isotope mixing models, Ecology Letters, 11, 470–480,
2008.
Morse, J. L. and Bernhardt, E. S.: Using 15N tracers to estimate N2O and N2 emissions from nitrification and denitrification in
coastal plain wetlands under contrasting land-uses, Soil Biol. Biochem., 57,
635–643, 2013.
Mosier, A. R., Guenzi, W. D., and Schweizer, E. E.: Field Denitrification
Estimation by N-15 and Acetylene Inhibition Techniques, Soil Sci. Soc. Am. J,.
50, 831–833, 1986.
Müller, C., Laughlin, R. J., Spott, O., and Rütting, T.:
Quantification of N2O emission pathways via a 15N tracing model,
Soil Biol. Biochem., 72, 44–54, 2014.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – a discussion of principles, J. Hydrol., 10, 282–290, 1970.
Opdyke, M. R., Ostrom, N. E., and Ostrom, P. H.: Evidence for the
predominance of denitrification as a source of N2O in temperate
agricultural soils based on isotopologue measurements, Global Biogeochem. Cy.,
23, GB4018, 4011–4010, 2009.
Ostrom, N. E., Pitt, A., Sutka, R., Ostrom, P. H., Grandy, A. S., Huizinga, K. M., and Robertson, G. P.: Isotopologue effects during N2O reduction
in soils and in pure cultures of denitrifiers, J. Geophys. Res.-Biogeo., 112,
G02005, 02001–02012, 2007.
Ostrom, N. E., Sutka, R., Ostrom, P. H., Grandy, A. S., Huizinga, K. M.,
Gandhi, H., von Fischer, J. C., and Robertson, G. P.: Isotopologue data
reveal bacterial denitrification as the primary source of N2O during a high
flux event following cultivation of a native temperate grassland, Soil Biol.
Biochem., 42, 499–506, 2010.
Park, S., Perez, T., Boering, K. A., Trumbore, S. E., Gil, J., Marquina, S.,
and Tyler, S. C.: Can N2O stable isotopes and isotopomers be useful
tools to characterize sources and microbial pathways of N2O production
and consumption in tropical soils?, Global Biogeochem. Cy., 25, GB1001, https://doi.org/10.1029/2009GB003615, 2011.
Parnell, A. C., Phillips, D. L., Bearhop, S., Semmens, B. X., Ward, E. J.,
Moore, J. W., Jackson, A. L., Grey, J., Kelly, D. J., and Inger, R.:
Bayesian stable isotope mixing models, Environmetrics, 24, 387–399, 2013.
Phillips, D. L., Inger, R., Bearhop, S., Jackson, A. L., Moore, J. W.,
Parnell, A. C., Semmens, B. X., and Ward, E. J.: Best practices for use of
stable isotope mixing models in food-web studies, Can. J.
Zool., 92, 823–835, 2014.
Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous Oxide
(N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st
Century, Science, 326, 123–125, 2009.
Röckmann, T., Kaiser, J., Brenninkmeijer, C. A. M., and Brand, W. A.:
Gas chromatography/isotope-ratio mass spectrometry method for high-precision
position-dependent 15N and 18O measurements of atmospheric nitrous
oxide, Rapid Commun. Mass Sp., 17, 1897–1908, 2003.
Rohe, L., Anderson, T.-H., Braker, G., Flessa, H., Giesemann, A.,
Lewicka-Szczebak, D., Wrage-Mönnig, N., and Well, R.: Dual isotope and
isotopomer signatures of nitrous oxide from fungal denitrification – a pure
culture study, Rapid Commun. Mass Sp., 28, 1893–1903, 2014a.
Rohe, L., Anderson, T. H., Braker, G., Flessa, H., Giesemann, A.,
Wrage-Monnig, N., and Well, R.: Fungal oxygen exchange between
denitrification intermediates and water, Rapid Commun. Mass Sp., 28, 377–384,
2014b.
Rohe, L., Well, R., and Lewicka-Szczebak, D.: Use of oxygen isotopes to
differentiate between nitrous oxide produced by fungi or bacteria during
denitrification, Rapid Commun. Mass Sp., 31, 1297–1312,
2017.
Saggar, S., Jha, N., Deslippe, J., Bolan, S., Luo, J., Giltrap, D. L., Kim, D.-G., Zaman, M., and Tillman, R. W.: Denitrification and N2O:N2
production in temperate grasslands: Processes, measurements, modelling and
mitigating negative impacts, Sci. Total Environ., 465, 173–195,
2013.
Schmidt, G., Segschneider H.-J., and R., R.: Bestimmung der 15N
Häufigkeit bei nichtstatistischer 15N-verteilung in N2 sowie bei N2O in
Bodenluftproben mittels GC-R-IRMS-Kopplung in einem Probenlauf, Isot. Environ.
Healt S., 34, 235–243, 1998.
Scholefield, D., Hawkins, J. M. B., and Jackson, S. M.: Development of a
helium atmosphere soil incubation technique for direct measurement of
nitrous oxide and dinitrogen fluxes during denitrification, Soil Biol.
Biochem., 29, 1345–1352, 1997.
Seitzinger, S.: Nitrogen cycle – Out of reach, Nature, 452, 162–163, 2008.
Senbayram, M., Chen, R., Budai, A., Bakken, L., and Dittert, K.: N2O
emission and the N2O/(N2O+N2) product ratio of
denitrification as controlled by available carbon substrates and nitrate
concentrations, Agr. Ecosyst. Environ., 147, 4–12, 2012.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M.,
and Bohlke, J. K.: A bacterial method for the nitrogen isotopic analysis of
nitrate in seawater and freshwater, Anal. Chem., 73, 4145–4153, 2001.
Spott, O., Russow, R., Apelt, B., and Stange, C. F.: A N-15-aided artificial
atmosphere gas flow technique for online determination of soil N2
release using the zeolite Kostrolith SX6 (R), Rapid Commun. Mass Sp., 20,
3267–3274, 2006.
Stange, C. F., Spott, O., Apelt, B., and Russow, R. W. B.: Automated and
rapid online determination of 15N abundance and concentration of
ammonium, nitrite, or nitrate in aqueous samples by the SPINMAS technique,
Isot. Environ. Healt S., 43, 227–236, 2007.
Stevens, R. J. and Laughlin, R. J.: Nitrite Transformations during Soil
Extraction with Potassium-Chloride, Soil Sci. Soc. Am. J., 59, 933–938, 1995.
Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H.,
Pitt, A. J., and Li, F.: Distinguishing nitrous oxide production from
nitrification and denitrification on the basis of isotopomer abundances,
Appl. Environ. Microb., 72, 638–644, 2006.
Sutka, R. L., Adams, G. C., Ostrom, N. E., and Ostrom, P. H.: Isotopologue
fractionation during N2O production by fungal denitrification, Rapid
Commun. Mass Sp., 22, 3989–3996, 2008.
Toyoda, S. and Yoshida, N.: Determination of nitrogen isotopomers of nitrous
oxide on a modified isotope ratio mass spectrometer, Anal. Chem., 71,
4711–4718, 1999.
Toyoda, S., Mutobe, H., Yamagishi, H., Yoshida, N., and Tanji, Y.:
Fractionation of N2O isotopomers during production by denitrifier, Soil
Biol. Biochem., 37, 1535–1545, 2005.
Toyoda, S., Yano, M., Nishimura, S., Akiyama, H., Hayakawa, A., Koba, K.,
Sudo, S., Yagi, K., Makabe, A., Tobari, Y., Ogawa, N. O., Ohkouchi, N.,
Yamada, K., and Yoshida, N.: Characterization and production and consumption
processes of N2O emitted from temperate agricultural soils determined
via isotopomer ratio analysis, Global Biogeochem. Cy., 25, GB2008, https://doi.org/10.1029/2009GB003769, 2011.
Toyoda, S., Yoshida, N., and Koba, K.: Isotopocule analysis of biologically
produced nitrous oxide in various environments, Mass Spectrom. Rev., 36, 135–160,
https://doi.org/10.1002/mas.21459, 2017.
Verhoeven, E., Barthel, M., Yu, L., Celi, L., Said-Pullicino, D., Sleutel, S., Lewicka-Szczebak, D., Six, J., and Decock, C.: Early season N2O emissions under variable water management in rice systems: source-partitioning emissions using isotope ratios along a depth profile, Biogeosciences, 16, 383–408, https://doi.org/10.5194/bg-16-383-2019, 2019.
Wei, J., Ibraim, E., Brüggemann, N., Vereecken, H., and Mohn, J.: First
real-time isotopic characterisation of N2O from chemodenitrification,
Geochim. Cosmochim. Ac., 267, 17–32, 2019.
Well, R. and Flessa, H.: Isotope fractionation factors of N2O
diffusion, Rapid Commun. Mass Sp., 22, 2621–2628, 2008.
Well, R. and Flessa, H.: Isotopologue enrichment factors of N2O
reduction in soils, Rapid Commun. Mass Sp., 23, 2996–3002, 2009.
Well, R., Eschenbach, W., Flessa, H., von der Heide, C., and Weymann, D.:
Are dual isotope and isotopomer ratios of N2O useful indicators for N2O turnover during denitrification in nitrate-contaminated aquifers?,
Geochim. Cosmochim. Ac., 90, 265–282, 2012.
Well, R., Burkart, S., Giesemann, A., Grosz, B., Köster, J. R., and
Lewicka-Szczebak, D.: Improvement of the 15N gas flux method for in
situ measurement of soil denitrification and its product stoichiometry,
Rapid Commun. Mass Sp., 33, 437–448, 2019a.
Well, R., Maier, M., Lewicka-Szczebak, D., Köster, J.-R., and Ruoss, N.: Underestimation of denitrification rates from field application of the 15N gas flux method and its correction by gas diffusion modelling, Biogeosciences, 16, 2233–2246, https://doi.org/10.5194/bg-16-2233-2019, 2019b.
Westley, M. B., Popp, B. N., and Rust, T. M.: The calibration of the
intramolecular nitrogen isotope distribution in nitrous oxide measured by
isotope ratio mass spectrometry, Rapid Commun. Mass Sp., 21, 391–405, 2007.
Wolf, B., Merbold, L., Decock, C., Tuzson, B., Harris, E., Six, J., Emmenegger, L., and Mohn, J.: First on-line isotopic characterization of N2O above intensively managed grassland, Biogeosciences, 12, 2517–2531, https://doi.org/10.5194/bg-12-2517-2015, 2015.
Wrage-Mönnig, N., Horn, M. A., Well, R., Müller, C., Velthof, G.,
and Oenema, O.: The role of nitrifier denitrification in the production of
nitrous oxide revisited, Soil Biol. Biochem., 123, A3–A16, 2018.
Wu, D., Well, R., Cárdenas, L. M., Fuß, R., Lewicka-Szczebak, D.,
Köster, J. R., Brüggemann, N., and Bol, R.: Quantifying N2O
reduction to N2 during denitrification in soils via isotopic mapping
approach: Model evaluation and uncertainty analysis, Environ. Res.,
2019, 108806, https://doi.org/10.1016/j.envres.2019.108806, 2019.
Wu, H. H., Dannenmann, M., Fanselow, N., Wolf, B., Yao, Z. S., Wu, X.,
Bruggemann, N., Zheng, X. H., Han, X. G., Dittert, K., and Butterbach-Bahl, K.: Feedback of grazing on gross rates of N mineralization and inorganic N
partitioning in steppe soils of Inner Mongolia, Plant Soil, 340, 127–139,
2011.
Yamagishi, H., Westley, M. B., Popp, B. N., Toyoda, S., Yoshida, N.,
Watanabe, S., Koba, K., and Yamanaka, Y.: Role of nitrification and
denitrification on the nitrous oxide cycle in the eastern tropical North
Pacific and Gulf of California, J. Geophys. Res.-Biogeo., 112, https://doi.org/10.1029/2006JG000227,
2007.
Yu, L., Harris, E., Lewicka-Szczebak, D., Barthel, M., Blomberg, M. R. A.,
Harris, S., Johnson, M. S., Lehmann, M. F., Liisberg, J., Müller, C.,
Ostrom, N., Six, J., Toyoda, S., Yoshida, N., and Mohn, J.: What can we
learn from N2O isotope data? – Analytics, processes and modelling,
Rapid Commun. Mass Sp., 34, e8858, https://doi.org/10.1002/rcm.8858, 2020.
Zhang, J. B., Muller, C., and Cai, Z. C.: Heterotrophic nitrification of
organic N and its contribution to nitrous oxide emissions in soils, Soil
Biol. Biochem., 84, 199–209, 2015.
Zhang, L., Altabet, M. A., Wu, T. X., and Hadas, O.: Sensitive measurement
of 15N∕14N ( ) at
natural abundance levels in fresh and saltwaters, Anal. Chem., 79, 5297–5303,
2007.
Zou, Y., Hirono, Y., Yanai, Y., Hattori, S., Toyoda, S., and Yoshida, N.:
Isotopomer analysis of nitrous oxide accumulated in soil cultivated with tea
(Camellia sinensis) in Shizuoka, central Japan, Soil Biol. Biochem., 77,
276–291, 2014.
Short summary
We present the first validation of N2O isotopic approaches for estimating N2O source pathways and N2O reduction. These approaches are widely used for tracing soil nitrogen cycling, but the results of these estimations are very uncertain. Here we report the results from parallel treatments allowing for precise validation of these approaches, and we propose the best strategies for results interpretation, including the new idea of an isotope model integrating three isotopic signatures of N2O.
We present the first validation of N2O isotopic approaches for estimating N2O source pathways...
Altmetrics
Final-revised paper
Preprint