Articles | Volume 17, issue 22
https://doi.org/10.5194/bg-17-5787-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5787-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimates of tree root water uptake from soil moisture profile dynamics
Conrad Jackisch
CORRESPONDING AUTHOR
Institute of Water and River Basin Management, Karlsruhe Institute of Technology (KIT),
Kaiserstraße 12, 76131 Karlsruhe, Germany
Department of Landscape Ecology and Environmental Systems Analysis, Institute of Geoecology,
Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
Faculty of Geosciences, Geoengineering and Mining, Technische Universität Bergakademie Freiberg,
Agricolastraße 22, 09599 Freiberg, Germany
Samuel Knoblauch
Institute of Water and River Basin Management, Karlsruhe Institute of Technology (KIT),
Kaiserstraße 12, 76131 Karlsruhe, Germany
Department of Biology, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 15, 17489 Greifswald, Germany
Theresa Blume
Hydrology Section, GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam,
Telegrafenberg C4, 14473 Potsdam, Germany
Erwin Zehe
Institute of Water and River Basin Management, Karlsruhe Institute of Technology (KIT),
Kaiserstraße 12, 76131 Karlsruhe, Germany
Sibylle K. Hassler
Institute of Water and River Basin Management, Karlsruhe Institute of Technology (KIT),
Kaiserstraße 12, 76131 Karlsruhe, Germany
Related authors
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Tobias L. Hohenbrink, Conrad Jackisch, Wolfgang Durner, Kai Germer, Sascha C. Iden, Janis Kreiselmeier, Frederic Leuther, Johanna C. Metzger, Mahyar Naseri, and Andre Peters
Earth Syst. Sci. Data, 15, 4417–4432, https://doi.org/10.5194/essd-15-4417-2023, https://doi.org/10.5194/essd-15-4417-2023, 2023
Short summary
Short summary
The article describes a collection of 572 data sets of soil water retention and unsaturated hydraulic conductivity data measured with state-of-the-art laboratory methods. Furthermore, the data collection contains basic soil properties such as soil texture and organic carbon content. We expect that the data will be useful for various important purposes, for example, the development of soil hydraulic property models and related pedotransfer functions.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Conrad Jackisch, Kai Germer, Thomas Graeff, Ines Andrä, Katrin Schulz, Marcus Schiedung, Jaqueline Haller-Jans, Jonas Schneider, Julia Jaquemotte, Philipp Helmer, Leander Lotz, Andreas Bauer, Irene Hahn, Martin Šanda, Monika Kumpan, Johann Dorner, Gerrit de Rooij, Stefan Wessel-Bothe, Lorenz Kottmann, Siegfried Schittenhelm, and Wolfgang Durner
Earth Syst. Sci. Data, 12, 683–697, https://doi.org/10.5194/essd-12-683-2020, https://doi.org/10.5194/essd-12-683-2020, 2020
Short summary
Short summary
Soil water content and matric potential are central hydrological state variables. A large variety of automated probes and sensor systems for field monitoring exist. In a field experiment under idealised conditions we compared 15 systems for soil moisture and 14 systems for matric potential. The individual records of one system agree well with the others. Most records are also plausible. However, the absolute values of the different measuring systems span a very large range of possible truths.
Ralf Loritz, Axel Kleidon, Conrad Jackisch, Martijn Westhoff, Uwe Ehret, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019, https://doi.org/10.5194/hess-23-3807-2019, 2019
Short summary
Short summary
In this study, we develop a topographic index explaining hydrological similarity within a energy-centered framework, with the observation that the majority of potential energy is dissipated when rainfall becomes runoff.
Erwin Zehe, Ralf Loritz, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Theresa Blume, Sibylle K. Hassler, and Hubert H. Savenije
Hydrol. Earth Syst. Sci., 23, 971–987, https://doi.org/10.5194/hess-23-971-2019, https://doi.org/10.5194/hess-23-971-2019, 2019
Ralf Loritz, Hoshin Gupta, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Uwe Ehret, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 3663–3684, https://doi.org/10.5194/hess-22-3663-2018, https://doi.org/10.5194/hess-22-3663-2018, 2018
Short summary
Short summary
In this study we explore the role of spatially distributed information on hydrological modeling. For that, we develop and test an approach which draws upon information theory and thermodynamic reasoning. We show that the proposed set of methods provide a powerful framework for understanding and diagnosing how and when process organization and functional similarity of hydrological systems emerge in time and, hence, when which landscape characteristic is important in a model application.
Conrad Jackisch and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 3639–3662, https://doi.org/10.5194/hess-22-3639-2018, https://doi.org/10.5194/hess-22-3639-2018, 2018
Short summary
Short summary
We present a Lagrangian model for non-uniform soil water dynamics. It handles 2-D diffusion (based on a spatial random walk and implicit pore space redistribution) and 1-D advection in representative macropores (as film flow with dynamic interaction with the soil matrix). The interplay between the domains is calculated based on an energy-balance approach which does not require any additional parameterisation. Model tests give insight into the evolution of the non-uniform infiltration patterns.
Lisa Angermann, Conrad Jackisch, Niklas Allroggen, Matthias Sprenger, Erwin Zehe, Jens Tronicke, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017, https://doi.org/10.5194/hess-21-3727-2017, 2017
Short summary
Short summary
This study investigates the temporal dynamics and response velocities of lateral preferential flow at the hillslope. The results are compared to catchment response behavior to infer the large-scale implications of the observed processes. A large portion of mobile water flows through preferential flow paths in the structured soils, causing an immediate discharge response. The study presents a methodological approach to cover the spatial and temporal domain of these highly heterogeneous processes.
Conrad Jackisch, Lisa Angermann, Niklas Allroggen, Matthias Sprenger, Theresa Blume, Jens Tronicke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, https://doi.org/10.5194/hess-21-3749-2017, 2017
Short summary
Short summary
Rapid subsurface flow in structured soils facilitates fast vertical and lateral redistribution of event water. We present its in situ exploration through local measurements and irrigation experiments. Special emphasis is given to a coherent combination of hydrological and geophysical methods. The study highlights that form and function operate as conjugated pairs. Dynamic imaging through time-lapse GPR was key to observing both and to identifying hydrologically relevant structures.
Simon Paul Seibert, Conrad Jackisch, Uwe Ehret, Laurent Pfister, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 2817–2841, https://doi.org/10.5194/hess-21-2817-2017, https://doi.org/10.5194/hess-21-2817-2017, 2017
Short summary
Short summary
Runoff production mechanisms and their corresponding physiographic controls continue to pose major research challenges in catchment hydrology. We propose innovative data-driven diagnostic signatures for overcoming the prevailing status quo in inter-comparison studies. Specifically, we present dimensionless double mass curves which allow us to infer information on runoff generation at the seasonal and annual timescales. The method is based on commonly available data.
Ralf Loritz, Sibylle K. Hassler, Conrad Jackisch, Niklas Allroggen, Loes van Schaik, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 1225–1249, https://doi.org/10.5194/hess-21-1225-2017, https://doi.org/10.5194/hess-21-1225-2017, 2017
Short summary
Short summary
In this study we examine whether we can step beyond the qualitative character of perceptual models by using them as a blueprint for setting up representative hillslope models. Thereby we test the hypothesis of whether a single hillslope can represent the functioning of an entire lower mesoscale catchment in a spatially aggregated way.
Benjamin Müller, Matthias Bernhardt, Conrad Jackisch, and Karsten Schulz
Hydrol. Earth Syst. Sci., 20, 3765–3775, https://doi.org/10.5194/hess-20-3765-2016, https://doi.org/10.5194/hess-20-3765-2016, 2016
Short summary
Short summary
A technology for the spatial derivation of soil texture classes is presented. Information about soil texture is key for predicting the local and regional hydrological cycle. It is needed for the calculation of soil water movement, the share of surface runoff, the evapotranspiration rate and others. Nevertheless, the derivation of soil texture classes is expensive and time-consuming. The presented technique uses soil samples and remotely sensed data for estimating their spatial distribution.
Erwin Zehe and Conrad Jackisch
Hydrol. Earth Syst. Sci., 20, 3511–3526, https://doi.org/10.5194/hess-20-3511-2016, https://doi.org/10.5194/hess-20-3511-2016, 2016
E. Zehe, U. Ehret, L. Pfister, T. Blume, B. Schröder, M. Westhoff, C. Jackisch, S. J. Schymanski, M. Weiler, K. Schulz, N. Allroggen, J. Tronicke, L. van Schaik, P. Dietrich, U. Scherer, J. Eccard, V. Wulfmeyer, and A. Kleidon
Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, https://doi.org/10.5194/hess-18-4635-2014, 2014
Ashish Manoj J, Ralf Loritz, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-375, https://doi.org/10.5194/hess-2024-375, 2024
Preprint under review for HESS
Short summary
Short summary
Traditional hydrological models typically operate in a forward mode, simulating streamflow and other catchment fluxes based on precipitation input. In this study, we explored the possibility of reversing this process—inferring precipitation from streamflow data—to improve flood event modelling. We then used the generated precipitation series to run hydrological models, resulting in more accurate estimates of streamflow and soil moisture.
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Short summary
The CAMELS-DE dataset features data from 1582 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends and supports the development of hydrological models.
Karl Nicolaus van Zweel, Laurent Gourdol, Jean François Iffly, Loïc Léonard, François Barnich, Laurent Pfister, Erwin Zehe, and Christophe Hissler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-259, https://doi.org/10.5194/essd-2024-259, 2024
Preprint under review for ESSD
Short summary
Short summary
Our study monitored groundwater in a Luxembourg forest over a year to understand water and chemical changes. We found seasonal variations in water chemistry, influenced by rainfall and soil interactions. This data helps predict environmental responses and manage water resources better. By measuring key parameters like pH and dissolved oxygen, our research provides valuable insights into groundwater behavior and serves as a resource for future environmental studies.
Daniel Rasche, Theresa Blume, and Andreas Güntner
SOIL, 10, 655–677, https://doi.org/10.5194/soil-10-655-2024, https://doi.org/10.5194/soil-10-655-2024, 2024
Short summary
Short summary
Soil moisture measurements at the field scale are highly beneficial for numerous (soil) hydrological applications. Cosmic-ray neutron sensing (CRNS) allows for the non-invasive monitoring of field-scale soil moisture across several hectares but only for the first few tens of centimetres of the soil. In this study, we modify and test a simple modeling approach to extrapolate CRNS-derived surface soil moisture information down to 450 cm depth and compare calibrated and uncalibrated model results.
Svenja Hoffmeister, Rafael Bohn Reckziegel, Ben du Toit, Sibylle K. Hassler, Florian Kestel, Rebekka Maier, Jonathan P. Sheppard, and Erwin Zehe
Hydrol. Earth Syst. Sci., 28, 3963–3982, https://doi.org/10.5194/hess-28-3963-2024, https://doi.org/10.5194/hess-28-3963-2024, 2024
Short summary
Short summary
We studied a tree–crop ecosystem consisting of a blackberry field and an alder windbreak. In the water-scarce region, irrigation provides sufficient water for plant growth. The windbreak lowers the irrigation amount by reducing wind speed and therefore water transport into the atmosphere. These ecosystems could provide sustainable use of water-scarce landscapes, and we studied the complex interactions by observing several aspects (e.g. soil, nutrients, carbon assimilation, water).
Sibylle Kathrin Hassler, Rafael Bohn Reckziegel, Ben du Toit, Svenja Hoffmeister, Florian Kestel, Anton Kunneke, Rebekka Maier, and Jonathan Paul Sheppard
Earth Syst. Sci. Data, 16, 3935–3948, https://doi.org/10.5194/essd-16-3935-2024, https://doi.org/10.5194/essd-16-3935-2024, 2024
Short summary
Short summary
Agroforestry systems (AFSs) combine trees and crops within the same land unit, providing a sustainable land use option which protects natural resources and biodiversity. Introducing trees into agricultural systems can positively affect water resources, soil characteristics, biomass and microclimate. We studied an AFS in South Africa in a multidisciplinary approach to assess the different influences and present the resulting dataset consisting of water, soil, tree and meteorological variables.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Tobias L. Hohenbrink, Conrad Jackisch, Wolfgang Durner, Kai Germer, Sascha C. Iden, Janis Kreiselmeier, Frederic Leuther, Johanna C. Metzger, Mahyar Naseri, and Andre Peters
Earth Syst. Sci. Data, 15, 4417–4432, https://doi.org/10.5194/essd-15-4417-2023, https://doi.org/10.5194/essd-15-4417-2023, 2023
Short summary
Short summary
The article describes a collection of 572 data sets of soil water retention and unsaturated hydraulic conductivity data measured with state-of-the-art laboratory methods. Furthermore, the data collection contains basic soil properties such as soil texture and organic carbon content. We expect that the data will be useful for various important purposes, for example, the development of soil hydraulic property models and related pedotransfer functions.
Daniel Rasche, Jannis Weimar, Martin Schrön, Markus Köhli, Markus Morgner, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 27, 3059–3082, https://doi.org/10.5194/hess-27-3059-2023, https://doi.org/10.5194/hess-27-3059-2023, 2023
Short summary
Short summary
We introduce passive downhole cosmic-ray neutron sensing (d-CRNS) as an approach for the non-invasive estimation of soil moisture in deeper layers of the unsaturated zone which exceed the observational window of above-ground CRNS applications. Neutron transport simulations are used to derive mathematical descriptions and transfer functions, while experimental measurements in an existing groundwater observation well illustrate the feasibility and applicability of the approach.
Samuel Schroers, Ulrike Scherer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 27, 2535–2557, https://doi.org/10.5194/hess-27-2535-2023, https://doi.org/10.5194/hess-27-2535-2023, 2023
Short summary
Short summary
The hydrological cycle shapes our landscape. With an accelerating change of the world's climate and hydrological dynamics, concepts of evolution of natural systems become more important. In this study, we elaborated a thermodynamic framework for runoff and sediment transport and show from model results as well as from measurements during extreme events that the developed concept is useful for understanding the evolution of the system's mass, energy, and entropy fluxes.
Judith Meyer, Malte Neuper, Luca Mathias, Erwin Zehe, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 6163–6183, https://doi.org/10.5194/hess-26-6163-2022, https://doi.org/10.5194/hess-26-6163-2022, 2022
Short summary
Short summary
We identified and analysed the major atmospheric components of rain-intense thunderstorms that can eventually lead to flash floods: high atmospheric moisture, sufficient latent instability, and weak thunderstorm cell motion. Between 1981 and 2020, atmospheric conditions became likelier to support strong thunderstorms. However, the occurrence of extreme rainfall events as well as their rainfall intensity remained mostly unchanged.
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci., 26, 4953–4974, https://doi.org/10.5194/hess-26-4953-2022, https://doi.org/10.5194/hess-26-4953-2022, 2022
Short summary
Short summary
Analyzing the impact of soil age and rainfall intensity on vertical subsurface flow paths in calcareous soils, with a special focus on preferential flow occurrence, shows how water flow paths are linked to the organization of evolving landscapes. The observed increase in preferential flow occurrence with increasing moraine age provides important but rare data for a proper representation of hydrological processes within the feedback cycle of the hydro-pedo-geomorphological system.
Ralf Loritz, Maoya Bassiouni, Anke Hildebrandt, Sibylle K. Hassler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 4757–4771, https://doi.org/10.5194/hess-26-4757-2022, https://doi.org/10.5194/hess-26-4757-2022, 2022
Short summary
Short summary
In this study, we combine a deep-learning approach that predicts sap flow with a hydrological model to improve soil moisture and transpiration estimates at the catchment scale. Our results highlight that hybrid-model approaches, combining machine learning with physically based models, are a promising way to improve our ability to make hydrological predictions.
Achim Brauer, Ingo Heinrich, Markus J. Schwab, Birgit Plessen, Brian Brademann, Matthias Köppl, Sylvia Pinkerneil, Daniel Balanzategui, Gerhard Helle, and Theresa Blume
DEUQUA Spec. Pub., 4, 41–58, https://doi.org/10.5194/deuquasp-4-41-2022, https://doi.org/10.5194/deuquasp-4-41-2022, 2022
Lena Katharina Schmidt, Till Francke, Erwin Rottler, Theresa Blume, Johannes Schöber, and Axel Bronstert
Earth Surf. Dynam., 10, 653–669, https://doi.org/10.5194/esurf-10-653-2022, https://doi.org/10.5194/esurf-10-653-2022, 2022
Short summary
Short summary
Climate change fundamentally alters glaciated high-alpine areas, but it is unclear how this affects riverine sediment transport. As a first step, we aimed to identify the most important processes and source areas in three nested catchments in the Ötztal, Austria, in the past 15 years. We found that areas above 2500 m were crucial and that summer rainstorms were less influential than glacier melt. These findings provide a baseline for studies on future changes in high-alpine sediment dynamics.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150, https://doi.org/10.5194/hess-26-3125-2022, https://doi.org/10.5194/hess-26-3125-2022, 2022
Short summary
Short summary
In hydrology the formation of landform patterns is of special interest as changing forcings of the natural systems, such as climate or land use, will change these structures. In our study we developed a thermodynamic framework for surface runoff on hillslopes and highlight the differences of energy conversion patterns on two related spatial and temporal scales. The results indicate that surface runoff on hillslopes approaches a maximum power state.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 2671–2696, https://doi.org/10.5194/hess-26-2671-2022, https://doi.org/10.5194/hess-26-2671-2022, 2022
Short summary
Short summary
This study is analyses how characteristics of precipitation events and soil moisture and temperature dynamics during these events can be used to model the associated streamflow responses in intermittent streams. The models are used to identify differences between the dominant controls of streamflow intermittency in three distinct geologies of the Attert catchment, Luxembourg. Overall, soil moisture was found to be the most important control of intermittent streamflow in all geologies.
Alexander Sternagel, Ralf Loritz, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 1615–1629, https://doi.org/10.5194/hess-26-1615-2022, https://doi.org/10.5194/hess-26-1615-2022, 2022
Short summary
Short summary
We present a (physically based) Lagrangian approach to simulate diffusive mixing processes on the pore scale beyond perfectly mixed conditions. Results show the feasibility of the approach for reproducing measured mixing times and concentrations of isotopes over pore sizes and that typical shapes of breakthrough curves (normally associated with non-uniform transport in heterogeneous soils) may also occur as a result of imperfect subscale mixing in a macroscopically homogeneous soil matrix.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Daniel Rasche, Markus Köhli, Martin Schrön, Theresa Blume, and Andreas Güntner
Hydrol. Earth Syst. Sci., 25, 6547–6566, https://doi.org/10.5194/hess-25-6547-2021, https://doi.org/10.5194/hess-25-6547-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensing provides areal average soil moisture measurements. We investigated how distinct differences in spatial soil moisture patterns influence the soil moisture estimates and present two approaches to improve the estimate of soil moisture close to the instrument by reducing the influence of soil moisture further afield. Additionally, we show that the heterogeneity of soil moisture can be assessed based on the relationship of different neutron energies.
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021, https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary
Short summary
This study uses the concepts of entropy and work to quantify and explain the emergence of preferential flow and transport in heterogeneous saturated porous media. We found that the downstream concentration of solutes in preferential pathways implies a downstream declining entropy in the transverse distribution of solute transport pathways. Preferential flow patterns with lower entropies emerged within media of higher heterogeneity – a stronger self-organization despite a higher randomness.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-242, https://doi.org/10.5194/hess-2021-242, 2021
Manuscript not accepted for further review
Short summary
Short summary
Our field observation-based examination of flow path evolution, soil formation and vegetation succession across ten millennia on calcareous parent material shows how water flow paths and subsurface water storage are linked to the organization of evolving landscapes. We provide important but rare data and observations for a proper handling of hydrologic processes and their role within the feedback cycle of the hydro-pedo-geomorphological system.
Jan Bondy, Jan Wienhöfer, Laurent Pfister, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-174, https://doi.org/10.5194/hess-2021-174, 2021
Manuscript not accepted for further review
Short summary
Short summary
The Budyko curve is a widely-used and simple framework to predict the mean water balance of river catchments. While many catchments are in close accordance with the Budyko curve, others show more or less significant deviations. Our study aims at better understanding the role of soil storage characteristics in the mean water balance and offsets from the Budyko curve. Soil storage proved to be a very sensitive property and potentially explains significant deviations from the curve.
Alexander Sternagel, Ralf Loritz, Julian Klaus, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 1483–1508, https://doi.org/10.5194/hess-25-1483-2021, https://doi.org/10.5194/hess-25-1483-2021, 2021
Short summary
Short summary
The key innovation of the study is a method to simulate reactive solute transport in the vadose zone within a Lagrangian framework. We extend the LAST-Model with a method to account for non-linear sorption and first-order degradation processes during unsaturated transport of reactive substances in the matrix and macropores. Model evaluations using bromide and pesticide data from irrigation experiments under different flow conditions on various timescales show the feasibility of the method.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-79, https://doi.org/10.5194/hess-2021-79, 2021
Manuscript not accepted for further review
Short summary
Short summary
In this study we ask the basic question why surface runoff forms drainage networks and confluences at all and how structural macro form and micro topography is a result of thermodynamic laws. We find that on a macro level hillslopes should tend from negative exponential towards exponential forms and that on a micro level the formation of rills goes hand in hand with drainage network formation of river basins. We hypothesize that we can learn more about erosion processes if we extend this theory.
Nicolas Björn Rodriguez, Laurent Pfister, Erwin Zehe, and Julian Klaus
Hydrol. Earth Syst. Sci., 25, 401–428, https://doi.org/10.5194/hess-25-401-2021, https://doi.org/10.5194/hess-25-401-2021, 2021
Short summary
Short summary
Different parts of water have often been used as tracers to determine the age of water in streams. The stable tracers, such as deuterium, are thought to be unable to reveal old water compared to the radioactive tracer called tritium. We used both tracers, measured in precipitation and in a stream in Luxembourg, to show that this is not necessarily true. It is, in fact, advantageous to use the two tracers together, and we recommend systematically using tritium in future studies.
Ralf Loritz, Markus Hrachowitz, Malte Neuper, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 147–167, https://doi.org/10.5194/hess-25-147-2021, https://doi.org/10.5194/hess-25-147-2021, 2021
Short summary
Short summary
This study investigates the role and value of distributed rainfall in the runoff generation of a mesoscale catchment. We compare the performance of different hydrological models at different periods and show that a distributed model driven by distributed rainfall yields improved performances only during certain periods. We then step beyond this finding and develop a spatially adaptive model that is capable of dynamically adjusting its spatial model structure in time.
Anne Hartmann, Markus Weiler, and Theresa Blume
Earth Syst. Sci. Data, 12, 3189–3204, https://doi.org/10.5194/essd-12-3189-2020, https://doi.org/10.5194/essd-12-3189-2020, 2020
Short summary
Short summary
Our analysis of soil physical and hydraulic properties across two soil chronosequences of 10 millennia in the Swiss Alps provides important observation of the evolution of soil hydraulic behavior. A strong co-evolution of soil physical and hydraulic properties was revealed by the observed change of fast-draining coarse-textured soils to slow-draining soils with a high water-holding capacity in correlation with a distinct change in structural properties and organic matter content.
Daniel Beiter, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 24, 5713–5744, https://doi.org/10.5194/hess-24-5713-2020, https://doi.org/10.5194/hess-24-5713-2020, 2020
Short summary
Short summary
We investigated the interactions between streams and their adjacent hillslopes in terms of water flow. It could be revealed that soil structure has a strong influence on how hillslopes connect to the streams, while the groundwater table tells us a lot about when the two connect. This observation could be used to improve models that try to predict whether or not hillslopes are in a state where a rain event will be likely to produce a flood in the stream.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 24, 5453–5472, https://doi.org/10.5194/hess-24-5453-2020, https://doi.org/10.5194/hess-24-5453-2020, 2020
Short summary
Short summary
In recent decades the demand for detailed information of spatial and temporal dynamics of the stream network has grown in the fields of eco-hydrology and extreme flow prediction. We use temporal streamflow intermittency data obtained at various sites using innovative sensing technology as well as spatial predictors to predict and map probabilities of streamflow intermittency. This approach has the potential to provide intermittency maps for hydrological modelling and management practices.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
Uwe Ehret, Rik van Pruijssen, Marina Bortoli, Ralf Loritz, Elnaz Azmi, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 4389–4411, https://doi.org/10.5194/hess-24-4389-2020, https://doi.org/10.5194/hess-24-4389-2020, 2020
Short summary
Short summary
In this paper we propose adaptive clustering as a new method for reducing the computational efforts of distributed modelling. It consists of identifying similar-acting model elements during the runtime, clustering them, running the model for just a few representatives per cluster, and mapping their results to the remaining model elements in the cluster. With the example of a hydrological model, we show that this saves considerable computation time, while largely maintaining the output quality.
Anne Hartmann, Ekaterina Semenova, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 24, 3271–3288, https://doi.org/10.5194/hess-24-3271-2020, https://doi.org/10.5194/hess-24-3271-2020, 2020
Short summary
Short summary
Our field observation-based examination of flow path evolution, soil formation, and vegetation succession across 10 millennia shows how water flow paths and subsurface water storage are linked to the organization of evolving landscapes.
The increase found in water storage and preferential flow paths with increasing soil age shows the effect of the complex interaction of vegetation and soil development on flow paths, water balance, and runoff formation during landscape evolution.
Mirko Mälicke, Sibylle K. Hassler, Theresa Blume, Markus Weiler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 2633–2653, https://doi.org/10.5194/hess-24-2633-2020, https://doi.org/10.5194/hess-24-2633-2020, 2020
Short summary
Short summary
We could show that distributed soil moisture time series bear a considerable amount of information about dynamic changes in soil moisture. We developed a new method to describe spatial patterns and analyze their persistency. By combining uncertainty propagation with information theory, we were able to calculate the information content of spatial similarity with respect to measurement uncertainty. This does help to understand when and why the soil is drying in an organized manner.
Brian Berkowitz and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 1831–1858, https://doi.org/10.5194/hess-24-1831-2020, https://doi.org/10.5194/hess-24-1831-2020, 2020
Short summary
Short summary
We present a
blueprintfor a unified modelling framework to quantify chemical transport in both surface water and groundwater systems. There has been extensive debate over recent decades, particularly in the surface water literature, about how to explain and account for long travel times of chemical species that are distinct from water flow (rainfall-runoff) travel times. We suggest a powerful modelling framework known to be robust and effective from the field of groundwater hydrology.
Conrad Jackisch, Kai Germer, Thomas Graeff, Ines Andrä, Katrin Schulz, Marcus Schiedung, Jaqueline Haller-Jans, Jonas Schneider, Julia Jaquemotte, Philipp Helmer, Leander Lotz, Andreas Bauer, Irene Hahn, Martin Šanda, Monika Kumpan, Johann Dorner, Gerrit de Rooij, Stefan Wessel-Bothe, Lorenz Kottmann, Siegfried Schittenhelm, and Wolfgang Durner
Earth Syst. Sci. Data, 12, 683–697, https://doi.org/10.5194/essd-12-683-2020, https://doi.org/10.5194/essd-12-683-2020, 2020
Short summary
Short summary
Soil water content and matric potential are central hydrological state variables. A large variety of automated probes and sensor systems for field monitoring exist. In a field experiment under idealised conditions we compared 15 systems for soil moisture and 14 systems for matric potential. The individual records of one system agree well with the others. Most records are also plausible. However, the absolute values of the different measuring systems span a very large range of possible truths.
Dominic Demand, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 23, 4869–4889, https://doi.org/10.5194/hess-23-4869-2019, https://doi.org/10.5194/hess-23-4869-2019, 2019
Short summary
Short summary
This study presents an analysis of 135 soil moisture profiles for identification of the spatial and temporal preferential flow occurrence in a complex landscape. Especially dry conditions and high rainfall intensities were found to increase preferential flow occurrence in soils. This results in a seasonal pattern of preferential flow with a higher occurrence in summer. During this time grasslands showed increased flow velocities, whereas forest sites exhibited a higher amount of bypass flow.
Alexander Sternagel, Ralf Loritz, Wolfgang Wilcke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 4249–4267, https://doi.org/10.5194/hess-23-4249-2019, https://doi.org/10.5194/hess-23-4249-2019, 2019
Short summary
Short summary
We present our hydrological LAST-Model to simulate preferential soil water flow and tracer transport in macroporous soils. It relies on a Lagrangian perspective of the movement of discrete water particles carrying tracer masses through the subsoil and is hence an alternative approach to common models. Sensitivity analyses reveal the physical validity of the model concept and evaluation tests show that LAST can depict well observed tracer mass profiles with fingerprints of preferential flow.
Axel Kleidon, Erwin Zehe, and Ralf Loritz
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-52, https://doi.org/10.5194/esd-2019-52, 2019
Manuscript not accepted for further review
Short summary
Short summary
Many fluxes in Earth systems are not homogeneously distributed across space, but occur highly concentrated in structures, such as turbulent eddies, river networks, vascular networks of plants, or human-made infrastructures. Yet, the highly-organized nature of these fluxes is typically only described at a rudimentary level, if at all. We propose that it requires a novel approach to describe these structures that focuses on the work done to build and maintain these structures, and the feedbacks.
Ralf Loritz, Axel Kleidon, Conrad Jackisch, Martijn Westhoff, Uwe Ehret, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019, https://doi.org/10.5194/hess-23-3807-2019, 2019
Short summary
Short summary
In this study, we develop a topographic index explaining hydrological similarity within a energy-centered framework, with the observation that the majority of potential energy is dissipated when rainfall becomes runoff.
Nils Hinrich Kaplan, Ernestine Sohrt, Theresa Blume, and Markus Weiler
Earth Syst. Sci. Data, 11, 1363–1374, https://doi.org/10.5194/essd-11-1363-2019, https://doi.org/10.5194/essd-11-1363-2019, 2019
Short summary
Short summary
Different sensing techniques including time-lapse imagery, electric conductivity and stage measurements were used to generate a combined dataset of the presence and absence of streamflow within a large number of nested sub-catchments in the Attert catchment, Luxembourg. The first sites of observation were established in 2013 and successively extended to a total number of 182 in 2016. The dataset can be used to improve understanding of the temporal and spatial dynamics of the stream network.
Anne J. Hoek van Dijke, Kaniska Mallick, Adriaan J. Teuling, Martin Schlerf, Miriam Machwitz, Sibylle K. Hassler, Theresa Blume, and Martin Herold
Hydrol. Earth Syst. Sci., 23, 2077–2091, https://doi.org/10.5194/hess-23-2077-2019, https://doi.org/10.5194/hess-23-2077-2019, 2019
Short summary
Short summary
Satellite images are often used to estimate land water fluxes over a larger area. In this study, we investigate the link between a well-known vegetation index derived from satellite data and sap velocity, in a temperate forest in Luxembourg. We show that the link between the vegetation index and transpiration is not constant. Therefore we suggest that the use of vegetation indices to predict transpiration should be limited to ecosystems and scales where the link has been confirmed.
Erwin Zehe, Ralf Loritz, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Theresa Blume, Sibylle K. Hassler, and Hubert H. Savenije
Hydrol. Earth Syst. Sci., 23, 971–987, https://doi.org/10.5194/hess-23-971-2019, https://doi.org/10.5194/hess-23-971-2019, 2019
Martijn Westhoff, Axel Kleidon, Stan Schymanski, Benjamin Dewals, Femke Nijsse, Maik Renner, Henk Dijkstra, Hisashi Ozawa, Hubert Savenije, Han Dolman, Antoon Meesters, and Erwin Zehe
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-6, https://doi.org/10.5194/esd-2019-6, 2019
Publication in ESD not foreseen
Short summary
Short summary
Even models relying on physical laws have parameters that need to be measured or estimated. Thermodynamic optimality principles potentially offer a way to reduce the number of estimated parameters by stating that a system evolves to an optimum state. These principles have been applied successfully within the Earth system, but it is often unclear what to optimize and how. In this review paper we identify commonalities between different successful applications as well as some doubtful applications.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018, https://doi.org/10.5194/piahs-380-3-2018, 2018
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 5735–5739, https://doi.org/10.5194/hess-22-5735-2018, https://doi.org/10.5194/hess-22-5735-2018, 2018
Mirko Mälicke, Sibylle K. Hassler, Markus Weiler, Theresa Blume, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-396, https://doi.org/10.5194/hess-2018-396, 2018
Manuscript not accepted for further review
Short summary
Short summary
In this study we use time dependent variograms to identify periods of organized soil moisture during drying. We could identify emerging spatial patterns which imply periods of terrestrial control on soil moisture organization. The coupling of time dependent variograms with density based clustering is a new approach to detect similarity in spatial patterns. The presented method is useful to describe states of organization and improve kriging workflows by extending their prerequisites.
Ralf Loritz, Hoshin Gupta, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Uwe Ehret, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 3663–3684, https://doi.org/10.5194/hess-22-3663-2018, https://doi.org/10.5194/hess-22-3663-2018, 2018
Short summary
Short summary
In this study we explore the role of spatially distributed information on hydrological modeling. For that, we develop and test an approach which draws upon information theory and thermodynamic reasoning. We show that the proposed set of methods provide a powerful framework for understanding and diagnosing how and when process organization and functional similarity of hydrological systems emerge in time and, hence, when which landscape characteristic is important in a model application.
Conrad Jackisch and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 3639–3662, https://doi.org/10.5194/hess-22-3639-2018, https://doi.org/10.5194/hess-22-3639-2018, 2018
Short summary
Short summary
We present a Lagrangian model for non-uniform soil water dynamics. It handles 2-D diffusion (based on a spatial random walk and implicit pore space redistribution) and 1-D advection in representative macropores (as film flow with dynamic interaction with the soil matrix). The interplay between the domains is calculated based on an energy-balance approach which does not require any additional parameterisation. Model tests give insight into the evolution of the non-uniform infiltration patterns.
Simon Höllering, Jan Wienhöfer, Jürgen Ihringer, Luis Samaniego, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 203–220, https://doi.org/10.5194/hess-22-203-2018, https://doi.org/10.5194/hess-22-203-2018, 2018
Short summary
Short summary
Hydrological fingerprints are introduced as response targets for sensitivity analysis and combined with a conventional approach using streamflow data for a temporally resolved sensitivity analysis. The joint benefit of both approaches is presented for several headwater catchments. The approach allows discerning a clarified pattern for parameter influences pinpointed to diverse response characteristics and detecting even slight regional differences.
Sibylle Kathrin Hassler, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 22, 13–30, https://doi.org/10.5194/hess-22-13-2018, https://doi.org/10.5194/hess-22-13-2018, 2018
Short summary
Short summary
We use sap velocity measurements from 61 trees on 132 days to gain knowledge about the controls of landscape-scale transpiration, distinguishing tree-, stand- and site-specific controls on sap velocity and sap flow patterns and examining their dynamics during the vegetation period. Our results show that these patterns are not exclusively determined by tree characteristics. Thus, including site characteristics such as geology and aspect could be beneficial for modelling or management purposes.
Christina Tecklenburg and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 5043–5063, https://doi.org/10.5194/hess-21-5043-2017, https://doi.org/10.5194/hess-21-5043-2017, 2017
Short summary
Short summary
We characterized groundwater–lake exchange patterns and identified their controls based on extensive field measurements. Our measurement design bridges the gap between the detailed local characterisation and low resolution regional investigations. Results indicated strong spatial variability in groundwater inflow rates: large scale inflow patterns correlated with topography and the groundwater flow field and small scale patterns correlated with grainsize distributions of the lake sediment.
Lisa Angermann, Conrad Jackisch, Niklas Allroggen, Matthias Sprenger, Erwin Zehe, Jens Tronicke, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017, https://doi.org/10.5194/hess-21-3727-2017, 2017
Short summary
Short summary
This study investigates the temporal dynamics and response velocities of lateral preferential flow at the hillslope. The results are compared to catchment response behavior to infer the large-scale implications of the observed processes. A large portion of mobile water flows through preferential flow paths in the structured soils, causing an immediate discharge response. The study presents a methodological approach to cover the spatial and temporal domain of these highly heterogeneous processes.
Conrad Jackisch, Lisa Angermann, Niklas Allroggen, Matthias Sprenger, Theresa Blume, Jens Tronicke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, https://doi.org/10.5194/hess-21-3749-2017, 2017
Short summary
Short summary
Rapid subsurface flow in structured soils facilitates fast vertical and lateral redistribution of event water. We present its in situ exploration through local measurements and irrigation experiments. Special emphasis is given to a coherent combination of hydrological and geophysical methods. The study highlights that form and function operate as conjugated pairs. Dynamic imaging through time-lapse GPR was key to observing both and to identifying hydrologically relevant structures.
Simon Paul Seibert, Conrad Jackisch, Uwe Ehret, Laurent Pfister, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 2817–2841, https://doi.org/10.5194/hess-21-2817-2017, https://doi.org/10.5194/hess-21-2817-2017, 2017
Short summary
Short summary
Runoff production mechanisms and their corresponding physiographic controls continue to pose major research challenges in catchment hydrology. We propose innovative data-driven diagnostic signatures for overcoming the prevailing status quo in inter-comparison studies. Specifically, we present dimensionless double mass curves which allow us to infer information on runoff generation at the seasonal and annual timescales. The method is based on commonly available data.
Ralf Loritz, Sibylle K. Hassler, Conrad Jackisch, Niklas Allroggen, Loes van Schaik, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 1225–1249, https://doi.org/10.5194/hess-21-1225-2017, https://doi.org/10.5194/hess-21-1225-2017, 2017
Short summary
Short summary
In this study we examine whether we can step beyond the qualitative character of perceptual models by using them as a blueprint for setting up representative hillslope models. Thereby we test the hypothesis of whether a single hillslope can represent the functioning of an entire lower mesoscale catchment in a spatially aggregated way.
Benjamin Müller, Matthias Bernhardt, Conrad Jackisch, and Karsten Schulz
Hydrol. Earth Syst. Sci., 20, 3765–3775, https://doi.org/10.5194/hess-20-3765-2016, https://doi.org/10.5194/hess-20-3765-2016, 2016
Short summary
Short summary
A technology for the spatial derivation of soil texture classes is presented. Information about soil texture is key for predicting the local and regional hydrological cycle. It is needed for the calculation of soil water movement, the share of surface runoff, the evapotranspiration rate and others. Nevertheless, the derivation of soil texture classes is expensive and time-consuming. The presented technique uses soil samples and remotely sensed data for estimating their spatial distribution.
Simon Paul Seibert, Uwe Ehret, and Erwin Zehe
Hydrol. Earth Syst. Sci., 20, 3745–3763, https://doi.org/10.5194/hess-20-3745-2016, https://doi.org/10.5194/hess-20-3745-2016, 2016
Short summary
Short summary
While the assessment of "vertical" (magnitude) errors of streamflow simulations is standard practice, "horizontal" (timing) errors are rarely considered. To assess their role, we propose a method to quantify both errors simultaneously which closely resembles visual hydrograph comparison. Our results reveal differences in time–magnitude error statistics for different flow conditions. The proposed method thus offers novel perspectives for model diagnostics and evaluation.
Erwin Zehe and Conrad Jackisch
Hydrol. Earth Syst. Sci., 20, 3511–3526, https://doi.org/10.5194/hess-20-3511-2016, https://doi.org/10.5194/hess-20-3511-2016, 2016
Simon Höllering, Jürgen Ihringer, Luis Samaniego, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-249, https://doi.org/10.5194/hess-2016-249, 2016
Preprint withdrawn
Maik Renner, Sibylle K. Hassler, Theresa Blume, Markus Weiler, Anke Hildebrandt, Marcus Guderle, Stanislaus J. Schymanski, and Axel Kleidon
Hydrol. Earth Syst. Sci., 20, 2063–2083, https://doi.org/10.5194/hess-20-2063-2016, https://doi.org/10.5194/hess-20-2063-2016, 2016
Short summary
Short summary
We estimated forest transpiration (European beech) along a steep valley cross section. Atmospheric demand, obtained by the thermodynamic limit of maximum power, is the dominant control of transpiration at all sites.
To our surprise we find that transpiration is rather similar across sites with different aspect (north vs. south) and different stand structure due to systematically varying sap velocities. Such a compensation effect is highly relevant for modeling and upscaling of transpiration.
Ingo Heidbüchel, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 20, 1269–1288, https://doi.org/10.5194/hess-20-1269-2016, https://doi.org/10.5194/hess-20-1269-2016, 2016
Short summary
Short summary
Cosmic-ray neutron sensors bridge the gap between point-scale measurements of soil moisture and remote sensing applications. We tested four distinct methods to calibrate the sensor in a temperate forest environment using different soil moisture weighting approaches. While the variable leaf biomass of the deciduous trees had no significant influence on the calibration, it proved necessary to modify the standard calibration method to achieve the best sensor performance.
M. Westhoff, E. Zehe, P. Archambeau, and B. Dewals
Hydrol. Earth Syst. Sci., 20, 479–486, https://doi.org/10.5194/hess-20-479-2016, https://doi.org/10.5194/hess-20-479-2016, 2016
Short summary
Short summary
We derived mathematical formulations of relations between relative wetness and gradients driving run-off and evaporation for a one-box model such that, when conductances are optimized with the maximum power principle, the model leads exactly to a point on the Budyko curve.
With dry spells and dynamics in actual evaporation added, the model compared well with catchment observations without calibrating any parameter.
The maximum-power principle may thus be used to derive the Budyko curve.
M. Sprenger, T. H. M. Volkmann, T. Blume, and M. Weiler
Hydrol. Earth Syst. Sci., 19, 2617–2635, https://doi.org/10.5194/hess-19-2617-2015, https://doi.org/10.5194/hess-19-2617-2015, 2015
Short summary
Short summary
We present a novel approach that includes information about the pore water stable isotopic composition in inverse model approaches to estimate soil hydraulic parameters. Different approaches are presented and their adequacy regarding the model efficiency, realism and parameter identifiability are discussed. The advantages of the new approach are shown by an application of the inverse estimated parameters to infer the water balance and the transit time for three different study sites.
U. Scherer and E. Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-3527-2015, https://doi.org/10.5194/hessd-12-3527-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
This paper presents the development, parameterization and verification of a process-based soil erosion model for the catchment scale, which balances necessary complexity with greatest possible simplicity. We used the hydrologic model CATFLOW as a platform and further developed it to CATFLOW-SED by integrating approaches to simulate soil erosion. The model was validated on a hierarchy of scales which is characteristic for the governing processes.
E. Zehe, U. Ehret, L. Pfister, T. Blume, B. Schröder, M. Westhoff, C. Jackisch, S. J. Schymanski, M. Weiler, K. Schulz, N. Allroggen, J. Tronicke, L. van Schaik, P. Dietrich, U. Scherer, J. Eccard, V. Wulfmeyer, and A. Kleidon
Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, https://doi.org/10.5194/hess-18-4635-2014, 2014
H. M. Holländer, H. Bormann, T. Blume, W. Buytaert, G. B. Chirico, J.-F. Exbrayat, D. Gustafsson, H. Hölzel, T. Krauße, P. Kraft, S. Stoll, G. Blöschl, and H. Flühler
Hydrol. Earth Syst. Sci., 18, 2065–2085, https://doi.org/10.5194/hess-18-2065-2014, https://doi.org/10.5194/hess-18-2065-2014, 2014
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
J. Wienhöfer and E. Zehe
Hydrol. Earth Syst. Sci., 18, 121–138, https://doi.org/10.5194/hess-18-121-2014, https://doi.org/10.5194/hess-18-121-2014, 2014
M. Liu, A. Bárdossy, and E. Zehe
Hydrol. Earth Syst. Sci., 17, 4685–4699, https://doi.org/10.5194/hess-17-4685-2013, https://doi.org/10.5194/hess-17-4685-2013, 2013
E. Zehe, U. Ehret, T. Blume, A. Kleidon, U. Scherer, and M. Westhoff
Hydrol. Earth Syst. Sci., 17, 4297–4322, https://doi.org/10.5194/hess-17-4297-2013, https://doi.org/10.5194/hess-17-4297-2013, 2013
M. C. Westhoff and E. Zehe
Hydrol. Earth Syst. Sci., 17, 3141–3157, https://doi.org/10.5194/hess-17-3141-2013, https://doi.org/10.5194/hess-17-3141-2013, 2013
A. Kleidon, E. Zehe, U. Ehret, and U. Scherer
Hydrol. Earth Syst. Sci., 17, 225–251, https://doi.org/10.5194/hess-17-225-2013, https://doi.org/10.5194/hess-17-225-2013, 2013
J. Wienhöfer, K. Germer, F. Lindenmaier, A. Färber, and E. Zehe
Hydrol. Earth Syst. Sci., 13, 1145–1161, https://doi.org/10.5194/hess-13-1145-2009, https://doi.org/10.5194/hess-13-1145-2009, 2009
Related subject area
Biogeophysics: Ecohydrology
Root growth dynamics and allocation as a response to rapid and local changes in soil moisture
Reviews and syntheses: A scoping review evaluating the potential application of ecohydrological models for northern peatland restoration
Drought and radiation explain fluctuations in Amazon rainforest greenness during the 2015–2016 drought
Inclusion of bedrock vadose zone in dynamic global vegetation models is key for simulating vegetation structure and function
The dynamics of marsh-channel slump blocks: an observational study using repeated drone imagery
Understanding the effects of revegetated shrubs on fluxes of energy, water, and gross primary productivity in a desert steppe ecosystem using the STEMMUS–SCOPE model
Imaging of the electrical activity in the root zone under limited-water-availability stress: a laboratory study for Vitis vinifera
Coordination of rooting, xylem, and stomatal strategies explains the response of conifer forest stands to multi-year drought in the southern Sierra Nevada of California
Historical variation in the normalized difference vegetation index compared with soil moisture in a taiga forest ecosystem in northeastern Siberia
A process-based model for quantifying the effects of canal blocking on water table and CO2 emissions in tropical peatlands
Continuous ground monitoring of vegetation optical depth and water content with GPS signals
Technical note: Common ambiguities in plant hydraulics
Consistent responses of vegetation gas exchange to elevated atmospheric CO2 emerge from heuristic and optimization models
Pioneer biocrust communities prevent soil erosion in temperate forests after disturbances
Modelling temporal variability of in situ soil water and vegetation isotopes reveals ecohydrological couplings in a riparian willow plot
Toward estimation of seasonal water dynamics of winter wheat from ground-based L-band radiometry: a concept study
Spatially varying relevance of hydrometeorological hazards for vegetation productivity extremes
Temporal dynamics of tree xylem water isotopes: in situ monitoring and modeling
Reviews and syntheses: Gaining insights into evapotranspiration partitioning with novel isotopic monitoring methods
What determines the sign of the evapotranspiration response to afforestation in European summer?
Predicting evapotranspiration from drone-based thermography – a method comparison in a tropical oil palm plantation
Patterns of plant rehydration and growth following pulses of soil moisture availability
Climatic traits on daily clearness and cloudiness indices
Causes and consequences of pronounced variation in the isotope composition of plant xylem water
Risk of crop failure due to compound dry and hot extremes estimated with nested copulas
Canal blocking optimization in restoration of drained peatlands
Large-scale biospheric drought response intensifies linearly with drought duration in arid regions
Global biosphere–climate interaction: a causal appraisal of observations and models over multiple temporal scales
Examining the evidence for decoupling between photosynthesis and transpiration during heat extremes
Ideas and perspectives: Tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes – challenges and opportunities from an interdisciplinary perspective
Does predictability of fluxes vary between FLUXNET sites?
Community-specific hydraulic conductance potential of soil water decomposed for two Alpine grasslands by small-scale lysimetry
Ideas and perspectives: how coupled is the vegetation to the boundary layer?
Crop water stress maps for an entire growing season from visible and thermal UAV imagery
MODIS vegetation products as proxies of photosynthetic potential along a gradient of meteorologically and biologically driven ecosystem productivity
Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments
Transpiration in an oil palm landscape: effects of palm age
Does EO NDVI seasonal metrics capture variations in species composition and biomass due to grazing in semi-arid grassland savannas?
Assessing vegetation structure and ANPP dynamics in a grassland–shrubland Chihuahuan ecotone using NDVI–rainfall relationships
On the use of the post-closure methods uncertainty band to evaluate the performance of land surface models against eddy covariance flux data
Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes
Continental-scale impacts of intra-seasonal rainfall variability on simulated ecosystem responses in Africa
Dew formation on the surface of biological soil crusts in central European sand ecosystems
Nonlinear controls on evapotranspiration in arctic coastal wetlands
Organic carbon efflux from a deciduous forest catchment in Korea
A simple ecohydrological model captures essentials of seasonal leaf dynamics in semi-arid tropical grasslands
Samuele Ceolin, Stanislaus J. Schymanski, Dagmar van Dusschoten, Robert Koller, and Julian Klaus
EGUsphere, https://doi.org/10.5194/egusphere-2024-2557, https://doi.org/10.5194/egusphere-2024-2557, 2024
Short summary
Short summary
We investigated if and how roots of maize plants respond to multiple, abrupt changes in soil moisture. We measured root lengths using a magnetic resonance imaging technique and calculated changes in growth rates after applying water pulses. The root growth rates increased in wetted soil layers within 48 hours and decreased in non-wetted layers, indicating fast adaptation of the root systems to moisture changes. Our findings could improve irrigation management and vegetation models.
Mariana P. Silva, Mark G. Healy, and Laurence Gill
Biogeosciences, 21, 3143–3163, https://doi.org/10.5194/bg-21-3143-2024, https://doi.org/10.5194/bg-21-3143-2024, 2024
Short summary
Short summary
Peatland restoration combats climate change and protects ecosystem health in many northern regions. This review gathers data about models used on northern peatlands to further envision their application in the specific scenario of restoration. A total of 211 papers were included in the review: location trends for peatland modelling were catalogued, and key themes in model outputs were highlighted. Valuable context is provided for future efforts in modelling the peatland restoration process.
Yi Y. Liu, Albert I. J. M. van Dijk, Patrick Meir, and Tim R. McVicar
Biogeosciences, 21, 2273–2295, https://doi.org/10.5194/bg-21-2273-2024, https://doi.org/10.5194/bg-21-2273-2024, 2024
Short summary
Short summary
Greenness of the Amazon forest fluctuated during the 2015–2016 drought, but no satisfactory explanation has been found. Based on water storage, temperature, and atmospheric moisture demand, we developed a method to delineate the regions where forests were under stress. These drought-affected regions were mainly identified at the beginning and end of the drought, resulting in below-average greenness. For the months in between, without stress, greenness responded positively to intense sunlight.
Dana A. Lapides, W. Jesse Hahm, Matthew Forrest, Daniella M. Rempe, Thomas Hickler, and David N. Dralle
Biogeosciences, 21, 1801–1826, https://doi.org/10.5194/bg-21-1801-2024, https://doi.org/10.5194/bg-21-1801-2024, 2024
Short summary
Short summary
Water stored in weathered bedrock is rarely incorporated into vegetation and Earth system models despite increasing recognition of its importance. Here, we add a weathered bedrock component to a widely used vegetation model. Using a case study of two sites in California and model runs across the United States, we show that more accurately representing subsurface water storage and hydrology increases summer plant water use so that it better matches patterns in distributed data products.
Zhicheng Yang, Clark Alexander, and Merryl Alber
Biogeosciences, 21, 1757–1772, https://doi.org/10.5194/bg-21-1757-2024, https://doi.org/10.5194/bg-21-1757-2024, 2024
Short summary
Short summary
We used repeat UAV imagery to study the spatial and temporal dynamics of slump blocks in a Georgia salt marsh. Although slump blocks are common in marshes, tracking them with the UAV provided novel insights. Blocks are highly dynamic, with new blocks appearing in each image while some are lost. Most blocks were lost by submergence, but we report for the first time their reconnection to the marsh platform. We also found that slump blocks can be an important contributor to creek widening.
Enting Tang, Yijian Zeng, Yunfei Wang, Zengjing Song, Danyang Yu, Hongyue Wu, Chenglong Qiao, Christiaan van der Tol, Lingtong Du, and Zhongbo Su
Biogeosciences, 21, 893–909, https://doi.org/10.5194/bg-21-893-2024, https://doi.org/10.5194/bg-21-893-2024, 2024
Short summary
Short summary
Our study shows that planting shrubs in a semiarid grassland reduced the soil moisture and increased plant water uptake and transpiration. Notably, the water used by the ecosystem exceeded the rainfall received during the growing seasons, indicating an imbalance in the water cycle. The findings demonstrate the effectiveness of the STEMMUS–SCOPE model as a tool to represent ecohydrological processes and highlight the need to consider energy and water budgets for future revegetation projects.
Benjamin Mary, Veronika Iván, Franco Meggio, Luca Peruzzo, Guillaume Blanchy, Chunwei Chou, Benedetto Ruperti, Yuxin Wu, and Giorgio Cassiani
Biogeosciences, 20, 4625–4650, https://doi.org/10.5194/bg-20-4625-2023, https://doi.org/10.5194/bg-20-4625-2023, 2023
Short summary
Short summary
The study explores the partial root zone drying method, an irrigation strategy aimed at improving water use efficiency. We imaged the root–soil interaction using non-destructive techniques consisting of soil and plant current stimulation. The study found that imaging the processes in time was effective in identifying spatial patterns associated with irrigation and root water uptake. The results will be useful for developing more efficient root detection methods in natural soil conditions.
Junyan Ding, Polly Buotte, Roger Bales, Bradley Christoffersen, Rosie A. Fisher, Michael Goulden, Ryan Knox, Lara Kueppers, Jacquelyn Shuman, Chonggang Xu, and Charles D. Koven
Biogeosciences, 20, 4491–4510, https://doi.org/10.5194/bg-20-4491-2023, https://doi.org/10.5194/bg-20-4491-2023, 2023
Short summary
Short summary
We used a vegetation model to investigate how the different combinations of plant rooting depths and the sensitivity of leaves and stems to drying lead to differential responses of a pine forest to drought conditions in California, USA. We found that rooting depths are the strongest control in that ecosystem. Deep roots allow trees to fully utilize the soil water during a normal year but result in prolonged depletion of soil moisture during a severe drought and hence a high tree mortality risk.
Aleksandr Nogovitcyn, Ruslan Shakhmatov, Tomoki Morozumi, Shunsuke Tei, Yumiko Miyamoto, Nagai Shin, Trofim C. Maximov, and Atsuko Sugimoto
Biogeosciences, 20, 3185–3201, https://doi.org/10.5194/bg-20-3185-2023, https://doi.org/10.5194/bg-20-3185-2023, 2023
Short summary
Short summary
The taiga ecosystem in northeastern Siberia changed during the extreme wet event in 2007. Before the wet event, the NDVI in a typical larch forest showed a positive correlation with soil moisture, and after the event it showed a negative correlation. For both periods, NDVI correlated negatively with foliar C/N. These results indicate that high soil moisture availability after the event decreased needle production, which may have resulted from lower N availability.
Iñaki Urzainki, Marjo Palviainen, Hannu Hökkä, Sebastian Persch, Jeffrey Chatellier, Ophelia Wang, Prasetya Mahardhitama, Rizaldy Yudhista, and Annamari Laurén
Biogeosciences, 20, 2099–2116, https://doi.org/10.5194/bg-20-2099-2023, https://doi.org/10.5194/bg-20-2099-2023, 2023
Short summary
Short summary
Drained peatlands (peat areas where ditches have been excavated to enhance crop productivity) are one of the main sources of carbon dioxide emissions globally. Blocking the ditches by building dams is a common strategy to raise the water table and to mitigate carbon dioxide emissions. But how effective is ditch blocking in raising the overall water table over a large area? Our work tackles this question by making use of the available data and physics-based hydrological modeling.
Vincent Humphrey and Christian Frankenberg
Biogeosciences, 20, 1789–1811, https://doi.org/10.5194/bg-20-1789-2023, https://doi.org/10.5194/bg-20-1789-2023, 2023
Short summary
Short summary
Microwave satellites can be used to monitor how vegetation biomass changes over time or how droughts affect the world's forests. However, such satellite data are still difficult to validate and interpret because of a lack of comparable field observations. Here, we present a remote sensing technique that uses the Global Navigation Satellite System (GNSS) as a makeshift radar, making it possible to observe canopy transmissivity at any existing environmental research site in a cost-efficient way.
Yujie Wang and Christian Frankenberg
Biogeosciences, 19, 4705–4714, https://doi.org/10.5194/bg-19-4705-2022, https://doi.org/10.5194/bg-19-4705-2022, 2022
Short summary
Short summary
Plant hydraulics is often misrepresented in topical research. We highlight the commonly seen ambiguities and/or mistakes, with equations and figures to help visualize the potential biases. We recommend careful thinking when using or modifying existing plant hydraulic terms, methods, and models.
Stefano Manzoni, Simone Fatichi, Xue Feng, Gabriel G. Katul, Danielle Way, and Giulia Vico
Biogeosciences, 19, 4387–4414, https://doi.org/10.5194/bg-19-4387-2022, https://doi.org/10.5194/bg-19-4387-2022, 2022
Short summary
Short summary
Increasing atmospheric carbon dioxide (CO2) causes leaves to close their stomata (through which water evaporates) but also promotes leaf growth. Even if individual leaves save water, how much will be consumed by a whole plant with possibly more leaves? Using different mathematical models, we show that plant stands that are not very dense and can grow more leaves will benefit from higher CO2 by photosynthesizing more while adjusting their stomata to consume similar amounts of water.
Corinna Gall, Martin Nebel, Dietmar Quandt, Thomas Scholten, and Steffen Seitz
Biogeosciences, 19, 3225–3245, https://doi.org/10.5194/bg-19-3225-2022, https://doi.org/10.5194/bg-19-3225-2022, 2022
Short summary
Short summary
Soil erosion is one of the most serious environmental challenges of our time, which also applies to forests when forest soil is disturbed. Biological soil crusts (biocrusts) can play a key role as erosion control. In this study, we combined soil erosion measurements with vegetation surveys in disturbed forest areas. We found that soil erosion was reduced primarily by pioneer bryophyte-dominated biocrusts and that bryophytes contributed more to soil erosion mitigation than vascular plants.
Aaron Smith, Doerthe Tetzlaff, Jessica Landgraf, Maren Dubbert, and Chris Soulsby
Biogeosciences, 19, 2465–2485, https://doi.org/10.5194/bg-19-2465-2022, https://doi.org/10.5194/bg-19-2465-2022, 2022
Short summary
Short summary
This research utilizes high-spatiotemporal-resolution soil and vegetation measurements, including water stable isotopes, within an ecohydrological model to partition water flux dynamics and identify flow paths and durations. Results showed high vegetation water use and high spatiotemporal dynamics of vegetation water source and vegetation isotopes. The evaluation of these dynamics further revealed relatively fast flow paths through both shallow soil and vegetation.
Thomas Jagdhuber, François Jonard, Anke Fluhrer, David Chaparro, Martin J. Baur, Thomas Meyer, and María Piles
Biogeosciences, 19, 2273–2294, https://doi.org/10.5194/bg-19-2273-2022, https://doi.org/10.5194/bg-19-2273-2022, 2022
Short summary
Short summary
This is a concept study of water dynamics across winter wheat starting from ground-based L-band radiometry in combination with on-site measurements of soil and atmosphere. We research the feasibility of estimating water potentials and seasonal flux rates of water (water uptake from soil and transpiration rates into the atmosphere) within the soil-plant-atmosphere system (SPAS) of a winter wheat field. The main finding is that L-band radiometry can be integrated into field-based SPAS assessment.
Josephin Kroll, Jasper M. C. Denissen, Mirco Migliavacca, Wantong Li, Anke Hildebrandt, and Rene Orth
Biogeosciences, 19, 477–489, https://doi.org/10.5194/bg-19-477-2022, https://doi.org/10.5194/bg-19-477-2022, 2022
Short summary
Short summary
Plant growth relies on having access to energy (solar radiation) and water (soil moisture). This energy and water availability is impacted by weather extremes, like heat waves and droughts, which will occur more frequently in response to climate change. In this context, we analysed global satellite data to detect in which regions extreme plant growth is controlled by energy or water. We find that extreme plant growth is associated with temperature- or soil-moisture-related extremes.
Stefan Seeger and Markus Weiler
Biogeosciences, 18, 4603–4627, https://doi.org/10.5194/bg-18-4603-2021, https://doi.org/10.5194/bg-18-4603-2021, 2021
Short summary
Short summary
We developed a setup for fully automated in situ measurements of stable water isotopes in soil and the stems of fully grown trees. We used this setup in a 12-week field campaign to monitor the propagation of a labelling pulse from the soil up to a stem height of 8 m.
We could observe trees shifting their main water uptake depths multiple times, depending on water availability.
The gained knowledge about the temporal dynamics can help to improve water uptake models and future study designs.
Youri Rothfuss, Maria Quade, Nicolas Brüggemann, Alexander Graf, Harry Vereecken, and Maren Dubbert
Biogeosciences, 18, 3701–3732, https://doi.org/10.5194/bg-18-3701-2021, https://doi.org/10.5194/bg-18-3701-2021, 2021
Short summary
Short summary
The partitioning of evapotranspiration into evaporation from soil and transpiration from plants is crucial for a wide range of parties, from farmers to policymakers. In this work, we focus on a particular partitioning method, based on the stable isotopic analysis of water. In particular, we aim at highlighting the challenges that this method is currently facing and, in light of recent methodological developments, propose ways forward for the isotopic-partitioning community.
Marcus Breil, Edouard L. Davin, and Diana Rechid
Biogeosciences, 18, 1499–1510, https://doi.org/10.5194/bg-18-1499-2021, https://doi.org/10.5194/bg-18-1499-2021, 2021
Short summary
Short summary
The physical processes behind varying evapotranspiration rates in forests and grasslands in Europe are investigated in a regional model study with idealized afforestation scenarios. The results show that the evapotranspiration response to afforestation depends on the interplay of two counteracting factors: the transpiration facilitating characteristics of a forest and the reduced saturation deficits of forests caused by an increased surface roughness and associated lower surface temperatures.
Florian Ellsäßer, Christian Stiegler, Alexander Röll, Tania June, Hendrayanto, Alexander Knohl, and Dirk Hölscher
Biogeosciences, 18, 861–872, https://doi.org/10.5194/bg-18-861-2021, https://doi.org/10.5194/bg-18-861-2021, 2021
Short summary
Short summary
Recording land surface temperatures using drones offers new options to predict evapotranspiration based on energy balance models. This study compares predictions from three energy balance models with the eddy covariance method. A model II Deming regression indicates interchangeability for latent heat flux estimates from certain modeling methods and eddy covariance measurements. This complements the available methods for evapotranspiration studies by fine grain and spatially explicit assessments.
Andrew F. Feldman, Daniel J. Short Gianotti, Alexandra G. Konings, Pierre Gentine, and Dara Entekhabi
Biogeosciences, 18, 831–847, https://doi.org/10.5194/bg-18-831-2021, https://doi.org/10.5194/bg-18-831-2021, 2021
Short summary
Short summary
We quantify global plant water uptake durations after rainfall using satellite-based plant water content measurements. In wetter regions, plant water uptake occurs within a day due to rapid coupling between soil and plant water content. Drylands show multi-day plant water uptake after rain pulses, providing widespread evidence for slow rehydration responses and pulse-driven growth responses. Our results suggest that drylands are sensitive to projected shifts in rainfall intensity and frequency.
Estefanía Muñoz and Andrés Ochoa
Biogeosciences, 18, 573–584, https://doi.org/10.5194/bg-18-573-2021, https://doi.org/10.5194/bg-18-573-2021, 2021
Short summary
Short summary
We inspect for climatic traits in the shape of the PDF of the clear-day (c) and the clearness (k) indices at 37 FLUXNET sites for the SW and the PAR spectral bands. We identified three types of PDF, unimodal with low dispersion, unimodal with high dispersion and bimodal, with no difference in the PDF type between c and k at each site. We found that latitude, global climate zone and Köppen climate type have a weak relation and the Holdridge life zone a stronger relation with c and k PDF types.
Hannes P. T. De Deurwaerder, Marco D. Visser, Matteo Detto, Pascal Boeckx, Félicien Meunier, Kathrin Kuehnhammer, Ruth-Kristina Magh, John D. Marshall, Lixin Wang, Liangju Zhao, and Hans Verbeeck
Biogeosciences, 17, 4853–4870, https://doi.org/10.5194/bg-17-4853-2020, https://doi.org/10.5194/bg-17-4853-2020, 2020
Short summary
Short summary
The depths at which plants take up water is challenging to observe directly. To do so, scientists have relied on measuring the isotopic composition of xylem water as this provides information on the water’s source. Our work shows that this isotopic composition changes throughout the day, which complicates the interpretation of the water’s source and has been currently overlooked. We build a model to help understand the origin of these composition changes and their consequences for science.
Andreia Filipa Silva Ribeiro, Ana Russo, Célia Marina Gouveia, Patrícia Páscoa, and Jakob Zscheischler
Biogeosciences, 17, 4815–4830, https://doi.org/10.5194/bg-17-4815-2020, https://doi.org/10.5194/bg-17-4815-2020, 2020
Short summary
Short summary
This study investigates the impacts of compound dry and hot extremes on crop yields, namely wheat and barley, over two regions in Spain dominated by rainfed agriculture. We provide estimates of the conditional probability of crop loss under compound dry and hot conditions, which could be an important tool for responsible authorities to mitigate the impacts magnified by the interactions between the different hazards.
Iñaki Urzainki, Ari Laurén, Marjo Palviainen, Kersti Haahti, Arif Budiman, Imam Basuki, Michael Netzer, and Hannu Hökkä
Biogeosciences, 17, 4769–4784, https://doi.org/10.5194/bg-17-4769-2020, https://doi.org/10.5194/bg-17-4769-2020, 2020
Short summary
Short summary
Drained peatlands (peat areas where ditches have been excavated to enhance plant production) are one of the main sources of carbon dioxide emissions globally. Blocking these ditches by building dams is a common strategy to restore the self-sustaining peat ecosystem and mitigate carbon dioxide emissions. Where should these dams be located in order to maximize the benefits? Our work tackles this question by making use of the available data, hydrological modeling and numerical optimization methods.
René Orth, Georgia Destouni, Martin Jung, and Markus Reichstein
Biogeosciences, 17, 2647–2656, https://doi.org/10.5194/bg-17-2647-2020, https://doi.org/10.5194/bg-17-2647-2020, 2020
Short summary
Short summary
Drought duration is a key control of the large-scale biospheric drought response.
Thereby, the vegetation responds linearly to drought duration at large spatial scales.
The slope of the linear relationship between the vegetation drought response and drought duration is steeper in drier climates.
Jeroen Claessen, Annalisa Molini, Brecht Martens, Matteo Detto, Matthias Demuzere, and Diego G. Miralles
Biogeosciences, 16, 4851–4874, https://doi.org/10.5194/bg-16-4851-2019, https://doi.org/10.5194/bg-16-4851-2019, 2019
Short summary
Short summary
Bidirectional interactions between vegetation and climate are unraveled over short (monthly) and long (inter-annual) temporal scales. Analyses use a novel causal inference method based on wavelet theory. The performance of climate models at representing these interactions is benchmarked against satellite data. Climate models can reproduce the overall climate controls on vegetation at all temporal scales, while their performance at representing biophysical feedbacks on climate is less adequate.
Martin G. De Kauwe, Belinda E. Medlyn, Andrew J. Pitman, John E. Drake, Anna Ukkola, Anne Griebel, Elise Pendall, Suzanne Prober, and Michael Roderick
Biogeosciences, 16, 903–916, https://doi.org/10.5194/bg-16-903-2019, https://doi.org/10.5194/bg-16-903-2019, 2019
Short summary
Short summary
Recent experimental evidence suggests that during heat extremes, trees may reduce photosynthesis to near zero but increase transpiration. Using eddy covariance data and examining the 3 days leading up to a temperature extreme, we found evidence of reduced photosynthesis and sustained or increased latent heat fluxes at Australian wooded flux sites. However, when focusing on heatwaves, we were unable to disentangle photosynthetic decoupling from the effect of increasing vapour pressure deficit.
Daniele Penna, Luisa Hopp, Francesca Scandellari, Scott T. Allen, Paolo Benettin, Matthias Beyer, Josie Geris, Julian Klaus, John D. Marshall, Luitgard Schwendenmann, Till H. M. Volkmann, Jana von Freyberg, Anam Amin, Natalie Ceperley, Michael Engel, Jay Frentress, Yamuna Giambastiani, Jeff J. McDonnell, Giulia Zuecco, Pilar Llorens, Rolf T. W. Siegwolf, Todd E. Dawson, and James W. Kirchner
Biogeosciences, 15, 6399–6415, https://doi.org/10.5194/bg-15-6399-2018, https://doi.org/10.5194/bg-15-6399-2018, 2018
Short summary
Short summary
Understanding how water flows through ecosystems is needed to provide society and policymakers with the scientific background to manage water resources sustainably. Stable isotopes of hydrogen and oxygen in water are a powerful tool for tracking water fluxes, although the heterogeneity of natural systems and practical methodological issues still limit their full application. Here, we examine the challenges in this research field and highlight new perspectives based on interdisciplinary research.
Ned Haughton, Gab Abramowitz, Martin G. De Kauwe, and Andy J. Pitman
Biogeosciences, 15, 4495–4513, https://doi.org/10.5194/bg-15-4495-2018, https://doi.org/10.5194/bg-15-4495-2018, 2018
Short summary
Short summary
This project explores predictability in energy, water, and carbon fluxes in the free-use Tier 1 of the FLUXNET 2015 dataset using a uniqueness metric based on comparison of locally and globally trained models. While there is broad spread in predictability between sites, we found strikingly few strong patterns. Nevertheless, these results can contribute to the standardisation of site selection for land surface model evaluation and help pinpoint regions that are ripe for further FLUXNET research.
Georg Frenck, Georg Leitinger, Nikolaus Obojes, Magdalena Hofmann, Christian Newesely, Mario Deutschmann, Ulrike Tappeiner, and Erich Tasser
Biogeosciences, 15, 1065–1078, https://doi.org/10.5194/bg-15-1065-2018, https://doi.org/10.5194/bg-15-1065-2018, 2018
Short summary
Short summary
For central Europe in addition to rising temperatures, an increasing variability in precipitation is predicted. In a replicated mesocosm experiment we compared evapotranspiration and the biomass productivity of two differently drought-adapted vegetation communities during two irrigation regimes (with and without drought periods). Significant differences between the different communities were found in the response to variations in the water supply and biomass production.
Martin G. De Kauwe, Belinda E. Medlyn, Jürgen Knauer, and Christopher A. Williams
Biogeosciences, 14, 4435–4453, https://doi.org/10.5194/bg-14-4435-2017, https://doi.org/10.5194/bg-14-4435-2017, 2017
Short summary
Short summary
Understanding the sensitivity of transpiration to stomatal conductance is critical to simulating the water cycle. This sensitivity is a function of the degree of coupling between the vegetation and the atmosphere. We combined an extensive literature summary with estimates of coupling derived from FLUXNET data. We found notable departures from the values previously reported. These data form a model benchmarking metric to test existing coupling assumptions.
Helene Hoffmann, Rasmus Jensen, Anton Thomsen, Hector Nieto, Jesper Rasmussen, and Thomas Friborg
Biogeosciences, 13, 6545–6563, https://doi.org/10.5194/bg-13-6545-2016, https://doi.org/10.5194/bg-13-6545-2016, 2016
Short summary
Short summary
This study investigates whether the UAV (drone) based WDI can determine crop water stress from fields with open canopies (land surface consisting of both soil and canopy) and from fields where canopies are starting to senesce. This utility could solve issues that arise when applying the commonly used CWSI stress index. The WDI succeeded in providing accurate, high-resolution estimates of crop water stress at different growth stages of barley.
Natalia Restrepo-Coupe, Alfredo Huete, Kevin Davies, James Cleverly, Jason Beringer, Derek Eamus, Eva van Gorsel, Lindsay B. Hutley, and Wayne S. Meyer
Biogeosciences, 13, 5587–5608, https://doi.org/10.5194/bg-13-5587-2016, https://doi.org/10.5194/bg-13-5587-2016, 2016
Short summary
Short summary
We re-evaluated the connection between satellite greenness products and C-flux tower data in four Australian ecosystems. We identify key mechanisms driving the carbon cycle, and provide an ecological basis for the interpretation of vegetation indices. We found relationships between productivity and greenness to be non-significant in meteorologically driven evergreen forests and sites where climate and vegetation phenology were asynchronous, and highly correlated in phenology-driven ecosystems.
Zahra Thomas, Benjamin W. Abbott, Olivier Troccaz, Jacques Baudry, and Gilles Pinay
Biogeosciences, 13, 1863–1875, https://doi.org/10.5194/bg-13-1863-2016, https://doi.org/10.5194/bg-13-1863-2016, 2016
Short summary
Short summary
Direct human impact on a catchment (fertilizer input, soil disturbance, urbanization) is asymmetrically linked with inherent catchment properties (geology, soil, topography), which together determine catchment vulnerability to human activity. To quantify the influence of physical, hydrologic, and anthropogenic controls on surface water quality, we used a 5-year high-frequency water chemistry data set from three contrasting headwater catchments in western France.
A. Röll, F. Niu, A. Meijide, A. Hardanto, Hendrayanto, A. Knohl, and D. Hölscher
Biogeosciences, 12, 5619–5633, https://doi.org/10.5194/bg-12-5619-2015, https://doi.org/10.5194/bg-12-5619-2015, 2015
Short summary
Short summary
The study provides first insight into eco-hydrological consequences of the continuing oil palm expansion in the tropics. Stand transpiration rates of some studied oil palm stands compared to or even exceeded values reported for tropical forests, indicating high water use of oil palms under certain conditions. Oil palm landscapes show some spatial variations in (evapo)transpiration rates, e.g. due to varying plantation age, but the day-to-day variability of oil palm transpiration is rather low.
J. L. Olsen, S. Miehe, P. Ceccato, and R. Fensholt
Biogeosciences, 12, 4407–4419, https://doi.org/10.5194/bg-12-4407-2015, https://doi.org/10.5194/bg-12-4407-2015, 2015
Short summary
Short summary
Limitations of satellite-based normalized difference vegetation index (NDVI) for monitoring vegetation trends are investigated using observations from the Widou Thiengoly test site in northern Senegal. NDVI do not reflect the large differences found in biomass production and species composition between grazed and ungrazed plots. This is problematic for vegetation trend analysis in the context of drastically increasing numbers of Sahelian livestock in recent decades.
M. Moreno-de las Heras, R. Díaz-Sierra, L. Turnbull, and J. Wainwright
Biogeosciences, 12, 2907–2925, https://doi.org/10.5194/bg-12-2907-2015, https://doi.org/10.5194/bg-12-2907-2015, 2015
Short summary
Short summary
Exploration of NDVI-rainfall relationships provided ready biophysically based criteria to study the spatial distribution and dynamics of ANPP for herbaceous and shrub vegetation across a grassland-shrubland Chihuahuan ecotone (Sevilleta NWR, New Mexico). Overall our results suggest that shrub encroachment has not been particularly active for 2000-2013 in the area, although future reductions in summer precipitation and/or increases in winter rainfall may intensify the shrub-encroachment process.
J. Ingwersen, K. Imukova, P. Högy, and T. Streck
Biogeosciences, 12, 2311–2326, https://doi.org/10.5194/bg-12-2311-2015, https://doi.org/10.5194/bg-12-2311-2015, 2015
Short summary
Short summary
The energy balance of eddy covariance (EC) flux data is normally not closed. Therefore, EC flux data are usually post-closed, i.e. the measured turbulent fluxes are adjusted so as to close the energy balance. We propose to use in model evaluation the post-closure method uncertainty band (PUB) to account for the uncertainty in EC data originating from lacking energy balance closure. Working with only a single post-closing method might result in severe misinterpretations in model-data comparison.
C. D. Arp, M. S. Whitman, B. M. Jones, G. Grosse, B. V. Gaglioti, and K. C. Heim
Biogeosciences, 12, 29–47, https://doi.org/10.5194/bg-12-29-2015, https://doi.org/10.5194/bg-12-29-2015, 2015
Short summary
Short summary
Beaded streams have deep elliptical pools connected by narrow runs that we show are common landforms in the continuous permafrost zone. These fluvial systems often initiate from lakes and occur predictably in headwater portions of moderately sloping watersheds. Snow capture along stream courses reduces ice thickness allowing thawed sediment to persist under most pools. Interpool thermal variability and hydrologic regimes provide important aquatic habitat and connectivity in Arctic landscapes.
K. Guan, S. P. Good, K. K. Caylor, H. Sato, E. F. Wood, and H. Li
Biogeosciences, 11, 6939–6954, https://doi.org/10.5194/bg-11-6939-2014, https://doi.org/10.5194/bg-11-6939-2014, 2014
Short summary
Short summary
Climate change is expected to modify the way that rainfall arrives, namely the frequency and intensity of rainfall events and rainy season length. Yet, the quantification of the impact of these possible rainfall changes across large biomes is lacking. Our study fills this gap by developing a new modeling framework, applying it to continental Africa. We show that African ecosystems are highly sensitive to these rainfall variabilities, with esp. large sensitivity to changes in rainy season length.
T. Fischer, M. Veste, O. Bens, and R. F. Hüttl
Biogeosciences, 9, 4621–4628, https://doi.org/10.5194/bg-9-4621-2012, https://doi.org/10.5194/bg-9-4621-2012, 2012
A. K. Liljedahl, L. D. Hinzman, Y. Harazono, D. Zona, C. E. Tweedie, R. D. Hollister, R. Engstrom, and W. C. Oechel
Biogeosciences, 8, 3375–3389, https://doi.org/10.5194/bg-8-3375-2011, https://doi.org/10.5194/bg-8-3375-2011, 2011
S. J. Kim, J. Kim, and K. Kim
Biogeosciences, 7, 1323–1334, https://doi.org/10.5194/bg-7-1323-2010, https://doi.org/10.5194/bg-7-1323-2010, 2010
P. Choler, W. Sea, P. Briggs, M. Raupach, and R. Leuning
Biogeosciences, 7, 907–920, https://doi.org/10.5194/bg-7-907-2010, https://doi.org/10.5194/bg-7-907-2010, 2010
Cited articles
Allroggen, N., Jackisch, C., and Tronicke, J.: Four-dimensional gridding of
time-lapse GPR data, in: 2017 9th International Workshop on Advanced Ground
Penetrating Radar (IWAGPR), 1–4, IEEE,
https://doi.org/10.1109/IWAGPR.2017.7996067, 2017. a, b
Bieker, D. and Rust, S.: Non-Destructive Estimation of Sapwood and Heartwood
Width in Scots Pine (Pinus sylvestris L.), Silva Fennica, 44, 267–273,
2010. a
Blume, T., Heidbüchel, I., Simard, S., Güntner, A., and Weiler, M.:
Detecting spatio-temporal controls on depth distributions of root water
uptake using soil moisture patterns, in: EGU General Assembly Conference
Abstracts, 18, EPSC2016–16444, 2016. a
Blume, T., Hassler, S. K., and Weiler, M.: From groundwater to soil moisture
to transpiration: do stable landscape patterns exist and when do they break
down?, in: EGU General Assembly Conference Abstracts 2018, Vienna, 20, EGU2018-12735, 2018. a
Boaga, J., Rossi, M., and Cassiani, G.: Monitoring Soil-plant Interactions in
an Apple Orchard Using 3D Electrical Resistivity Tomography, Procedia
Environ. Sci., 19, 394–402, 2013. a
Burgess, S. S. O., Adams, M. A., Turner, N. C., and Ong, C. K.: The
redistribution of soil water by tree root systems, Oecologia, 115, 306–311, https://doi.org/10.1007/s004420050521, 1998. a
Burgess, S. S. O., Adams, M. A., and Bleby, T. M.: Measurement of sap flow in roots of woody plants: a commentary, Tree Physiol., 20, 909–913,
https://doi.org/10.1093/treephys/20.13.909, 2000. a
Cai, G., Vanderborght, J., Langensiepen, M., Schnepf, A., Hüging, H., and Vereecken, H.: Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions, Hydrol. Earth Syst. Sci., 22, 2449–2470, https://doi.org/10.5194/hess-22-2449-2018, 2018. a
Carminati, A., Vetterlein, D., Koebernick, N., Blaser, S., Weller, U., and
Vogel, H.-J.: Do roots mind the gap?, Plant Soil, 367, 651–661,
https://doi.org/10.1007/s11104-012-1496-9, 2012. a
Carminati, A., Zarebanadkouki, M., Kroener, E., Ahmed, M. A., and Holz, M.:
Biophysical rhizosphere processes affecting root water uptake, Ann. Bot.-London, 118, 561–571, https://doi.org/10.1093/aob/mcw113, 2016. a, b
Čermák, J., Kučera, J., and Nadezhdina, N.: Sap flow
measurements with some thermodynamic methods, flow integration within trees
and scaling up from sample trees to entire forest stands, Trees, 18, 529–546, https://doi.org/10.1007/s00468-004-0339-6, 2004. a
Čermák, J., Kučera, J., Bauerle, W. L., Phillips, N., and Hinckley, T. M.: Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees, Tree Physiol., 27,
181–198, https://doi.org/10.1093/treephys/27.2.181, 2007. a, b
Couvreur, V., Vanderborght, J., and Javaux, M.: A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach, Hydrol. Earth Syst. Sci., 16, 2957–2971, https://doi.org/10.5194/hess-16-2957-2012, 2012. a
De Deurwaerder, H., Visser, M. D., Detto, M., Boeckx, P., Meunier, F., Zhao,
L., Wang, L., and Verbeeck, H.: Diurnal variation in xylem water isotopic
signature biases depth of root-water uptake estimates, bioRxiv, 103,
712554, https://doi.org/10.1101/712554, 2019. a
Dubbert, M. and Werner, C.: Water fluxes mediated by vegetation: emerging
isotopic insights at the soil and atmosphere interfaces., New Phytol., 221, 1754–1763, https://doi.org/10.1111/nph.15547, 2019. a, b, c, d
Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso,
D., Gutierrez, V., Noordwijk, M. V., Creed, I. F., Pokorný, J., Gaveau, D., Spracklen, D. V., Tobella, A. B., Ilstedt, U., Teuling, A. J.,
Gebrehiwot, S. G., Sands, D. C., Muys, B., Verbist, B., Springgay, E.,
Sugandi, Y., and Sullivan, C. A.: Trees, forests and water: Cool insights
for a hot world, Global Environ. Change, 43, 51–61, https://doi.org/10.1016/j.gloenvcha.2017.01.002, 2017. a
Feddes, R. A. and van Dam, J. C.: PLANT-SOIL-WATER RELATIONS, in: Encyclopedia of Soils in the Environment, edited by: Hillel, D., 222–230, Elsevier, Oxford, https://doi.org/10.1016/B0-12-348530-4/00520-8, 2005. a, b, c
Gao, H., Hrachowitz, M., Schymanski, S. J., Fenicia, F., Sriwongsitanon, N.,
and Savenije, H. H. G.: Climate controls how ecosystems size the root zone
storage capacity at catchment scale, Geophys. Res. Lett., 41,
2014GL061, https://doi.org/10.1002/2014GL061668, 2014. a, b
Gebler, S., Hendricks Franssen, H.-J., Pütz, T., Post, H., Schmidt, M., and Vereecken, H.: Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket, Hydrol. Earth Syst. Sci., 19, 2145–2161, https://doi.org/10.5194/hess-19-2145-2015, 2015. a
Glaser, B., Jackisch, C., Hopp, L., and Klaus, J.: How Meaningful are
Plot-Scale Observations and Simulations of Preferential Flow for Catchment
Models?, Vadose Zone J., 18, 1–18, https://doi.org/10.2136/vzj2018.08.0146, 2019. a
Guderle, M., Bachmann, D., Milcu, A., Gockele, A., Bechmann, M., Fischer, C.,
Roscher, C., Landais, D., Ravel, O., Devidal, S., Roy, J., Gessler, A.,
Buchmann, N., Weigelt, A., and Hildebrandt, A.: Dynamic niche partitioning
in root water uptake facilitates efficient water use in more diverse
grassland plant communities, Funct. Ecol., 32, 214–227,
https://doi.org/10.1111/1365-2435.12948, 2018. a
Hassler, S. K., Weiler, M., and Blume, T.: Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration, Hydrol. Earth Syst. Sci., 22, 13–30, https://doi.org/10.5194/hess-22-13-2018, 2018. a, b, c
Hildebrandt, A., Kleidon, A., and Bechmann, M.: A thermodynamic formulation of root water uptake, Hydrol. Earth Syst. Sci., 20, 3441–3454, https://doi.org/10.5194/hess-20-3441-2016, 2016. a
Jackisch, C.: Linking structure and functioning of hydrological systems – How to achieve necessary experimental and model complexity with adequate effort, Ph.D. thesis, KIT Karlsruhe Institute of Technology, Karlsruhe,
https://doi.org/10.5445/IR/1000051494, 2015. a, b
Jackisch, C.: Rootwater Python Package: Initial release, p. MIT,
Zenodo, https://doi.org/10.5281/zenodo.3556433, 2019. a, b, c
Jackisch, C. and Hassler, S. K.: Rhizosphere soil moisture dynamics and sap
flow – determining root water uptake in a case study in the
Attert catchment in Luxembourg, GFZ Data Services,
https://doi.org/10.5880/fidgeo.2019.030, 2019. a
Jackisch, C., Angermann, L., Allroggen, N., Sprenger, M., Blume, T., Tronicke, J., and Zehe, E.: Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures, Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, 2017. a, b, c, d
Jackisch, C., Germer, K., Graeff, T., Andrä, I., Schulz, K., Schiedung, M., Haller-Jans, J., Schneider, J., Jaquemotte, J., Helmer, P., Lotz, L., Bauer, A., Hahn, I., Šanda, M., Kumpan, M., Dorner, J., de Rooij, G., Wessel-Bothe, S., Kottmann, L., Schittenhelm, S., and Durner, W.: Soil moisture and matric potential – an open field comparison of sensor systems, Earth Syst. Sci. Data, 12, 683–697, https://doi.org/10.5194/essd-12-683-2020, 2020. a
Janott, M., Gayler, S., Gessler, A., Javaux, M., Klier, C., and Priesack, E.:
A one-dimensional model of water flow in soil-plant systems based on plant
architecture, Plant Soil, 341, 233–256, https://doi.org/10.1007/s11104-010-0639-0, 2010. a
Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., and Fawcett,
P. J.: Terrestrial water fluxes dominated by transpiration., Nature, 496,
347–350, https://doi.org/10.1038/nature11983, 2013. a
Javaux, M., Schröder, T., Vanderborght, J., and Vereecken, H.: Use of a
Three-Dimensional Detailed Modeling Approach for Predicting Root Water
Uptake, Vadose Zone J., 7, 1079–1088, https://doi.org/10.2136/vzj2007.0115,
2008. a
Johnson, M. S. and Lehmann, J.: Double-funneling of trees: Stemflow and
root-induced preferential flow, Écoscience, 13, 324–333,
https://doi.org/10.2980/i1195-6860-13-3-324.1, 2016. a
Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, R., da Costa, A. C. L., and Gentine, P.: Implementing Plant Hydraulics in the Community Land Model, Version 5, J. Adv. Model. Earth Sy., 11, 485–513, https://doi.org/10.1029/2018MS001500, 2019. a
Kennedy, S.: Astral python module, https://github.com/sffjunkie/astral, last access: 14 October 2020. a
Kerk, N. M. and Sussex, I. M.: Roots and Root Systems, American
Cancer Society, Chichester, UK, volume 448, 3 edn., https://doi.org/10.1002/9780470015902.a0002058.pub2, 2001. a
Klenk, P., Jaumann, S., and Roth, K.: Quantitative high-resolution observations of soil water dynamics in a complicated architecture using time-lapse ground-penetrating radar, Hydrol. Earth Syst. Sci., 19, 1125–1139, https://doi.org/10.5194/hess-19-1125-2015, 2015. a
Kocher, P., Horna, V., and Leuschner, C.: Stem water storage in five
coexisting temperate broad-leaved tree species: significance, temporal
dynamics and dependence on tree functional traits, Tree Physiol., 33,
817–832, https://doi.org/10.1093/treephys/tpt055, 2013. a
Kodrík, J. and Kodrík, M.: Root biomass of beech as a factor
influencing the wind tree stability, J. For. Sci., 48,
549–564, https://doi.org/10.17221/11922-JFS, 2019. a
Kroener, E., Holz, M., Zarebanadkouki, M., Ahmed, M., and Carminati, A.:
Effects of Mucilage on Rhizosphere Hydraulic Functions Depend on Soil
Particle Size, Vadose Zone J., 17, 170056, https://doi.org/10.2136/vzj2017.03.0056, 2018. a
Kuhlmann, A., Neuweiler, I., van der Zee, S. E. A. T. M., and Helmig, R.:
Influence of soil structure and root water uptake strategy on unsaturated
flow in heterogeneous media, Water Resour. Res., 48, W02534,
https://doi.org/10.1029/2011WR010651, 2012. a, b
Lang, C., Dolynska, A., Finkeldey, R., and Polle, A.: Are beech (Fagus
sylvatica) roots territorial?, Forest Ecol. Manag., 260,
1212–1217, https://doi.org/10.1016/j.foreco.2010.07.014, 2010. a
Leuschner, C., Hertel, D., Coners, H., and Büttner, V.: Root competition
between beech and oak: a hypothesis, Oecologia, 126, 276–284,
https://doi.org/10.1007/s004420000507, 2001. a
Leuschner, C., Coners, H., and Icke, R.: In situ measurement of water
absorption by fine roots of three temperate trees: species differences and
differential activity of superficial and deep roots., Tree Physiol., 24,
1359–1367, https://doi.org/10.1093/treephys/24.12.1359, 2004. a
Liang, W.-L., Kosugi, K., and Mizuyama, T.: Soil water dynamics around a tree on a hillslope with or without rainwater supplied by stemflow, Water
Resour. Res., 47, W02541, https://doi.org/10.1029/2010WR009856, 2011. a
Loritz, R., Hassler, S. K., Jackisch, C., Allroggen, N., van Schaik, L., Wienhöfer, J., and Zehe, E.: Picturing and modeling catchments by representative hillslopes, Hydrol. Earth Syst. Sci., 21, 1225–1249, https://doi.org/10.5194/hess-21-1225-2017, 2017. a, b
Lott, J. E., Khan, A. A. H., Ong, C. K., and Black, C. R.: Sap flow
measurements of lateral tree roots in agroforestry systems., Tree
Physiol., 16, 995–1001, https://doi.org/10.1093/treephys/16.11-12.995,
1996. a
Lu, N.: Unsaturated Soil Mechanics: Fundamental Challenges, Breakthroughs, and Opportunities, J. Geotech. Geoenviron., 146, 02520001, https://doi.org/10.1061/(ASCE)GT.1943-5606.0002233, 2020. a
Lu, Y., Duursma, R. A., Farrior, C. E., Medlyn, B. E., and Feng, X.: Optimal
stomatal drought response shaped by competition for water and hydraulic risk
can explain plant trait covariation, New Phytol., 225, 1206–1217,
https://doi.org/10.1111/nph.16207, 2020. a, b, c
Mary, B., Saracco, G., Peyras, L., Vennetier, M., Mériaux, P., and
Camerlynck, C.: Mapping tree root system in dikes using induced
polarization: Focus on the influence of soil water content, J.
Appl. Geophys., 135, 387–396, https://doi.org/10.1016/j.jappgeo.2016.05.005,
2016. a
Matheny, A. M., Bohrer, G., Garrity, S. R., Morin, T. H., Howard, C. J., and
Vogel, C. S.: Observations of stem water storage in trees of opposing
hydraulic strategies, Ecosphere, 6, 165, https://doi.org/10.1890/ES15-00170.1, 2015. a
Maxwell, R. M. and Condon, L. E.: Connections between groundwater flow and
transpiration partitioning, Science, 353, 377–380,
https://doi.org/10.1126/science.aaf7891, 2016. a
Metzger, J. C., Wutzler, T., Valle, N. D., Filipzik, J., Grauer, C., Lehmann,
R., Roggenbuck, M., Schelhorn, D., Weckmüller, J., Küsel, K.,
Totsche, K. U., Trumbore, S., and Hildebrandt, A.: Vegetation impacts soil
water content patterns by shaping canopy water fluxes and soil properties,
Hydrol. Process., 31, 3783–3795, https://doi.org/10.1002/hyp.11274, 2017. a
Nadezhdina, N., David, T. S., David, J. S., Ferreira, M. I., Dohnal, M., Tesar, M., Gartner, K., Leitgeb, E., Nadezhdin, V., Cermak, J., Jimenez, M. S., and Morales, D.: Trees never rest: the multiple facets of hydraulic
redistribution, Ecohydrology, 3, 431–444, https://doi.org/10.1002/eco.148, 2010. a, b
Neumann, R. B. and Cardon, Z. G.: The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies., New Phytol., 194, 337–352, https://doi.org/10.1111/j.1469-8137.2012.04088.x, 2012. a
Neuper, M. and Ehret, U.: Quantitative precipitation estimation with weather radar using a data- and information-based approach, Hydrol. Earth Syst. Sci., 23, 3711–3733, https://doi.org/10.5194/hess-23-3711-2019, 2019. a
Novák, V.: Estimation of soil-water extraction patterns by roots,
Agr. Water Manage., 12, 271–278, https://doi.org/10.1016/0378-3774(87)90002-3, 1987. a, b
Oki, T. and Kanae, S.: Global Hydrological Cycles and World Water Resources, Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006. a
Or, D., Lehmann, P., Shahraeeni, E., and Shokri, N.: Advances in Soil
Evaporation Physics – a review, Vadose Zone J., 12, vzj2012.0163,
https://doi.org/10.2136/vzj2012.0163, 2013. a
Or, D., Lehmann, P., and Assouline, S.: Natural length scales define the range of applicability of the Richards equation for capillary flows, Water Resour. Res., 51, 7130–7144, https://doi.org/10.1002/2015WR017034, 2015. a
Pagès, L., Vercambre, G., Drouet, J.-L., Lecompte, F., Collet, C., and
Le Bot, J.: Root Typ: a generic model to depict and analyse the root system
architecture, Plant Soil, 258, 103–119,
https://doi.org/10.1023/B:PLSO.0000016540.47134.03, 2004. a
Pfister, L., Trebs, I., Hoffmann, L., Iffly, J. F., Matgen, P., Tailliez, C.,
Schoder, R., Lepesant, P., Frisch, C., Kipgen, R., Göhlhausen, D.,
Ernster, R., and Schleich, G.: Atlas hydro-climatologique du Grand-Duché
de Luxembourg, Technical Report by Luxembourg, Institute of Science and Technology, available at: https://www.agrimeteo.lu/Internet/AM/themen-Lux.nsf/0/7f8e262f4eb8537cc12581470050e437/\$FILE/Atlas_2013_web.pdf, last access: 14 October 2020, 2014. a
Pohlmeier, S. H., Vanderborght, J., and Pohlmeier, A.: Quantitative mapping of solute accumulation in a soil-root system by magnetic resonance imaging,
Water Resour. Res., 53, 7469–7480, https://doi.org/10.1002/2017WR020832, 2017. a
Poyatos, R., Granda, V., Molowny-Horas, R., Mencuccini, M., Steppe, K., and
Martínez-Vilalta, J.: SAPFLUXNET: towards a global database of sap flow
measurements, Tree Physiol., 36, 1449–1455, https://doi.org/10.1093/treephys/tpw110, 2016. a
Pregitzer, K. S.: Tree root architecture–form and function, New Phytol., 180, 562–564, https://doi.org/10.1111/j.1469-8137.2008.02648.x, 2008. a
Renner, M., Hassler, S. K., Blume, T., Weiler, M., Hildebrandt, A., Guderle, M., Schymanski, S. J., and Kleidon, A.: Dominant controls of transpiration along a hillslope transect inferred from ecohydrological measurements and thermodynamic limits, Hydrol. Earth Syst. Sci., 20, 2063–2083, https://doi.org/10.5194/hess-20-2063-2016, 2016. a, b
Renner, M., Brenner, C., Mallick, K., Wizemann, H.-D., Conte, L., Trebs, I., Wei, J., Wulfmeyer, V., Schulz, K., and Kleidon, A.: Using phase lags to evaluate model biases in simulating the diurnal cycle of evapotranspiration: a case study in Luxembourg, Hydrol. Earth Syst. Sci., 23, 515–535, https://doi.org/10.5194/hess-23-515-2019, 2019. a
Rodríguez-Robles, U., Arredondo, T., Huber-Sannwald, E., Ramos-Leal, J. A., and Yépez, E. A.: Technical note: Application of geophysical tools for tree root studies in forest ecosystems in complex soils, Biogeosciences, 14, 5343–5357, https://doi.org/10.5194/bg-14-5343-2017, 2017. a
Rössler, G.: Rindenabzug richtig bemessen, Forstzeitung 4, 10, https://www.waldwissen.net/de/waldwirtschaft/holz-und-markt/rohholz-und-holzsortierung/rindenabzug-richtig-bemessen, last access: 14 October 2020, 2008. a
Rothfuss, Y. and Javaux, M.: Reviews and syntheses: Isotopic approaches to quantify root water uptake: a review and comparison of methods, Biogeosciences, 14, 2199–2224, https://doi.org/10.5194/bg-14-2199-2017, 2017. a
Saveyn, A., Steppe, K., and Lemeur, R.: Spatial variability of xylem sap flow in mature beech (Fagus sylvatica) and its diurnal dynamics in relation to microclimate, Botany, 86, 1440–1448, https://doi.org/10.1139/B08-112, 2008. a
Schymanski, S., Sivapalan, M., Roderick, M., Hutley, L., and Beringer, J.: An optimality-based model of the dynamic feedbacks between natural vegetation and the water balance, Water Resour. Res., 45, W01412, https://doi.org/10.1029/2008WR006841, 2009. a, b
Schymanski, S. J. and Or, D.: Leaf-scale experiments reveal an important omission in the Penman–Monteith equation, Hydrol. Earth Syst. Sci., 21, 685–706, https://doi.org/10.5194/hess-21-685-2017, 2017. a
Shuttleworth, W. J.: Putting the “vap” into evaporation, Hydrol. Earth Syst. Sci., 11, 210–244, https://doi.org/10.5194/hess-11-210-2007, 2007. a
Sperry, J. S. and Love, D. M.: What plant hydraulics can tell us about
responses to climate-change droughts, New Phytol., 207, 14–27,
https://doi.org/10.1111/nph.13354, 2015. a
Střelcová, K., Matejka, F., and Minďáš, J.:
Estimation of beech tree transpiration in relation to their social status in forest stand, J. For. Sci., 48, 130–140, https://doi.org/10.17221/11865-JFS, 2002. a
Vidal, A., Hirte, J., Bender, S. F., Mayer, J., Gattinger, A., Höschen, C., Schädler, S., Iqbal, T. M., and Mueller, C. W.: Linking 3D Soil
Structure and Plant-Microbe-Soil Carbon Transfer in the Rhizosphere,
Front. Environ. Sci., 6, p. 9, https://doi.org/10.3389/fenvs.2018.00009, 2018. a
Volkmann, T. H. M., Haberer, K., Gessler, A., and Weiler, M.: High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil-plant interface, New Phytol., 210, 839–849, https://doi.org/10.1111/nph.13868, 2016.
a
Wrede, S., Fenicia, F., Martínez-Carreras, N., Juilleret, J., Hissler, C., Krein, A., Savenije, H. H. G., Uhlenbrook, S., Kavetski, D., and Pfister, L.: Towards more systematic perceptual model development: a case study using 3 Luxembourgish catchments, 29, 2731–2750, https://doi.org/10.1002/hyp.10393, 2015. a
Wulfmeyer, V., Turner, D. D., Baker, B., Banta, R., Behrendt, A., Bonin, T.,
Brewer, W. A., Buban, M., Choukulkar, A., Dumas, E., Hardesty, R. M., Heus,
T., Ingwersen, J., Lange, D., Lee, T. R., Metzendorf, S., Muppa, S. K.,
Meyers, T., Newsom, R., Osman, M., Raasch, S., Santanello, J., Senff, C.,
Späth, F., Wagner, T., Weckwerth, T., Turner, D. D., Baker, B., Banta,
R., Behrendt, A., Bonin, T., Brewer, W. A., Buban, M., Choukulkar, A., Dumas, E., Hardesty, R. M., Heus, T., Ingwersen, J., Lange, D., Lee, T. R.,
Metzendorf, S., Muppa, S. K., Meyers, T., Newsom, R., Osman, M., Raasch, S.,
Santanello, J., Senff, C., Späth, F., Wagner, T., and Weckwerth, T.: A
New Research Approach for Observing and Characterizing
Land-Atmosphere Feedback, B. Am. Meteorol. Soc., 99, 1639–1667, https://doi.org/10.1175/BAMS-D-17-0009.1, 2018. a
Wullschleger, S. D. and King, A. W.: Radial variation in sap velocity as a
function of stem diameter and sapwood thickness in yellow-poplar trees, Tree Physiol., 20, 511–518, https://doi.org/10.1093/treephys/20.8.511, 2000. a
York, L. M., Carminati, A., Mooney, S. J., Ritz, K., and Bennett, M. J.: The
holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots, J. Exp. Bot., 67, 3629–3643,
https://doi.org/10.1093/jxb/erw108, 2016. a
Zarebanadkouki, M., Trtik, P., Hayat, F., Carminati, A., and Kaestner, A.:
Root water uptake and its pathways across the root: quantification at the
cellular scale, Sci. Rep.-UK, 1–11, https://doi.org/10.1038/s41598-019-49528-9, 2019. a
Zehe, E., Ehret, U., Pfister, L., Blume, T., Schröder, B., Westhoff, M., Jackisch, C., Schymanski, S. J., Weiler, M., Schulz, K., Allroggen, N., Tronicke, J., van Schaik, L., Dietrich, P., Scherer, U., Eccard, J., Wulfmeyer, V., and Kleidon, A.: HESS Opinions: From response units to functional units: a thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments, Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, 2014. a
Short summary
We developed software to calculate the root water uptake (RWU) of beech tree roots from soil moisture dynamics. We present our approach and compare RWU to measured sap flow in the tree stem. The study relates to two sites that are similar in topography and weather but with contrasting soils. While sap flow is very similar between the two sites, the RWU is different. This suggests that soil characteristics have substantial influence. Our easy-to-implement RWU estimate may help further studies.
We developed software to calculate the root water uptake (RWU) of beech tree roots from soil...
Altmetrics
Final-revised paper
Preprint