Articles | Volume 18, issue 4
Biogeosciences, 18, 1407–1415, 2021
https://doi.org/10.5194/bg-18-1407-2021
Biogeosciences, 18, 1407–1415, 2021
https://doi.org/10.5194/bg-18-1407-2021
Technical note
24 Feb 2021
Technical note | 24 Feb 2021

Technical note: Interpreting pH changes

Andrea J. Fassbender et al.

Related authors

A monthly surface pCO2 product for the California Current Large Marine Ecosystem
Jonathan D. Sharp, Andrea J. Fassbender, Brendan R. Carter, Paige D. Lavin, and Adrienne J. Sutton
Earth Syst. Sci. Data, 14, 2081–2108, https://doi.org/10.5194/essd-14-2081-2022,https://doi.org/10.5194/essd-14-2081-2022, 2022
Short summary
Observing intermittent biological productivity and vertical carbon transports during the spring transition with BGC Argo floats in the western North Pacific
Chiho Sukigara, Ryuichiro Inoue, Kanako Sato, Yoshihisa Mino, Takeyoshi Nagai, Andrea J. Fassbender, Yuichiro Takeshita, Stuart Bishop, and Eitarou Oka
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-9,https://doi.org/10.5194/bg-2022-9, 2022
Manuscript not accepted for further review
Short summary
Geophysical and biogeochemical observations using BGC Argo floats in the western North Pacific during late winter and early spring, Part 2: Biological processes during restratification periods in the euphotic and twilight layers
Chiho Sukigara, Ryuichiro Inoue, Kanako Sato, Yoshihisa Mino, Takeyoshi Nagai, Andrea J. Fassbender, Yuichiro Takeshita, and Eitarou Oka
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-116,https://doi.org/10.5194/bg-2021-116, 2021
Manuscript not accepted for further review
Short summary
Seasonal carbonate chemistry variability in marine surface waters of the US Pacific Northwest
Andrea J. Fassbender, Simone R. Alin, Richard A. Feely, Adrienne J. Sutton, Jan A. Newton, Christopher Krembs, Julia Bos, Mya Keyzers, Allan Devol, Wendi Ruef, and Greg Pelletier
Earth Syst. Sci. Data, 10, 1367–1401, https://doi.org/10.5194/essd-10-1367-2018,https://doi.org/10.5194/essd-10-1367-2018, 2018
Short summary

Related subject area

Earth System Science/Response to Global Change: Climate Change
The application of dendrometers to alpine dwarf shrubs – a case study to investigate stem growth responses to environmental conditions
Svenja Dobbert, Roland Pape, and Jörg Löffler
Biogeosciences, 19, 1933–1958, https://doi.org/10.5194/bg-19-1933-2022,https://doi.org/10.5194/bg-19-1933-2022, 2022
Short summary
Climate, land cover and topography: essential ingredients in predicting wetland permanence
Jody Daniel, Rebecca C. Rooney, and Derek T. Robinson
Biogeosciences, 19, 1547–1570, https://doi.org/10.5194/bg-19-1547-2022,https://doi.org/10.5194/bg-19-1547-2022, 2022
Short summary
Not all biodiversity rich spots are climate refugia
Ádám T. Kocsis, Qianshuo Zhao, Mark J. Costello, and Wolfgang Kiessling
Biogeosciences, 18, 6567–6578, https://doi.org/10.5194/bg-18-6567-2021,https://doi.org/10.5194/bg-18-6567-2021, 2021
Short summary
Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand
Rob Wilson, Kathy Allen, Patrick Baker, Gretel Boswijk, Brendan Buckley, Edward Cook, Rosanne D'Arrigo, Dan Druckenbrod, Anthony Fowler, Margaux Grandjean, Paul Krusic, and Jonathan Palmer
Biogeosciences, 18, 6393–6421, https://doi.org/10.5194/bg-18-6393-2021,https://doi.org/10.5194/bg-18-6393-2021, 2021
Short summary
Anthropogenic CO2-mediated freshwater acidification limits survival, calcification, metabolism, and behaviour in stress-tolerant freshwater crustaceans
Alex R. Quijada-Rodriguez, Pou-Long Kuan, Po-Hsuan Sung, Mao-Ting Hsu, Garett J. P. Allen, Pung Pung Hwang, Yung-Che Tseng, and Dirk Weihrauch
Biogeosciences, 18, 6287–6300, https://doi.org/10.5194/bg-18-6287-2021,https://doi.org/10.5194/bg-18-6287-2021, 2021
Short summary

Cited articles

Archer, D. E., Kheshgi, H., and Maier-Reimer, E.: Dynamics of fossil fuel CO2 neutralization by marine CaCO3, Global Biogeochem. Cy., 12, 259–276, https://doi.org/10.1029/98GB00744, 1998. 
Bates, N., Astor, Y., Church, M. J., Currie, K., Dore, J., Gonaález-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., and Santana-Casiano, J. M.: A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification, Oceanography, 27, 126–141, https://doi.org/10.5670/oceanog.2014.16, 2014. 
Bates, R. G.: pH measurements in the marine environment, Pure Appl. Chem., 54, 229–232, https://doi.org/10.1351/pac198254010229, 1982. 
Bates, R. G. and Guggenheim, E. A.: Report on the standardization of pH and related terminology, Pure Appl. Chem., 1, 163–168, https://doi.org/10.1351/pac196001010163, 1960. 
Baucke, F. G. K.: New IUPAC recommendations on the measurement of pH – background and essentials, Anal. Bioanal. Chem., 374, 772–777, https://doi.org/10.1007/s00216-002-1523-4, 2002. 
Download
Short summary
A decline in upper-ocean pH with time is typically ascribed to ocean acidification. A more quantitative interpretation is often confused by failing to recognize the implications of pH being a logarithmic transform of hydrogen ion concentration rather than an absolute measure. This can lead to an unwitting misinterpretation of pH data. We provide three real-world examples illustrating this and recommend the reporting of both hydrogen ion concentration and pH in studies of ocean chemical change.
Altmetrics
Final-revised paper
Preprint