Articles | Volume 18, issue 15
https://doi.org/10.5194/bg-18-4491-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4491-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stable isotope ratios in seawater nitrate reflect the influence of Pacific water along the northwest Atlantic margin
Department of Earth and Environmental Sciences, Dalhousie University,
Halifax, NS, B3H 4R2, Canada
Samuel H. Davin
Geotop Research Centre, Université du Québec à
Montréal, Montréal, QC, H3C 3P8, Canada
Nadine Lehmann
Department of Oceanography, Dalhousie University, Halifax, NS, B3H
4R2, Canada
Carolyn Buchwald
Department of Oceanography, Dalhousie University, Halifax, NS, B3H
4R2, Canada
Evan N. Edinger
Department of Geography, Department of Biology, and Department of
Earth Sciences, Memorial University of Newfoundland, St. John's, NL, A1B
3X9, Canada
Moritz F. Lehmann
Department of Environmental Sciences, University of Basel, Basel,
4056, Switzerland
Markus Kienast
Department of Oceanography, Dalhousie University, Halifax, NS, B3H
4R2, Canada
Related authors
Shao-Min Chen, Thibaud Dezutter, David Cote, Catherine Lalande, Evan Edinger, and Owen A. Sherwood
Biogeosciences, 22, 2517–2540, https://doi.org/10.5194/bg-22-2517-2025, https://doi.org/10.5194/bg-22-2517-2025, 2025
Short summary
Short summary
The origins and composition of sinking organic matter are still understudied for the oceans, especially in ice-covered areas. We use amino acid stable isotopes combined with particle flux and plankton taxonomy to investigate the sources and composition of exported organic matter from a sediment-trap-derived time series of sinking particles in the northwestern Labrador Sea. We found that sea-ice algae and fecal pellets may be important contributors to the sinking fluxes of carbon and nitrogen.
Hannah Sharpe, Michel Gosselin, Catherine Lalande, Alexandre Normandeau, Jean-Carlos Montero-Serrano, Khouloud Baccara, Daniel Bourgault, Owen Sherwood, and Audrey Limoges
Biogeosciences, 20, 4981–5001, https://doi.org/10.5194/bg-20-4981-2023, https://doi.org/10.5194/bg-20-4981-2023, 2023
Short summary
Short summary
We studied the impact of submarine canyon processes within the Pointe-des-Monts system on biogenic matter export and phytoplankton assemblages. Using data from three oceanographic moorings, we show that the canyon experienced two low-amplitude sediment remobilization events in 2020–2021 that led to enhanced particle fluxes in the deep-water column layer > 2.6 km offshore. Sinking phytoplankton fluxes were lower near the canyon compared to background values from the lower St. Lawrence Estuary.
Judith Vogt, David Risk, Evelise Bourlon, Kumiko Azetsu-Scott, Evan N. Edinger, and Owen A. Sherwood
Biogeosciences, 20, 1773–1787, https://doi.org/10.5194/bg-20-1773-2023, https://doi.org/10.5194/bg-20-1773-2023, 2023
Short summary
Short summary
The release of the greenhouse gas methane from Arctic submarine sources could exacerbate climate change in a positive feedback. Continuous monitoring of atmospheric methane levels over a 5100 km voyage in the western margin of the Labrador Sea and Baffin Bay revealed above-global averages likely affected by both onshore and offshore methane sources. Instantaneous sea–air methane fluxes were near zero at all measured stations, including a persistent cold-seep location.
Guangyi Su, Julie Tolu, Clemens Glombitza, Jakob Zopfi, Moritz F. Lehmann, Mark A. Lever, and Carsten J. Schubert
Biogeosciences, 22, 4449–4466, https://doi.org/10.5194/bg-22-4449-2025, https://doi.org/10.5194/bg-22-4449-2025, 2025
Short summary
Short summary
In Lake Geneva, we studied how different types of organic matter affect methane production. Despite varying sources, like algae and land-based materials, both deep and delta areas are significant methane sources, and methane was mainly produced through CO2 reduction. Surprisingly, the origin of organic matter did not strongly influence methane production rates or pathways. Our findings highlight the need to better understand microbial processes to predict methane emissions from lakes.
Alessandra Mazzoli, Peter Reichert, Claudia Frey, Cameron M. Callbeck, Tim J. Paulus, Jakob Zopfi, and Moritz F. Lehmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-4089, https://doi.org/10.5194/egusphere-2025-4089, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Nitrogen (re-)cycling in sediments plays a key role in aquatic environments, but involves many overlapping biogeochemical processes that are hard to separate. We developed a new comprehensive sedimentary nitrogen isotope model to disentangle these reactions. Using field data from a Swiss lake and statistical tools, we demonstrated the robustness and validity of our modelling framework for a broad range of applications.
Shao-Min Chen, Thibaud Dezutter, David Cote, Catherine Lalande, Evan Edinger, and Owen A. Sherwood
Biogeosciences, 22, 2517–2540, https://doi.org/10.5194/bg-22-2517-2025, https://doi.org/10.5194/bg-22-2517-2025, 2025
Short summary
Short summary
The origins and composition of sinking organic matter are still understudied for the oceans, especially in ice-covered areas. We use amino acid stable isotopes combined with particle flux and plankton taxonomy to investigate the sources and composition of exported organic matter from a sediment-trap-derived time series of sinking particles in the northwestern Labrador Sea. We found that sea-ice algae and fecal pellets may be important contributors to the sinking fluxes of carbon and nitrogen.
Carolina F.M. de Carvalho, Moritz F. Lehmann, and Sarah G. Pati
EGUsphere, https://doi.org/10.5194/egusphere-2025-1193, https://doi.org/10.5194/egusphere-2025-1193, 2025
Short summary
Short summary
Using O2 stable isotope analysis, we determined the isotopic fractionation of biological O2 consumption by 10 flavin-dependent and 6 metalloenzymes. Metalloenzymes displayed a narrower range and lower values of isotopic fractionation than flavin-dependent enzymes. This work expands our understanding of the variability of oxygen isotopic fractionation at the enzyme level, improving the ability to study O2 dynamics from molecular to ecosystem scales.
Catherine Brenan, Markus Kienast, Vittorio Maselli, Christopher K. Algar, Benjamin Misiuk, and Craig J. Brown
Biogeosciences, 21, 4569–4586, https://doi.org/10.5194/bg-21-4569-2024, https://doi.org/10.5194/bg-21-4569-2024, 2024
Short summary
Short summary
Quantifying how much organic carbon is stored in seafloor sediments is key to assessing how human activities can accelerate the process of carbon storage at the seabed, an important consideration for climate change. This study uses seafloor sediment maps to model organic carbon content. Carbon estimates were 12 times higher when assuming the absence of detailed sediment maps, demonstrating that high-resolution seafloor mapping is critically important for improved estimates of organic carbon.
Hannah Sharpe, Michel Gosselin, Catherine Lalande, Alexandre Normandeau, Jean-Carlos Montero-Serrano, Khouloud Baccara, Daniel Bourgault, Owen Sherwood, and Audrey Limoges
Biogeosciences, 20, 4981–5001, https://doi.org/10.5194/bg-20-4981-2023, https://doi.org/10.5194/bg-20-4981-2023, 2023
Short summary
Short summary
We studied the impact of submarine canyon processes within the Pointe-des-Monts system on biogenic matter export and phytoplankton assemblages. Using data from three oceanographic moorings, we show that the canyon experienced two low-amplitude sediment remobilization events in 2020–2021 that led to enhanced particle fluxes in the deep-water column layer > 2.6 km offshore. Sinking phytoplankton fluxes were lower near the canyon compared to background values from the lower St. Lawrence Estuary.
Judith Vogt, David Risk, Evelise Bourlon, Kumiko Azetsu-Scott, Evan N. Edinger, and Owen A. Sherwood
Biogeosciences, 20, 1773–1787, https://doi.org/10.5194/bg-20-1773-2023, https://doi.org/10.5194/bg-20-1773-2023, 2023
Short summary
Short summary
The release of the greenhouse gas methane from Arctic submarine sources could exacerbate climate change in a positive feedback. Continuous monitoring of atmospheric methane levels over a 5100 km voyage in the western margin of the Labrador Sea and Baffin Bay revealed above-global averages likely affected by both onshore and offshore methane sources. Instantaneous sea–air methane fluxes were near zero at all measured stations, including a persistent cold-seep location.
Sigrid van Grinsven, Kirsten Oswald, Bernhard Wehrli, Corinne Jegge, Jakob Zopfi, Moritz F. Lehmann, and Carsten J. Schubert
Biogeosciences, 18, 3087–3101, https://doi.org/10.5194/bg-18-3087-2021, https://doi.org/10.5194/bg-18-3087-2021, 2021
Short summary
Short summary
Lake Lovojärvi is a nutrient-rich lake with high amounts of methane at the bottom, but little near the top. Methane comes from the sediment and rises up through the water but is consumed by microorganisms along the way. They use oxygen if available, but in deeper water layers, no oxygen was present. There, nitrite, iron and humic substances were used, besides a collaboration between photosynthetic organisms and methane consumers, in which the first produced oxygen for the latter.
Yunhua Chang, Yan-Lin Zhang, Sawaeng Kawichai, Qian Wang, Martin Van Damme, Lieven Clarisse, Tippawan Prapamontol, and Moritz F. Lehmann
Atmos. Chem. Phys., 21, 7187–7198, https://doi.org/10.5194/acp-21-7187-2021, https://doi.org/10.5194/acp-21-7187-2021, 2021
Short summary
Short summary
In this study, we integrated satellite constraints on atmospheric NH3 levels and fire intensity, discrete NH3 concentration measurement, and N isotopic analysis of NH3 in order to assess the regional-scale contribution of biomass burning to ambient atmospheric NH3 in the heartland of Southeast Asia. The combined approach provides a valuable cross-validation framework for source apportioning of NH3 in the lower atmosphere and will thus help to ameliorate predictions of biomass burning emissions.
Cited articles
Aksenov, Y., Bacon, S., Coward, A. C., and Holliday, P.: Polar outflow from
the Arctic Ocean: A high resolution model study, J. Mar. Syst. 83, 14–37,
https://doi.org/10.1016/j.jmarsys.2010.06.007, 2010.
Altabet, M. A., Pilskaln, C., Thunell, R., Pride, C., Sigman, D. M., Chavez,
F., and Francois, R.: The nitrogen isotope biogeochemistry of sinking
particles from the margin of the eastern North Pacific, Deep.-Sea Res. Pt. I,
46, 655–679, https://doi.org/10.1016/S0967-0637(98)00084-3, 1999.
Anderson, L. A. and Sarmiento, J. L.: Redfield ratios of remineralization
determined by nutrient data analysis, Global Biogeochem. Cy., 8, 65–80,
https://doi.org/10.1029/93GB03318, 1994.
Arrigo, K. and van Dijken, G. L.: Secular trends in Arctic Ocean net
primary production, J. Geophys. Res., 116, C09011, https://doi.org/10.1029/2011JC007151, 2011.
Azetsu-Scott, K., Petrie, B., Yeats, P., and Lee, C.: Composition and fluxes
of freshwater through Davis Strait using multiple chemical tracers, J.
Geophys. Res., 117, C12011, https://doi.org/10.1029/2012JC008172, 2012.
Benetti, M., Reverdin, G., Lique, C., Yashayaev, I., Holliday, N. P., Tynan,
E., Torres-Valdes, S., Lherminier, P., Treguer, P., and Sarthou, G.:
Composition of freshwater in the spring of 2014 on the southern Labrador
shelf and slope, J. Geophys. Res.-Ocean., 122, 1102–1121, https://doi.org/10.1002/2016JC012244, 2017.
Blais, M., Tremblay, J.-É., Jungblut, A. D., Gagnon, J., Martin, J.,
Thaler, M., and Lovejoy, C.: Nitrogen fixation and identification of
potential diazotrophs in the Canadian Arctic, Global Biogeochem. Cy., 26, GB3022,
https://doi.org/10.1029/2011GB004096, 2012.
Böhlke, J. K., Mroczkowski, S. J., and Coplen, T. B.: Oxygen isotopes in
nitrate: new reference materials for 18O : 17O : 16O measurements
and observations on nitrate-water equilibration, Rapid Commun. Mass
Sp., 17, 1835–1846, https://doi.org/10.1002/rcm.1123, 2003.
Bourke, R. H., Addison, V. G., and Paquette, R. G.: Oceanography of Nares
Strait and northern Baffin Bay in 1986 with emphasis on deep and bottom
water formation, J. Geophys. Res., 94, 8289–8302, https://doi.org/10.1029/JC094iC06p08289, 1989.
Brandes, J. A. and Devol, A. H.: Isotopic fractionation of oxygen and
nitrogen in coastal marine sediments, Geochim. Cosmochim. Ac., 61,
1793–1801, https://doi.org/10.1016/S0016-7037(97)00041-0, 1997.
Brown, Z. W., Casciotti, K. L., Pickart, R. S., Swift, J. H., and Arrigo, K.
R.: Aspects of the marine nitrogen cycle of the Chukchi Sea shelf and Canada
Basin, Deep-Sea Res. Pt. II, 118, 73–87, https://doi.org/10.1016/j.dsr2.2015.02.009,
2015.
Buchwald, C., Santoro, A. E., McIlvin, M. R., and Casciotti, K. L.: Oxygen
isotopic composition of nitrate and nitrite produced by nitrifying
cocultures and natural marine assemblages, Limnol. Oceanogr., 57,
1361–1375, https://doi.org/10.4319/lo.2012.57.5.1361, 2012.
Carmack, E. C. and McLaughlin, F. A.: Towards recognition of physical and
geochemical change in Subarctic and Arctic Seas, Prog. Oceanogr., 90,
90–104, https://doi.org/10.1016/j.pocean.2011.02.007, 2011.
Carmack, E. C., Yamamoto-Kawai, M., Haine, T. W. N., Bacon, S., Bluhm, B.
A., Lique, C., Melling, H., Polyakov, I. V., Straneo, F., Timmermans, M. L.,
and Williams, W. J.: Freshwater and its role in the Arctic Marine System:
Sources, disposition, storage, export, and physical and biogeochemical
consequences in the Arctic and global oceans, J. Geophys. Res.-Biogeo.,
121, 675–717, https://doi.org/10.1002/2015JG003140, 2016.
Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K., and
Hilkert, A.: Measurement of the oxygen isotopic composition of nitrate in
seawater and freshwater using the denitrifier method, Anal. Chem., 74,
4905–4912, https://doi.org/10.1021/ac020113w, 2002.
Casciotti, K. L., Trull, T. W., Glover, D. M., and Davies, D.: Constraints on
nitrogen cycling at the subtropical North Pacific Station ALOHA from
isotopic measurements of nitrate and particulate nitrogen, Deep-Sea Res. Pt. II,
55, 1661–1672, https://doi.org/10.1016/j.dsr2.2008.04.017, 2008.
Chang, B. X. and Devol, A. H.: Seasonal and spatial patterns of sedimentary
denitrification rates in the Chukchi sea, Deep-Sea Res. Pt. II, 56,
1339–1350, https://doi.org/10.1016/j.dsr2.2008.10.024,
2009.
Colbourne, E., Holden, J., Senciall, D., Bailey, W., Snook, S., and Higdon, J.: Physical Oceanographic Conditions on the Newfoundland and Labrador Shelf during 2015, DFO Can. Sci. Advis. Sec. Res. Doc., 2016/079, v +40 p., 2016.
Cormier. M.-A., Rochon, A., de Vernal, A., and Gélinas, Y.: Multi-proxy
study of primary production and paleoceanographical conditions in northern
Baffin Bay during the last centuries, Mar. Micropaleontol., 127, 1–10,
https://doi.org/10.1016/j.marmicro.2016.07.001, 2020.
Cuny, J., Rhines, P. B., Niiler, P. P., and Bacon, S.: Labrador Sea Boundary
Currents and the Fate of the Irminger Sea Water, J. Phys. Oceanogr., 32,
627–647, https://doi.org/10.1175/1520-0485(2002)032{%}3C0627:LSBCAT{%}3E2.0.CO;2, 2002.
de la Vega, C., Mahaffey, C., Tuerena, R. E., Yurkowski, D. J., Ferguson, S.
H., Stenson, G. B., Nordøy, E. S., Haug, T., Biuw, M., Smout, S.,
Hopkins, J., Tagliabue, A., and Jeffreys, R. M.: Arctic seals as tracers of
environmental and ecological change, Limnol. Oceanogr. Lett., 6, 24–32,
https://doi.org/10.5285/66AAF3C8-FA58-41DE-8EF1-480A2E125408, 2021.
Deutsch, C., Gruber, N., Key, R. M., Sarmiento, J. L., and Ganachaud, A.:
Denitrification and N2 fixation in the Pacific Ocean, Global
Biogeochem. Cy., 15, 483–506, https://doi.org/10.1029/2000GB001291, 2001.
Devol, A. H., Codispoti, L. A., and Christensen, J. P.: Summer and winter
denitrification rates in western Arctic shelf sediments, Cont. Shelf Res.,
17, 1029–1050, https://doi.org/10.1016/S0278-4343(97)00003-4, 1997.
Drinkwater, K. F., Belgrano, A., Borja, A., Conversi, A., Edwards, M.,
Greene, C. H., Otterson, G., Pershing, A. J., and Walker, H.: The Response
of Marine Ecosystems to Climate Variability Associated With the North
Atlantic Oscillation, Geophys. Monog.-Am. Geophys. Union, 134, 211–234,
https://doi.org/10.1029/134GM10, 2003.
Ferland, J., Gosselin, M., and Starr, M.: Environmental control of summer
primary production in the Hudson Bay system: The role of stratification, J.
Mar. Syst., 88, 385–400, https://doi.org/10.1016/j.jmarsys.2011.03.015, 2011.
Fragoso, G. M., Poulton, A. J., Yashayaev, I. M., Head, E. J. H., and
Purdie, D. A.: Spring phytoplankton communities of the Labrador Sea
(2005–2014): pigment signatures, photophysiology and elemental ratios,
Biogeosciences, 14, 1235–1259, https://doi.org/10.5194/bg-14-1235-2017, 2017.
Frajka-Williams, E. and Rhines, P. B.: Physical controls and interannual
variability of the Labrador Sea spring phytoplankton bloom in distinct
regions, Deep-Sea Res. Pt. I, 57, 541–552, https://doi.org/10.1016/j.dsr.2010.01.003, 2010.
Fratantoni, P. S. and Pickart, R. S.: The Western North Atlantic Shelfbreak
Current System in Summer, J. Phys. Oceanogr., 37, 2509–2533, https://doi.org/10.1175/JPO3123.1, 2007.
Fripiat, F., Declercq, M., Sapart, C. J., Anderson, L. G., Bruechert, V.,
Deman, F., Fonseca-Batista, D., Humborg, C., Roukaerts, A., Semiletov, I. P.,
and Dehairs, F.: Influence of the bordering shelves on nutrient distribution
in the Arctic halocline inferred from water column nitrate isotopes, Limnol.
Oceanogr., 63, 2154–2170, https://doi.org/10.1002/lno.10930, 2018.
Galbraith, E. D. and Kienast, M.: The acceleration of oceanic
denitrification during deglacial warming, Nat. Geosci., 6, 579–584,
https://doi.org/10.1038/ngeo1832, 2013.
Gonfiantini, R.: Stable Isotope Reference Samples for Geochemical and
Hydrological Investigations, Int. J. Appl. Radiat. Is., 35, 426,
https://doi.org/10.1016/0020-708X(84)90059-0, 1984.
Granger, J. and Wankel, S. D.: Isotopic overprinting of nitrification on
denitrification as a ubiquitous and unifying feature of environmental
nitrogen cycling, P. Natl. Acad. Sci. USA, 113, E6391–E6400. https://doi.org/10.1073/pnas.1601383113, 2016
Granger, J., Sigman, D. M., Needoba, J. A., and Harrison, P. J.: Coupled
nitrogen and oxygen isotope fractionation of nitrate during assimilation by
cultures of marine phytoplankton, Limnol. Oceanogr., 49, 1763–1773,
https://doi.org/10.4319/lo.2004.49.5.1763, 2004.
Granger, J., Sigman, D. M., Lehmann, M. F., and Tortell, P. D.: Nitrogen and
oxygen isotope fractionation during dissimilatory nitrate reduction by
denitrifying bacteria, Limnol. Oceanogr., 53, 2533–2545, https://doi.org/10.4319/lo.2008.53.6.2533, 2008.
Granger, J., Prokopenko, M. G., Sigman, D. M., Mordy, C. W., Morse, Z. M.,
Morales, L. V., Sambrotto, R. N., and Plessen, B.: Coupled
nitrification-denitrification in sediment of the eastern Bering Sea shelf
leads to 15N enrichment of fixed N in shelf waters, J. Geophys. Res.-Ocean.,
116, C11006, https://doi.org/10.1029/2010JC006751, 2011.
Granger, J., Sigman, D. M., Gagnon, J., Tremblay, J.-E., and Mucci, A.: On
the Properties of the Arctic Halocline and Deep Water Masses of the Canada
Basin from Nitrate Isotope Ratios, J. Geophys. Res.-Ocean., 123,
5443–5458, https://doi.org/10.1029/2018JC014110, 2018.
Grasshoff, K.: A simultaneous multiple channel system for nutrient analysis
in seawater with analog and digital analog record, Adv. Autom. Anal. Tech.
Int. Conf., 11, 133–145, 1969.
Greene, C. H., Meyer-Gutbrod, E., Monger, B. C., McGarry, L. P., Pershing,
A. J., Belkin, I. M., Fratantoni, P. S., Mountain, D. G., Pickart, R. S.,
Proshutinsky, A., Ji, R., Bisagni, J. J., Hakkinen, S. M. A., Haidvogel, D.
B., Wang, J., Head, E., Smith, P., Reid, P. C., and Conversi, A.: Remote
climate forcing of decadal-scale regime shifts in Northwest Atlantic shelf
ecosystems, Limnol. Oceanogr., 58, 803–816, https://doi.org/10.4319/lo.2013.58.3.0803, 2013.
Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen fixation
and denitrification, Global Biogeochem. Cy., 11, 235–266, https://doi.org/10.1029/97GB00077, 1997.
Hansen, J., H., Hedeholm, R. B., Sünksen, K.,
Christensen, J. T., and Grønkjær, P: Spatial variability of carbon
(δ13C) and nitrogen (δ15N) stable isotope ratios
in an Arctic marine food web, Mar. Ecol. Prog. Ser., 467, 47–57, https://doi.org/10.3354/meps09945, 2012.
Hansen, M. O., Nielsen, T. G., Stedmon, C. A., and Munkm, P.: Oceanographic
regime shift during 1997 in Disko Bay, Western Greenland, Limnol. Oceanogr.,
57, 634–644, https://doi.org/10.4319/lo.2012.57.2.0634, 2012.
Harding, K., Turk-Kubo, K. A., Sipler, R. E., Mills, M. M., Bronk, D. A., and
Zehr, J. P.: Symbiotic unicellular cyanobacteria fix nitrogen in the Arctic
Ocean, P. Natl. Acad. Sci. USA, 115, 13371–13375, https://doi.org/10.1073/pnas.1813658115, 2018.
Harrison, W. G. and Li, W. K. W.: Phytoplankton Growth and Regulation in
the Labrador Sea: Light and Nutrient Limitation, J. Northw. Atl. Fish. Sci.,
39, 71–82, https://doi.org/10.2960/J.v39.m592, 2008.
Harrison, W. G., Platt, T., and Irwin, B.: Primary Production and Nutrient
Assimilation by Natural Phytoplankton Populations of the Eastern Canadian
Arctic, Can. J. Fish. Aquat. Sci., 39, 335–345, https://doi.org/10.1139/f82-046, 1982.
Harrison, W. G., Børsheim, K. Y., Li, W. K., Maillet, G. L., Pepin, P.,
Sakshaug, E., Skogen, M. D., and Yeats, P. A.: Phytoplankton production and
growth regulation in the Subarctic North Atlantic: A comparative study of
the Labrador Sea-Labrador/Newfoundland shelves and
Barents/Norwegian/Greenland seas and shelves, Prog. Oceanogr., 114, 26–45,
https://doi.org/10.1016/j.pocean.2013.05.003, 2013.
Hedeholm, R., Grønkjær, P., and Rysgaard, S.: Feeding ecology of
capelin (Mallotus villosus Muller) in West Greenland waters, Polar Biol., 35, 1533–1543,
https://doi.org/10.1007/s00300-012-1193-4, 2012.
Jakobsen, P. K., Ribergaard, M. H., Quadfasel, D., Schmith, T., and Hughes,
C. W.: Near-surface circulation in the northern North Atlantic as inferred
from Lagrangian drifters: Variability from the mesoscale to interannual, J.
Geophys. Res., 108, 3251, https://doi.org/10.1029/2002JC001554, 2003.
Jenkins, W. J., Smethie, W. M., Boyle, E. A., and Cutter, G. A.: Water mass
analysis for the U.S. GEOTRACES (GA03) North Atlantic sections, Deep-Sea
Res. Pt. II, 116, 6–20, https://doi.org/10.1016/j.dsr2.2014.11.018, 2015.
Jones, E. P.: Tracing Pacific water in the North Atlantic Ocean, J. Geophys.
Res., 108, 3116, https://doi.org/10.1029/2001JC001141, 2003.
Jones, E. P., Anderson, L. G., and Swift, J. H.: Distribution of Atlantic and
Pacific waters in the upper Arctic Ocean: Implications for circulation,
Geophys. Res. Lett., 25, 765–768, https://doi.org/10.1029/98GL00464, 1998.
Kelley, D. and Richards, C.: oce: Analysis of Oceanographic Data, R package
version 0.9-22, available at: https://cran.r-project.org/web/packages/oce/oce.pdf
(last access: 20 July 2021), 2017.
Kienast, M., Davin, S., Doering, K., Hebbeln, D., Kienast, S., Lehmann, N.,
Schneider, R., Sherwood, O., and Weiser, J.: Isotopic evidence for changes
in the origin and cycling of nitrogen in the Labrador Sea during the last
8,000 years, EGU General Assembly Online, 4–8 May 2020, EGU2020–12134,
https://doi.org/10.5194/egusphere-egu2020-12134, 2020.
Klein, B., LeBlanc, B., Mei, Z.-P., Beret, R., Michaud, J., Mundy, C.-J.,
von Quillfeldt, C. H., Garneau, M.-È., Roy, S., and Gratton, Y.:
Phytoplankton biomass, production and potential export in the North Water,
Deep-Sea Res. Pt. II, 49, 4983–5002, https://doi.org/10.1016/S0967-0645(02)00174-1, 2002.
Lalande, C., Forest, A., Barber, D. G., Gratton, Y., and Fortier, L.:
Variability in the annual cycle of vertical particulate organic carbon
export on Arctic shelves: Contrasting the Laptev Sea, Northern Baffin Bay
and the Beaufort Sea, Cont. Shelf Res., 29, 2157–2165, https://doi.org/10.1016/j.csr.2009.08.009, 2009.
Lehmann, M. F., Bernasconi, S. F., Barbieri, A., and McKenzie, J. A.:
Preservation of organic matter and alteration of its carbon and nitrogen
isotope composition during simulated and in situ early sedimentary
diagenesis, Geochim. Cosmochim. Ac., 66, 3573–3584, https://doi.org/10.1016/S0016-7037(02)00968-7, 2002.
Lehmann, M. F., Sigman, D. M., McCorkle, D. C., Brunelle, B. G., Hoffmann,
S., Kienast, M., Cane, G., and Clement, J.: Origin of the deep Bering Sea
nitrate deficit: Constraints from the nitrogen and oxygen isotopic
composition of water column nitrate and benthic nitrate fluxes, Global
Biogeochem. Cy., 19, GB4005, https://doi.org/10.1029/2005GB002508, 2005.
Lehmann, M. F., Sigman, D. M., McCorkle, D. C., Granger, J., Hoffmann, S.,
Cane, G., and Brunelle, B. B.: The distribution of nitrate 15N : 14N
in marine sediments and the impact of benthic nitrogen loss on the isotopic
composition of oceanic nitrate, Geochim. Cosmochim. Ac., 71, 5384–5404,
https://doi.org/10.1016/j.gca.2007.07.025, 2007.
Lehmann, N., Granger, J., Kienast, M., Brown, K. S., Rafter, P. A., Martinez Mendes, G. M., and Mohtadi, M.: Isotopic Evidence for the Evolution of Subsurface Nitrate in the Western Equatorial Pacific, Geophys. Res. Ocean., 123, https://doi.org/10.1002/2017JC013527, 2018.
Lehmann, N., Kienast, M., Granger, J., Bourbonnais, A., Altabet, M. A., and
Tremblay, J.-É.: Remote western Arctic nutrients fuel remineralization
in deep Baffin Bay, Global Biogeochem. Cy., 33, 649–667, https://doi.org/10.1029/2018GB006134, 2019.
Limoges, A., Weckström, K., Ribeiro, S., Georgiadis, E., Hansen, K. E.,
Martinez, P., Seidenkrantz, M.-S., Giraudeau, J., Crosta, X., and Massé, G.: Learning from the past: Impact of the Arctic Oscillation on sea ice and
marine productivity off northwest Greenland over the last 9,000 years, Glob.
Change Biol., 26, 6767–6786, https://doi.org/10.1111/gcb.15334, 2020.
Macdonald, R. W., Anderson, L. G., Christensen, J. P., Miller, L. A., Semiletov, I. P., and Stein, R.: Polar margins: the Arctic Ocean. Carbon and nutrient fluxes in continental margins: a global synthesis, 291–303,
https://doi.org/10.1007/978-3-540-92735-8_6, 2010.
Marconi, D., Weigand, M. A., Rafter, P. A., McIlvin, M. R., Forbes, M.,
Casciotti, K. L., and Sigman, D. M.: Nitrate isotope distributions on the US
GEOTRACES North Atlantic cross-basin section: Signals of polar nitrate
sources and low latitude nitrogen cycling, Mar. Chem., 177, 143–156,
https://doi.org/10.1016/j.marchem.2015.06.007, 2015.
Martin, J., Tremblay, J.-É., Gagnon, J., Tremblay, G., Lapoussière,
A., Jose, C., Poulin, M., Gosselin, M., Gratton, Y., and Michel, C.:
Prevalence, structure and properties of subsurface chlorophyll maxima in
Canadian Arctic waters, Mar. Ecol. Prog. Ser., 412, 69–84, https://doi.org/10.3354/meps08666, 2010.
McIlvin, M. R. and Casciotti, K. L.: Fully automated system for stable
isotopic analyses of dissolved nitrous oxide at natural abundance levels,
Limnol. Oceanogr. Method., 8, 54–66, https://doi.org/10.4319/lom.2010.8.54, 2010.
McIlvin, M. R. and Casciotti, K. L.: Technical Updates to the Bacterial
Method for Nitrate Isotopic Analyses, Anal. Chem., 83, 1850–1856,
https://doi.org/10.1021/ac1028984, 2011.
McLaughlin, F. A., Carmack, E. C., Macdonald, R. W., and Bishop, J. K. B.:
Physical and geochemical properties across the Atlantic/Pacific water mass
front in the southern Canadian Basin, J. Geophys. Res.-Ocean., 101,
1183–1197, https://doi.org/10.1029/95JC02634, 1996.
McLaughlin, F. A., Carmack, E. C., Macdonald, R. W., Melling, H., Swift, J.
H., Wheeler, P. A., Sherr, B. F., and Sherr, E. B.: The joint roles of
Pacific and Atlantic-origin waters in the Canada Basin, 1997–1998, Deep-Sea
Res. Pt. I, 51, 107–128, https://doi.org/10.1016/j.dsr.2003.09.010, 2004.
Michel, C., Gosselin, M., and Nozais, C.: Preferential sinking export of
biogenic silica during the spring and summer in the North Water Polynya
(northern Baffin Bay): Temperature or biological control?, J. Geophys. Res.,
107, 3064, https://doi.org/10.1029/2000JC000408, 2002.
Mills, M. M., Brown, Z. W., Lowry, K. E., van Dijken, G. L., Becker, S.,
Pal,S., Benitez-Nelson, C. R., Downer, M. M., Strong, A. L., Swift, J. H.,
Pickart, R. S., and Arrigo, K. R.: Impacts of low phytoplankton
NO : PO utilization ratios over the Chukchi Shelf,
Arctic Ocean, Deep-Sea Res. Pt. II, 118, 105–121, https://doi.org/10.1016/j.dsr2.2015.02.007, 2015.
Minagawa, M. and Wada, E.: Stepwise enrichment of 15N along food
chains: Further evidence and the relation between δ15N and
animal age, Geochim. Cosmochim. Ac., 48, 1135–1140, https://doi.org/10.1016/0016-7037(84)90204-7, 1984.
Münchow, A., Falkner, K. K., and Melling, H.: Baffin island and west
Greenland current systems in northern Baffin bay, Prog. Oceanogr., 132,
305–317, https://doi.org/10.1016/j.pocean.2014.04.001, 2015.
Muzuka, A. N. and Hillaire-Marcel, C.: Burial rates of organic matter along
the eastern Canadian margin and stable isotope constraints on its origin and
diagenetic evolution, Mar. Geol., 160, 251–270, https://doi.org/10.1016/S0025-3227(99)00022-5, 1999.
Needoba, J. A., Waser, N. A., Harrison, P. J., and Calvert, S. E.: Nitrogen
isotope fractionation in 12 species of marine phytoplankton during growth on
nitrate, Mar. Ecol. Prog. Ser., 255, 81–91 https://doi.org/10.3354/meps255081, 2003.
Olsen, A., Lange, N., Key, R. M., Tanhua, T., Álvarez, M., Becker, S., Bittig, H. C., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jones, S. D., Jutterström, S., Karlsen, M. K., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Telszewski, M., Tilbrook, B., Velo, A., and Wanninkhof, R.: GLODAPv2.2019 – an update of GLODAPv2, Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, 2019.
Ostrom, N. E., Macko, S. A., Deibel, D., and Thompson, R. J.: Seasonal
variation in the stable carbon and nitrogen isotope biogeochemistry of a
coastal cold ocean environment, Geochim. Cosmochim. A., 61, 2929–2942,
https://doi.org/10.1016/S0016-7037(97)00131-2, 1997.
Pepin, P., Maillet, G., Fraser, S., Shears, T., and Redmond, G.: Optical,
chemical, and biological oceanographic conditions on the Newfoundland and
Labrador Shelf during 2011–2012, DFO Can. Sci. Advis. Sec. Res. Doc. 2013/051, v + 38 p., 2013.
Peters, B. D., Lam, P. J., and Casciotti, K. L.: Nitrogen and oxygen isotope
measurements of nitrate along the US GEOTRACES Eastern Pacific Zonal
Transect (GP16) yield insights into nitrate supply, remineralization, and
water mass transport, Mar. Chem., 201, 137–150, https://doi.org/10.1016/j.marchem.2017.09.009, 2018.
Prinsenberg, S. J. and Hamilton, J.: Monitoring the volume, freshwater and
heat fluxes passing through Lancaster sound in the Canadian arctic
archipelago, Atmos. Ocean, 43, 1–22, https://doi.org/10.3137/ao.430101, 2005.
Rafter, P. A. and Sigman, D. M.: Spatial distribution and temporal
variation of nitrate nitrogen and oxygen isotopes in the upper equatorial
Pacific Ocean, Limnol. Oceanogr. 61, 14–31, https://doi.org/10.1002/lno.10152, 2016.
Robinson, R. S., Kienast, M., Luiza Albuquerque, A., Altabet, M., Contreras,
S., De Pol Holz, R., Dubois, N., Francois, R., Galbraith, E., Hsu, T.-C.,
Ivanochko, T., Jaccard, S., Kao, S.-J., Kiefer, T., Kienast, S., Lehmann,
M., Martinez, P., McCarthy, M., Möbius, J., Pedersen, T., Quan, T. M.,
Ryabenko, E., Schmittner, A., Schneider, R., Schneider-Mor, A., Shigemitsu,
M., Sinclair, D., Somes, C., Studer, A., Thunell, R., and Yang, J.-Y: A
review of nitrogen isotopic alteration in marine sediments,
Paleoceanography, 27, PA4203, https://doi.org/10.1029/2012PA002321, 2012.
Rysgaard, S., Boone, W., Carlson, D., Sejr, M. K., Bendtsen, J.,
Juul-Pedersen, T., Lund, H., Meire, L., and Mortensen, J.: An Updated View on
Water Masses on the pan-West Greenland Continental Shelf and Their Link to
Proglacial Fjords, J. Geophys. Res.-Ocean., 125, e2019JC015564, https://doi.org/10.1029/2019JC015564, 2020.
Sherwood, G. D. and Rose, G. A.: Stable isotope analysis of some
representative fish and invertebrates of the Newfoundland and Labrador
continental shelf food web, Estuar. Coast. Shelf S., 63, 537–549,
https://doi.org/10.1016/j.ecss.2004.12.010, 2005.
Sherwood, O. A., Jamieson, R. E., Edinger, E. N., and Wareham, V. E.: Stable
C and N isotopic composition of cold-water corals from the Newfoundland and
Labrador continental slope: Examination of trophic, depth and spatial
effects, Deep-Sea Res. Pt. I, 55, 1392–1402, https://doi.org/10.1016/j.dsr.2008.05.013, 2008.
Sherwood, O. A., Lehmann, M. F., Schubert, C. J., Scott, D. B., and
McCarthy, M. D.: Nutrient regime shift in the western North Atlantic
indicated by compound-specific δ15N of deep-sea gorgonian
corals, P. Natl. Acad. Sci. USA, 108, 1011–1015, https://doi.org/10.1073/pnas.1004904108, 2011.
Sherwood, O. A., Davin, S. H., Lehmann, N., Buchwald, C., Edinger, E. N., Lehmann, M. F., and Kienast, M.: Data to accompany “Stable isotope ratios in seawater nitrate reflect the influence of Pacific water along the northwest Atlantic margin”, (Version v1) [Data set], Biogeosciences, Zenodo [data set], https://doi.org/10.5281/zenodo.5129246,
last access: 27 July 2021.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., and
Böhlke, J. K.: A bacterial method for the nitrogen isotopic analysis of
nitrate in seawater and freshwater, Anal. Chem., 73, 4145–4153,
https://doi.org/10.1021/ac010088e, 2001.
Sigman, D. M., Granger, J., DiFiore, P. J., Lehmann, M. M., Ho, R., Cane, G.,
and van Geen, A.: Coupled nitrogen and oxygen isotope measurements of
nitrate along the eastern North Pacific margin, Global Biogeochem. Cy.,
19, GB4022, https://doi.org/10.1029/2005GB002458, 2005.
Sigman, D. M., DiFiore, P. J., Hain, M. P., Deutsch, C., Wang, Y., Karl, D.
M., Knapp, A. N., Lehmann, M. F., and Pantoja, S.: The dual isotopes of deep
nitrate as a constraint on the cycle and budget of oceanic fixed nitrogen,
Deep-Sea Res. Pt. I, 56, 1419–1439, https://doi.org/10.1016/j.dsr.2009.04.007, 2009.
Sipler, R. E., Gong, D., Baer, S. E., Sanderson, M. P., Roberts, Q. N.,
Mulholland, M. R., and Bronk, D. A.: Preliminary estimates of the
contribution of Arctic nitrogen fixation to the global nitrogen budget,
Limnol. Oceanogr. Lett., 2, 159–166, https://doi.org/10.1002/lol2.10046, 2017.
Steele, M., Morison, J., Ermold, W., Rigor, I., Ortmeyer, M., and Shimada,
K.: Circulation of summer Pacific halocline water in the Arctic Ocean, J.
Geophys. Res.-Ocean., 109, C02027, https://doi.org/10.1029/2003JC002009, 2004.
Stramma, L., Kieke, D., Rhein, M., Schott, F., Yashayaev, I., and
Koltermann, K. P.: Deep water changes at the western boundary of the
subpolar North Atlantic during 1996 to 2001, Deep-Sea Res. Pt. I, 51,
1033–1056, https://doi.org/10.1016/j.dsr.2004.04.001, 2004.
Straneo, F. and Saucier, F.: The outflow from Hudson Strait and its
contribution to the Labrador Current, Deep-Sea Res. Pt. I, 55, 926–946,
https://doi.org/10.1016/j.dsr.2008.03.012, 2008.
Sutcliffe Jr., W. H., Loucks, R. H., Drinkwater, K. F., and Coote, A. R.:
Nutrient Flex onto the Labrador Shelf from Hudson Strait and its Biological
Consequences, Can. J. Fish. Aquat. Sci., 40, 1692–1701, https://doi.org/10.1139/f83-196, 1983.
Sutherland, D. A., Pickart, R. S., Peter Jones, E., Azetsu-Scott, K., Jane
Eert, A., and Ólafsson, J.: Freshwater composition of the waters off
southeast Greenland and their link to the Arctic Ocean, J. Geophys. Res.,
114, C05020, https://doi.org/10.1029/2008JC004808, 2009.
Top, Z., Clarke, W. B., Eismont, W. C., and Jones, E. P.: Radiogenic helium
in Baffin Bay bottom water, J. Mar. Res., 38, 435–452, 1980.
Tang, C. C., Ross, C. K., Yao, T., Petrie, B., DeTracey, B. M., and Dunlap,
E.: The circulation, water masses and sea-ice of Baffin Bay, Prog.
Oceanogr., 63, 183–228, https://doi.org/10.1016/j.pocean.2004.09.005, 2004.
Torres-Valdés, S., Tsubouchi, T., Bacon, S., Naveira-Garabato, A. C.,
Sanders, R., McLaughlin, F. A., Petrie, B., Kattner, G., Azetsu-Scott, K.,
and Whitledge, T. E.: Export of nutrients from the Arctic Ocean, J. Geophys.
Res.-Ocean., 118, 1625–1644, https://doi.org/10.1002/jgrc.20063, 2013.
Townsend, D. W., Pettigrew, N. R., Thomas, M. A., Neary, M. G.,
McGillicuddy, D. J., and Donnell, J. O.: Water masses and nutrient sources to
the Gulf of Maine, J. Mar. Res., 141, 93–122, https://doi.org/10.1357/002224015815848811, 2015.
Tremblay, J.-É., Gratton, Y., Carmack, E. C., Payne, C. D., and Price, N.
M.: Impact of the large-scale Arctic circulation and the North Water Polynya
on nutrient inventories in Baffin Bay, J. Geophys. Res., 107, https://doi.org/10.1029/2000JC000595, 2002.
Tremblay, J.-É., Anderson, L. G., Matrai, P., Coupel, P., Bélanger,
S., Michel, C., and Reigstad, M.: Global and regional drivers of nutrient
supply, primary production and CO2 drawdown in the changing Arctic Ocean,
Prog. Oceanogr., 139, 171–196, https://doi.org/10.1016/j.pocean.2015.08.009, 2015.
Tremblay, J.-É., Hattori, H., Michel, C., Ringuette, M., Mei, Z. P.,
Lovejoy, C., Fortier, L., Hobson, K. A., Amiel, D., and Cochran, K.: Trophic
structure and pathways of biogenic carbon flow in the eastern North Water
Polynya, Prog. Oceanogr., 71, 402–425, https://doi.org/10.1016/j.pocean.2006.10.006, 2006.
Trull, T. W., Davies, D., and Casciotti, K.: Insights into nutrient
assimilation and export in naturally iron-fertilized waters of the Southern
Ocean from nitrogen, carbon and oxygen isotopes, Deep-Sea Res. Pt. II, 55,
820–840, https://doi.org/10.1016/j.dsr2.2007.12.035, 2008.
Vander Zanden, M. J. and Rasmussen, J. B.: Variation in δ15N
and δ13C trophic fractionation: Implications for aquatic food
web studies, Limnol. Oceanogr., 46, 2061–2066, https://doi.org/10.4319/lo.2001.46.8.2061, 2001.
Wallace, D. W. R.: A study of the ventilation of Arctic waters using
chlorofluoromethanes as tracers, Dalhousie University, Halifax NS, Canada,
1985.
Weiss, R. F.: The solubility of nitrogen, oxygen and argon in water and
seawater, Deep-Sea Res., 17, 721–735, https://doi.org/10.1016/0011-7471(70)90037-9, 1970.
Yamamoto-Kawai, M., Carmack, E., and McLaughlin, F.: Nitrogen balance and
Arctic throughflow, Nature, 443, 43, https://doi.org/10.1038/443043a, 2006.
Yamamoto-Kawai, M., McLaughlin, F. A., Carmack, E. C., Nishino, S., and
Shimada, K.: Freshwater budget of the Canada Basin, Arctic Ocean, from
salinity, δ18O, and nutrients, J. Geophys. Res.-Ocean., 113,
C01007, https://doi.org/10.1029/2006JC003858, 2008.
Yashayaev, I. and Loder, J. W.: Recurrent replenishment of Labrador Sea
Water and associated decadal-scale variability, J. Geophys. Res.-Ocean.,
121, 8095–8114, https://doi.org/10.1002/2016JC012046, 2016.
Short summary
Pacific water flowing eastward through the Canadian Arctic plays an important role in redistributing nutrients to the northwest Atlantic Ocean. Using samples collected from northern Baffin Bay to the southern Labrador Shelf, we show that stable isotopic ratios in seawater nitrate reflect the fraction of Pacific to Atlantic water. These results provide a new framework for interpreting patterns of nitrogen isotopic variability recorded in modern and archival organic materials in the region.
Pacific water flowing eastward through the Canadian Arctic plays an important role in...
Altmetrics
Final-revised paper
Preprint