Articles | Volume 18, issue 2
https://doi.org/10.5194/bg-18-637-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-637-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nitrate assimilation and regeneration in the Barents Sea: insights from nitrate isotopes
Robyn E. Tuerena
CORRESPONDING AUTHOR
School of GeoSciences, University of Edinburgh, James Hutton Rd,
Edinburgh, EH9 3FE, UK
now at: Scottish Association for Marine Science, Oban, Argyll, PA37 1QA, UK
Joanne Hopkins
National Oceanography Centre, 6 Brownlow Street, Liverpool, L3 5DA,
UK
Raja S. Ganeshram
School of GeoSciences, University of Edinburgh, James Hutton Rd,
Edinburgh, EH9 3FE, UK
Louisa Norman
School of Environmental Sciences, University of Liverpool, 4 Brownlow
St, Liverpool, L69 3GP, UK
Camille de la Vega
School of Environmental Sciences, University of Liverpool, 4 Brownlow
St, Liverpool, L69 3GP, UK
Rachel Jeffreys
School of Environmental Sciences, University of Liverpool, 4 Brownlow
St, Liverpool, L69 3GP, UK
Claire Mahaffey
School of Environmental Sciences, University of Liverpool, 4 Brownlow
St, Liverpool, L69 3GP, UK
Related authors
Pearse J. Buchanan, Juan J. Pierella Karlusich, Robyn E. Tuerena, Roxana Shafiee, E. Malcolm S. Woodward, Chris Bowler, and Alessandro Tagliabue
Biogeosciences, 22, 4865–4883, https://doi.org/10.5194/bg-22-4865-2025, https://doi.org/10.5194/bg-22-4865-2025, 2025
Short summary
Short summary
Ammonium is a form of nitrogen that may become more important for growth of marine primary producers (i.e., phytoplankton) in the future. Because some phytoplankton taxa have a greater affinity for ammonium than others, the relative increase in ammonium could cause shifts in community composition. We quantify ammonium enrichment, identify its drivers and isolate the possible effect on phytoplankton community composition under a high-emissions scenario.
Adam Francis, Raja S. Ganeshram, Robyn E. Tuerena, Robert G. M. Spencer, Robert M. Holmes, Jennifer A. Rogers, and Claire Mahaffey
Biogeosciences, 20, 365–382, https://doi.org/10.5194/bg-20-365-2023, https://doi.org/10.5194/bg-20-365-2023, 2023
Short summary
Short summary
Climate change is causing extensive permafrost degradation and nutrient releases into rivers with great ecological impacts on the Arctic Ocean. We focused on nitrogen (N) release from this degradation and associated cycling using N isotopes, an understudied area. Many N species are released at degradation sites with exchanges between species. N inputs from permafrost degradation and seasonal river N trends were identified using isotopes, helping to predict climate change impacts.
Marta Santos-Garcia, Raja S. Ganeshram, Robyn E. Tuerena, Margot C. F. Debyser, Katrine Husum, Philipp Assmy, and Haakon Hop
Biogeosciences, 19, 5973–6002, https://doi.org/10.5194/bg-19-5973-2022, https://doi.org/10.5194/bg-19-5973-2022, 2022
Short summary
Short summary
Terrestrial sources of nitrate are important contributors to the nutrient pool in the fjords of Kongsfjorden and Rijpfjorden in Svalbard during the summer, and they sustain most of the fjord primary productivity. Ongoing tidewater glacier retreat is postulated to favour light limitation and less dynamic circulation in fjords. This is suggested to encourage the export of nutrients to the middle and outer part of the fjord system, which may enhance primary production within and in offshore areas.
Margot C. F. Debyser, Laetitia Pichevin, Robyn E. Tuerena, Paul A. Dodd, Antonia Doncila, and Raja S. Ganeshram
Biogeosciences, 19, 5499–5520, https://doi.org/10.5194/bg-19-5499-2022, https://doi.org/10.5194/bg-19-5499-2022, 2022
Short summary
Short summary
We focus on the exchange of key nutrients for algae production between the Arctic and Atlantic oceans through the Fram Strait. We show that the export of dissolved silicon here is controlled by the availability of nitrate which is influenced by denitrification on Arctic shelves. We suggest that any future changes in the river inputs of silica and changes in denitrification due to climate change will impact the amount of silicon exported, with impacts on Atlantic algal productivity and ecology.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Maria-Theresia Verwega, Christopher J. Somes, Markus Schartau, Robyn Elizabeth Tuerena, Anne Lorrain, Andreas Oschlies, and Thomas Slawig
Earth Syst. Sci. Data, 13, 4861–4880, https://doi.org/10.5194/essd-13-4861-2021, https://doi.org/10.5194/essd-13-4861-2021, 2021
Short summary
Short summary
This work describes a ready-to-use collection of particulate organic carbon stable isotope ratio data sets. It covers the 1960s–2010s and all main oceans, providing meta-information and gridded data. The best coverage exists in Atlantic, Indian and Southern Ocean surface waters during the 1990s. It indicates no major difference between methods and shows decreasing values towards high latitudes, with the lowest in the Southern Ocean, and a long-term decline in all regions but the Southern Ocean.
Pearse J. Buchanan, Juan J. Pierella Karlusich, Robyn E. Tuerena, Roxana Shafiee, E. Malcolm S. Woodward, Chris Bowler, and Alessandro Tagliabue
Biogeosciences, 22, 4865–4883, https://doi.org/10.5194/bg-22-4865-2025, https://doi.org/10.5194/bg-22-4865-2025, 2025
Short summary
Short summary
Ammonium is a form of nitrogen that may become more important for growth of marine primary producers (i.e., phytoplankton) in the future. Because some phytoplankton taxa have a greater affinity for ammonium than others, the relative increase in ammonium could cause shifts in community composition. We quantify ammonium enrichment, identify its drivers and isolate the possible effect on phytoplankton community composition under a high-emissions scenario.
Charlotte A. J. Williams, Tom Hull, Jan Kaiser, Claire Mahaffey, Naomi Greenwood, Matthew Toberman, and Matthew R. Palmer
Biogeosciences, 21, 1961–1971, https://doi.org/10.5194/bg-21-1961-2024, https://doi.org/10.5194/bg-21-1961-2024, 2024
Short summary
Short summary
Oxygen (O2) is a key indicator of ocean health. The risk of O2 loss in the productive coastal/continental slope regions is increasing. Autonomous underwater vehicles equipped with O2 optodes provide lots of data but have problems resolving strong vertical O2 changes. Here we show how to overcome this and calculate how much O2 is supplied to the low-O2 bottom waters via mixing. Bursts in mixing supply nearly all of the O2 to bottom waters in autumn, stopping them reaching ecologically low levels.
Adam Francis, Raja S. Ganeshram, Robyn E. Tuerena, Robert G. M. Spencer, Robert M. Holmes, Jennifer A. Rogers, and Claire Mahaffey
Biogeosciences, 20, 365–382, https://doi.org/10.5194/bg-20-365-2023, https://doi.org/10.5194/bg-20-365-2023, 2023
Short summary
Short summary
Climate change is causing extensive permafrost degradation and nutrient releases into rivers with great ecological impacts on the Arctic Ocean. We focused on nitrogen (N) release from this degradation and associated cycling using N isotopes, an understudied area. Many N species are released at degradation sites with exchanges between species. N inputs from permafrost degradation and seasonal river N trends were identified using isotopes, helping to predict climate change impacts.
Marta Santos-Garcia, Raja S. Ganeshram, Robyn E. Tuerena, Margot C. F. Debyser, Katrine Husum, Philipp Assmy, and Haakon Hop
Biogeosciences, 19, 5973–6002, https://doi.org/10.5194/bg-19-5973-2022, https://doi.org/10.5194/bg-19-5973-2022, 2022
Short summary
Short summary
Terrestrial sources of nitrate are important contributors to the nutrient pool in the fjords of Kongsfjorden and Rijpfjorden in Svalbard during the summer, and they sustain most of the fjord primary productivity. Ongoing tidewater glacier retreat is postulated to favour light limitation and less dynamic circulation in fjords. This is suggested to encourage the export of nutrients to the middle and outer part of the fjord system, which may enhance primary production within and in offshore areas.
Margot C. F. Debyser, Laetitia Pichevin, Robyn E. Tuerena, Paul A. Dodd, Antonia Doncila, and Raja S. Ganeshram
Biogeosciences, 19, 5499–5520, https://doi.org/10.5194/bg-19-5499-2022, https://doi.org/10.5194/bg-19-5499-2022, 2022
Short summary
Short summary
We focus on the exchange of key nutrients for algae production between the Arctic and Atlantic oceans through the Fram Strait. We show that the export of dissolved silicon here is controlled by the availability of nitrate which is influenced by denitrification on Arctic shelves. We suggest that any future changes in the river inputs of silica and changes in denitrification due to climate change will impact the amount of silicon exported, with impacts on Atlantic algal productivity and ecology.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Maria-Theresia Verwega, Christopher J. Somes, Markus Schartau, Robyn Elizabeth Tuerena, Anne Lorrain, Andreas Oschlies, and Thomas Slawig
Earth Syst. Sci. Data, 13, 4861–4880, https://doi.org/10.5194/essd-13-4861-2021, https://doi.org/10.5194/essd-13-4861-2021, 2021
Short summary
Short summary
This work describes a ready-to-use collection of particulate organic carbon stable isotope ratio data sets. It covers the 1960s–2010s and all main oceans, providing meta-information and gridded data. The best coverage exists in Atlantic, Indian and Southern Ocean surface waters during the 1990s. It indicates no major difference between methods and shows decreasing values towards high latitudes, with the lowest in the Southern Ocean, and a long-term decline in all regions but the Southern Ocean.
Cited articles
Altabet, M. A. and Francois, R.: Sedimentary nitrogen isotopic ratio as a
recorder for surface ocean nitrate utilization, Global Biogeochem.
Cy., 8, 103–116, https://doi.org/10.1029/93gb03396, 1994.
Altieri, K. E., Fawcett, S. E., Peters, A. J., Sigman, D. M., and Hastings,
M. G.: Marine biogenic source of atmospheric organic nitrogen in the
subtropical North Atlantic, P. Natl. Acad. Sci. USA, 113, 925–930, https://doi.org/10.1073/pnas.1516847113,
2016.
Arrigo, K. R. and van Dijken, G. L.: Continued increases in Arctic Ocean
primary production, Prog. Oceanogr., 136, 60–70, https://doi.org/10.1016/j.pocean.2015.05.002, 2015.
Arthun, M., Ingvaldsen, R. B., Smedsrud, L. H., and Schrum, C.: Dense water
formation and circulation in the Barents Sea, Deep-Sea Res. Pt.
I, 58, 801–817, https://doi.org/10.1016/j.dsr.2011.06.001,
2011.
Arthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, O., and Ingvaldsen, R.
B.: Quantifying the Influence of Atlantic Heat on Barents Sea Ice
Variability and Retreat, J. Climate, 25, 4736–4743, https://doi.org/10.1175/jcli-d-11-00466.1, 2012.
Barton, B. I., Lenn, Y. D., and Lique, C.: Observed Atlantification of the
Barents Sea Causes the Polar Front to Limit the Expansion of Winter Sea Ice,
J. Phys. Oceanogr., 48, 1849–1866, https://doi.org/10.1175/jpo-d-18-0003.1,
2018.
Brand, T., Norman, L., Henley, S. F., Mahaffey, C., and Tuerena, R.:
Dissolved nutrient samples collected in the Barents Sea as part
of the Changing Arctic Ocean programme for the Arctic PRIZE and ARISE
projects during cruise JR16006, British Oceanographic Data Centre, National Oceanography Centre, NERC, UK,
https://doi.org/10.5285/aed2abbb-9814-4a1be053-6c86abc04d55, 2020.
Brown, Z. W., Casciotti, K. L., Pickart, R. S., Swift, J. H., and Arrigo, K.
R.: Aspects of the marine nitrogen cycle of the Chukchi Sea shelf and Canada
Basin, Deep-Sea Res. Pt. II, 118,
73–87, https://doi.org/10.1016/j.dsr2.2015.02.009, 2015.
Buchwald, C., Santoro, A. E., McIlvin, M. R., and Casciotti, K. L.: Oxygen
isotopic composition of nitrate and nitrite produced by nitrifying
cocultures and natural marine assemblages, Limnol. Oceanogr., 57,
1361–1375, https://doi.org/10.4319/lo.2012.57.5.1361, 2012.
Casciotti, K. L., Sigman, D. M., Hastings, M. G., Bohlke, J. K., and
Hilkert, A.: Measurement of the oxygen isotopic composition of nitrate in
seawater and freshwater using the denitrifier method, Anal. Chem.,
74, 4905–4912, https://doi.org/10.1021/ac020113w, 2002.
Casciotti, K. L., Sigman, D. M., and Ward, B. B.: Linking diversity and
stable isotope fractionation in ammonia-oxidizing bacteria, Geomicrobiol.
J., 20, 335–353, https://doi.org/10.1080/01490450303895, 2003.
Chang, B. X. and Devol, A. H.: Seasonal and spatial patterns of sedimentary
denitrification rates in the Chukchi sea, Deep-Sea Res. Pt. II, 56, 1339–1350, https://doi.org/10.1016/j.dsr2.2008.10.024, 2009.
Christman, G. D., Cottrell, M. T., Popp, B. N., Gier, E., and Kirchman, D.
L.: Abundance, Diversity, and Activity of Ammonia-Oxidizing Prokaryotes in
the Coastal Arctic Ocean in Summer and Winter, Appl. Environ.
Microbiol., 77, 2026–2034, https://doi.org/10.1128/aem.01907-10, 2011.
Codispoti, L. A., Kelly, V., Thessen, A., Matrai, P., Suttles, S., Hill, V.,
Steele, M., and Light, B.: Synthesis of primary production in the Arctic
Ocean: III. Nitrate and phosphate based estimates of net community
production, Prog. Oceanogr., 110, 126–150, https://doi.org/10.1016/j.pocean.2012.11.006, 2013.
Coupel, P., Ruiz-Pino, D., Sicre, M. A., Chen, J. F., Lee, S. H.,
Schiffrine, N., Li, H. L., and Gascard, J. C.: The impact of freshening on
phytoplankton production in the Pacific Arctic Ocean, Prog.
Oceanogr., 131, 113–125, https://doi.org/10.1016/j.pocean.2014.12.003, 2015.
Dalpadado, P., Arrigo, K. R., Hjollo, S. S., Rey, F., Ingvaldsen, R. B.,
Sperfeld, E., van Dijken, G. L., Stige, L. C., Olsen, A., and Ottersen, G.:
Productivity in the Barents Sea – Response to Recent Climate Variability,
Plos One, 9, e95273,
https://doi.org/10.1371/journal.pone.0095273, 2014.
de la Vega, C., Mahaffey, C., Tuerena, R. E., Yurkowski, D. J., Ferguson, S.
H., Stenson, G. B., Nordoy, E. S., Haug, T., Biuw, M., Smout, S., Hopkins,
J. Tagliabue, A., and Jeffreys, R. M.: Arctic seals as tracers of
environmental and ecological change, Limnol. Oceanogr. Lett., https://doi.org/10.1002/lol2.10176, online first, 2020.
DiFiore, P. J., Sigman, D. M., Trull, T. W., Lourey, M. J., Karsh, K., Cane,
G., and Ho, R.: Nitrogen isotope constraints on subantarctic
biogeochemistry, J. Geophys. Res.-Oceans, 111, C08016,
https://doi.org/10.1029/2005jc003216, 2006.
DiFiore, P. J., Sigman, D. M., and Dunbar, R. B.: Upper ocean nitrogen
fluxes in the Polar Antarctic Zone: Constraints from the nitrogen and oxygen
isotopes of nitrate, Geochem. Geophys. Geosy., 10, Q11016,
https://doi.org/10.1029/2009gc002468, 2009.
DiFiore, P. J., Sigman, D. M., Karsh, K. L., Trull, T. W., Dunbar, R. B.,
and Robinson, R. S.: Poleward decrease in the isotope
effect of nitrate assimilation across the Southern Ocean, Geophys.
Res. Lett., 37, L17601,
https://doi.org/10.1029/2010gl044090, 2010.
Dumont, E., Brand, T., and Hopkins, J.: CTD data from NERC Changing Arctic Ocean Cruise
JR16006 on the RRS James Clark Ross, June–August 2017, British
Oceanographic Data Centre, National Oceanography Centre, NERC, UK, https://doi.org/10/c7f6, 2019.
Ellingsen, I., Slagstad, D., and Sundfjord, A.: Modification of water masses
in the Barents Sea and its coupling to ice dynamics: a model study, Ocean
Dyn., 59, 1095–1108, https://doi.org/10.1007/s10236-009-0230-5, 2009.
Fawcett, S. E., Lomas, M., Casey, J. R., Ward, B. B., and Sigman, D. M.:
Assimilation of upwelled nitrate by small eukaryotes in the
Sargasso Sea, Nat. Geosci., 4, 717–722, https://doi.org/10.1038/ngeo1265, 2011.
Fawcett, S. E., Lomas, M. W., Ward, B. B., and Sigman, D. M.: The
counterintuitive effect of summer-to-fall mixed layer deepening on
eukaryotic new production in the Sargasso Sea, Global Biogeochem. Cy.,
28, 86–102, https://doi.org/10.1002/2013gb004579, 2014.
Friedland, K. D. and Todd, C. D.: Changes in Northwest Atlantic Arctic and
Subarctic conditions and the growth response of Atlantic salmon, Polar
Biol., 35, 593–609, https://doi.org/10.1007/s00300-011-1105-z, 2012.
Fripiat, F., Declercq, M., Sapart, C. J., Anderson, L. G., Bruechert, V.,
Deman, F., Fonseca-Batista, D., Humborg, C., Roukaerts, A., Semiletov, I.
P., and Dehairs, F.: Influence of the bordering shelves on nutrient
distribution in the Arctic halocline inferred from water column nitrate
isotopes, Limnol. Oceanogr., 63, 2154–2170, https://doi.org/10.1002/lno.10930,
2018.
Granger, J. and Sigman, D. M.: Removal of nitrite with sulfamic acid for
nitrate N and O isotope analysis with the denitrifier method, Rapid
Commun. Mass Spectr., 23, 3753–3762, https://doi.org/10.1002/rcm.4307, 2009.
Granger, J., Sigman, D. M., Needoba, J. A., and Harrison, P. J.: Coupled
nitrogen and oxygen isotope fractionation of nitrate during assimilation by
cultures of marine phytoplankton, Limnol. Oceanogr., 49, 1763–1773,
2004.
Granger, J., Prokopenko, M. G., Sigman, D. M., Mordy, C. W., Morse, Z. M.,
Morales, L. V., Sambrotto, R. N., and Plessen, B.: Coupled
nitrification-denitrification in sediment of the eastern Bering Sea shelf
leads to N-15 enrichment of fixed N in shelf waters, J. Geophys.
Res.-Oceans, 116, C11006, https://doi.org/10.1029/2010jc006751, 2011.
Granger, J., Prokopenko, M. G., Mordy, C. W., and Sigman, D. M.: The
proportion of remineralized nitrate on the ice-covered eastern Bering Sea
shelf evidenced from the oxygen isotope ratio of nitrate, Global
Biogeochem. Cy., 27, 962–971, https://doi.org/10.1002/gbc.20075, 2013.
Granger, J., Sigman, D. M., Gagnon, J., Tremblay, J. E., and Mucci, A.: On
the Properties of the Arctic Halocline and Deep Water Masses of the Canada
Basin from Nitrate Isotope Ratios, J. Geophys. Res.-Oceans,
123, 5443–5458, https://doi.org/10.1029/2018jc014110, 2018.
Hatun, H., Azetsu-Scott, K., Somavilla, R., Rey, F., Johnson, C., Mathis,
M., Mikolajewicz, U., CoupeI, P., Tremblay, J. E., Hartman, S., Pacariz, S.
V., Salter, I., and Olafsson, J.: The subpolar gyre regulates silicate
concentrations in the North Atlantic, Sci. Rep., 7, 14576,
https://doi.org/10.1038/s41598-017-14837-4, 2017.
Henley, S. F., Porter, M., Hobbs, L., Braun, J., Guillaume-Castel, R.,
Venables, E. J., Dumont, E., and Cottier, F.: Nitrate supply
and uptake in the Atlantic Arctic sea ice zone: seasonal cycle, mechanisms
and drivers, Philos. T. Roy. Soc. A.,
378, 2181, https://doi.org/10.1098/rsta.2019.0361, 2020.
Henley, S. F., Tuerena, R. E., Annett, A. L., Fallick, A. E., Meredith, M.
P., Venables, H. J., Clarke, A., and Ganeshram, R. S.:
Macronutrient supply, uptake and recycling in the coastal ocean of the west
Antarctic Peninsula, Deep-Sea Res. Pt. II, 139, 58–76, https://doi.org/10.1016/j.dsr2.2016.10.003, 2017.
Huang, J. B., Zhang, X. D., Zhang, Q. Y., Lin, Y. L., Hao, M. J., Luo, Y.,
Zhao, Z. C., Yao, Y., Chen, X., Wang, L., Nie, S. P., Yin, Y. Z., Xu, Y.,
and Zhang, J. S.: Recently amplified arctic warming has contributed to a
continual global warming trend, Nat. Clim. Change, 7, 875–879,
https://doi.org/10.1038/s41558-017-0009-5, 2017.
Johnson, C., Inall, M., and Hakkinen, S.: Declining nutrient concentrations
in the northeast Atlantic as a result of a weakening Subpolar Gyre, Deep-Sea
Res. Pt. I, 82, 95–107, https://doi.org/10.1016/j.dsr.2013.08.007, 2013.
Kemeny, P. C., Weigand, M. A., Zhang, R., Carter, B. R., Karsh, K. L.,
Fawcett, S. E., and Sigman, D. M.: Enzyme-level interconversion of nitrate
and nitrite in the fall mixed layer of the Antarctic Ocean, Global
Biogeochem. Cy., 30, 1069–1085, https://doi.org/10.1002/2015gb005350, 2016.
Knapp, A. N., DiFiore, P. J., Deutsch, C., Sigman, D. M., and Lipschultz,
F.: Nitrate isotopic composition between Bermuda and Puerto Rico:
Implications for N(2) fixation in the Atlantic Ocean, Global Biogeochem.
Cy., 22, Gb3014, https://doi.org/10.1029/2007gb003107, 2008.
Knapp, A. N., Fawcett, S. E., Martínez-Garcia, A., Leblond, N., Moutin, T., and Bonnet, S.: Nitrogen isotopic evidence for a shift from nitrate- to diazotroph-fueled export production in the VAHINE mesocosm experiments, Biogeosciences, 13, 4645–4657, https://doi.org/10.5194/bg-13-4645-2016, 2016.
Lehmann, M. F., Sigman, D. M., McCorkle, D. C., Granger, J., Hoffmann, S.,
Cane, G., and Brunelle, B. G.: The distribution of nitrate N-15/N-14 in
marine sediments and the impact of benthic nitrogen loss on the isotopic
composition of oceanic nitrate, Geochim. Cosmochim. Ac., 71,
5384–5404, https://doi.org/10.1016/j.gca.2007.07.025, 2007.
Lewis, K. M., Van Dijken, G. L., and Arrigo, K. R.: Changes in phytoplankton
concentration now drive increased Arctic Ocean primary production, Science,
369,
198–202, https://doi.org/10.1126/science.aay8380, 2020.
Lind, S., Ingvaldsen, R. B., and Furevik, T.: Arctic layer salinity controls
heat loss from deep Atlantic layer in seasonally ice-covered areas of the
Barents Sea, Geophys. Res. Lett., 43, 5233–5242, https://doi.org/10.1002/2016gl068421, 2016.
Lind, S., Ingvaldsen, R. B., and Furevik, T.: Arctic warming hotspot in the
northern Barents Sea linked to declining sea-ice import, Nat. Clim.
Change, 8, 634–639, https://doi.org/10.1038/s41558-018-0205-y, 2018.
Marconi, D., Weigand, M. A., Rafter, P. A., McIlvin, M. R., Forbes, M.,
Casciotti, K. L., and Sigman, D. M.: Nitrate isotope distributions on the US
GEOTRACES North Atlantic cross-basin section: Signals of polar nitrate
sources and low latitude nitrogen cycling, Mar. Chem., 177, 143–156, https://doi.org/10.1016/j.marchem.2015.06.007, 2015.
Marconi, D., Sigman, D. M., Casciotti, K. L., Campbell, E. C., Weigand, M.
A., Fawcett, S. E., Knapp, A. N., Rafter, P. A., Ward, B. B., and Haug, G.
H.: Tropical Dominance of N-2 Fixation in the North Atlantic Ocean, Global
Biogeochem. Cy., 31, 1608–1623, https://doi.org/10.1002/2016gb005613, 2017.
Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux,
A., and Tardieux, P.: Experimental – determination of nitrogen kinetic
isotope fractionation – some principles – Illustration for the
denitrification and nitrification processes, Plant Soil, 62, 413–430, https://doi.org/10.1007/bf02374138, 1981.
Mills, M. M., Brown, Z. W., Laney, S. R., Ortega-Retuerta, E., Lowry, K. E.,
van Dijken, G. L., and Arrigo, K. R.: Nitrogen Limitation of the Summer
Phytoplankton and Heterotrophic Prokaryote Communities in the Chukchi Sea,
Front. Marine Sci., 5, 362, https://doi.org/10.3389/fmars.2018.00362, 2018.
Norman, L., de la Vega, C., Ball, J., and Mahaffey, C.: δ15N-PN, δ13C-PC, particulate organic nitrogen and particulate organic carbon
measurements from CTD niskin-collected water column profiles obtained in the
Barents Sea during NERC CAO cruise JR16006, July–August 2017, British
Oceanographic Data Centre, National Oceanography Centre, NERC, UK,
https://doi.org/10/fkg8, 2020.
Notz, D. and Stroeve, J.: Observed Arctic sea-ice loss directly follows
anthropogenic CO2 emission, Science, 354, 747–750, https://doi.org/10.1126/science.aag2345,
2016.
Onarheim, I. H. and Arthun, M.: Toward an ice-free Barents Sea, Geophys.
Res. Lett., 44, 8387–8395, https://doi.org/10.1002/2017gl074304, 2017.
Onarheim, I. H., Eldevik, T., Arthun, M., Ingvaldsen, R. B., and Smedsrud,
L. H.: Skillful prediction of Barents Sea ice cover, Geophys. Res.
Lett., 42, 5364–5371, https://doi.org/10.1002/2015gl064359, 2015.
Oziel, L., Sirven, J., and Gascard, J.-C.: The Barents Sea frontal zones and water masses variability (1980–2011), Ocean Sci., 12, 169–184, https://doi.org/10.5194/os-12-169-2016, 2016.
Oziel, L., Baudena, A., Ardyna, M., Massicotte, P., Randelhoff, A.,
Sallée, J. B., Ingvaldsen, R. B., Devred, E., and Babin, M.: Faster
Atlantic currents drive poleward expansion of temperate phytoplankton in the
Arctic Ocean, Nat. Commun., 11, 1705,
https://doi.org/10.1038/s41467-020-15485-5, 2020.
Peng, X. F., Fawcett, S. E., van Oostende, N., Wolf, M. J., Marconi, D.,
Sigman, D. M., and Ward, B. B.: Nitrogen uptake and nitrification in the
subarctic North Atlantic Ocean, Limnol. Oceanogr., 63, 1462–1487, https://doi.org/10.1002/lno.10784, 2018.
Porter, M., Henley, S. F., Orkney, A., Bouman, H. A., Hwang, B., Dumont, E.,
Venables, E. J., and Cottier, F.: A Polar Surface
Eddy Obscured by Thermal Stratification, Geophys. Res. Lett.,
47, e2019GL086281, https://doi.org/10.1029/2019gl086281, 2020.
Rafter, P. A., Sigman, D. M., Charles, C. D., Kaiser, J., and Haug, G. H.:
Subsurface tropical Pacific nitrogen isotopic composition of nitrate:
Biogeochemical signals and their transport, Global Biogeochem. Cy.,
26, GB1003,
https://doi.org/10.1029/2010gb003979, 2012.
Rafter, P. A., DiFiore, P. J., and Sigman, D. M.: Coupled nitrate nitrogen
and oxygen isotopes and organic matter remineralization in the Southern and
Pacific Oceans, J. Geophys. Res.-Oceans, 118, 4781–4794, https://doi.org/10.1002/jgrc.20316, 2013.
Randelhoff, A., Reigstad, M., Chierici, M., Sundfjord, A., Ivanov, V., Cape,
M., Vernet, M., Tremblay, J. E., Bratbak, G., and Kristiansen, S.
Seasonality of the Physical and Biogeochemical Hydrography in
the Inflow to the Arctic Ocean Through Fram Strait,
Front. Mar. Sci. 5, 224,
https://doi.org/10.3389/fmars.2018.00224, 2018.
Rey, F.: Declining silicate concentrations in the Norwegian and Barents
Seas, Ices Journal of Marine Science, 69, 208–212, https://doi.org/10.1093/icesjms/fss007,
2012.
Rudels, B., Anderson, L. G., and Jones, E. P.: Formation and evolution of
the surface mixed layer and halocline of the Arctic Ocean, J.
Geophys. Res.-Oceans, 101, 8807–8821, https://doi.org/10.1029/96jc00143, 1996.
Schauer, U., Muench, R. D., Rudels, B., and Timokhov, L.: Impact of eastern Arctic shelf waters on the Nansen Basin intermediate layers, J. Geophys. Res., 102, 3371–3382, https://doi.org/10.1029/96JC03366, 1997.
Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., and Holland, M. M.: The emergence of surface-based Arctic amplification, The Cryosphere, 3, 11–19, https://doi.org/10.5194/tc-3-11-2009, 2009.
Sigman, D. M., Altabet, M. A., McCorkle, D. C., Francois, R., and Fischer,
G.: The delta N-15 of nitrate in the Southern Ocean: Consumption of nitrate
in surface waters, Global Biogeochem. Cy., 13, 1149–1166, https://doi.org/10.1029/1999gb900038, 1999.
Sigman, D. M., Altabet, M. A., McCorkle, D. C., Francois, R., and Fischer,
G.: The delta N-15 of nitrate in the Southern Ocean: Nitrogen cycling and
circulation in the ocean interior, J. Geophys. Res.-Oceans,
105, 19599–19614, https://doi.org/10.1029/2000jc000265, 2000.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M.,
and Bohlke, J. K.: A bacterial method for the nitrogen isotopic analysis of
nitrate in seawater and freshwater, Anal. Chem., 73, 4145–4153, https://doi.org/10.1021/ac010088e, 2001.
Sigman, D. M., Robinson, R., Knapp, A. N., van Geen, A., McCorkle, D. C.,
Brandes, J. A., and Thunell, R. C.: Distinguishing between water column and
sedimentary denitrification in the Santa Barbara Basin using the stable
isotopes of nitrate, Geochem. Geophy. Geosy., 4, 1040,
https://doi.org/10.1029/2002gc000384, 2003.
Sigman, D. M., DiFiore, P. J., Hain, M. P., Deutsch, C., and Karl, D. M.:
Sinking organic matter spreads the nitrogen isotope signal of pelagic
denitrification in the North Pacific, Geophys. Res. Lett., 36,
L08605, https://doi.org/10.1029/2008gl035784, 2009a.
Sigman, D. M., DiFiore, P. J., Hain, M. P., Deutsch, C., Wang, Y., Karl, D.
M., Knapp, A. N., Lehmann, M. F., and Pantoja, S.: The dual isotopes of deep
nitrate as a constraint on the cycle and budget of oceanic fixed nitrogen,
Deep-Sea Res. Pt. I, 56, 1419–1439, https://doi.org/10.1016/j.dsr.2009.04.007, 2009b.
Smedsrud, L. H., Esau, I., Ingvaldsen, R. B., Eldevik, T., Haugan, P. M.,
Li, C., Lien, V. S., Olsen, A., Omar, A. M., Ottera, O. H., Risebrobakken,
B., Sando, A. B., Semenov, V. A., and Sorokina, S. A.: The role of the
Barents Sea in the Arctic climate system, Rev. Geophys., 51,
415–449, https://doi.org/10.1002/rog.20017, 2013.
Sundfjord, A., Fer, I., Kasajima, Y., and Svendsen, H.: Observations of
turbulent mixing and hydrography in the marginal ice zone of the Barents
Sea, J. Geophys. Res.-Oceans, 112, C05008,
https://doi.org/10.1029/2006jc003524,
2007.
Thibodeau, B., Bauch, D., and Voss, M.: Nitrogen dynamic in Eurasian coastal
Arctic ecosystem: Insight from nitrogen isotope, Global Biogeochem.
Cy., 31, 836–849, https://doi.org/10.1002/2016gb005593, 2017.
Torres-Valdes, S., Tsubouchi, T., Bacon, S., Naveira-Garabato, A. C.,
Sanders, R., McLaughlin, F. A., Petrie, B., Kattner, G., Azetsu-Scott, K.,
and Whitledge, T. E.: Export of nutrients from the Arctic Ocean, J.
Geophys. Res.-Oceans, 118, 1625–1644, https://doi.org/10.1002/jgrc.20063, 2013.
Tuerena R. and Ganeshram R.: Nitrate isotope measurements from CTD niskin depth
profiles from Changing Arctic Ocean cruise JR16006 in the Barents Sea during
summer 2017, British Oceanographic Data Centre, National Oceanography
Centre, NERC, UK, https://doi.org/10/fg27, 2020.
Tuerena, R. E., Ganeshram, R. S., Geibert, W., Fallick, A. E., Dougans, J.,
Tait, A., Henley, S. F., and Woodward, E. M. S.: Nutrient cycling in the
Atlantic basin: The evolution of nitrate isotope signatures in water masses,
Global Biogeochem. Cy., 29, 1830–1844, https://doi.org/10.1002/2015gb005164, 2015.
Vage, S., Basedow, S. L., Tande, K. S., and Zhou, M.: Physical structure of
the Barents Sea Polar Front near Storbanken in August 2007, J.
Marine Syst., 130, 256–262, https://doi.org/10.1016/j.jmarsys.2011.11.019, 2014.
Van Oostende, N., Fawcett, S. E., Marconi, D., Lueders-Dumont, J., Sabadel,
A. J. M., Woodward, E. M. S., Jonsson, B. F., Sigman, D. M., and Ward, B.
B.: Variation of summer phytoplankton community composition and its
relationship to nitrate and regenerated nitrogen assimilation across the
North Atlantic Ocean, Deep-Sea Res. Pt. I, 121, 79–94, https://doi.org/10.1016/j.dsr.2016.12.012, 2017.
Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S., and Sigman, D. M.:
Updates to instrumentation and protocols for isotopic analysis of nitrate by
the denitrifier method, Rapid Commun. Mass Spectrom., 30,
1365–1383, https://doi.org/10.1002/rcm.7570, 2016.
Woodgate, R. A.: Increases in the Pacific inflow to the Arctic from 1990 to
2015, and insights into seasonal trends and driving mechanisms from
year-round Bering Strait mooring data, Prog. Oceanogr., 160,
124–154, https://doi.org/10.1016/j.pocean.2017.12.007, 2018.
Short summary
The Barents Sea is a rapidly changing shallow sea within the Arctic. Here, nitrate, an essential nutrient, is fully consumed by algae in surface waters during summer months. Nitrate is efficiently regenerated in the Barents Sea, and there is no evidence for nitrogen loss from the sediments by denitrification, which is prevalent on other Arctic shelves. This suggests that nitrogen availability in the Barents Sea is largely determined by the supply of nutrients in water masses from the Atlantic.
The Barents Sea is a rapidly changing shallow sea within the Arctic. Here, nitrate, an...
Altmetrics
Final-revised paper
Preprint