Articles | Volume 18, issue 24
https://doi.org/10.5194/bg-18-6435-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-6435-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Subsurface iron accumulation and rapid aluminum removal in the Mediterranean following African dust deposition
Matthieu Bressac
CORRESPONDING AUTHOR
Sorbonne Université, CNRS, Laboratoire d'Océanographie de
Villefranche, LOV, 06230 Villefranche-sur-Mer, France
Institute for Marine and Antarctic Studies, University of Tasmania,
Hobart, Tasmania, Australia
Thibaut Wagener
Aix Marseille Univ., CNRS, IRD, Université de Toulon, MIO UMR
110, 13288 Marseille, France
Nathalie Leblond
Sorbonne Université, CNRS, Institut de la Mer de Villefranche,
IMEV, 06230 Villefranche-sur-Mer, France
Antonio Tovar-Sánchez
Department of Ecology and Coastal Management, Institute of Marine
Sciences of Andalusia (ICMAN-CSIC), 07190 Puerto Real, Spain
Céline Ridame
Sorbonne Université, LOCEAN, 4 Place Jussieu – 75252 Paris Cedex
05, France
Vincent Taillandier
Sorbonne Université, CNRS, Laboratoire d'Océanographie de
Villefranche, LOV, 06230 Villefranche-sur-Mer, France
Samuel Albani
Department of Environmental and Earth Sciences, University of
Milano–Bicocca, Milan, Italy
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), UMR
8212 CEA-CNRS-UVSQ, Institut Pierre-Simon Laplace, Université
Paris-Saclay, 91191 Gif-sur-Yvette, France
Sophie Guasco
Aix Marseille Univ., CNRS, IRD, Université de Toulon, MIO UMR
110, 13288 Marseille, France
Aurélie Dufour
Aix Marseille Univ., CNRS, IRD, Université de Toulon, MIO UMR
110, 13288 Marseille, France
Stéphanie H. M. Jacquet
Aix Marseille Univ., CNRS, IRD, Université de Toulon, MIO UMR
110, 13288 Marseille, France
François Dulac
Laboratoire des Sciences du Climat et de l'Environnement (LSCE), UMR
8212 CEA-CNRS-UVSQ, Institut Pierre-Simon Laplace, Université
Paris-Saclay, 91191 Gif-sur-Yvette, France
Karine Desboeufs
Laboratoire Interuniversitaire des Systèmes Atmosphériques
(LISA), UMR7583 CNRS, Université de Paris, Université Paris-Est
Créteil, Institut Pierre-Simon Laplace, 75013 Paris, France
Cécile Guieu
Sorbonne Université, CNRS, Laboratoire d'Océanographie de
Villefranche, LOV, 06230 Villefranche-sur-Mer, France
Related authors
Karine Desboeufs, Franck Fu, Matthieu Bressac, Antonio Tovar-Sánchez, Sylvain Triquet, Jean-François Doussin, Chiara Giorio, Patrick Chazette, Julie Disnaquet, Anaïs Feron, Paola Formenti, Franck Maisonneuve, Araceli Rodríguez-Romero, Pascal Zapf, François Dulac, and Cécile Guieu
Atmos. Chem. Phys., 22, 2309–2332, https://doi.org/10.5194/acp-22-2309-2022, https://doi.org/10.5194/acp-22-2309-2022, 2022
Short summary
Short summary
This article reports the first concurrent sampling of wet deposition samples and surface seawater and was performed during the PEACETIME cruise in the remote Mediterranean (May–June 2017). Through the chemical composition of trace metals (TMs) in these samples, it emphasizes the decrease of atmospheric metal pollution in this area during the last few decades and the critical role of wet deposition as source of TMs for Mediterranean surface seawater, especially for intense dust deposition events.
Céline Ridame, Julie Dinasquet, Søren Hallstrøm, Estelle Bigeard, Lasse Riemann, France Van Wambeke, Matthieu Bressac, Elvira Pulido-Villena, Vincent Taillandier, Fréderic Gazeau, Antonio Tovar-Sanchez, Anne-Claire Baudoux, and Cécile Guieu
Biogeosciences, 19, 415–435, https://doi.org/10.5194/bg-19-415-2022, https://doi.org/10.5194/bg-19-415-2022, 2022
Short summary
Short summary
We show that in the Mediterranean Sea spatial variability in N2 fixation is related to the diazotrophic community composition reflecting different nutrient requirements among species. Nutrient supply by Saharan dust is of great importance to diazotrophs, as shown by the strong stimulation of N2 fixation after a simulated dust event under present and future climate conditions; the magnitude of stimulation depends on the degree of limitation related to the diazotrophic community composition.
Matthieu Roy-Barman, Lorna Foliot, Eric Douville, Nathalie Leblond, Fréderic Gazeau, Matthieu Bressac, Thibaut Wagener, Céline Ridame, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 2663–2678, https://doi.org/10.5194/bg-18-2663-2021, https://doi.org/10.5194/bg-18-2663-2021, 2021
Short summary
Short summary
The release of insoluble elements such as aluminum (Al), iron (Fe), rare earth elements (REEs), thorium (Th) and protactinium (Pa) when Saharan dust falls over the Mediterranean Sea was studied during tank experiments under present and future climate conditions. Each element exhibited different dissolution kinetics and dissolution fractions (always lower than a few percent). Changes in temperature and/or pH under greenhouse conditions lead to a lower Th release and a higher light REE release.
Wilhem Riom, Nicolas Mayot, Alexandre Mignot, Vincent Taillandier, and Fabrizio D'Ortenzio
State Planet Discuss., https://doi.org/10.5194/sp-2025-4, https://doi.org/10.5194/sp-2025-4, 2025
Preprint under review for SP
Short summary
Short summary
Over the ocean, phytoplankton (the microscopic algae at the basis of the marine foodweb) present characteristic cyclical patterns modulated by the passage of seasons. Climate change is modifying the marine environment and these seasonal cycles. This study presents a method that identifies the geographical displacement of these cycles applied over the last 30 years of satellite observations. It suggests that cycles normally typical of low latitude regions are extending towards high latitudes.
Gaëlle Capitaine, Samir Alliouane, Thierry Cariou, Jonathan Fin, Paola Fisicaro, and Thibaut Wagener
EGUsphere, https://doi.org/10.5194/egusphere-2025-3588, https://doi.org/10.5194/egusphere-2025-3588, 2025
Short summary
Short summary
Measuring total alkalinity in seawater is essential for understanding and monitoring the ocean carbonate system. To improve the reliability of these measurements, we developed reference materials and tested them in an inter-laboratory comparison. We also thoroughly quantified, for the first time, the uncertainty of the standard measurement method. These results, as well as the key metrological tools developed, support more accurate long-term monitoring of the ocean carbonate system.
Paola Formenti, Chiara Giorio, Karine Desboeufs, Alexander Zherebker, Marco Gaetani, Clarissa Baldo, Gautier Landrot, Simona Montebello, Servanne Chevaillier, Sylvain Triquet, Guillaume Siour, Claudia Di Biagio, Francesco Battaglia, Jean-François Doussin, Anais Feron, Andreas Namwoonde, and Stuart John Piketh
EGUsphere, https://doi.org/10.5194/egusphere-2025-446, https://doi.org/10.5194/egusphere-2025-446, 2025
Short summary
Short summary
The elemental composition and solubility of several metals, including iron, at a coastal site in Namibia in August–September 2017, indicate that natural and anthropogenic dust had different solubility depending on mineralogy but mostly to the processing by fluoride ions from marine emissions, pointing out to the complexity of atmospheric/oceanic interactions in this region of the world influenced by the Benguela current and significant aerosol load.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, Bruno Bombled, Jacqueline Boutin, Yann Bozec, Steeve Comeau, Pascal Conan, Laurent Coppola, Pascale Cuet, Eva Ferreira, Jean-Pierre Gattuso, Frédéric Gazeau, Catherine Goyet, Emilie Grossteffan, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Coraline Leseurre, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Peggy Rimmelin-Maury, Jean-François Ternon, Franck Touratier, Aline Tribollet, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 17, 1075–1100, https://doi.org/10.5194/essd-17-1075-2025, https://doi.org/10.5194/essd-17-1075-2025, 2025
Short summary
Short summary
This work presents a new synthesis of 67 000 total alkalinity and total dissolved inorganic carbon observations obtained between 1993 and 2023 in the global ocean, coastal zones, and the Mediterranean Sea. We describe the data assemblage and associated quality control and discuss some potential uses of this dataset. The dataset is provided in a single format and includes the quality flag for each sample.
Chiara Giorio, Anne Monod, Valerio Di Marco, Pierre Herckes, Denise Napolitano, Amy Sullivan, Gautier Landrot, Daniel Warnes, Marika Nasti, Sara D'Aronco, Agathe Gérardin, Nicolas Brun, Karine Desboeufs, Sylvain Triquet, Servanne Chevaillier, Claudia Di Biagio, Francesco Battaglia, Frédéric Burnet, Stuart J. Piketh, Andreas Namwoonde, Jean-François Doussin, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2024-4140, https://doi.org/10.5194/egusphere-2024-4140, 2025
Short summary
Short summary
A comparison between the solubility of trace metals in pairs of total suspended particulate (TSP) and fog water samples collected in Henties Bay, Namibia, during the AEROCLO-sA field campaign is presented. We found enhanced solubility of metals in fog samples which we attributed to metal-ligand complexes formation in the early stages of particle activation into droplets which can then remain in a kinetically stable form in fog or lead to the formation of colloidal nanoparticles.
Xavier Durrieu de Madron, Paul Blin, Mireille Pujo-Pay, Vincent Taillandier, and Pascal Conan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3436, https://doi.org/10.5194/egusphere-2024-3436, 2024
Short summary
Short summary
This study investigated the effects of salt fingering on particle and solute distribution in the Tyrrhenian Sea. Density interfaces associated with thermohaline staircases slow the settling of suspended particles and promote aggregation. This affects particle size distribution and creates nutrient and oxygen gradients, affecting microbial activity and nutrient cycling. The research highlights the potential role of salt fingers in deep ocean biogeochemical processes.
Lucille Barré, Frédéric Diaz, Thibaut Wagener, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 17, 5851–5882, https://doi.org/10.5194/gmd-17-5851-2024, https://doi.org/10.5194/gmd-17-5851-2024, 2024
Short summary
Short summary
The carbonate system is typically studied using measurements, but modeling can contribute valuable insights. Using a biogeochemical model, we propose a new representation of total alkalinity, dissolved inorganic carbon, pCO2, and pH in a highly dynamic Mediterranean coastal area, the Bay of Marseille, a useful addition to measurements. Through a detailed analysis of pCO2 and air–sea CO2 fluxes, we show that variations are strongly impacted by the hydrodynamic processes that affect the bay.
Nicolas Metzl, Claire Lo Monaco, Coraline Leseurre, Céline Ridame, Gilles Reverdin, Thi Tuyet Trang Chau, Frédéric Chevallier, and Marion Gehlen
Ocean Sci., 20, 725–758, https://doi.org/10.5194/os-20-725-2024, https://doi.org/10.5194/os-20-725-2024, 2024
Short summary
Short summary
In the southern Indian Ocean, south of the polar front, an observed increase of sea surface fCO2 and a decrease of pH over 1985–2021 are mainly driven by anthropogenic CO2 uptake, but in the last decade (2010–2020) fCO2 and pH were stable in summer, highlighting the competitive balance between anthropogenic CO2 and primary production. In the water column the increase of anthropogenic CO2 concentrations leads to migration of the aragonite saturation state from 600 m in 1985 up to 400 m in 2021.
France Van Wambeke, Pascal Conan, Mireille Pujo-Pay, Vincent Taillandier, Olivier Crispi, Alexandra Pavlidou, Sandra Nunige, Morgane Didry, Christophe Salmeron, and Elvira Pulido-Villena
Biogeosciences, 21, 2621–2640, https://doi.org/10.5194/bg-21-2621-2024, https://doi.org/10.5194/bg-21-2621-2024, 2024
Short summary
Short summary
Phosphomonoesterase (PME) and phosphodiesterase (PDE) activities over the epipelagic zone are described in the eastern Mediterranean Sea in winter and autumn. The types of concentration kinetics obtained for PDE (saturation at 50 µM, high Km, high turnover times) compared to those of PME (saturation at 1 µM, low Km, low turnover times) are discussed in regard to the possible inequal distribution of PDE and PME in the size continuum of organic material and accessibility to phosphodiesters.
Nicolás J. Cosentino, Gabriela Torre, Fabrice Lambert, Samuel Albani, François De Vleeschouwer, and Aloys J.-M. Bory
Earth Syst. Sci. Data, 16, 941–959, https://doi.org/10.5194/essd-16-941-2024, https://doi.org/10.5194/essd-16-941-2024, 2024
Short summary
Short summary
One of the main uncertainties related to future climate change has to do with how aerosols interact with climate. Dust is the most abundant aerosol in the atmosphere by mass. In order to better understand the links between dust and climate, we can turn to geological archives of ancient dust. Paleo±Dust is a compilation of measured values of the paleo-dust deposition rate. We can use this compilation to guide climate models so that they better represent dust–climate interactions.
Karine Desboeufs, Paola Formenti, Raquel Torres-Sánchez, Kerstin Schepanski, Jean-Pierre Chaboureau, Hendrik Andersen, Jan Cermak, Stefanie Feuerstein, Benoit Laurent, Danitza Klopper, Andreas Namwoonde, Mathieu Cazaunau, Servanne Chevaillier, Anaïs Feron, Cécile Mirande-Bret, Sylvain Triquet, and Stuart J. Piketh
Atmos. Chem. Phys., 24, 1525–1541, https://doi.org/10.5194/acp-24-1525-2024, https://doi.org/10.5194/acp-24-1525-2024, 2024
Short summary
Short summary
This study investigates the fractional solubility of iron (Fe) in dust particles along the coast of Namibia, a critical region for the atmospheric Fe supply of the South Atlantic Ocean. Our results suggest a possible two-way interplay whereby marine biogenic emissions from the coastal marine ecosystems into the atmosphere would increase the solubility of Fe-bearing dust by photo-reduction processes. The subsequent deposition of soluble Fe could act to further enhance marine biogenic emissions.
Natalie M. Mahowald, Longlei Li, Samuel Albani, Douglas S. Hamilton, and Jasper F. Kok
Atmos. Chem. Phys., 24, 533–551, https://doi.org/10.5194/acp-24-533-2024, https://doi.org/10.5194/acp-24-533-2024, 2024
Short summary
Short summary
Estimating past aerosol radiative effects and their uncertainties is an important topic in climate science. Aerosol radiative effects propagate into large uncertainties in estimates of how present and future climate evolves with changing greenhouse gas emissions. A deeper understanding of how aerosols interacted with the atmospheric energy budget under past climates is hindered in part by a lack of relevant paleo-observations and in part because less attention has been paid to the problem.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Lucille Barré, Frédéric Diaz, Thibaut Wagener, France Van Wambeke, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 16, 6701–6739, https://doi.org/10.5194/gmd-16-6701-2023, https://doi.org/10.5194/gmd-16-6701-2023, 2023
Short summary
Short summary
While several studies have shown that mixotrophs play a crucial role in the carbon cycle, the impact of environmental forcings on their dynamics remains poorly investigated. Using a biogeochemical model that considers mixotrophs, we study the impact of light and nutrient concentration on the ecosystem composition in a highly dynamic Mediterranean coastal area: the Bay of Marseille. We show that mixotrophs cope better with oligotrophic conditions compared to strict auto- and heterotrophs.
Thomas Audoux, Benoit Laurent, Karine Desboeufs, Gael Noyalet, Franck Maisonneuve, Olivier Lauret, and Servanne Chevaillier
Atmos. Chem. Phys., 23, 13485–13503, https://doi.org/10.5194/acp-23-13485-2023, https://doi.org/10.5194/acp-23-13485-2023, 2023
Short summary
Short summary
In the Paris region, a campaign was conducted to study wet deposition of aerosol particles during rainfall events. Simultaneous measurements of aerosol and wet deposition allowed us to discuss their transfer from the atmosphere to rain. Chemical evolution within events revealed meteorology, atmospheric conditions and local vs. long range sources as key factors. This study highlights the variability of wet deposition and the need to consider event-specific factors to understand its mechanisms.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Jasper F. Kok, Claudia Di Biagio, Samuel Albani, Jianyu Zheng, and Jiachen Ding
Atmos. Chem. Phys., 22, 13115–13135, https://doi.org/10.5194/acp-22-13115-2022, https://doi.org/10.5194/acp-22-13115-2022, 2022
Short summary
Short summary
This study developed a dataset that enables us to efficiently calculate dust direct radiative effect (DRE, i.e., cooling or warming our planet) for any given dust size distribution in addition to three sets of dust mineral components and two dust shapes. We demonstrate and validate the method of using this dataset to calculate dust DRE. Moreover, using this dataset we found that dust mineral composition is a more important factor in determining dust DRE than dust size and shape.
Nicolas Metzl, Claire Lo Monaco, Coraline Leseurre, Céline Ridame, Jonathan Fin, Claude Mignon, Marion Gehlen, and Thi Tuyet Trang Chau
Biogeosciences, 19, 1451–1468, https://doi.org/10.5194/bg-19-1451-2022, https://doi.org/10.5194/bg-19-1451-2022, 2022
Short summary
Short summary
During an oceanographic cruise conducted in January 2020 in the south-western Indian Ocean, we observed very low CO2 concentrations associated with a strong phytoplankton bloom that occurred south-east of Madagascar. This biological event led to a strong regional CO2 ocean sink not previously observed.
Julie Dinasquet, Estelle Bigeard, Frédéric Gazeau, Farooq Azam, Cécile Guieu, Emilio Marañón, Céline Ridame, France Van Wambeke, Ingrid Obernosterer, and Anne-Claire Baudoux
Biogeosciences, 19, 1303–1319, https://doi.org/10.5194/bg-19-1303-2022, https://doi.org/10.5194/bg-19-1303-2022, 2022
Short summary
Short summary
Saharan dust deposition of nutrients and trace metals is crucial to microbes in the Mediterranean Sea. Here, we tested the response of microbial and viral communities to simulated dust deposition under present and future conditions of temperature and pH. Overall, the effect of the deposition was dependent on the initial microbial assemblage, and future conditions will intensify microbial responses. We observed effects on trophic interactions, cascading all the way down to viral processes.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences, 19, 1165–1194, https://doi.org/10.5194/bg-19-1165-2022, https://doi.org/10.5194/bg-19-1165-2022, 2022
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
Karine Desboeufs, Franck Fu, Matthieu Bressac, Antonio Tovar-Sánchez, Sylvain Triquet, Jean-François Doussin, Chiara Giorio, Patrick Chazette, Julie Disnaquet, Anaïs Feron, Paola Formenti, Franck Maisonneuve, Araceli Rodríguez-Romero, Pascal Zapf, François Dulac, and Cécile Guieu
Atmos. Chem. Phys., 22, 2309–2332, https://doi.org/10.5194/acp-22-2309-2022, https://doi.org/10.5194/acp-22-2309-2022, 2022
Short summary
Short summary
This article reports the first concurrent sampling of wet deposition samples and surface seawater and was performed during the PEACETIME cruise in the remote Mediterranean (May–June 2017). Through the chemical composition of trace metals (TMs) in these samples, it emphasizes the decrease of atmospheric metal pollution in this area during the last few decades and the critical role of wet deposition as source of TMs for Mediterranean surface seawater, especially for intense dust deposition events.
Céline Ridame, Julie Dinasquet, Søren Hallstrøm, Estelle Bigeard, Lasse Riemann, France Van Wambeke, Matthieu Bressac, Elvira Pulido-Villena, Vincent Taillandier, Fréderic Gazeau, Antonio Tovar-Sanchez, Anne-Claire Baudoux, and Cécile Guieu
Biogeosciences, 19, 415–435, https://doi.org/10.5194/bg-19-415-2022, https://doi.org/10.5194/bg-19-415-2022, 2022
Short summary
Short summary
We show that in the Mediterranean Sea spatial variability in N2 fixation is related to the diazotrophic community composition reflecting different nutrient requirements among species. Nutrient supply by Saharan dust is of great importance to diazotrophs, as shown by the strong stimulation of N2 fixation after a simulated dust event under present and future climate conditions; the magnitude of stimulation depends on the degree of limitation related to the diazotrophic community composition.
Stéphanie H. M. Jacquet, Christian Tamburini, Marc Garel, Aurélie Dufour, France Van Vambeke, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 5891–5902, https://doi.org/10.5194/bg-18-5891-2021, https://doi.org/10.5194/bg-18-5891-2021, 2021
Short summary
Short summary
We compared carbon remineralization rates (MRs) in the western and central Mediterranean Sea in late spring during the PEACETIME cruise, as assessed using the barium tracer. We reported higher and deeper (up to 1000 m depth) MRs in the western basin, potentially sustained by an additional particle export event driven by deep convection. The central basin is the site of a mosaic of blooming and non-blooming water masses and showed lower MRs that were restricted to the upper mesopelagic layer.
Elvira Pulido-Villena, Karine Desboeufs, Kahina Djaoudi, France Van Wambeke, Stéphanie Barrillon, Andrea Doglioli, Anne Petrenko, Vincent Taillandier, Franck Fu, Tiphanie Gaillard, Sophie Guasco, Sandra Nunige, Sylvain Triquet, and Cécile Guieu
Biogeosciences, 18, 5871–5889, https://doi.org/10.5194/bg-18-5871-2021, https://doi.org/10.5194/bg-18-5871-2021, 2021
Short summary
Short summary
We report on phosphorus dynamics in the surface layer of the Mediterranean Sea. Highly sensitive phosphate measurements revealed vertical gradients above the phosphacline. The relative contribution of diapycnal fluxes to total external supply of phosphate to the mixed layer decreased towards the east, where atmospheric deposition dominated. Taken together, external sources of phosphate contributed little to total supply, which was mainly sustained by enzymatic hydrolysis of organic phosphorus.
France Van Wambeke, Vincent Taillandier, Karine Desboeufs, Elvira Pulido-Villena, Julie Dinasquet, Anja Engel, Emilio Marañón, Céline Ridame, and Cécile Guieu
Biogeosciences, 18, 5699–5717, https://doi.org/10.5194/bg-18-5699-2021, https://doi.org/10.5194/bg-18-5699-2021, 2021
Short summary
Short summary
Simultaneous in situ measurements of (dry and wet) atmospheric deposition and biogeochemical stocks and fluxes in the sunlit waters of the open Mediterranean Sea revealed complex physical and biological processes occurring within the mixed layer. Nitrogen (N) budgets were computed to compare the sources and sinks of N in the mixed layer. The transitory effect observed after a wet dust deposition impacted the microbial food web down to the deep chlorophyll maximum.
Frédéric Gazeau, France Van Wambeke, Emilio Marañón, Maria Pérez-Lorenzo, Samir Alliouane, Christian Stolpe, Thierry Blasco, Nathalie Leblond, Birthe Zäncker, Anja Engel, Barbara Marie, Julie Dinasquet, and Cécile Guieu
Biogeosciences, 18, 5423–5446, https://doi.org/10.5194/bg-18-5423-2021, https://doi.org/10.5194/bg-18-5423-2021, 2021
Short summary
Short summary
Our study shows that the impact of dust deposition on primary production depends on the initial composition and metabolic state of the tested community and is constrained by the amount of nutrients added, to sustain both the fast response of heterotrophic prokaryotes and the delayed one of phytoplankton. Under future environmental conditions, heterotrophic metabolism will be more impacted than primary production, therefore reducing the capacity of surface waters to sequester anthropogenic CO2.
Frédéric Gazeau, Céline Ridame, France Van Wambeke, Samir Alliouane, Christian Stolpe, Jean-Olivier Irisson, Sophie Marro, Jean-Michel Grisoni, Guillaume De Liège, Sandra Nunige, Kahina Djaoudi, Elvira Pulido-Villena, Julie Dinasquet, Ingrid Obernosterer, Philippe Catala, and Cécile Guieu
Biogeosciences, 18, 5011–5034, https://doi.org/10.5194/bg-18-5011-2021, https://doi.org/10.5194/bg-18-5011-2021, 2021
Short summary
Short summary
This paper shows that the impacts of Saharan dust deposition in different Mediterranean basins are as strong as those observed in coastal waters but differed substantially between the three tested stations, differences attributed to variable initial metabolic states. A stronger impact of warming and acidification on mineralization suggests a decreased capacity of Mediterranean surface communities to sequester CO2 following the deposition of atmospheric particles in the coming decades.
Isabelle Chiapello, Paola Formenti, Lydie Mbemba Kabuiku, Fabrice Ducos, Didier Tanré, and François Dulac
Atmos. Chem. Phys., 21, 12715–12737, https://doi.org/10.5194/acp-21-12715-2021, https://doi.org/10.5194/acp-21-12715-2021, 2021
Short summary
Short summary
The Mediterranean atmosphere is impacted by a variety of particle pollution, which exerts a complex pressure on climate and air quality. We analyze the 2005–2013 POLDER-3 satellite advanced aerosol data set over the Western Mediterranean Sea. Aerosols' spatial distribution and temporal evolution suggests a large-scale improvement of air quality related to the fine aerosol component, most probably resulting from reduction of anthropogenic particle emissions in the surrounding European countries.
Evelyn Freney, Karine Sellegri, Alessia Nicosia, Leah R. Williams, Matteo Rinaldi, Jonathan T. Trueblood, André S. H. Prévôt, Melilotus Thyssen, Gérald Grégori, Nils Haëntjens, Julie Dinasquet, Ingrid Obernosterer, France Van Wambeke, Anja Engel, Birthe Zäncker, Karine Desboeufs, Eija Asmi, Hilkka Timonen, and Cécile Guieu
Atmos. Chem. Phys., 21, 10625–10641, https://doi.org/10.5194/acp-21-10625-2021, https://doi.org/10.5194/acp-21-10625-2021, 2021
Short summary
Short summary
In this work, we present observations of the organic aerosol content in primary sea spray aerosols (SSAs) continuously generated along a 5-week cruise in the Mediterranean. This information is combined with seawater biogeochemical properties also measured continuously along the ship track to develop a number of parametrizations that can be used in models to determine SSA organic content in oligotrophic waters that represent 60 % of the oceans from commonly measured seawater variables.
Ramiro Checa-Garcia, Yves Balkanski, Samuel Albani, Tommi Bergman, Ken Carslaw, Anne Cozic, Chris Dearden, Beatrice Marticorena, Martine Michou, Twan van Noije, Pierre Nabat, Fiona M. O'Connor, Dirk Olivié, Joseph M. Prospero, Philippe Le Sager, Michael Schulz, and Catherine Scott
Atmos. Chem. Phys., 21, 10295–10335, https://doi.org/10.5194/acp-21-10295-2021, https://doi.org/10.5194/acp-21-10295-2021, 2021
Short summary
Short summary
Thousands of tons of dust are emitted into the atmosphere every year, producing important impacts on the Earth system. However, current global climate models are not yet able to reproduce dust emissions, transport and depositions with the desirable accuracy. Our study analyses five different Earth system models to report aspects to be improved to reproduce better available observations, increase the consistency between models and therefore decrease the current uncertainties.
Jasper F. Kok, Adeyemi A. Adebiyi, Samuel Albani, Yves Balkanski, Ramiro Checa-Garcia, Mian Chin, Peter R. Colarco, Douglas S. Hamilton, Yue Huang, Akinori Ito, Martina Klose, Danny M. Leung, Longlei Li, Natalie M. Mahowald, Ron L. Miller, Vincenzo Obiso, Carlos Pérez García-Pando, Adriana Rocha-Lima, Jessica S. Wan, and Chloe A. Whicker
Atmos. Chem. Phys., 21, 8127–8167, https://doi.org/10.5194/acp-21-8127-2021, https://doi.org/10.5194/acp-21-8127-2021, 2021
Short summary
Short summary
Desert dust interacts with virtually every component of the Earth system, including the climate system. We develop a new methodology to represent the global dust cycle that integrates observational constraints on the properties and abundance of desert dust with global atmospheric model simulations. We show that the resulting representation of the global dust cycle is more accurate than what can be obtained from a large number of current climate global atmospheric models.
Jasper F. Kok, Adeyemi A. Adebiyi, Samuel Albani, Yves Balkanski, Ramiro Checa-Garcia, Mian Chin, Peter R. Colarco, Douglas S. Hamilton, Yue Huang, Akinori Ito, Martina Klose, Longlei Li, Natalie M. Mahowald, Ron L. Miller, Vincenzo Obiso, Carlos Pérez García-Pando, Adriana Rocha-Lima, and Jessica S. Wan
Atmos. Chem. Phys., 21, 8169–8193, https://doi.org/10.5194/acp-21-8169-2021, https://doi.org/10.5194/acp-21-8169-2021, 2021
Short summary
Short summary
The many impacts of dust on the Earth system depend on dust mineralogy, which varies between dust source regions. We constrain the contribution of the world’s main dust source regions by integrating dust observations with global model simulations. We find that Asian dust contributes more and that North African dust contributes less than models account for. We obtain a dataset of each source region’s contribution to the dust cycle that can be used to constrain dust impacts on the Earth system.
Pascale Braconnot, Samuel Albani, Yves Balkanski, Anne Cozic, Masa Kageyama, Adriana Sima, Olivier Marti, and Jean-Yves Peterschmitt
Clim. Past, 17, 1091–1117, https://doi.org/10.5194/cp-17-1091-2021, https://doi.org/10.5194/cp-17-1091-2021, 2021
Short summary
Short summary
We investigate how mid-Holocene dust reduction affects the Earth’s energetics from a suite of climate simulations. Our analyses confirm the peculiar role of the dust radiative effect over bright surfaces such as African deserts. We highlight a strong dependence on the dust pattern. The relative dust forcing between West Africa and the Middle East impacts the relative response of Indian and African monsoons and between the western tropical Atlantic and the Atlantic meridional circulation.
Matthieu Roy-Barman, Lorna Foliot, Eric Douville, Nathalie Leblond, Fréderic Gazeau, Matthieu Bressac, Thibaut Wagener, Céline Ridame, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 2663–2678, https://doi.org/10.5194/bg-18-2663-2021, https://doi.org/10.5194/bg-18-2663-2021, 2021
Short summary
Short summary
The release of insoluble elements such as aluminum (Al), iron (Fe), rare earth elements (REEs), thorium (Th) and protactinium (Pa) when Saharan dust falls over the Mediterranean Sea was studied during tank experiments under present and future climate conditions. Each element exhibited different dissolution kinetics and dissolution fractions (always lower than a few percent). Changes in temperature and/or pH under greenhouse conditions lead to a lower Th release and a higher light REE release.
France Van Wambeke, Elvira Pulido, Philippe Catala, Julie Dinasquet, Kahina Djaoudi, Anja Engel, Marc Garel, Sophie Guasco, Barbara Marie, Sandra Nunige, Vincent Taillandier, Birthe Zäncker, and Christian Tamburini
Biogeosciences, 18, 2301–2323, https://doi.org/10.5194/bg-18-2301-2021, https://doi.org/10.5194/bg-18-2301-2021, 2021
Short summary
Short summary
Michaelis–Menten kinetics were determined for alkaline phosphatase, aminopeptidase and β-glucosidase in the Mediterranean Sea. Although the ectoenzymatic-hydrolysis contribution to heterotrophic prokaryotic needs was high in terms of N, it was low in terms of C. This study points out the biases in interpretation of the relative differences in activities among the three tested enzymes in regard to the choice of added concentrations of fluorogenic substrates.
Stéphanie H. M. Jacquet, Dominique Lefèvre, Christian Tamburini, Marc Garel, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 2205–2212, https://doi.org/10.5194/bg-18-2205-2021, https://doi.org/10.5194/bg-18-2205-2021, 2021
Short summary
Short summary
We present new data concerning the relation between biogenic barium (Baxs, a tracer of carbon remineralization at mesopelagic depths), O2 consumption and prokaryotic heterotrophic production (PHP) in the Mediterranean Sea. The purpose of this paper is to improve our understanding of the relation between Baxs, PHP and O2 and to test the validity of the Dehairs transfer function in the Mediterranean Sea. This relation has never been tested in the Mediterranean Sea.
Jonathan V. Trueblood, Alessia Nicosia, Anja Engel, Birthe Zäncker, Matteo Rinaldi, Evelyn Freney, Melilotus Thyssen, Ingrid Obernosterer, Julie Dinasquet, Franco Belosi, Antonio Tovar-Sánchez, Araceli Rodriguez-Romero, Gianni Santachiara, Cécile Guieu, and Karine Sellegri
Atmos. Chem. Phys., 21, 4659–4676, https://doi.org/10.5194/acp-21-4659-2021, https://doi.org/10.5194/acp-21-4659-2021, 2021
Short summary
Short summary
Sea spray aerosols (SSAs) can be an important source of ice-nucleating particles (INPs) that impact cloud properties over the oceans. In the Mediterranean Sea, we found that the INPs in the seawater surface microlayer increased by an order of magnitude after a rain dust event that impacted iron and bacterial abundances. The INP properties of SSA (INPSSA) increased after a 3 d delay. Outside this event, INPSSA could be parameterized as a function of the seawater biogeochemistry.
Cécile Debevec, Stéphane Sauvage, Valérie Gros, Thérèse Salameh, Jean Sciare, François Dulac, and Nadine Locoge
Atmos. Chem. Phys., 21, 1449–1484, https://doi.org/10.5194/acp-21-1449-2021, https://doi.org/10.5194/acp-21-1449-2021, 2021
Short summary
Short summary
This study provides a better characterization of the seasonal variations in VOC sources impacting the western Mediterranean region, based on a comprehensive chemical composition measured over 25 months at a representative receptor site (Ersa) and by determining factors controlling their temporal variations. Some insights into dominant drivers for VOC concentration variations in Europe are also provided, built on comparisons of Ersa observations with the concomitant ones of 17 European sites.
Katixa Lajaunie-Salla, Frédéric Diaz, Cathy Wimart-Rousseau, Thibaut Wagener, Dominique Lefèvre, Christophe Yohia, Irène Xueref-Remy, Brian Nathan, Alexandre Armengaud, and Christel Pinazo
Geosci. Model Dev., 14, 295–321, https://doi.org/10.5194/gmd-14-295-2021, https://doi.org/10.5194/gmd-14-295-2021, 2021
Short summary
Short summary
A biogeochemical model of planktonic food webs including a carbonate balance module is applied in the Bay of Marseille (France) to represent the carbon marine cycle expected to change in the future owing to significant increases in anthropogenic emissions of CO2. The model correctly simulates the ranges and seasonal dynamics of most variables of the carbonate system (pH). This study shows that external physical forcings have an important impact on the carbonate equilibrium in this coastal area.
Kahina Djaoudi, France Van Wambeke, Aude Barani, Nagib Bhairy, Servanne Chevaillier, Karine Desboeufs, Sandra Nunige, Mohamed Labiadh, Thierry Henry des Tureaux, Dominique Lefèvre, Amel Nouara, Christos Panagiotopoulos, Marc Tedetti, and Elvira Pulido-Villena
Biogeosciences, 17, 6271–6285, https://doi.org/10.5194/bg-17-6271-2020, https://doi.org/10.5194/bg-17-6271-2020, 2020
Cécile Guieu, Fabrizio D'Ortenzio, François Dulac, Vincent Taillandier, Andrea Doglioli, Anne Petrenko, Stéphanie Barrillon, Marc Mallet, Pierre Nabat, and Karine Desboeufs
Biogeosciences, 17, 5563–5585, https://doi.org/10.5194/bg-17-5563-2020, https://doi.org/10.5194/bg-17-5563-2020, 2020
Short summary
Short summary
We describe here the objectives and strategy of the PEACETIME project and cruise, dedicated to dust deposition and its impacts in the Mediterranean Sea. Our strategy to go a step further forward than in previous approaches in understanding these impacts by catching a real deposition event at sea is detailed. We summarize the work performed at sea, the type of data acquired and their valorization in the papers published in the special issue.
Cited articles
Acker, J. G. and Leptoukh, G.: Online analysis enhances use of NASA Earth
science data, Eos Trans. AGU, 88, 14–17,
https://doi.org/10.1029/2007EO020003, 2007.
Anderson, R. F., Cheng, H., Edwards, R. L., Fleisher, M. Q., Hayes, C. T.,
Huang, K.-F., Kadko, D., Lam, P. J., Landing, W. M., Lao, Y., Lu, Y.,
Measures, C. I., Moran, S. B., Morton, P. L., Ohnemus, D. C., Robinson, L.
F., and Shelley, R. U.: How well can we quantify dust deposition to the
ocean?, Philos. T. R. Soc. A, 374, 20150285,
https://doi.org/10.1098/rsta.2015.0285, 2016.
Baker, A. R. and Croot P. L.: Atmospheric and marine controls on aerosol
iron solubility in seawater, Mar. Chem., 120, 4–13,
https://doi.org/10.1016/j.marchem.2008.09.003, 2010.
Baker, A. R., Jickells, T. D., Witt, M., and Linge, K. L.: Trends in the
solubility of iron, aluminium, manganese and phosphorus in aerosol collected
over the Atlantic Ocean, Mar. Chem., 98, 43–58,
https://doi.org/10.1016/j.marchem.2005.06.004, 2006.
Bonnet, S. and Guieu, C.: Dissolution of atmospheric iron in seawater,
Geophy. Res. Lett., 31, L03303, https://doi.org/10.1029/2003GL018423,
2004.
Bonnet, S. and Guieu, C.: Atmospheric forcing on the annual iron cycle in
the Mediterranean Sea. A one-year survey, J. Geophys. Res., 111, C09010,
https://doi.org/10.1029/2005JC003213, 2006.
Boyd, P. W., Ibisanmi, E., Sander, S. G., Hunter, K. A., and Jackson, G. A.:
Remineralization of upper ocean particles: Implications for iron
biogeochemistry, Limnol. Oceanogr., 55, 1271–1288,
https://doi.org/10.4319/lo.2010.55.3.1271, 2010.
Bressac, M. and Guieu, C.: Post-depositional processes: What really happens
to new atmospheric iron in the ocean surface?, Global Biogeochem. Cy.,
27, 859–870, https://doi.org/10.1002/gbc.20076, 2013.
Bressac, M., Guieu, C., Doxaran, D., Bourrin, F., Obolensky, G., and
Grisoni, J. M.: A mesocosm experiment coupled with optical measurements to
assess the fate and sinking of atmospheric particles in clear oligotrophic
waters, Geo.-Mar. Lett., 32, 153–164, https://doi.org10.1007/s00367-011-0269-4, 2012.
Bressac, M., Guieu, C., Doxaran, D., Bourrin, F., Desboeufs, K., Leblond,
N., and Ridame, C.: Quantification of the lithogenic carbon pump following a
simulated dust-deposition event in large mesocosms, Biogeosciences, 11,
1007–1020, https://doi.org/10.5194/bg-11-1007-2014, 2014.
Bressac, M., Guieu, C., Ellwood, M. J., Tagliabue, A., Wagener, T.,
Laurenceau Cornec, E. C., Whitby, H., Sarthou, G., and Boyd, P. W.: Resupply
of mesopelagic dissolved iron controlled by particulate iron composition,
Nat. Geosci., 12, 995–1000, https://doi.org/10.1038/s41561-019-0476-6,
2019.
Buat-Ménard, P., Davies, J., Remoudaki, E., Miquel, J. C., Bergametti,
G., Lambert, C. E., Ezat, U., Quetel, C., La Rosa, J., and Fowler, S. W.:
Non-steady-state biological removal of atmospheric particles from
Mediterranean surface waters, Nature, 340, 131–134,
https://doi.org/10.1038/340131a0, 1989.
Chou, L. and Wollast, R.: Biogeochemical behavior and mass balance of
dissolved aluminum in the western Mediterranean Sea, Deep-Sea Res. Pt. II,
44, 741–768, https://doi.org/10.1016/S0967-0645(96)00092-6, 1997.
Christensen, J. H.: The Danish eulerian hemispheric model – A
three-dimensional air pollution model used for the Arctic, Atmos. Environ.,
31, 4169–4191, https://doi.org/10.1016/S1352-2310(97)00264-1, 1997.
Conway, T. M. and John, S. G.: Quantification of dissolved iron sources to
the North Atlantic Ocean, Nature, 511, 212–215,
https://doi.org/10.1038/nature13482, 2014.
Croot, P. L., Streu, P., and Baker, A. R.: Short residence time for iron in
surface seawater impacted by atmospheric dry deposition from Saharan dust
events, Geophys. Res. Lett., 31, L23S08,
https://doi.org/10.1029/2004GL020153, 2004.
Cutter, G. A., Andersson, P., Codispoti, L., Croot, P., Francois, R., Lohan,
M., Obata, H., and Rutgers van der Loeff, M.: Sampling and Sample-handling
Protocols for GEOTRACES Cruises, 2010 GEOTRACES Standards and
Intercalibration Committee, 2010.
Dammshäuser, A. and Croot, P. L.: Low colloidal associations of
aluminium and titanium in surface waters of the tropical Atlantic, Geochim.
Cosmochim. Ac., 96, 304–318, https://doi.org/10.1016/j.gca.2012.07.032,
2012.
Dammshäuser, A., Wagener, T., and Croot, P. L.: Surface water dissolved
aluminum and titanium: Tracers for specific time scales of dust deposition
to the Atlantic?, Geophys. Res. Lett., 38, L24601,
https://doi.org/10.1029/2011GL049847, 2011.
Davies, J. E. and Buat-Ménard, P.: Impact of atmospheric deposition on
particulate manganese and aluminium distribution in northwestern
Mediterranean surface water, Glob. Planet. Change, 3, 35–45,
https://doi.org/10.1016/0921-8181(90)90054-G, 1990.
de Leeuw, G., Guieu, C., Arneth, A., Bellouin, N., Bopp, L., Boyd, P. W.,
Denier van der Gon, H. A. C., Desboeufs, K. V., Dulac, F., Cristina
Facchini, M. C., Gantt, B., Langmann, B., Mahowald, N. M., Marañón,
E., O'Dowd, C., Olgun, N., Pulido-Villena, E., Rinaldi, M., Stephanou, E.G.,
and Wagener, T.: Ocean-Atmosphere interactions of particles, in:
Ocean-Atmosphere Interactions of Gases and Particles, edited by: Liss, P.
and Johnson, M., Springer Earth System Sciences, Springer Berlin
Heidelberg, 171–246,
https://doi.org/10.1007/978-3-642-25643-1_4, 2014.
Desboeufs, K., Bon Nguyen, E., Chevaillier, S., Triquet, S., and Dulac, F.:
Fluxes and sources of nutrients and trace metal atmospheric deposition in
the northwestern Mediterranean, Atmos. Chem. Phys., 18, 14477–14492,
https://doi.org/10.5194/acp-18-14477-2018, 2018.
Desboeufs, K., Fu, F., Bressac, M., Tovar-Sánchez, A., Triquet, S., Doussin, J.-F., Giorio, C., Chazette, P., Disnaquet, J., Feron, A., Formenti, P., Maisonneuve, F., Rodríguez-Romero, A., Zapf, P., Dulac, F., and Guieu, C.: Wet deposition in the remote western and central Mediterranean as a source of trace metals to surface seawater, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2021-624, in review, 2021.
Donaghay, P. L., Liss, P. S., Duce, R. A., Kester, D. R., Hanson, A. K.,
Villareal, T., Tindale, N. W., and Gifford, D. J.: The role of episodic
atmospheric nutrient inputs in the chemical and biological dynamics of
oceanic ecosystems, Oceanography, 4, 62–70,
https://doi.org/10.5670/oceanog.1991.04, 1991.
Duce, R. A., Liss, P. S., Merrill, J. T., Atlas, E. L., Buat-Menard, P.,
Hicks, B. B., Miller, J. M., Prospero, J. M., Arimoto, R., Church, T. M.,
Ellis, W., Galloway, J. N., Hansen, L., Jickells, T. D., Knap, A. H.,
Reinhardt, K. H., Schneider, B. Soudine, A., Tokos, J. J., Tsunogai, S.,
Wollast, R., and Zhou, M.: The atmospheric input of trace species to the
world ocean, Global Biogeochem. Cy., 5, 193–259,
https://doi.org/10.1029/91GB01778, 1991.
Dulac, F., Tanré, D., Bergametti, G., Buat-Ménard, P., Desbois, M.,
and Sutton, D.: Assessment of the African airborne dust mass over the
western Mediterranean Sea using Meteosat data, J. Geophys. Res.-Atmos., 97, 2489–2506, https://doi.org/10.1029/91JD02427, 1992.
Dulaquais, G., Waeles, M., Gerringa, L. J., Middag, R., Rijkenberg, M. J.,
and Riso, R.: The biogeochemistry of electroactive humic substances and its
connection to iron chemistry in the North East Atlantic and the Western
Mediterranean Sea, J. Geophys. Res.-Ocean., 123, 5481–5499,
https://doi.org/10.1029/2018JC014211, 2018.
Fishwick, M. P., Sedwick, P. N., Lohan, M. C., Worsfold, P. J., Buck, K. N.,
Church, T. M., and Ussher, S. J.: The impact of changing surface ocean
conditions on the dissolution of aerosol iron, Global Biogeochem. Cy.,
28, 1235–1250, https://doi.org/10.1002/2014GB004921, 2014.
Fitzsimmons, J. N., Zhang, R., and Boyle, E. A.: Dissolved iron in the
tropical North Atlantic Ocean, Mar. Chem., 154, 87–99,
https://doi.org/10.1016/j.marchem.2013.05.009, 2013.
Flemming, J., Huijnen, V., Arteta, J., Bechtold, P., Beljaars, A.,
Blechschmidt, A.-M., Diamantakis, M., Engelen, R. J., Gaudel, A., Inness,
A., Jones, L., Josse, B., Katragkou, E., Marecal, V., Peuch, V.- H.,
Richter, A., Schultz, M. G., Stein, O., and Tsikerdekis, A.: Tropospheric
chemistry in the Integrated Forecasting System of ECMWF, Geosci. Model Dev.,
8, 975–1003, https://doi.org/10.5194/gmd-8-975-2015, 2015.
Folger, D. W., Burckle, L. H., and Heezen, B. C.: Opal phytoliths in a North
Atlantic dust fall, Science, 155, 1243–1244,
https://doi.org/10.1126/science.155.3767.1243, 1967.
Gazeau, F., Ridame, C., VanWambeke, F., Alliouane, S., Stolpe, C., Irisson,
J.-O., Marro, S., Grisoni, J.-M., De Liège, G., Nunige, S., Djaoudi, K.,
Pulido-Villena, E., Dinasquet, J., Obernosterer, I., Catala, P., and Guieu,
C.: Impact of dust addition on Mediterranean plankton communities under
present and future conditions of pH and temperature: an experimental
overview, Biogeosciences, 18, 5011–5034,
https://doi.org/10.5194/bg-18-5011-2021, 2021.
Gdaniec, S., Roy-Barman, M., Foliot, L., Thil, F., Dapoigny, A., Burckel,
P., Garcia-Orellana, J., Masqué, P., Mörth, C.-M., and Andersson, P.
S.: Thorium and protactinium isotopes as tracers of marine particle fluxes
and deep water circulation in the Mediterranean Sea, Mar. Chem., 199,
12–23, https://doi.org/10.1016/j.marchem.2017.12.002, 2018.
Gehlen, M., Beck, L., Calas, G., Flank, A.-M., Van Bennekom, A. J., and Van
Beusekom, J. E. E. : Unraveling the atomic structure of biogenic silica:
evidence of the structural association of Al and Si in diatom frustules,
Geochim. Cosmochim. Ac., 66, 1601–1609,
https://doi.org/10.1016/S0016-7037(01)00877-8, 2002.
Gerringa, L. J. A., Slagter, H. A., Bown, J., van Haren, H., Laan, P., De
Baar, H. J. W., and Rijkenberg, M. J. A.: Dissolved Fe and Fe-binding
organic ligands in the Mediterranean Sea–GEOTRACES G04, Mar. Chem., 194,
100–113, https://doi.org/10.1016/j.marchem.2017.05.012, 2017.
Gkikas, A., Basart, S., Hatzianastassiou, N., Marinou, E., Amiridis, V.,
Kazadzis, S., Pey, J., Querol, X., Jorba, O., Gassó, S., and Baldasano,
J. M.: Mediterranean intense desert dust outbreaks and their vertical
structure based on remote sensing data, Atmos. Chem. Phys., 16, 8609–8642,
https://doi.org/10.5194/acp-16-8609-2016, 2016.
Guieu, C., Desboeufs, K., Albani, S., Alliouane, S., Aumont, O., Barbieux, M., Barrillon, S., Baudoux, A.-C., Berline, L., Bhairy, N., Bigeard, E., Bloss, M., Bressac, M., Brito, J., Carlotti, F., de Liege, G., Dinasquet, J., Djaoudi, K., Doglioli, A., D'Ortenzio, F., Doussin, J.-F., Duforet, L., Dulac, F., Dutay, J.-C., Engel, A., Feliu-Brito, G., Ferre, H., Formenti, P., Fu, F., Garcia, D., Garel, M., Gazeau, F., Giorio, C., Gregori, G., Grisoni, J.-M., Guasco, S., Guittonneau, J., Haëntjens, N., Heimburger, L.-E., Helias, S., Jacquet, S., Laurent, B., Leblond, N., Lefevre, D., Mallet, M., Marañón, E., Nabat, P., Nicosia, A., Obernosterer, I., Perez, L. M., Petrenko, A., Pulido-Villena, E., Raimbault, P., Ridame, C., Riffault, V., Rougier, G., Rousselet, L., Roy-Barman, M., Saiz-Lopez, A., Schmechtig, C., Sellegri, K., Siour, G., Taillandier, V., Tamburini, C., Thyssen, M., Tovar-Sanchez, A., Triquet, S., Uitz, J., Van Wambeke, F., Wagener, T., and Zaencker, B.: BIOGEOCHEMICAL dataset collected during the PEACETIME cruise, SEANOE [data set], https://doi.org/10.17882/75747, 2020.
Guerzoni, S., Chester, R., Dulac, F., Herut, B., Loÿe-Pilot, M. D.,
Measures, C., Migon, C., Molinaroli, E., Moulin, C., Rossini, P., Saydam,
C., Soudine, A., and Ziveri, P.: The role of atmospheric deposition in the
biogeochemistry of the Mediterranean Sea, Prog. Oceanogr., 44, 147–190,
https://doi.org/10.1016/S0079-6611(99)00024-5, 1999.
Guieu, C., Loÿe-Pilot, M.D., Ridame, C., and Thomas, C.: Chemical
characterization of the Saharan dust end-member; some biological
implications for the western Mediterranean, J. Geophys. Res., 107,
4258, https://doi.org/10.1029/2001JD000582, 2002.
Guieu, C., Roy-Barman, M., Leblond, N., Jeandel, C., Souhaut, M., Le Cann,
B., Dufour, A., and Bournot, C.: Vertical particle flux in the northeast
Atlantic Ocean (POMME experiment), J. Geophys. Res.-Ocean., 110, CO7S18,
https://doi.org/10.1029/2004JC002672, 2005.
Guieu, C., Aumont, O., Paytan, A., Bopp, L., Law, C. S., Mahowald, N.,
Achterberg, E. P., Marañón, E., Salihoglu, B., Crise, A., Wagener,
T., Herut, B., Desboeufs, K., Kanakidou, M., Olgun, N., Peters, F.,
Pulido-Villena, E., Tovar-Sanchez, A., and Völker, C.: The significance
of episodicity in atmospheric deposition to Low Nutrient Low Chlorophyll
regions, Global Biogeochem. Cy., 28, 1179–1198,
https://doi.org/10.1002/2014GB004852, 2014a.
Guieu, C., Ridame, C., Pulido-Villena, E., Bressac, M., Desboeufs, K., and
Dulac, F.: Impact of dust deposition on carbon budget: a tentative
assessment from a mesocosm approach, Biogeosciences, 11, 5621–5635,
https://doi.org/10.5194/bg-11-5621-2014, 2014b.
Guieu, C., D'Ortenzio, F., Dulac, F., Taillandier, V., Doglioli, A.,
Petrenko, A., Barrillon, S., Mallet, M., Nabat, P., and Desboeufs, K.:
Introduction: Process studies at the air–sea interface after atmospheric
deposition in the Mediterranean Sea–objectives and strategy of the
PEACETIME oceanographic campaign (May–June 2017), Biogeosciences, 17,
5563—5585, https://doi.org/10.5194/bg-17-5563-2020, 2020.
Hamm, C. E.: Interactive aggregation and sedimentation of diatoms and
clay-sized lithogenic material, Limnol. Oceanogr., 47, 1790–1795,
https://doi.org/10.4319/lo.2002.47.6.1790, 2002.
Han, Q., Moore, J. K., Zender, C., Measures, C., and Hydes, D.: Constraining
oceanic dust deposition using surface ocean dissolved Al, Global Biogeochem.
Cy., 22, 2, https://doi.org/10.1029/2007GB002975, 2008.
Han, Q., Zender, C., Moore, J. K., Buck, C. S., Chen, Y., Johansen, A., and
Measures, C.: Global estimates of mineral dust aerosol iron and aluminum
solubility that account for particle size using diffusion-controlled and
surface-area controlled approximations, Global Biogeochem. Cy., 26,
GB2038, https://doi.org/10.1029/2011GB004186, 2012.
Han, J., Wang, W., Kwon, Y. C., Hong, S. Y., Tallapragada, V., and Yang, F.: Updates in the NCEP GFS cumulus convection schemes with scale and
aerosol awareness, Weather Forecast., 32, 2005–2017,
https://doi.org/10.1175/WAF-D-17-0046.1, 2017.
Heimbürger, L. E., Migon, C., and Cossa, D.: Impact of atmospheric
deposition of anthropogenic and natural trace metals on Northwestern
Mediterranean surface waters: A box model assessment, Environ. Pollut.,
159, 1629–1634, https://doi.org/10.1016/j.envpol.2011.02.046, 2011.
Herut, B., Rahav, E., Tsagaraki, T. M., Giannakourou, A., Tsiola, A.,
Psarra, S., Lagaria, A., Papageorgiou, N., Mihalopoulos, N., Theodosi, C.
N., Violaki, K., Stathopoulou, E., Scoullos, M., Krom, M. D., Stockdale, A.,
Shi, Z., Berman-Frank, I., Meador, T. B., Tanaka, T., and Paraskevi, P.: The
potential impact of Saharan dust and polluted aerosols on microbial
populations in the East Mediterranean Sea, an overview of a mesocosm
experimental approach, Front. Mar. Sci., 3, p. 226,
https://doi.org/10.3389/fmars.2016.00226, 2016.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., and Tan, J.: Integrated
Multi-satellitE Retrievals for GPM (IMERG) technical documentation,
NASA/GSFC Code, 612, 2015.
Huneeus, N., Basart, S., Fiedler, S., Morcrette, J.-J., Benedetti, A.,
Mulcahy, J., Terradellas, E., Pérez García-Pando, C., Pejanovic,
G., Nickovic, S., Arsenovic, P., Schulz, M., Cuevas, E., Baldasano, J. M.,
Pey, J., Remy, S., and Cvetkovic, B.: Forecasting the northern African dust
outbreak towards Europe in April 2011: a model intercomparison, Atmos. Chem.
Phys., 16, 4967–4986, https://doi.org/10.5194/acp-16-4967-2016, 2016.
Hydes, D. and Liss, P.: Fluorimetric method for the determination of low
concentrations of dissolved aluminium in natural waters, Analyst, 101,
922–931, https://doi.org/10.1039/AN9760100922, 1976.
Jacquet, S. H. M., Dehairs, F., Lefèvre, D., Cavagna, A. J., Planchon,
F., Christaki, U., Monin, L., André, L., Closset, I., and Cardinal D.:
Early Spring Mesopelagic Carbon Remineralization and Transfer Efficiency in
the Naturally Iron-Fertilized Kerguelen Area, Biogeosciences, 12,
1713–1731, https://doi.org/10.5194/bg-12-1713-375, 2015.
Jacquet, S. H. M., Tamburini, C., Garel, M., Dufour, A., Van Vambeke, F., Le Moigne, F. A. C., Bhairy, N., and Guasco, S.: Particulate biogenic barium tracer of mesopelagic carbon remineralization in the Mediterranean Sea (PEACETIME project), Biogeosciences, 18, 5891–5902, https://doi.org/10.5194/bg-18-5891-2021, 2021.
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G.,
Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata,
H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M.,
Ridgwell, A. J., Tegen, I., and Torres, R.: Global iron connections between
desert dust, ocean biogeochemistry, and climate, Science, 308, 67–71,
https://doi.org/10.1126/science.1105959, 2005.
Kishcha P., Nickovic S., Ganor E., Kordova L., and Alpert P.: Saharan Dust
over the Eastern Mediterranean: Model Sensitivity, in: Air Pollution
Modeling and Its Application XIX, edited by: Borrego, C. and Miranda, A. I.,
NATO Science for Peace and Security Series Series C: Environmental Security,
Springer, Dordrecht,
https://doi.org/10.1007/978-1-4020-8453-9_39, 2008.
Koning, E., Gehlen, M., Flank, A.-M., Calas, G., and Epping, E.: Rapid
post-mortem incorporation of aluminum in diatom frustules: evidence from
chemical and structural analyses, Mar. Chem., 106, 208–222,
https://doi.org/10.1016/j.marchem.2006.06.009, 2007.
Kubilay, N., Nickovic, S., Moulin, C., and Dulac, F.: An illustration of the
transport and deposition of mineral dust onto the eastern Mediterranean,
Atmos. Environ., 34, 1293–1303,
https://doi.org/10.1016/S1352-2310(99)00179-X, 2000.
Laurenceau-Cornec, Le Moigne, F. A. C., Gallinari, M., Moriceau, B.,
Toullec, J., Iversen, M. H., Engel, A., and De La Rocha, C. L.: New
guidelines for the application of Stokes' models to the sinking velocity of
marine aggregates, Limnol. Oceanogr., 65, 1264–1285,
https://doi.org/10.1002/lno.11388, 2020.
Li, F., Ren, J., Yan, L., Liu, S., Liu, C., Zhou, F., and Zhang, J.: The
biogeochemical behavior of dissolved aluminum in the southern Yellow Sea:
Influence of the spring phytoplankton bloom, Chin. Sci. Bull., 58, 238–248,
https://doi.org/10.1007/s11434-012-5512-5, 2013.
Liu, Q., Zhou, L., Liu, F., Fortin, C., Tan, Y., Huang, L., and Campbell, P.
G.: Uptake and subcellular distribution of aluminum in a marine diatom,
Ecotox. Environ. Safe., 169, 85–92,
https://doi.org/10.1016/j.ecoenv.2018.10.095, 2019.
Loucaides, S., Michalopoulos, P., Presti, M., Koning, E., Behrends, T., and
Van Cappellen, P.: Seawater-mediated interactions between diatomaceous
silica and terrigenous sediments: results from long-term incubation
experiments, Chem. Geol., 270, 68-79,
https://doi.org/10.1016/j.chemgeo.2009.11.006, 2010.
Loÿe-Pilot, M.-D. and Martin, J.-M.: Saharan dust input to the western
Mediterranean: an eleven years record in Corsica, in: The Impact of Desert
Dust Across the Mediterranean, edited by: Guerzoni, S. and Chester, R.,
Environmental Science and Technology Library, Springer,
Dordrecht, 11, 191–199, https://doi.org/10.1007/978-94-017-3354-0_18,
1996.
Mackenzie, F. T., Stoffyn, M., and Wollast, R.: Aluminum in seawater:
control by biological activity, Science, 199, 680–682,
https://doi.org/10.1126/science.199.4329.680, 1978.
Marañón, E., Van Wambeke, F., Uitz, J., Boss, E. S., Dimier, C.,
Dinasquet, J., Engel, A., Haëntjens, N., Pérez-Lorenzo, M.,
Taillandier, V., and Zäncker, B.: Deep maxima of phytoplankton biomass,
primary production and bacterial production in the Mediterranean Sea,
Biogeosciences, 18, 1749–1767, https://doi.org/10.5194/bg-18-1749-2021,
2021.
Measures, C. I. and Brown, E. T.: Estimating Dust Input to the Atlantic
Ocean Using Surface Water Aluminium Concentrations, in: The Impact of Desert
Dust Across the Mediterranean, edited by: Guerzoni, S. and Chester, R.,
Environmental Science and Technology Library, Springer,
Dordrecht, 11, 301–311, https://doi.org/10.1007/978-94-017-3354-0_30,
1996.
Measures, C. I., Landing, W. M., Brown, M. T., and Buck, C. S.: High-resolution
Al and Fe data from the Atlantic Ocean CLIVAR-CO2 repeat hydrography A16N
transect: extensive linkages between atmospheric dust and upper ocean
geochemistry, Global Biogeochem. Cy., 22, GB1005,
https://doi.org/10.1029/2007GB003042, 2008.
Measures, C., Sato, T., Vink, S., Howell, S., and Li, Y.: The fractional
solubility of aluminium from mineral aerosols collected in Hawaii and
implications for atmospheric deposition of biogeochemically important trace
elements, Mar. Chem., 120, 144–153,
https://doi.org/10.1016/j.marchem.2009.01.014, 2010.
Menzel Barraqueta, J. L., Klar, J. K., Gledhill, M., Schlosser, C., Shelley,
R., Planquette, H. F., Wenzel, B., Sarthou, G., and Achterberg, E. P.:
Atmospheric deposition fluxes over the Atlantic Ocean: a GEOTRACES case
study, Biogeosciences, 16, 1525–1542,
https://doi.org/10.5194/bg-16-1525-2019, 2019.
Meskhidze, N., Völker, C., Al-Abadleh, H. A., Barbeau, K., Bressac, M.,
Buck, C., Bundy, R. M., Croot, P., Feng, Y., Ito, A. Johansen, A. M.,
Landing, W. M., Mao, J., Myriokefalitakis, S., Ohnemus, D., Pasquier, B.,
and Ye, Y.: Perspective on identifying and characterizing the processes
controlling iron speciation and residence time at the atmosphere-ocean
interface, Mar. Chem., 217, 103704,
https://doi.org/10.1016/j.marchem.2019.103704, 2019.
Middag, R., van Hulten, M. M. P., van Aken, H. M., Rijkenberg, M. J. A.,
Gerringa, L. J. A., Laan, P., and de Baar, H. J. W.: Dissolved aluminium in
the ocean conveyor of the West Atlantic Ocean: mirror image of the
biological cycle?, Mar. Chem., 177, 69–86,
https://doi.org/10.1016/j.marchem.2015.02.015, 2015.
Migon, C., Sandroni, V., Marty, J. C., Gasser, B., and Miquel, J. C.:
Transfer of atmospheric matter through the euphotic layer in the
northwestern Mediterranean: seasonal pattern and driving forces, Deep-Sea
Res. Pt. II, 49, 2125–2141, https://doi.org/10.1016/S0967-0645(02)00031-0,
2002.
Misic, C., Castellano, M., Ruggieri, N., and Harriague, A. C.: Variations in
ectoenzymatic hydrolytic activity in an oligotrophic environment (Southern
Tyrrhenian Sea, W Mediterranean), J. Mar. Syst., 73, 123–137,
https://doi.org/10.1016/j.jmarsys.2007.10.003, 2008.
Moore, C. M., Mills, M., Arrigo, K., Berman-Frank, I., Bopp, L., Boyd, P.
W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T.
D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T.,Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of
oceanic nutrient limitation, Nat. Geosci., 6, 701–710,
https://doi.org/10.1038/ngeo1765, 2013.
Moran, S. B. and Moore, R. M.: Temporal variations in dissolved and particulate
aluminium during a spring bloom, Estuar. Coast. Shelf Sci., 27, 205–215,
https://doi.org/10.1016/0272-7714(88)90090-X,1988a.
Moran, S. B. and Moore, R. M.: Evidence from mesocosm studies for
biological removal of dissolved aluminium from sea water, Nature, 335,
706–708, https://doi.org/10.1038/335706a0, 1988b.
Mullin, J. and Riley, J. P.: The colorimetric determination of silicate
with special reference to sea and natural waters, Anal. Chim. Ac., 12,
162–176, https://doi.org/10.1016/S0003-2670(00)87825-3, 1955.
Nelson, D. M., Smith Jr, W. O., Muench, R. D., Gordon, L. I., Sullivan, C.
W., and Husby, D. M.: Particulate matter and nutrient distributions in the
ice-edge zone of the Weddell Sea: relationship to hydrography during late
summer, Deep-Sea Res. Pt. I, 36, 191–209,
https://doi.org/10.1016/0198-0149(89)90133-7, 1989.
Nowald, N., Iversen, M. H., Fischer, G., Ratmeyer, V., and Wefer, G.: Time
series of in-situ particle properties and sediment trap fluxes in the
coastal upwelling filament off Cape Blanc, Mauritania, Progr. Oceanogr. Pt. A,
137, 1–11, https://doi.org/10.1016/j.pocean.2014.12.015, 2015.
Orians, K. J. and Bruland, K. W.: The biogeochemistry of aluminum in the
Pacific Ocean, Earth Planet. Sc. Lett., 78, 397–410,
https://doi.org/10.1016/0012-821X(86)90006-3, 1986.
Planquette, H. and Sherrell, R. M.: Sampling for particulate trace element
determination using water sampling bottles: methodology and comparison to in
situ pumps, Limnol. Oceanogr.-Method., 10, 367–388,
https://doi.org/10.4319/lom.2012.10.367, 2012.
Quétel, C. R., Remoudaki, E., Davies, J. E., Miquel, J. C., Fowler, S.
W., Lambert, C. E., Bergametti, G., and Buat-Ménard, P.: Impact of
atmospheric deposition on particulate iron flux and distribution in
northwestern Mediterranean waters, Deep-Sea Res. Pt. I, 40, 989–1002,
https://doi.org/10.1016/0967-0637(93)90085-H, 1993.
Rijkenberg, M., Powell, C., Dall'Osto, M., Nielsdottir, M., Patey, M., Hill,
P., Baker, A., Jickells, T., Harrison, R., and Achterberg, E.: Changes in
iron speciation following a Saharan dust event in the tropical North
Atlantic Ocean, Mar. Chem., 110, 56–67,
https://doi.org/10.1016/j.marchem.2008.02.006, 2008.
Rolison, J. M., Middag, R., Stirling, C. H., Rijkenberg, M. J. A., and De
Baar, H. J. W.: Zonal distribution of dissolved aluminium in the
Mediterranean Sea, Mar. Chem., 177, 87–100,
https://doi.org/10.1016/j.marchem.2015.05.001, 2015.
Sarrand, B., Dulac, F., Baldi, M., Bargaoui, Z., Cindrić, K., Ducrocq,
V., Labiadh, M., Schiavone, J., de Silvestri, L., Somot, S., and
Tovar-Sánchez, A.: Precipitation in the Mediterranean basin as seen from
the 2000–2010 TRMM-3B42-v6 database, EGU General Assembly Conference
Abstracts, Viena, Austria, 22–27 April 2012, 11965, 2012.
Sarthou, G. and Jeandel, C.: Seasonal variations of iron concentrations in
the Ligurian Sea and iron budget in the Western Mediterranean Sea, Mar.
Chem., 74, 115–129, https://doi.org/10.1016/S0304-4203(00)00119-5,
2001.
Schallenberg, C., Ross, A. R., Davidson, A. B., Stewart, G. M., and Cullen,
J. T.: Temporal variability of dissolved iron species in the mesopelagic
zone at Ocean Station PAPA, J. Mar. Syst., 172, 128–136,
https://doi.org/10.1016/j.jmarsys.2017.03.006, 2017.
Shelley, R. U., Landing, W. M., Ussher, S. J., Planquette, H., and Sarthou, G.: Regional trends in the fractional solubility of Fe and other metals from North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) following a two-stage leach, Biogeosciences, 15, 2271–2288, https://doi.org/10.5194/bg-15-2271-2018, 2018.
Spokes, L. J., Jickells, T. D., and Lim, B.: Solubilisation of aerosol trace
metals by cloud processing: A laboratory study, Geochim. Cosmochim. Ac.,
58, 3281–3287, https://doi.org/10.1016/0016-7037(94)90056-6, 1994.
Spyrou, C., Mitsakou, C., Kallos, G., Louka, P., and Vlastou, G.: An
improved limited area model for describing the dust cycle in the atmosphere,
J. Geophys. Res., 115, D17211, https://doi.org/10.1029/2009JD013682,
2010
Tagliabue, A., Sallée, J. B., Bowie, A. R., Lévy, M., Swart, S., and
Boyd, P. W.: Surface-water iron supplies in the Southern Ocean sustained by
deep winter mixing, Nat. Geosci., 7, 314–320,
https://doi.org/10.1038/ngeo2101, 2014.
Tagliabue, A., Aumont, O., DeAth, R., Dunne, J. P., Dutkiewicz, S.,
Galbraith, E., Misumi, K., Moore, J. K., Ridgwell, A., Sherman, E., Stock,
C., Vichi, M., Völker, C., and Yool, A.: How well do global ocean
biogeochemistry models simulate dissolved iron distributions?, Global
Biogeochem. Cy., 30, 149–174, https://doi.org/10.1002/2015GB005289,
2016.
Tagliabue, A., Bowie, A. R., Boyd, P. W., Buck, K. N., Johnson, K. S., and
Saito, M. A.: The integral role of iron in ocean biogeochemistry, Nature,
543, 51–59, https://doi.org/10.1038/nature21058, 2017.
Taillandier, V., Prieur, L., d'Ortenzio, F., Ribera d'Alcalà, M., and
Pulido-Villena, E.: Profiling float observation of thermohaline staircases
in the western Mediterranean Sea and impact on nutrient fluxes,
Biogeosciences, 17, 3343–3366, https://doi.org/10.5194/bg-17-3343-2020,
2020.
Ternon, E., Guieu, C., Loÿe-Pilot, M.-D., Leblond, N., Bosc, E., Gasser,
B., Miquel, J.-C., and Martín, J.: The impact of Saharan dust on the
particulate export in the water column of the North Western Mediterranean
Sea, Biogeosciences, 7, 809–826, https://doi.org/10.5194/bg-7-809-2010,
2010.
Thieuleux, F., Moulin, C., Bréon, F. M., Maignan, F., Poitou, J., and
Tanré, D.: Remote sensing of aerosols over the oceans using MSG/SEVIRI
imagery, Ann. Geophys., 23, 3561–3568,
https://doi.org/10.5194/angeo-23-3561-2005, 2005.
Tovar-Sánchez, A., Rodríguez-Romero, A., Engel, A., Zäncker,
B., Fu, F., Marañón, E., Pérez-Lorenzo, M., Bressac, M.,
Wagener, T., Triquet, S., Siour, G., Desboeufs, K., and Guieu, C.:
Characterizing the surface microlayer in the Mediterranean Sea: trace metal
concentrations and microbial plankton abundance, Biogeosciences, 17,
2349–2364, https://doi.org/10.5194/bg-17-2349-2020, 2020.
Twining, B. S., Rauschenberg, S., Morton, P. L., Ohnemus, D. C., and Lam, P.
J.: Comparison of particulate trace element concentrations in the North
Atlantic Ocean as determined with discrete bottle sampling and in situ
pumping, Deep-Sea Res. Pt. II, 116, 273–282,
https://doi.org/10.1016/j.dsr2.2014.11.005, 2015a.
Twining, B. S., Rauschenberg, S., Morton, P. L., and Vogt, S.: Metal
contents of phytoplankton and labile particulate material in the North
Atlantic Ocean, Progr. Oceanogr., 137, 261–283,
https://doi.org/10.1016/j.pocean.2015.07.001, 2015b.
Van Bennekom A. J., Jansen F., Van Der Gaast S., Van Iperen J., and Pieters
J.: Aluminum-rich opal: An intermediate in the preservation of biogenic
silica in the Zaire (Congo) deep-sea fan, Deep-Sea Res., 36, 173–190,
https://doi.org/10.1016/0198-0149(89)90132-5, 1989.
van der Jagt, H., Friese, C., Stuut, J. B. W., Fischer, G., and Iversen, M.
H.: The ballasting effect of Saharan dust deposition on aggregate dynamics
and carbon export: Aggregation, settling, and scavenging potential of marine
snow, Limnol. Oceanogr., 63, 1386–1394,
https://doi.org/10.1002/lno.10779, 2018.
Van Wambeke, F., Taillandier, V., Deboeufs, K., Pulido-Villena, E.,
Dinasquet, J., Engel, A., Marañón, E., Ridame, C., and Guieu, C.:
Influence of atmospheric deposition on biogeochemical cycles in an
oligotrophic ocean system, Biogeosciences, 18, 5699–5717,
https://doi.org/10.5194/bg-18-5699-2021, 2021.
Velasquez, I. B., Ibisanmi, E., Maas, E. W., Boyd, P. W., Nodder, S., and
Sander, S. G.: Ferrioxamine siderophores detected amongst iron binding
ligands produced during the remineralization of marine particles, Front.
Mar. Sci., 3, p. 172, https://doi.org/10.3389/fmars.2016.00172, 2016.
Vincent, J., Laurent, B., Losno, R., Bon Nguyen, E., Roullet, P., Sauvage,
S., Chevaillier, S., Coddeville, P., Ouboulmane, N., di Sarra, A. G.,
Tovar-Sánchez, A., Sferlazzo, D., Massanet, A., Triquet, S., Morales
Baquero, R., Fornier, M., Coursier, C., Desboeufs, K., Dulac, F., and
Bergametti, G.: Variability of mineral dust deposition in the western
Mediterranean basin and south-east of France, Atmos. Chem. Phys., 16,
8749–8766, https://doi.org/10.5194/acp-16-8749-2016, 2016.
Wagener, T., Pulido-Villena, E., and Guieu, C.: Dust iron dissolution in
seawater: Results from a one-year time-series in the Mediterranean Sea,
Geophys. Res. Lett., 35, L16601, https://doi.org/10.1029/2008GL034581,
2008.
Wagener, T., Guieu, C., and Leblond, N.: Effects of dust deposition on iron
cycle in the surface Mediterranean Sea: results from a mesocosm seeding
experiment, Biogeosciences, 7, 3769–3781,
https://doi.org/10.5194/bg-7-3769-2010, 2010.
Whitby, H., Bressac, M., Sarthou, G., Ellwood, M. J., Guieu, C., and Boyd,
P. W.: Contribution of electroactive humic substances to the iron-binding
ligands released during microbial remineralization of sinking particles,
Geophys. Res. Lett., 47, e2019GL086685,
https://doi.org/10.1029/2019GL086685, 2020.
Wuttig, K., Wagener, T., Bressac, M., Dammshäuser, A., Streu, P., Guieu,
C., and Croot, P. L.: Impacts of dust deposition on dissolved trace metal
concentrations (Mn, Al and Fe) during a mesocosm experiment, Biogeosciences,
10, 2583–2600, https://doi.org/10.5194/bg-10-2583-2013, 2013.
Ye, Y., Wagener, T., Völker, C., Guieu, C., and Wolf-Gladrow, D. A.:
Dust deposition: iron source or sink? A case study, Biogeosciences, 8,
2107–2124, https://doi.org/10.5194/bg-8-2107-2011, 2011.
Short summary
Phytoplankton growth is limited by the availability of iron in about 50 % of the ocean. Atmospheric deposition of desert dust represents a key source of iron. Here, we present direct observations of dust deposition in the Mediterranean Sea. A key finding is that the input of iron from dust primarily occurred in the deep ocean, while previous studies mainly focused on the ocean surface. This new insight will enable us to better represent controls on global marine productivity in models.
Phytoplankton growth is limited by the availability of iron in about 50 % of the ocean....
Altmetrics
Final-revised paper
Preprint