Articles | Volume 18, issue 24
https://doi.org/10.5194/bg-18-6455-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-6455-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of moderately energetic fine-scale dynamics on the phytoplankton community structure in the western Mediterranean Sea
Roxane Tzortzis
CORRESPONDING AUTHOR
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Andrea M. Doglioli
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Stéphanie Barrillon
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Anne A. Petrenko
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Francesco d'Ovidio
Sorbonne Université, CNRS, IRD, MNHN, Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN-IPSL), Paris, France
Lloyd Izard
Sorbonne Université, CNRS, IRD, MNHN, Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN-IPSL), Paris, France
Melilotus Thyssen
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Ananda Pascual
IMEDEA (CSIC-UIB), Instituto Mediterráneo de Estudios Avanzados, Esporles, Spain
Bàrbara Barceló-Llull
IMEDEA (CSIC-UIB), Instituto Mediterráneo de Estudios Avanzados, Esporles, Spain
Frédéric Cyr
Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, NL, Canada
Marc Tedetti
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Nagib Bhairy
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Pierre Garreau
UMR 6523 CNRS, IFREMER, IRD, UBO, Laboratoire d’Océanographie Physique et Spatiale, Plouzané 29280, France
Franck Dumas
SHOM, Service Hydrographique et Océanographique de la Marine, 13 rue de Chatellier, CS592803, 29228 Brest, CEDEX 2, France
Gérald Gregori
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Related authors
Roxane Tzortzis, Andrea M. Doglioli, Monique Messié, Stéphanie Barrillon, Anne A. Petrenko, Lloyd Izard, Yuan Zhao, Francesco d'Ovidio, Franck Dumas, and Gérald Gregori
Biogeosciences, 20, 3491–3508, https://doi.org/10.5194/bg-20-3491-2023, https://doi.org/10.5194/bg-20-3491-2023, 2023
Short summary
Short summary
We studied a finescale frontal structure in order to highlight its influence on the dynamics and distribution of phytoplankton communities. We computed the growth rates of several phytoplankton groups identified by flow cytometry in two water masses separated by the front. We found contrasted phytoplankton dynamics on the two sides of the front, consistent with the distribution of their abundances. Our study gives new insights into the physical and biological coupling on a finescale front.
Stéphanie Barrillon, Robin Fuchs, Anne A. Petrenko, Caroline Comby, Anthony Bosse, Christophe Yohia, Jean-Luc Fuda, Nagib Bhairy, Frédéric Cyr, Andrea M. Doglioli, Gérald Grégori, Roxane Tzortzis, Francesco d'Ovidio, and Melilotus Thyssen
Biogeosciences, 20, 141–161, https://doi.org/10.5194/bg-20-141-2023, https://doi.org/10.5194/bg-20-141-2023, 2023
Short summary
Short summary
Extreme weather events can have a major impact on ocean physics and biogeochemistry, but their study is challenging. In May 2019, an intense storm occurred in the north-western Mediterranean Sea, during which in situ multi-platform measurements were performed. The results show a strong impact on the surface phytoplankton, highlighting the need for high-resolution measurements coupling physics and biology during these violent events that may become more common in the context of global change.
Maxime Arnaud, Anne Petrenko, Jean-Luc Fuda, Caroline Comby, Anthony Bosse, Yann Ourmières, and Stéphanie Barrillon
EGUsphere, https://doi.org/10.5194/egusphere-2025-2757, https://doi.org/10.5194/egusphere-2025-2757, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Measuring oceanic vertical velocities accurately is a challenge in today’s physical oceanography. Our work shows intense wind-induced coastal events involving upward or downward water movements that have been detected using an acoustic current profiler. These data has also been validated with other in situ and satellite observations. A brand new method to identify and filter out biological-induced velocities is also presented, giving an interdisciplinary point of view of such coastal processes.
Alex Nalivaev, Francesco d'Ovidio, Laurent Bopp, Maristella Berta, Louise Rousselet, Clara Azarian, and Stéphane Blain
EGUsphere, https://doi.org/10.5194/egusphere-2025-2145, https://doi.org/10.5194/egusphere-2025-2145, 2025
Short summary
Short summary
The Kerguelen region hosts a phytoplankton bloom influenced by several iron sources. In particular, glaciers supply iron to the coastal waters. However, the importance of glacial iron for the bloom is not known. Here we calculate iron transport pathways from glaciers to the open ocean using in situ and satellite data, showing that one third of the offshore bloom is reached by glacial iron. These results are important in the context of the melting of the Kerguelen ice cap under climate change.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Maxime Duranson, Léo Berline, Loïc Guilloux, Alice Della Penna, Mark D. Ohman, Sven Gastauer, Cédric Cotte, Daniela Bănaru, Théo Garcia, Maristella Berta, Andrea Doglioli, Gérald Gregori, Francesco D'Ovidio, and François Carlotti
EGUsphere, https://doi.org/10.5194/egusphere-2025-1125, https://doi.org/10.5194/egusphere-2025-1125, 2025
Short summary
Short summary
The zooplankton community was investigated using net sampling across the North Balearic Front at fine resolution. The front mostly acts as a zonal boundary between communities with a copepod dominated community to the north and a more diversified community to the south. The front itself showed lower biovolume and abundances. The main community difference occurred in the 0–100 m layer, while deeper layers were more homogeneous.
Kirtana Naëck, Jacqueline Boutin, Sebastiaan Swart, Marcel du Plessis, Liliane Merlivat, Laurence Beaumont, Antonio Lourenco, Francesco d'Ovidio, Louise Rousselet, Brian Ward, and Jean-Baptiste Sallée
Biogeosciences, 22, 1947–1968, https://doi.org/10.5194/bg-22-1947-2025, https://doi.org/10.5194/bg-22-1947-2025, 2025
Short summary
Short summary
In summer 2022, a CARbon Interface OCean Atmosphere (CARIOCA) drifting buoy observed an anomalously strong ocean carbon sink in the subpolar Southern Ocean associated with large plumes of chlorophyll a. Lagrangian backward trajectories indicate that these waters originated from the sea ice edge in spring 2021. Our study highlights the northward migration of the CO2 sink associated with early sea ice retreat.
Blanca Fernández-Álvarez, Bàrbara Barceló-Llull, and Ananda Pascual
EGUsphere, https://doi.org/10.5194/egusphere-2024-4065, https://doi.org/10.5194/egusphere-2024-4065, 2025
Short summary
Short summary
Marine heatwaves (MHWs) standard detection method uses a fixed baseline, showing rising MHW frequency and intensity due to global warming, eventually reaching saturation. To address this, alternative approaches separate long-term warming from extreme events. Here we compare two in the Balearic Sea: moving baseline and detrending data. We found a warming trend of 0.036 °C/year, with major MHWs in 2003 and 2022 identified by all methods. Only the fixed baseline shows rising MHW frequency.
Meredith Dournaux, Pierre Tulet, Joris Pianezze, Jérome Brioude, Jean-Marc Metzger, and Melilotus Thyssen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3747, https://doi.org/10.5194/egusphere-2024-3747, 2025
Short summary
Short summary
Aerosol measurements collected during six oceanographic campaigns carried out in 2021 and 2023 in the southwest Indian Ocean are presented and analyzed in this paper. The results highlight a large variability in the aerosol concentration, size and water vapor affinity depending on in-situ conditions and air mass transport over the ocean. Marine aerosol chemical composition is highly variable over this region, and should be considered to better study their impacts on regional weather and climate.
Antonio Sánchez-Román, Flora Gues, Romain Bourdalle-Badie, Marie-Isabelle Pujol, Ananda Pascual, and Marie Drévillon
State Planet, 4-osr8, 4, https://doi.org/10.5194/sp-4-osr8-4-2024, https://doi.org/10.5194/sp-4-osr8-4-2024, 2024
Short summary
Short summary
This study investigates the changing pattern of the Gulf Stream over the last 3 decades as observed in the altimetric record (1993–2022). Changes in the Gulf Stream path have an effect on its speed (and associated energy) and also on waters transported towards the subpolar North Atlantic, impacting Europe's climate. The observed shifts in the paths seem to be linked to variability in the North Atlantic Ocean during winter that may play an important role.
Nancy Soontiens, Heather J. Andres, Jonathan Coyne, Frédéric Cyr, Peter S. Galbraith, and Jared Penney
State Planet Discuss., https://doi.org/10.5194/sp-2024-5, https://doi.org/10.5194/sp-2024-5, 2024
Revised manuscript accepted for SP
Short summary
Short summary
In this study, we explored a series of surface marine heat waves over the Newfoundland and Labrador Shelf in the summer and fall of 2023. We connected these marine heat waves to environmental conditions finding that low winds, high freshwater density, and high stratification were factors contributing to the unusually high sea surface temperature anomalies. We explored the vertical structure of temperature anomalies finding the heat waves were confined near the surface for most of the summer.
Pierre Tulet, Joel Van Baelen, Pierre Bosser, Jérome Brioude, Aurélie Colomb, Philippe Goloub, Andrea Pazmino, Thierry Portafaix, Michel Ramonet, Karine Sellegri, Melilotus Thyssen, Léa Gest, Nicolas Marquestaut, Dominique Mékiès, Jean-Marc Metzger, Gilles Athier, Luc Blarel, Marc Delmotte, Guillaume Desprairies, Mérédith Dournaux, Gaël Dubois, Valentin Duflot, Kevin Lamy, Lionel Gardes, Jean-François Guillemot, Valérie Gros, Joanna Kolasinski, Morgan Lopez, Olivier Magand, Erwan Noury, Manuel Nunes-Pinharanda, Guillaume Payen, Joris Pianezze, David Picard, Olivier Picard, Sandrine Prunier, François Rigaud-Louise, Michael Sicard, and Benjamin Torres
Earth Syst. Sci. Data, 16, 3821–3849, https://doi.org/10.5194/essd-16-3821-2024, https://doi.org/10.5194/essd-16-3821-2024, 2024
Short summary
Short summary
The MAP-IO program aims to compensate for the lack of atmospheric and oceanographic observations in the Southern Ocean by equipping the ship Marion Dufresne with a set of 17 scientific instruments. This program collected 700 d of measurements under different latitudes, seasons, sea states, and weather conditions. These new data will support the calibration and validation of numerical models and the understanding of the atmospheric composition of this region of Earth.
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Gaetano Porcile, Anne-Claire Bennis, Martial Boutet, Sophie Le Bot, Franck Dumas, and Swen Jullien
Geosci. Model Dev., 17, 2829–2853, https://doi.org/10.5194/gmd-17-2829-2024, https://doi.org/10.5194/gmd-17-2829-2024, 2024
Short summary
Short summary
Here a new method of modelling the interaction between ocean currents and waves is presented. We developed an advanced coupling of two models, one for ocean currents and one for waves. In previous couplings, some wave-related calculations were based on simplified assumptions. Our method uses more complex calculations to better represent wave–current interactions. We tested it in a macro-tidal coastal area and found that it significantly improves the model accuracy, especially during storms.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Olivia Gibb, Frédéric Cyr, Kumiko Azetsu-Scott, Joël Chassé, Darlene Childs, Carrie-Ellen Gabriel, Peter S. Galbraith, Gary Maillet, Pierre Pepin, Stephen Punshon, and Michel Starr
Earth Syst. Sci. Data, 15, 4127–4162, https://doi.org/10.5194/essd-15-4127-2023, https://doi.org/10.5194/essd-15-4127-2023, 2023
Short summary
Short summary
The ocean absorbs large quantities of carbon dioxide (CO2) released into the atmosphere as a result of the burning of fossil fuels. This, in turn, causes ocean acidification, which poses a major threat to global ocean ecosystems. In this study, we compiled 9 years (2014–2022) of ocean carbonate data (i.e., ocean acidification parameters) collected in Atlantic Canada as part of the Atlantic Zone Monitoring Program.
Roxane Tzortzis, Andrea M. Doglioli, Monique Messié, Stéphanie Barrillon, Anne A. Petrenko, Lloyd Izard, Yuan Zhao, Francesco d'Ovidio, Franck Dumas, and Gérald Gregori
Biogeosciences, 20, 3491–3508, https://doi.org/10.5194/bg-20-3491-2023, https://doi.org/10.5194/bg-20-3491-2023, 2023
Short summary
Short summary
We studied a finescale frontal structure in order to highlight its influence on the dynamics and distribution of phytoplankton communities. We computed the growth rates of several phytoplankton groups identified by flow cytometry in two water masses separated by the front. We found contrasted phytoplankton dynamics on the two sides of the front, consistent with the distribution of their abundances. Our study gives new insights into the physical and biological coupling on a finescale front.
Antonio Sánchez-Román, M. Isabelle Pujol, Yannice Faugère, and Ananda Pascual
Ocean Sci., 19, 793–809, https://doi.org/10.5194/os-19-793-2023, https://doi.org/10.5194/os-19-793-2023, 2023
Short summary
Short summary
This paper assesses the performance of the latest version (DT2021) of global gridded altimetry products distributed through the CMEMS and C3S Copernicus programs on the retrieval of sea level in the coastal zone of the European seas with respect to the previous DT2018 version. This comparison is made using an external independent dataset. DT2021 sea level products better solve the signal in the coastal band.
Alexandre Barboni, Solange Coadou-Chaventon, Alexandre Stegner, Briac Le Vu, and Franck Dumas
Ocean Sci., 19, 229–250, https://doi.org/10.5194/os-19-229-2023, https://doi.org/10.5194/os-19-229-2023, 2023
Short summary
Short summary
Mesoscale eddies are ubiquitous turbulent structures in the ocean, influencing the upper mixed layer. The mixed layer is the ocean surface layer mixed through air–sea exchanges. Using Argo profiling floats inside large Mediterranean anticyclones, we investigate the induced winter mixed-layer depth anomalies. Mixed-layer depth was observed to be greatly influenced by the eddy preexisting subsurface structure to which it possibly connects and can also create double-core anticyclones.
Sébastien Petton, Valérie Garnier, Matthieu Caillaud, Laurent Debreu, and Franck Dumas
Geosci. Model Dev., 16, 1191–1211, https://doi.org/10.5194/gmd-16-1191-2023, https://doi.org/10.5194/gmd-16-1191-2023, 2023
Short summary
Short summary
The nesting AGRIF library is implemented in the MARS3D hydrodynamic model, a semi-implicit, free-surface numerical model which uses a time scheme as an alternating-direction implicit (ADI) algorithm. Two applications at the regional and coastal scale are introduced. We compare the two-nesting approach to the classic offline one-way approach, based on an in situ dataset. This method is an efficient means to significantly improve the physical hydrodynamics and unravel ecological challenges.
Stéphanie Barrillon, Robin Fuchs, Anne A. Petrenko, Caroline Comby, Anthony Bosse, Christophe Yohia, Jean-Luc Fuda, Nagib Bhairy, Frédéric Cyr, Andrea M. Doglioli, Gérald Grégori, Roxane Tzortzis, Francesco d'Ovidio, and Melilotus Thyssen
Biogeosciences, 20, 141–161, https://doi.org/10.5194/bg-20-141-2023, https://doi.org/10.5194/bg-20-141-2023, 2023
Short summary
Short summary
Extreme weather events can have a major impact on ocean physics and biogeochemistry, but their study is challenging. In May 2019, an intense storm occurred in the north-western Mediterranean Sea, during which in situ multi-platform measurements were performed. The results show a strong impact on the surface phytoplankton, highlighting the need for high-resolution measurements coupling physics and biology during these violent events that may become more common in the context of global change.
Oriane Bruyère, Benoit Soulard, Hugues Lemonnier, Thierry Laugier, Morgane Hubert, Sébastien Petton, Térence Desclaux, Simon Van Wynsberge, Eric Le Tesson, Jérôme Lefèvre, Franck Dumas, Jean-François Kayara, Emmanuel Bourassin, Noémie Lalau, Florence Antypas, and Romain Le Gendre
Earth Syst. Sci. Data, 14, 5439–5462, https://doi.org/10.5194/essd-14-5439-2022, https://doi.org/10.5194/essd-14-5439-2022, 2022
Short summary
Short summary
From 2014 to 2021, extensive monitoring of hydrodynamics was deployed within five contrasted lagoons of New Caledonia during austral summers. These coastal physical observations encompassed unmonitored lagoons and captured eight major atmospheric events ranging from tropical depression to category 4 cyclone. The main objectives were to characterize the processes controlling hydrodynamics of these lagoons and record the signature of extreme events on land–lagoon–ocean continuum functioning.
Léo Berline, Andrea Michelangelo Doglioli, Anne Petrenko, Stéphanie Barrillon, Boris Espinasse, Frederic A. C. Le Moigne, François Simon-Bot, Melilotus Thyssen, and François Carlotti
Biogeosciences, 18, 6377–6392, https://doi.org/10.5194/bg-18-6377-2021, https://doi.org/10.5194/bg-18-6377-2021, 2021
Short summary
Short summary
While the Ionian Sea is considered a nutrient-depleted and low-phytoplankton biomass area, it is a crossroad for water mass circulation. In the central Ionian Sea, we observed a strong contrast in particle distribution across a ~100 km long transect. Using remote sensing and Lagrangian simulations, we suggest that this contrast finds its origin in the long-distance transport of particles from the north, west and east of the Ionian Sea, where phytoplankton production was more intense.
Stéphanie H. M. Jacquet, Christian Tamburini, Marc Garel, Aurélie Dufour, France Van Vambeke, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 5891–5902, https://doi.org/10.5194/bg-18-5891-2021, https://doi.org/10.5194/bg-18-5891-2021, 2021
Short summary
Short summary
We compared carbon remineralization rates (MRs) in the western and central Mediterranean Sea in late spring during the PEACETIME cruise, as assessed using the barium tracer. We reported higher and deeper (up to 1000 m depth) MRs in the western basin, potentially sustained by an additional particle export event driven by deep convection. The central basin is the site of a mosaic of blooming and non-blooming water masses and showed lower MRs that were restricted to the upper mesopelagic layer.
Elvira Pulido-Villena, Karine Desboeufs, Kahina Djaoudi, France Van Wambeke, Stéphanie Barrillon, Andrea Doglioli, Anne Petrenko, Vincent Taillandier, Franck Fu, Tiphanie Gaillard, Sophie Guasco, Sandra Nunige, Sylvain Triquet, and Cécile Guieu
Biogeosciences, 18, 5871–5889, https://doi.org/10.5194/bg-18-5871-2021, https://doi.org/10.5194/bg-18-5871-2021, 2021
Short summary
Short summary
We report on phosphorus dynamics in the surface layer of the Mediterranean Sea. Highly sensitive phosphate measurements revealed vertical gradients above the phosphacline. The relative contribution of diapycnal fluxes to total external supply of phosphate to the mixed layer decreased towards the east, where atmospheric deposition dominated. Taken together, external sources of phosphate contributed little to total supply, which was mainly sustained by enzymatic hydrolysis of organic phosphorus.
Evelyn Freney, Karine Sellegri, Alessia Nicosia, Leah R. Williams, Matteo Rinaldi, Jonathan T. Trueblood, André S. H. Prévôt, Melilotus Thyssen, Gérald Grégori, Nils Haëntjens, Julie Dinasquet, Ingrid Obernosterer, France Van Wambeke, Anja Engel, Birthe Zäncker, Karine Desboeufs, Eija Asmi, Hilkka Timonen, and Cécile Guieu
Atmos. Chem. Phys., 21, 10625–10641, https://doi.org/10.5194/acp-21-10625-2021, https://doi.org/10.5194/acp-21-10625-2021, 2021
Short summary
Short summary
In this work, we present observations of the organic aerosol content in primary sea spray aerosols (SSAs) continuously generated along a 5-week cruise in the Mediterranean. This information is combined with seawater biogeochemical properties also measured continuously along the ship track to develop a number of parametrizations that can be used in models to determine SSA organic content in oligotrophic waters that represent 60 % of the oceans from commonly measured seawater variables.
Frédéric Cyr and Peter S. Galbraith
Earth Syst. Sci. Data, 13, 1807–1828, https://doi.org/10.5194/essd-13-1807-2021, https://doi.org/10.5194/essd-13-1807-2021, 2021
Short summary
Short summary
Climate indices are often regarded as simple ways to relate mean environmental conditions to the state of an ecosystem. Such indices are often used to inform fisheries scientists and managers or used in fisheries resource assessments and ecosystem studies. The Newfoundland and Labrador (NL) climate index aims to describe the environmental conditions on the NL shelf and in the Northwest Atlantic as a whole. It consists of annual normalized anomalies of 10 subindices relevant for the NL shelf.
Stéphanie H. M. Jacquet, Dominique Lefèvre, Christian Tamburini, Marc Garel, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 2205–2212, https://doi.org/10.5194/bg-18-2205-2021, https://doi.org/10.5194/bg-18-2205-2021, 2021
Short summary
Short summary
We present new data concerning the relation between biogenic barium (Baxs, a tracer of carbon remineralization at mesopelagic depths), O2 consumption and prokaryotic heterotrophic production (PHP) in the Mediterranean Sea. The purpose of this paper is to improve our understanding of the relation between Baxs, PHP and O2 and to test the validity of the Dehairs transfer function in the Mediterranean Sea. This relation has never been tested in the Mediterranean Sea.
Jonathan V. Trueblood, Alessia Nicosia, Anja Engel, Birthe Zäncker, Matteo Rinaldi, Evelyn Freney, Melilotus Thyssen, Ingrid Obernosterer, Julie Dinasquet, Franco Belosi, Antonio Tovar-Sánchez, Araceli Rodriguez-Romero, Gianni Santachiara, Cécile Guieu, and Karine Sellegri
Atmos. Chem. Phys., 21, 4659–4676, https://doi.org/10.5194/acp-21-4659-2021, https://doi.org/10.5194/acp-21-4659-2021, 2021
Short summary
Short summary
Sea spray aerosols (SSAs) can be an important source of ice-nucleating particles (INPs) that impact cloud properties over the oceans. In the Mediterranean Sea, we found that the INPs in the seawater surface microlayer increased by an order of magnitude after a rain dust event that impacted iron and bacterial abundances. The INP properties of SSA (INPSSA) increased after a 3 d delay. Outside this event, INPSSA could be parameterized as a function of the seawater biogeochemistry.
Kahina Djaoudi, France Van Wambeke, Aude Barani, Nagib Bhairy, Servanne Chevaillier, Karine Desboeufs, Sandra Nunige, Mohamed Labiadh, Thierry Henry des Tureaux, Dominique Lefèvre, Amel Nouara, Christos Panagiotopoulos, Marc Tedetti, and Elvira Pulido-Villena
Biogeosciences, 17, 6271–6285, https://doi.org/10.5194/bg-17-6271-2020, https://doi.org/10.5194/bg-17-6271-2020, 2020
Cécile Guieu, Fabrizio D'Ortenzio, François Dulac, Vincent Taillandier, Andrea Doglioli, Anne Petrenko, Stéphanie Barrillon, Marc Mallet, Pierre Nabat, and Karine Desboeufs
Biogeosciences, 17, 5563–5585, https://doi.org/10.5194/bg-17-5563-2020, https://doi.org/10.5194/bg-17-5563-2020, 2020
Short summary
Short summary
We describe here the objectives and strategy of the PEACETIME project and cruise, dedicated to dust deposition and its impacts in the Mediterranean Sea. Our strategy to go a step further forward than in previous approaches in understanding these impacts by catching a real deposition event at sea is detailed. We summarize the work performed at sea, the type of data acquired and their valorization in the papers published in the special issue.
Cited articles
Abraham, E. R. and Bowen, M. M.: Chaotic stirring by a mesoscale surface-ocean
flow, Chaos, 12, 373–381, https://doi.org/10.1063/1.1481615, 2002. a
Allen, J. and Smeed, D.: Potential vorticity and vertical velocity at the
Iceland-Faeroes front, J. Phys. Oceanogr., 26, 2611–2634,
https://doi.org/10.1175/1520-0485(1996)026<2611:PVAVVA>2.0.CO;2, 1996. a, b
Allen, J. T., Smeed, D. A., Nurser, A. J. G., Zhang, J. W., and Rixen, M.:
Diagnosis of vertical velocities with the QG omega equation: an examination
of the errors due to sampling strategy, Deep-Sea Res. Pt. I, 48, 315–346,
https://doi.org/10.1016/S0967-0637(00)00035-2, 2001. a, b
Balbín, R., López-Jurado, J. L., Flexas, M., Reglero, P.,
Vélez-Velchí, P., González-Pola, C., Rodríguez, J. M.,
García, A., and Alemany, F.: Interannual variability of the early summer
circulation around the Balearic Islands: driving factors and potential
effects on the marine ecosystem, J. Mar. Syst., 138, 70–81,
https://doi.org/10.1016/j.jmarsys.2013.07.004, 2014. a, b
Barceló-Lull, B., Pascual, A., Sánchez-Román, A., Cutolo, E., d'Ovidio, F., Fifani, G., Ser-Giacomi, E., Ruiz, S., Mason, E., Cyr, F., Doglioli, A., Mourre, B., Allen, J. T., Alou-Font, E., Casas, B., Díaz-Barroso, L., Dumas, F., Gómez-Navarro, L., and Muñoz, C.: Fine-Scale Ocean Currents Derived From in situ Observations in Anticipation of the Upcoming SWOT Altimetric Mission, Front. Mar. Sci., 8, 1070, https://doi.org/10.3389/fmars.2021.679844, 2021. a
Barceló-Llull, B., Pallàs-Sanz, E., Sangrà, P.,
Martínez-Marrero, A., Estrada-Allis, S. N., and Arístegui, J.:
Ageostrophic secondary circulation in a subtropical intrathermocline eddy, J.
Phys. Oceanogr., 47, 1107–1123, https://doi.org/10.1175/JPO-D-16-0235.1, 2017. a
Barceló-Llull, B., Pascual, A., Día-Barroso, L.,
Sánchez-Román, A., Casas, B., Muñoz, C., Torner, M., Alou-Font,
E., Cutolo, E., Mourre, B., et al.: PRE-SWOT Cruise Report. Mesoscale and
sub-mesoscale vertical exchanges from multi-platform experiments and
supporting modeling simulations: anticipating SWOT launch (CTM2016-78607-P),
Tech. rep., CSIC-UIB-Instituto Mediterràneo de Estudios Avanzados
(IMEDEA), Madrid, Spain, https://doi.org/10.20350/digitalCSIC/8584, 2018. a, b, c
Barceló-Llull, B., Pascual, A., Ruiz, S., Escudier, R., Torner, M., and
Tintoré, J.: Temporal and spatial hydrodynamic variability in the
Mallorca channel (western Mediterranean Sea) from 8 years of underwater
glider data, J. Geophys. Res.-Oceans, 124, 2769–2786,
https://doi.org/10.1029/2018JC014636, 2019. a, b
Barton, A. D., Dutkiewicz, S., Flierl, G., Bragg, J., and Follows, M. J.:
Patterns of diversity in marine phytoplankton, Science, 327, 1509–1511,
https://doi.org/10.1126/science.1184961, 2010. a, b
Barton, A. D., Ward, B. A., Williams, R. G., and Follows, M. J.: The impact of
fine-scale turbulence on phytoplankton community structure, Limnol. Oceanogr., 4, 34–49,
https://doi.org/10.1215/21573689-2651533, 2014. a
Benavides, M., Conradt, L., Bonnet, S., Berman-Frank, I., Barrillon, S.,
Petrenko, A., and Doglioli, A.: Fine-scale sampling unveils diazotroph
patchiness in the South Pacific Ocean, ISME Communications, 1, 1–3,
https://doi.org/10.1038/s43705-021-00006-2, 2021. a, b
Biers, E. J., Zepp, R. G., and Moran, M. A.: The role of nitrogen in
chromophoric and fluorescent dissolved organic matter formation, Mar. Chem.,
103, 46–60, https://doi.org/10.1016/j.marchem.2006.06.003, 2007. a
Boffetta, G., Lacorata, G., Redaelli, G., and Vulpiani, A.: Detecting barriers
to transport: a review of different techniques, Physica D, 159, 58–70,
https://doi.org/10.1016/S0167-2789(01)00330-X, 2001. a
Bower, A. S. and Lozier, M. S.: A closer look at particle exchange in the Gulf
Stream, J. Phys. Oceanogr., 24, 1399–1418,
https://doi.org/10.1175/1520-0485(1994)024<1399:ACLAPE>2.0.CO;2, 1994. a
Busseni, G., Caputi, L., Piredda, R., Fremont, P., Hay Mele, B., Campese, L.,
Scalco, E., de Vargas, C., Bowler, C., d'Ovidio, F., Zingone, A.,
Ribera d’Alcalà, M., and Iudicone, D.: Large scale patterns of marine
diatom richness: Drivers and trends in a changing ocean, Global Ecol.
Biogeogr., 29, 1915–1928, https://doi.org/10.1111/geb.13161, 2020. a
Cammack, W. L., Kalff, J., Prairie, Y. T., and Smith, E. M.: Fluorescent
dissolved organic matter in lakes: relationships with heterotrophic
metabolism, Limnol. Oceanogr., 49, 2034–2045,
https://doi.org/10.4319/lo.2004.49.6.2034, 2004. a
Clayton, S., Dutkiewicz, S., Jahn, O., and Follows, M. J.: Dispersal, eddies,
and the diversity of marine phytoplankton, Limnol. Oceanogr., 3, 182–197, https://doi.org/10.1215/21573689-2373515, 2013. a, b
Clayton, S., Lin, Y.-C., Follows, M. J., and Worden, A. Z.: Co-existence of
distinct Ostreococcus ecotypes at an oceanic front, Limnol. Oceanogr., 62,
75–88, https://doi.org/10.1002/lno.10373, 2017. a, b, c, d
Coble, P. G.: Characterization of marine and terrestrial DOM in seawater using
excitation-emission matrix spectroscopy, Mar. Chem., 51, 325–346,
https://doi.org/10.1016/0304-4203(95)00062-3, 1996. a, b
Cotroneo, Y., Aulicino, G., Ruiz, S., Pascual, A., Budillon, G., Fusco, G., and
Tintoré, J.: Glider and satellite high resolution monitoring of a
mesoscale eddy in the algerian basin: Effects on the mixed layer depth and
biochemistry, J. Mar. Syst., 162, 73–88,
https://doi.org/10.1016/j.jmarsys.2015.12.004, 2016. a
Cyr, F., Tedetti, M., Besson, F., Beguery, L., Doglioli, A. M., Petrenko,
A. A., and Goutx, M.: A new glider-compatible optical sensor for dissolved
organic matter measurements: test case from the NW Mediterranean Sea, Front.
Mar. Sci., 4, 89, https://doi.org/10.3389/fmars.2017.00089, 2017. a, b
Cyr, F., Tedetti, M., Besson, F., Bhairy, N., and Goutx, M.: A
Glider-Compatible Optical Sensor for the Detection of Polycyclic Aromatic
Hydrocarbons in the Marine Environment, Front. Mar. Sci., 6, 110,
https://doi.org/10.3389/fmars.2019.00110, 2019. a, b
De Monte, S., Soccodato, A., Alvain, S., and d'Ovidio, F.: Can we detect
oceanic biodiversity hotspots from space?, ISME J., 7, 2054–2056,
https://doi.org/10.1038/ismej.2013.72, 2013. a
De Verneil, A., Franks, P., and Ohman, M.: Frontogenesis and the creation of
fine-scale vertical phytoplankton structure, J. Geophys. Res.-Oceans, 124,
1509–1523, https://doi.org/10.1029/2018JC014645, 2019. a
Determann, S., Lobbes, J. M., Reuter, R., and Rullkötter, J.: Ultraviolet
fluorescence excitation and emission spectroscopy of marine algae and
bacteria, Mar. Chem., 62, 137–156, https://doi.org/10.1016/S0304-4203(98)00026-7,
1998. a
Doglioli, A.: OSCAHR cruise, RV Téthys II, https://doi.org/10.17600/15008800, 2015. a
Doglioli, A. M., Nencioli, F., Petrenko, A. A., Rougier, G., Fuda, J.-L., and
Grima, N.: A software package and hardware tools for in situ experiments in a
Lagrangian reference frame, J. Atmos. Ocean. Technol., 30, 1940–1950,
https://doi.org/10.1175/JTECH-D-12-00183.1, 2013. a
d'Ovidio, F., Fernández, V., Hernández-García, E., and López,
C.: Mixing structures in the Mediterranean Sea from finite-size Lyapunov
exponents, Geophys. Res. Lett., 31, L17203, https://doi.org/10.1029/2004GL020328, 2004. a
d'Ovidio, F., De Monte, S., Alvain, S., Dandonneau, Y., and Lévy, M.: Fluid
dynamical niches of phytoplankton types, P. Natl. Acad. Sci. USA, 107,
18366–18370, https://doi.org/10.1073/pnas.1004620107, 2010. a, b, c
d'Ovidio, F., Della Penna, A., Trull, T. W., Nencioli, F., Pujol, M.-I., Rio, M.-H., Park, Y.-H., Cotté, C., Zhou, M., and Blain, S.: The biogeochemical structuring role of horizontal stirring: Lagrangian perspectives on iron delivery downstream of the Kerguelen Plateau, Biogeosciences, 12, 5567–5581, https://doi.org/10.5194/bg-12-5567-2015, 2015. a
d'Ovidio, F., Pascual, A., Wang, J., Doglioli, A., Jing, Z., Moreau, S.,
Grégori, G., Swart, S., Speich, S., Cyr, F., et al.: Frontiers in
Fine-Scale in situ Studies: Opportunities During the SWOT Fast Sampling
Phase, Front. Mar. Sci., 6, 168, https://doi.org/10.3389/fmars.2019.00168, 2019. a, b
Dumas, F.: PROTEVSMED_SWOT_2018_LEG1 cruise, RV Beautemps-Beaupré,
https://doi.org/10.17183/protevsmed_swot_2018_leg1, 2018. a
Dumas, F., Garreau, P., Louazel, S., Correard, S., Fercoq, S., Le Menn, M.,
Serpette, A., Garnier, V., Stegner, A., Le Vu, B., Doglioli, A., and Gregori,
G.: PROTEVS-MED field experiments: Very High Resolution Hydrographic Surveys
in the Western Mediterranean Sea, SEANOE [data set], https://doi.org/10.17882/62352,
2018. a
Fellman, J. B., Hood, E., D’amore, D. V., Edwards, R. T., and White, D.:
Seasonal changes in the chemical quality and biodegradability of dissolved
organic matter exported from soils to streams in coastal temperate rainforest
watersheds, Biogeochemistry, 95, 277–293, https://doi.org/10.1007/s10533-009-9336-6,
2009. a
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.: Primary
production of the biosphere: integrating terrestrial and oceanic components,
Science, 281, 237–240, https://doi.org/10.1126/science.281.5374.237, 1998. a
Garreau, P., Dumas, F., Louazel, S., Correard, S., Fercocq, S., Le Menn, M., Serpette, A., Garnier, V., Stegner, A., Le Vu, B., Doglioli, A., and Gregori, G.: PROTEVS-MED field experiments: very high resolution hydrographic surveys in the Western Mediterranean Sea, Earth Syst. Sci. Data, 12, 441–456, https://doi.org/10.5194/essd-12-441-2020, 2020. a
Giordani, H., Prieur, L., and Caniaux, G.: Advanced insights into sources of
vertical velocity in the ocean, Ocean Dynam., 56, 513–524,
https://doi.org/10.1007/s10236-005-0050-1, 2006. a
Gower, J., Denman, K., and Holyer, R.: Phytoplankton patchiness indicates the
fluctuation spectrum of mesoscale oceanic structure, Nature, 288, 157–159,
https://doi.org/10.1038/288157a0, 1980. a
Guieu, C. and Bonnet, S.: TONGA 2019 cruise, RV L'Atalante.,
https://doi.org/10.17600/18000884, 2019. a
Hartigan, J. A. and Wong, M. A.: Algorithm AS 136: A K-Means Clustering
Algorithm, J. Roy. Stat. Soc. C-App., 28, 100–108, https://doi.org/10.2307/2346830,
1979. a
Hoskins, B., Draghici, I., and Davies, H.: A new look at the ω-equation,
Quart. J. Roy. Meteorol. Soc., 104, 31–38, https://doi.org/10.1002/qj.49710443903,
1978. a, b
Hu, Z. and Zhou, M.: Lagrangian analysis of surface transport patterns in the
northern south China sea, Deep-Sea Res. Pt II, 167, 4–13,
https://doi.org/10.1016/j.dsr2.2019.06.020, 2019. a
Hudson, N., Baker, A., Ward, D., Reynolds, D. M., Brunsdon, C.,
Carliell-Marquet, C., and Browning, S.: Can fluorescence spectrometry be used
as a surrogate for the Biochemical Oxygen Demand (BOD) test in water quality
assessment?, An example from South West England, Sci. Total Environ., 391,
149–158, https://doi.org/10.1016/j.scitotenv.2007.10.054, 2008. a, b
Kaufman, L. and Rousseeuw, P.: Statistical data analysis based on the L1-norm
and related methods, Clustering by means of medoids, North-Holland,
405–416, 1987. a
Lapeyre, G. and Klein, P.: Impact of the small-scale elongated filaments on the
oceanic vertical pump, J. Mar. Res., 64, 835–851,
https://doi.org/10.1357/002224006779698369, 2006. a, b
Le Traon, P.: A method for optimal analysis of fields with spatially variable
mean, J. Geophys. Res.-Oceans, 95, 13543–13547,
https://doi.org/10.1029/JC095iC08p13543, 1990. a
Lehahn, Y., d'Ovidio, F., Lévy, M., and Heifetz, E.: Stirring of the
northeast Atlantic spring bloom: A Lagrangian analysis based on
multisatellite data, J. Geophys. Res.-Oceans, 112, C08005,
https://doi.org/10.1029/2006JC003927, 2007. a
Lehahn, Y., d'Ovidio, F., and Koren, I.: A satellite-based Lagrangian view on
phytoplankton dynamics, Annu. Rev. Mar. Sci., 10, 99–119,
https://doi.org/10.1146/annurev-marine-121916-063204, 2018. a
Lévy, M., Klein, P., and Treguier, A.-M.: Impact of sub-mesoscale physics
on production and subduction of phytoplankton in an oligotrophic regime, J.
Mar. Res., 59, 535–565, https://doi.org/10.1357/002224001762842181, 2001. a, b, c
Lévy, M., Jahn, O., Dutkiewicz, S., Follows, M. J., and d'Ovidio, F.: The
dynamical landscape of marine phytoplankton diversity, J. Roy. Soc.
Interface, 12, 20150481, https://doi.org/10.1098/rsif.2015.0481, 2015. a
López-Jurado, J. L., Marcos, M., and Monserrat, S.: Hydrographic conditions
affecting two fishing grounds of Mallorca island (Western Mediterranean):
during the IDEA Project (2003–2004), J. Mar. Syst., 71, 303–315,
https://doi.org/10.1016/j.jmarsys.2007.03.007, 2008. a
Lueck, R. G. and Picklo, J. J.: Thermal inertia of conductivity cells:
Observations with a Sea-Bird cell, J. Atmos. Ocean. Technol., 7, 756–768,
https://doi.org/10.1175/1520-0426(1990)007<0756:TIOCCO>2.0.CO;2, 1990. a
Mahadevan, A.: The impact of submesoscale physics on primary productivity of
plankton, Annu. Rev. Mar. Sci., 8, 161–184,
https://doi.org/10.1146/annurev-marine-010814-015912, 2016. a
Mahadevan, A. and Tandon, A.: An analysis of mechanisms for submesoscale
vertical motion at ocean fronts, Ocean Model., 14, 241–256,
https://doi.org/10.1016/j.ocemod.2006.05.006, 2006. a
Marrec, P., Grégori, G., Doglioli, A. M., Dugenne, M., Della Penna, A., Bhairy, N., Cariou, T., Hélias Nunige, S., Lahbib, S., Rougier, G., Wagener, T., and Thyssen, M.: Coupling physics and biogeochemistry thanks to high-resolution observations of the phytoplankton community structure in the northwestern Mediterranean Sea, Biogeosciences, 15, 1579–1606, https://doi.org/10.5194/bg-15-1579-2018, 2018. a, b, c, d, e
Martin, A.: Phytoplankton patchiness: the role of lateral stirring and mixing,
Prog. Oceanogr., 57, 125–174, https://doi.org/10.1016/S0079-6611(03)00085-5, 2003. a
McDougall, T. J., Jackett, D. R., Millero, F. J., Pawlowicz, R., and Barker, P. M.: A global algorithm for estimating Absolute Salinity, Ocean Sci., 8, 1123–1134, https://doi.org/10.5194/os-8-1123-2012, 2012. a
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs
Seawater (GSW) Oceanographic Toolbox, SCOR IAPSO WG, 127, 1–28, 2011. a
McWilliams, J. C.: Submesoscale currents in the ocean, Philos. T. Roy. Soc. A, 472, 20160117, https://doi.org/10.1098/rspa.2016.0117, 2016. a
Mena, C., Reglero, P., Ferriol, P., Torres, A. P., Aparicio-González, A.,
Balbín, R., Santiago, R., Moyà, G., Alemany, F., and Agawin, N. S.:
Prokaryotic picoplankton spatial distribution during summer in a haline front
in the Balearic Sea, Western Mediterranean, Hydrobiologia, 779, 243–257,
https://doi.org/10.1007/s10750-016-2825-4, 2016. a, b
Mensah, V., Le Menn, M., and Morel, Y.: Thermal mass correction for the
evaluation of salinity, J. Atmos. Ocean. Technol., 26, 665–672,
https://doi.org/10.1175/2008JTECHO612.1, 2009. a
Millot, C.: Circulation in the western Mediterranean Sea, J. Mar. Syst., 20,
423–442, https://doi.org/10.1016/S0924-7963(98)00078-5, 1999. a, b, c
Millot, C. and Taupier-Letage, I.: Circulation in the Mediterranean Sea, in:
The Mediterranean Sea, edited by Saliot, A., Springer, Berlin,
Heidelberg, Germany, 29–66, https://doi.org/10.1007/b107143, 2005. a, b
Millot, C., Candela, J., Fuda, J.-L., and Tber, Y.: Large warming and
salinification of the Mediterranean outflow due to changes in its
composition, Deep-Sea Res. Pt. I, 53, 656–666,
https://doi.org/10.1016/j.dsr.2005.12.017, 2006. a
Morison, J., Andersen, R., Larson, N., D'Asaro, E., and Boyd, T.: The
correction for thermal-lag effects in Sea-Bird CTD data, J. Atmos. Ocean.
Technol., 11, 1151–1164,
https://doi.org/10.1175/1520-0426(1994)011<1151:TCFTLE>2.0.CO;2, 1994. a
Morrow, R., Fu, L.-L., Ardhuin, F., Benkiran, M., Chapron, B., Cosme, E., d'Ovidio, F., Farrar, J. T., Gille, S. T., Lapeyre, G., Le Traon, P.-Y., Pascual, A., Ponte, A., Qiu, B., Rascle, N., Ubelmann, C., Wang, J., and Zaron, E. D.: Global observations of fine-scale ocean surface topography with the Surface Water and Ocean Topography (SWOT) Mission, Front. Mar. Sci., 6, 232, https://doi.org/10.3389/fmars.2019.00232, 2019. a, b
Moutin, T. and Bonnet, S.: OUTPACE cruise, RV L'Atalante,
https://doi.org/10.17600/15000900, 2015. a
Nieto-Cid, M., Álvarez-Salgado, X. A., and Pérez, F. F.: Microbial and
photochemical reactivity of fluorescent dissolved organic matter in a coastal
upwelling system, Limnol. Oceanogr., 51, 1391–1400,
https://doi.org/10.4319/lo.2006.51.3.1391, 2006. a
Pascual, A., Ruiz, S., Olita, A., Troupin, C., Claret, M., Casas, B., Mourre,
B., Poulain, P.-M., Tovar-Sanchez, A., Capet, A., et al.: A multiplatform
experiment to unravel meso-and submesoscale processes in an intense front
(AlborEx), Front. Mar. Sci., 4, 39, https://doi.org/10.3389/fmars.2017.00039, 2017. a
Perruche, C., Rivière, P., Lapeyre, G., Carton, X., and Pondaven, P.:
Effects of surface quasi-geostrophic turbulence on phytoplankton competition
and coexistence, J. Mar. Res., 69, 105–135,
https://doi.org/10.1357/002224011798147606, 2011. a
Petrenko, A. A., Doglioli, A. M., Nencioli, F., Kersalé, M., Hu, Z., and
d’Ovidio, F.: A review of the LATEX project: mesoscale to submesoscale
processes in a coastal environment, Ocean Dynam., 67, 513–533,
https://doi.org/10.1007/s10236-017-1040-9, 2017. a
Pidcock, R. E., Martin, A. P., Painter, S. C., Allen, J. T., Srokosz, M. A.,
Forryan, A., Stinchcombe, M., and Smeed, D. A.: Quantifying mesoscale-driven
nitrate supply: A case study, Global Biogeochem. Cy., 30, 1206–1223,
https://doi.org/10.1002/2016GB005383, 2016. a
Ribalet, F., Marchetti, A., Hubbard, K. A., Brown, K., Durkin, C. A., Morales,
R., Robert, M., Swalwell, J. E., Tortell, P. D., and Armbrust, E. V.:
Unveiling a phytoplankton hotspot at a narrow boundary between coastal and
offshore waters, P. Natl. Acad. Sci. USA, 107, 16571–16576,
https://doi.org/10.1073/pnas.1005638107, 2010. a
Romera-Castillo, C., Sarmento, H., Alvarez-Salgado, X. A., Gasol, J. M., and
Marraséa, C.: Production of chromophoric dissolved organic matter by
marine phytoplankton, Limnol. Oceanogr., 55, 446–454,
https://doi.org/10.4319/lo.2010.55.1.0446, 2010. a
Rousselet, L., de Verneil, A., Doglioli, A. M., Petrenko, A. A., Duhamel, S., Maes, C., and Blanke, B.: Large- to submesoscale surface circulation and its implications on biogeochemical/biological horizontal distributions during the OUTPACE cruise (southwest Pacific), Biogeosciences, 15, 2411–2431, https://doi.org/10.5194/bg-15-2411-2018, 2018. a
Rousselet, L., Doglioli, A., de Verneil, A., Pietri, A., Della Penna, A.,
Berline, L., Marrec, P., Grégori, G., Thyssen, M., Carlotti, F., et al.:
Vertical motions and their effects on a biogeochemical tracer in a cyclonic
structure finely observed in the Ligurian Sea, J. Geophys. Res.-Oceans, 124,
3561–3574, https://doi.org/10.1029/2018JC014392, 2019. a, b, c
Ruiz, S., Claret, M., Pascual, A., Olita, A., Troupin, C., Capet, A.,
Tovar-Sánchez, A., Allen, J., Poulain, P.-M., Tintoré, J., et al.:
Effects of oceanic mesoscale and submesoscale frontal processes on the
vertical transport of phytoplankton, J. Geophys. Res.-Oceans, 124,
5999–6014, https://doi.org/10.1029/2019JC015034, 2019. a
Shcherbina, A. Y., Sundermeyer, M. A., Kunze, E., D’Asaro, E., Badin, G.,
Birch, D., Brunner-Suzuki, A.-M. E., Callies, J., Kuebel Cervantes, B. T.,
Claret, M., et al.: The LatMix summer campaign: Submesoscale stirring in the
upper ocean, B. Am. Meteorol. Soc., 96, 1257–1279,
https://doi.org/10.1175/BAMS-D-14-00015.1, 2015. a
Sieburth, J. M., Smetacek, V., and Lenz, J.: Pelagic ecosystem structure:
Heterotrophic compartments of the plankton and their relationship to plankton
size fractions, Limnol. Oceanogr., 23, 1256–1263,
https://doi.org/10.4319/lo.1978.23.6.1256, 1978. a
Smetacek, V., Klaas, C., Strass, V. H., Assmy, P., Montresor, M., Cisewski, B.,
Savoye, N., Webb, A., d’Ovidio, F., Arrieta, J. M., et al.: Deep carbon
export from a Southern Ocean iron-fertilized diatom bloom, Nature, 487,
313–319, https://doi.org/10.1038/nature11229, 2012. a
Soccodato, A., d'Ovidio, F., Lévy, M., Jahn, O., Follows, M. J., and
De Monte, S.: Estimating planktonic diversity through spatial dominance
patterns in a model ocean, Mar. Genom., 29, 9–17,
https://doi.org/10.1016/j.margen.2016.04.015, 2016. a, b
Stedmon, C. A. and Markager, S.: Tracing the production and degradation of
autochthonous fractions of dissolved organic matter using fluorescence
analysis, Limnol. Oceanogr., 50, 1415–1426, https://doi.org/10.4319/lo.2005.50.5.1415,
2005. a
Strass, V. H.: Chlorophyll patchiness caused by mesoscale upwelling at fronts,
Deep-Sea Res., 39, 75–96, https://doi.org/10.1016/0198-0149(92)90021-K, 1992. a
Tang, W., Cerdán-García, E., Berthelot, H., Polyviou, D., Wang, S., Baylay, A., Whitby, H., Planquette, H., Mowlem, M., Robidart, J., and Cassar, N.: New insights into the distributions of nitrogen fixation and diazotrophs revealed by high-resolution sensing and sampling methods, ISME J., 14, 2514–2526, https://doi.org/10.1038/s41396-020-0703-6, 2020. a
Tedetti, M., Longhitano, R., Garcia, N., Guigue, C., Ferretto, N., and Goutx,
M.: Fluorescence properties of dissolved organic matter in coastal
Mediterranean waters influenced by a municipal sewage effluent (Bay of
Marseilles, France), Environ. Chem., 9, 438–449, https://doi.org/10.1071/EN12081,
2012. a
Thyssen, M., Garcia, N., and Denis, M.: Sub meso scale phytoplankton distribution in the North East Atlantic surface waters determined with an automated flow cytometer, Biogeosciences, 6, 569–583, https://doi.org/10.5194/bg-6-569-2009, 2009. a
Thyssen, M., Alvain, S., Lefèbvre, A., Dessailly, D., Rijkeboer, M., Guiselin, N., Creach, V., and Artigas, L.-F.: High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing, Biogeosciences, 12, 4051–4066, https://doi.org/10.5194/bg-12-4051-2015, 2015. a, b
Tintoré, J., Gomis, D., Alonso, S., and Parrilla, G.: Mesoscale dynamics
and vertical motion in the Alboran Sea, J. Phys. Oceanogr., 21, 811–823,
https://doi.org/10.1175/1520-0485(1991)021<0811:MDAVMI>2.0.CO;2, 1991. a
Troupin, C., Beltran, J. P., Heslop, E., Torner, M., Garau, B., Allen, J.,
Ruiz, S., and Tintoré, J.: A toolbox for glider data processing and
management, Methods in Oceanography, 13, 13–23,
https://doi.org/10.1016/j.mio.2016.01.001, 2015.
a
Watson, A. J., Robinson, C., Robinson, J., Williams, P. l. B., and Fasham, M.:
Spatial variability in the sink for atmospheric carbon dioxide in the North
Atlantic, Nature, 350, 50–53, https://doi.org/10.1038/350050a0, 1991. a
Yoder, J. A., McClain, C. R., Blanton, J. O., and Oeymay, L.-Y.: Spatial scales
in CZCS-chlorophyll imagery of the southeastern US continental shelf 1,
Limnol. Oceanogr., 32, 929–941, https://doi.org/10.4319/lo.1987.32.4.0929, 1987. a
Yoder, J. A., Ackleson, S. G., Barber, R. T., Flament, P., and Balch, W. M.: A
line in the sea, Nature, 371, 689–692, https://doi.org/10.1038/371689a0, 1994. a
Short summary
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The major result is the impact of a fine-scale frontal structure on the distribution of phytoplankton groups, in an area of moderate energy with oligotrophic conditions. Our results provide an in situ confirmation of the findings obtained by previous modeling studies and remote sensing about the structuring effect of the fine-scale ocean dynamics on the structure of the phytoplankton community.
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The...
Altmetrics
Final-revised paper
Preprint