Articles | Volume 18, issue 1
https://doi.org/10.5194/bg-18-77-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-77-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contrasting responses of woody and herbaceous vegetation to altered rainfall characteristics in the Sahel
CAVElab, Department of Environment, Ghent University, Ghent, 9000,
Belgium
Department of Geosciences and Natural Resource Management, University
of Copenhagen, Copenhagen, 1350, Denmark
Guy Schurgers
Department of Geosciences and Natural Resource Management, University
of Copenhagen, Copenhagen, 1350, Denmark
Stéphanie Horion
Department of Geosciences and Natural Resource Management, University
of Copenhagen, Copenhagen, 1350, Denmark
Jonas Ardö
Department of Physical Geography and Ecosystem Science, Lund
University, Lund, 22100, Sweden
Paulo N. Bernardino
Department of Earth and Environmental Sciences, KU Leuven, Leuven,
3000, Belgium
Laboratory of Geo-information Science and Remote Sensing, Wageningen
University, Wageningen, 6708, the Netherlands
Bernard Cappelaere
HydroSciences Montpellier, IRD/CNRS, Université de Montpellier,
Montpellier, 34090, France
Jérôme Demarty
HydroSciences Montpellier, IRD/CNRS, Université de Montpellier,
Montpellier, 34090, France
Rasmus Fensholt
Department of Geosciences and Natural Resource Management, University
of Copenhagen, Copenhagen, 1350, Denmark
Laurent Kergoat
Géosciences Environnement Toulouse, CNRS/UPS/IRD, Toulouse, 31400,
France
Thomas Sibret
CAVElab, Department of Environment, Ghent University, Ghent, 9000,
Belgium
Torbern Tagesson
Department of Geosciences and Natural Resource Management, University
of Copenhagen, Copenhagen, 1350, Denmark
Department of Physical Geography and Ecosystem Science, Lund
University, Lund, 22100, Sweden
Hans Verbeeck
CAVElab, Department of Environment, Ghent University, Ghent, 9000,
Belgium
Related authors
Wim Verbruggen, David Wårlind, Stéphanie Horion, Félicien Meunier, Hans Verbeeck, and Guy Schurgers
EGUsphere, https://doi.org/10.5194/egusphere-2025-1259, https://doi.org/10.5194/egusphere-2025-1259, 2025
Short summary
Short summary
We improved the representation of soil water movement in a state-of-the-art dynamic vegetation model. This is especially important for dry ecosystems, as they are often driven by changes in soil water availability. We showed that this update resulted in a generally better match with observations, and that the updated model is more sensitive to soil texture. This updated model will help scientists to better understand the future of dry ecosystems under climate change.
Félicien Meunier, Wim Verbruggen, Hans Verbeeck, and Marc Peaucelle
Geosci. Model Dev., 15, 7573–7591, https://doi.org/10.5194/gmd-15-7573-2022, https://doi.org/10.5194/gmd-15-7573-2022, 2022
Short summary
Short summary
Drought stress occurs in plants when water supply (i.e. root water uptake) is lower than the water demand (i.e. atmospheric demand). It is strongly related to soil properties and expected to increase in intensity and frequency in the tropics due to climate change. In this study, we show that contrary to the expectations, state-of-the-art terrestrial biosphere models are mostly insensitive to soil texture and hence probably inadequate to reproduce in silico the plant water status in drying soils.
Félicien Meunier, Sruthi M. Krishna Moorthy, Marc Peaucelle, Kim Calders, Louise Terryn, Wim Verbruggen, Chang Liu, Ninni Saarinen, Niall Origo, Joanne Nightingale, Mathias Disney, Yadvinder Malhi, and Hans Verbeeck
Geosci. Model Dev., 15, 4783–4803, https://doi.org/10.5194/gmd-15-4783-2022, https://doi.org/10.5194/gmd-15-4783-2022, 2022
Short summary
Short summary
We integrated state-of-the-art observations of the structure of the vegetation in a temperate forest to constrain a vegetation model that aims to reproduce such an ecosystem in silico. We showed that the use of this information helps to constrain the model structure, its critical parameters, as well as its initial state. This research confirms the critical importance of the representation of the vegetation structure in vegetation models and proposes a method to overcome this challenge.
Seydina Mohamad Ba, Olivier Roupsard, Lydie Chapuis-Lardy, Frédéric Bouvery, Yélognissè Agbohessou, Maxime Duthoit, Aleksander Wieckowski, Torbern Tagesson, Mohamed Habibou Assouma, Espoir Koudjo Gaglo, Claire Delon, Bienvenu Sambou, and Dominique Serça
EGUsphere, https://doi.org/10.5194/egusphere-2025-2660, https://doi.org/10.5194/egusphere-2025-2660, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
This study offers a major advancement in understanding CO2 fluxes in Sahelian agro-silvo-pastoral systems by combining continuous high-frequency automated soil chambers and Eddy Covariance methods over one year. It reveals the critical role of Faidherbia albida trees in carbon cycling and ecosystem productivity, providing rare, high-resolution data to inform climate mitigation strategies and ecosystem models in semi-arid African landscapes.
Derrick Muheki, Bas Vercruysse, Krishna Kumar Thirukokaranam Chandrasekar, Christophe Verbruggen, Julie M. Birkholz, Koen Hufkens, Hans Verbeeck, Pascal Boeckx, Seppe Lampe, Ed Hawkins, Peter Thorne, Dominique Kankonde Ntumba, Olivier Kapalay Moulasa, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2024-3779, https://doi.org/10.5194/egusphere-2024-3779, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Archives worldwide host vast records of observed weather data crucial for understanding climate variability. However, most of these records are still in paper form, limiting their use. To address this, we developed MeteoSaver, an open-source tool, to transcribe these records to machine-readable format. Applied to ten handwritten temperature sheets, it achieved a median accuracy of 74%. This tool offers a promising solution to preserve records from archives and unlock historical weather insights.
Erwan Le Roux, Valentin Wendling, Gérémy Panthou, Océane Dubas, Jean-Pierre Vandervaere, Basile Hector, Guillaume Favreau, Jean-Martial Cohard, Caroline Pierre, Luc Descroix, Eric Mougin, Manuela Grippa, Laurent Kergoat, Jérôme Demarty, Nathalie Rouche, Jordi Etchanchu, and Christophe Peugeot
EGUsphere, https://doi.org/10.5194/egusphere-2025-1965, https://doi.org/10.5194/egusphere-2025-1965, 2025
Short summary
Short summary
In hydrological science, better accounting for regime shift (abrupt and/or irreversible changes) remains a challenge that could lead to a new paradigm for the adaptation to extreme events (flood , drought). In this article, we present a simple model that can account for a hydrological regime shift in Sahelian watersheds. Based on this model, we find that the Dargol, Nakanbé, and Sirba watersheds have shifted during the droughts of the '70s–'80s, while the Gorouol watershed has shifted before.
Wim Verbruggen, David Wårlind, Stéphanie Horion, Félicien Meunier, Hans Verbeeck, and Guy Schurgers
EGUsphere, https://doi.org/10.5194/egusphere-2025-1259, https://doi.org/10.5194/egusphere-2025-1259, 2025
Short summary
Short summary
We improved the representation of soil water movement in a state-of-the-art dynamic vegetation model. This is especially important for dry ecosystems, as they are often driven by changes in soil water availability. We showed that this update resulted in a generally better match with observations, and that the updated model is more sensitive to soil texture. This updated model will help scientists to better understand the future of dry ecosystems under climate change.
Inês Vieira, Félicien Meunier, Maria Carolina Duran Rojas, Stephen Sitch, Flossie Brown, Giacomo Gerosa, Silvano Fares, Pascal Boeckx, Marijn Bauters, and Hans Verbeeck
EGUsphere, https://doi.org/10.5194/egusphere-2025-1375, https://doi.org/10.5194/egusphere-2025-1375, 2025
Short summary
Short summary
We used a computer model to study how ozone pollution reduces plant growth in six European forests, from Finland to Italy. Combining field data and simulations, we found that ozone can lower carbon uptake by up to 6 % each year, especially in Mediterranean areas. Our study shows that local climate and forest type influence ozone damage and highlights the need to include ozone effects in forest and climate models.
Chansopheaktra Sovann, Torbern Tagesson, Patrik Vestin, Sakada Sakhoeun, Soben Kim, Sothea Kok, and Stefan Olin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3784, https://doi.org/10.5194/egusphere-2024-3784, 2025
Short summary
Short summary
We offer pairwise observed datasets that compare the characteristics of tropical ecosystems, specifically pristine forests, regrowth forests, and cashew plantations. Our findings uncover some key differences in their characteristics, emphasizing the influence of human activities on these ecosystems. By sharing our unique datasets, we hope to improve the knowledge of tropical forest ecosystems in Southeast Asia, advancing tropical research, and tackling global environmental challenges.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Max Gaber, Yanghui Kang, Guy Schurgers, and Trevor Keenan
Biogeosciences, 21, 2447–2472, https://doi.org/10.5194/bg-21-2447-2024, https://doi.org/10.5194/bg-21-2447-2024, 2024
Short summary
Short summary
Gross primary productivity (GPP) describes the photosynthetic carbon assimilation, which plays a vital role in the carbon cycle. We can measure GPP locally, but producing larger and continuous estimates is challenging. Here, we present an approach to extrapolate GPP to a global scale using satellite imagery and automated machine learning. We benchmark different models and predictor variables and achieve an estimate that can capture 75 % of the variation in GPP.
Tao Chen, Félicien Meunier, Marc Peaucelle, Guoping Tang, Ye Yuan, and Hans Verbeeck
Biogeosciences, 21, 2253–2272, https://doi.org/10.5194/bg-21-2253-2024, https://doi.org/10.5194/bg-21-2253-2024, 2024
Short summary
Short summary
Chinese subtropical forest ecosystems are an extremely important component of global forest ecosystems and hence crucial for the global carbon cycle and regional climate change. However, there is still great uncertainty in the relationship between subtropical forest carbon sequestration and its drivers. We provide first quantitative estimates of the individual and interactive effects of different drivers on the gross primary productivity changes of various subtropical forest types in China.
Chansopheaktra Sovann, Torbern Tagesson, Patrik Vestin, Sakada Sakhoeun, Soben Kim, Sothea Kok, and Stefan Olin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-98, https://doi.org/10.5194/essd-2024-98, 2024
Revised manuscript not accepted
Short summary
Short summary
We offer pairwise observed datasets that compare the characteristics of tropical ecosystems, specifically pristine forests, regrowth forests, and cashew plantations. Our findings uncover some key differences in their characteristics, emphasizing the influence of human activities on these ecosystems. By sharing our unique datasets, we hope to improve the knowledge of tropical forest ecosystems in Southeast Asia, advancing tropical research, and tackling global environmental challenges.
Søren Julsgaard Kragh, Jacopo Dari, Sara Modanesi, Christian Massari, Luca Brocca, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 28, 441–457, https://doi.org/10.5194/hess-28-441-2024, https://doi.org/10.5194/hess-28-441-2024, 2024
Short summary
Short summary
This study provides a comparison of methodologies to quantify irrigation to enhance regional irrigation estimates. To evaluate the methodologies, we compared various approaches to quantify irrigation using soil moisture, evapotranspiration, or both within a novel baseline framework, together with irrigation estimates from other studies. We show that the synergy from using two equally important components in a joint approach within a baseline framework yields better irrigation estimates.
Søren J. Kragh, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 27, 2463–2478, https://doi.org/10.5194/hess-27-2463-2023, https://doi.org/10.5194/hess-27-2463-2023, 2023
Short summary
Short summary
This study investigates the precision of irrigation estimates from a global hotspot of unsustainable irrigation practice, the Indus and Ganges basins. We show that irrigation water use can be estimated with high precision by comparing satellite and rainfed hydrological model estimates of evapotranspiration. We believe that our work can support sustainable water resource management, as it addresses the uncertainty of a key component of the water balance that remains challenging to quantify.
Mathilde de Fleury, Laurent Kergoat, and Manuela Grippa
Hydrol. Earth Syst. Sci., 27, 2189–2204, https://doi.org/10.5194/hess-27-2189-2023, https://doi.org/10.5194/hess-27-2189-2023, 2023
Short summary
Short summary
This study surveys small lakes and reservoirs, which are vital resources in the Sahel, through a multi-sensor satellite approach. Water height changes compared to evaporation losses in dry seasons highlight anthropogenic withdrawals and water supplies due to river and groundwater connections. Some reservoirs display weak withdrawals, suggesting low usage may be due to security issues. The
satellite-derived water balance thus proved effective in estimating water resources in semi-arid areas.
Qi Guan, Jing Tang, Lian Feng, Stefan Olin, and Guy Schurgers
Biogeosciences, 20, 1635–1648, https://doi.org/10.5194/bg-20-1635-2023, https://doi.org/10.5194/bg-20-1635-2023, 2023
Short summary
Short summary
Understanding terrestrial sources of nitrogen is vital to examine lake eutrophication changes. Combining process-based ecosystem modeling and satellite observations, we found that land-leached nitrogen in the Yangtze Plain significantly increased from 1979 to 2018, and terrestrial nutrient sources were positively correlated with eutrophication trends observed in most lakes, demonstrating the necessity of sustainable nitrogen management to control eutrophication.
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Félicien Meunier, Wim Verbruggen, Hans Verbeeck, and Marc Peaucelle
Geosci. Model Dev., 15, 7573–7591, https://doi.org/10.5194/gmd-15-7573-2022, https://doi.org/10.5194/gmd-15-7573-2022, 2022
Short summary
Short summary
Drought stress occurs in plants when water supply (i.e. root water uptake) is lower than the water demand (i.e. atmospheric demand). It is strongly related to soil properties and expected to increase in intensity and frequency in the tropics due to climate change. In this study, we show that contrary to the expectations, state-of-the-art terrestrial biosphere models are mostly insensitive to soil texture and hence probably inadequate to reproduce in silico the plant water status in drying soils.
Flossie Brown, Gerd A. Folberth, Stephen Sitch, Susanne Bauer, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Makoto Deushi, Inês Dos Santos Vieira, Corinne Galy-Lacaux, James Haywood, James Keeble, Lina M. Mercado, Fiona M. O'Connor, Naga Oshima, Kostas Tsigaridis, and Hans Verbeeck
Atmos. Chem. Phys., 22, 12331–12352, https://doi.org/10.5194/acp-22-12331-2022, https://doi.org/10.5194/acp-22-12331-2022, 2022
Short summary
Short summary
Surface ozone can decrease plant productivity and impair human health. In this study, we evaluate the change in surface ozone due to climate change over South America and Africa using Earth system models. We find that if the climate were to change according to the worst-case scenario used here, models predict that forested areas in biomass burning locations and urban populations will be at increasing risk of ozone exposure, but other areas will experience a climate benefit.
David Martín Belda, Peter Anthoni, David Wårlind, Stefan Olin, Guy Schurgers, Jing Tang, Benjamin Smith, and Almut Arneth
Geosci. Model Dev., 15, 6709–6745, https://doi.org/10.5194/gmd-15-6709-2022, https://doi.org/10.5194/gmd-15-6709-2022, 2022
Short summary
Short summary
We present a number of augmentations to the ecosystem model LPJ-GUESS, which will allow us to use it in studies of the interactions between the land biosphere and the climate. The new module enables calculation of fluxes of energy and water into the atmosphere that are consistent with the modelled vegetation processes. The modelled fluxes are in fair agreement with observations across 21 sites from the FLUXNET network.
Rena Meyer, Wenmin Zhang, Søren Julsgaard Kragh, Mie Andreasen, Karsten Høgh Jensen, Rasmus Fensholt, Simon Stisen, and Majken C. Looms
Hydrol. Earth Syst. Sci., 26, 3337–3357, https://doi.org/10.5194/hess-26-3337-2022, https://doi.org/10.5194/hess-26-3337-2022, 2022
Short summary
Short summary
The amount and spatio-temporal distribution of soil moisture, the water in the upper soil, is of great relevance for agriculture and water management. Here, we investigate whether the established downscaling algorithm combining different satellite products to estimate medium-scale soil moisture is applicable to higher resolutions and whether results can be improved by accounting for land cover types. Original satellite data and downscaled soil moisture are compared with ground observations.
Félicien Meunier, Sruthi M. Krishna Moorthy, Marc Peaucelle, Kim Calders, Louise Terryn, Wim Verbruggen, Chang Liu, Ninni Saarinen, Niall Origo, Joanne Nightingale, Mathias Disney, Yadvinder Malhi, and Hans Verbeeck
Geosci. Model Dev., 15, 4783–4803, https://doi.org/10.5194/gmd-15-4783-2022, https://doi.org/10.5194/gmd-15-4783-2022, 2022
Short summary
Short summary
We integrated state-of-the-art observations of the structure of the vegetation in a temperate forest to constrain a vegetation model that aims to reproduce such an ecosystem in silico. We showed that the use of this information helps to constrain the model structure, its critical parameters, as well as its initial state. This research confirms the critical importance of the representation of the vegetation structure in vegetation models and proposes a method to overcome this challenge.
M. C. A. Picoli, J. Radoux, X. Tong, A. Bey, P. Rufin, M. Brandt, R. Fensholt, and P. Meyfroidt
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 975–981, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-975-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-975-2022, 2022
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Maurizio Santoro, Oliver Cartus, Nuno Carvalhais, Danaë M. A. Rozendaal, Valerio Avitabile, Arnan Araza, Sytze de Bruin, Martin Herold, Shaun Quegan, Pedro Rodríguez-Veiga, Heiko Balzter, João Carreiras, Dmitry Schepaschenko, Mikhail Korets, Masanobu Shimada, Takuya Itoh, Álvaro Moreno Martínez, Jura Cavlovic, Roberto Cazzolla Gatti, Polyanna da Conceição Bispo, Nasheta Dewnath, Nicolas Labrière, Jingjing Liang, Jeremy Lindsell, Edward T. A. Mitchard, Alexandra Morel, Ana Maria Pacheco Pascagaza, Casey M. Ryan, Ferry Slik, Gaia Vaglio Laurin, Hans Verbeeck, Arief Wijaya, and Simon Willcock
Earth Syst. Sci. Data, 13, 3927–3950, https://doi.org/10.5194/essd-13-3927-2021, https://doi.org/10.5194/essd-13-3927-2021, 2021
Short summary
Short summary
Forests play a crucial role in Earth’s carbon cycle. To understand the carbon cycle better, we generated a global dataset of forest above-ground biomass, i.e. carbon stocks, from satellite data of 2010. This dataset provides a comprehensive and detailed portrait of the distribution of carbon in forests, although for dense forests in the tropics values are somewhat underestimated. This dataset will have a considerable impact on climate, carbon, and socio-economic modelling schemes.
Jaber Rahimi, Expedit Evariste Ago, Augustine Ayantunde, Sina Berger, Jan Bogaert, Klaus Butterbach-Bahl, Bernard Cappelaere, Jean-Martial Cohard, Jérôme Demarty, Abdoul Aziz Diouf, Ulrike Falk, Edwin Haas, Pierre Hiernaux, David Kraus, Olivier Roupsard, Clemens Scheer, Amit Kumar Srivastava, Torbern Tagesson, and Rüdiger Grote
Geosci. Model Dev., 14, 3789–3812, https://doi.org/10.5194/gmd-14-3789-2021, https://doi.org/10.5194/gmd-14-3789-2021, 2021
Short summary
Short summary
West African Sahelian and Sudanian ecosystems are important regions for global carbon exchange, and they provide valuable food and fodder resources. Therefore, we simulated net ecosystem exchange and aboveground biomass of typical ecosystems in this region with an improved process-based biogeochemical model, LandscapeDNDC. Carbon stocks and exchange rates were particularly correlated with the abundance of trees. Grass and crop yields increased under humid climatic conditions.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Anteneh Getachew Mengistu, Gizaw Mengistu Tsidu, Gerbrand Koren, Maurits L. Kooreman, K. Folkert Boersma, Torbern Tagesson, Jonas Ardö, Yann Nouvellon, and Wouter Peters
Biogeosciences, 18, 2843–2857, https://doi.org/10.5194/bg-18-2843-2021, https://doi.org/10.5194/bg-18-2843-2021, 2021
Short summary
Short summary
In this study, we assess the usefulness of Sun-Induced Fluorescence of Terrestrial Ecosystems Retrieval (SIFTER) data from the GOME-2A instrument and near-infrared reflectance of vegetation (NIRv) from MODIS to capture the seasonality and magnitudes of gross primary production (GPP) derived from six eddy-covariance flux towers in Africa in the overlap years between 2007–2014. We also test the robustness of sun-induced fluoresence and NIRv to compare the seasonality of GPP for the major biomes.
Paula Alejandra Lamprea Pineda, Marijn Bauters, Hans Verbeeck, Selene Baez, Matti Barthel, Samuel Bodé, and Pascal Boeckx
Biogeosciences, 18, 413–421, https://doi.org/10.5194/bg-18-413-2021, https://doi.org/10.5194/bg-18-413-2021, 2021
Short summary
Short summary
Tropical forest soils are an important source and sink of greenhouse gases (GHGs) with tropical montane forests having been poorly studied. In this pilot study, we explored soil fluxes of CO2, CH4, and N2O in an Ecuadorian neotropical montane forest, where a net consumption of N2O at higher altitudes was observed. Our results highlight the importance of short-term variations in N2O and provide arguments and insights for future, more detailed studies on GHG fluxes from montane forest soils.
Hannes P. T. De Deurwaerder, Marco D. Visser, Matteo Detto, Pascal Boeckx, Félicien Meunier, Kathrin Kuehnhammer, Ruth-Kristina Magh, John D. Marshall, Lixin Wang, Liangju Zhao, and Hans Verbeeck
Biogeosciences, 17, 4853–4870, https://doi.org/10.5194/bg-17-4853-2020, https://doi.org/10.5194/bg-17-4853-2020, 2020
Short summary
Short summary
The depths at which plants take up water is challenging to observe directly. To do so, scientists have relied on measuring the isotopic composition of xylem water as this provides information on the water’s source. Our work shows that this isotopic composition changes throughout the day, which complicates the interpretation of the water’s source and has been currently overlooked. We build a model to help understand the origin of these composition changes and their consequences for science.
Cited articles
Adole, T., Dash, J., Rodriguez-Galiano, V., and Atkinson, P. M.: Photoperiod
controls vegetation phenology across Africa, Commun. Biol., 2, 391,
https://doi.org/10.1038/s42003-019-0636-7, 2019.
Ahlstrom, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung,
M., Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato,
E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P.,
Wiltshire, A., Zaehle, S., and Zeng, N.: The dominant role of semi-arid
ecosystems in the trend and variability of the land CO2 sink, Science 348, 895–899, https://doi.org/10.1126/science.aaa1668, 2015.
Barron-Gafford, G. A., Sanchez-Caañete, E. P., Minor, R. L., Hendryx, S. M., Lee, E., Sutter,
L. F., Tran, N., Parra, E., Colella, T., Murphy, P. C., Hamerlynck, E. P., Kumar, P., and Scott, R. L.:
Impacts of hydraulic redistribution on grass–tree competition vs facilitation in a semi-arid savanna,
New Phytol., 215, 1451–1461, https://doi.org/10.1111/nph.14693, 2017.
Baudena, M., Dekker, S. C., van Bodegom, P. M., Cuesta, B., Higgins, S. I., Lehsten, V., Reick, C. H., Rietkerk, M., Scheiter, S., Yin, Z., Zavala, M. A., and Brovkin, V.: Forests, savannas, and grasslands: bridging the knowledge gap between ecology and Dynamic Global Vegetation Models, Biogeosciences, 12, 1833–1848, https://doi.org/10.5194/bg-12-1833-2015, 2015.
Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., and Wood, E. F.: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling, Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, 2017.
Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., van Dijk, A. I. J. M., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS, Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, 2019.
Berry, R. S. and Kulmatiski, A.: A savanna response to precipitation
intensity, PLoS One, 12, 1–18, https://doi.org/10.1371/journal.pone.0175402, 2017.
Biasutti, M.: Rainfall trends in the African Sahel: Characteristics,
processes, and causes, Wires. Clim. Chang., 10, e591,
https://doi.org/10.1002/wcc.591, 2019.
Boke-Olén, N., Lehsten, V., Abdi, A. M., Ardö, J., and Khatir, A. A.:
Estimating Grazing Potentials in Sudan Using Daily Carbon Allocation in
Dynamic Vegetation Model, Rangel. Ecol. Manag., 71, 792–797,
https://doi.org/10.1016/j.rama.2018.06.006, 2018.
Boulain, N., Cappelaere, B., Ramier, D., Issoufou, H. B. A., Halilou, O.,
Seghieri, J., Guillemin, F., Oï, M., Gignoux, J., and Timouk, F.:
Towards an understanding of coupled physical and biological processes in the
cultivated Sahel – 2. Vegetation and carbon dynamics, J. Hydrol., 375,
190–203, https://doi.org/10.1016/j.jhydrol.2008.11.045, 2009.
Brandt, M., Rasmussen, K., Peñuelas, J., Tian, F., Schurgers, G., Verger, A., Mertz, O., Palmer,
J. R. B., and Fensholt, R.: Human population growth offsets climate-driven increase in woody
vegetation in sub-Saharan Africa, Nat. Ecol. Evol., 1, 0081, https://doi.org/10.1038/s41559-017-0081,
2017.
Brandt, M., Wigneron, J. P., Chave, J., Tagesson, T., Penuelas, J., Ciais,
P., Rasmussen, K., Tian, F., Mbow, C., Al-Yaari, A., Rodriguez-Fernandez,
N., Schurgers, G., Zhang, W., Chang, J., Kerr, Y., Verger, A., Tucker, C.,
Mialon, A., Rasmussen, L. V., Fan, L., and Fensholt, R.: Satellite passive
microwaves reveal recent climate-induced carbon losses in African drylands,
Nat. Ecol. Evol., 2, 827–835, https://doi.org/10.1038/s41559-018-0530-6, 2018.
Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C. J., Wigneron, J. P.,
Diouf, A. A., Herrmann, S. M., Zhang, W., Kergoat, L., Mbow, C., Abel, C.,
Auda, Y., and Fensholt, R.: Changes in rainfall distribution promote woody
foliage production in the Sahel, Commun. Biol., 2, 1–10,
https://doi.org/10.1038/s42003-019-0383-9, 2019.
Case, M. F. and Staver, A. C.: Soil texture mediates tree responses to
rainfall intensity in African savannas, New Phytol., 219, 1363–1372,
https://doi.org/10.1111/nph.15254, 2018.
Dannenberg, M. P., Wise, E. K., and Smith, W. K.: Reduced tree growth in the semiarid
United States due to asymmetric responses to intensifying precipitation extremes, Sci. Adv., 5
1–11, https://doi.org/10.1126/sciadv.aaw0667, 2019.
Do, F. C., Rocheteau, A., Diagne, A. L., Goudiaby, V., Granier, A., and
Lhomme, J. P.: Stable annual pattern of water use by Acacia tortilis in
Sahelian Africa, Tree Physiol., 28, 95–104,
https://doi.org/10.1093/treephys/28.1.95, 2008.
Dodd, M. B., Lauenroth, W. K., and Welker, J. M.: Differential water resource
use by herbaceous and woody plant life-forms in a shortgrass steppe
community, Oecologia, 117, 504–512, https://doi.org/10.1007/s004420050686, 1998.
D'Onofrio, D., Sweeney, L., von Hardenberg, J., and Baudena, M.: Grass and
tree cover responses to intra-seasonal rainfall variability vary along a
rainfall gradient in African tropical grassy biomes, Sci. Rep.-UK, 9, 1–10,
https://doi.org/10.1038/s41598-019-38933-9, 2019.
Dunning, C. M., Black, E., and Allan, R. P.: Later wet seasons with more intense rainfall over
Africa under future climate change, J. Clim., 31, 9719–9738, https://doi.org/10.1175/JCLI-D-18-0102.1,
2018.
FAO: FAO/Unesco Soil Map of the World, World Soil Resources Reports 60,
Food and Agriculture Organization of the United Nations, Rome, Italy, 140 pp., 1988.
Fekete, B. M., Vörösmarty, C. J., and Grabs, W.: High-resolution
fields of global runoff combining observed river discharge and simulated
water balances, Global Biogeochem. Cy., 16, 1–10,
https://doi.org/10.1029/1999gb001254, 2002.
Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.:
Terrestrial vegetation and water balance – Hydrological evaluation of a
dynamic global vegetation model, J. Hydrol., 286, 249–270,
https://doi.org/10.1016/j.jhydrol.2003.09.029, 2004.
Gherardi, L. A. and Sala, O. E.: Enhanced precipitation variability
decreases grass- and increases shrub-productivity, P. Natl. Acad. Sci. USA, 112, 12735–12740, https://doi.org/10.1073/pnas.1506433112, 2015.
Gilbert, N.: Science enters desert debate, Nature, 477, 262–262,
https://doi.org/10.1038/477262a, 2011.
Good, S. P. and Caylor, K. K.: Climatological determinants of woody cover in
Africa, P. Natl. Acad. Sci., 108, 4902–4907,
https://doi.org/10.1073/pnas.1013100108, 2011.
Grace, J., José, J. S., Meir, P., Miranda, H. S., and Montes, R. A.:
Productivity and carbon fluxes of tropical savannas, J. Biogeogr., 33,
387–400, https://doi.org/10.1111/j.1365-2699.2005.01448.x, 2006.
Grippa, M., Kergoat, L., Boone, A., Peugeot, C., Demarty, J., Cappelaere,
B., Gal, L., Hiernaux, P., Mougin, E., Ducharne, A., Dutra, E., Anderson,
M., Hain, C., Ait-Mesbah, S., Polcher, J., Balsamo, G., Boussetta, S.,
Pappenberger, F., Favot, F., Guichard, F., Kaptue, A., Roujean, J. L.,
Chaffard, V., Cohard, J. M., Gascon, T., Galle, S., Hector, B., Lebel, T.,
Pellarin, T., Richard, A., Quantin, G., Chan, E., Verseghy, D., Magand, C.,
Getirana, A., Pierre, C., Gusev, Y., Nasonova, O., Harris, P., He, X.,
Yorozu, K., Kotsuki, S., Tanaka, K., Kim, H., Oki, T., Kumar, S., Lo, M. H.,
Mahanama, S., Maignan, F., Ottlé, C., Mamadou, O., Shmakin, A.,
Sokratov, V., and Turkov, D.: Modeling Surface runoff and water fluxes over
contrasted soils in the pastoral sahel: Evaluation of the ALMIP2 land
surface models over the Gourma Region in Mali, J. Hydrometeorol., 18,
1847–1866, https://doi.org/10.1175/JHM-D-16-0170.1, 2017.
Guan, K., Good, S. P., Caylor, K. K., Medvigy, D., Pan, M., Wood, E. F.,
Sato, H., Biasutti, M., Chen, M., Ahlström, A., and Xu, X.: Simulated
sensitivity of African terrestrial ecosystem photosynthesis to rainfall
frequency, intensity, and rainy season length, Environ. Res. Lett., 13, 025013,
https://doi.org/10.1088/1748-9326/aa9f30, 2018.
Haub, C. and Toshiko, K.:
2014 World Population Data Sheet, Population Reference Bureau, Washington, DC
USA, 2014.
Ibrahim, F.: Causes of the famine among the rural population of the
Sahelian zone of the Sudan, GeoJ., 17, 133–141, https://doi.org/10.1007/BF00209083, 1988.
IPCC: Climate Change 2014: Synthesis Report, Contribution of Working
Groups I, II and III to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, IPCC, Geneva, Switzerland, 151 pp., 2014.
Kulmatiski, A. and Beard, K. H.: Woody plant encroachment facilitated by
increased precipitation intensity, Nat. Clim. Change, 3, 833–837,
https://doi.org/10.1038/nclimate1904, 2013.
Leauthaud, C., Cappelaere, B., Demarty, J., Guichard, F., Velluet, C.,
Kergoat, L., Vischel, T., Grippa, M., Mouhaimouni, M., Bouzou Moussa, I.,
Mainassara, I., and Sultan, B.: A 60-year reconstructed high-resolution local
meteorological data set in Central Sahel (1950–2009): evaluation, analysis
and application to land surface modelling, Int. J. Climatol., 37,
2699–2718, https://doi.org/10.1002/joc.4874, 2017.
Lehmann, C. E. R., Anderson, T. M., Sankaran, M., Higgins, S. I., Archibald,
S., Hoffmann, W. A., Hanan, N. P., Williams, R. J., Fensham, R. J., Felfili,
J., Hutley, L. B., Ratnam, J., San Jose, J., Montes, R., Franklin, D.,
Russell-Smith, J., Ryan, C. M., Durigan, G., Hiernaux, P., Haidar, R.,
Bowman, D. M. J. S., and Bond, W. J.: Savanna Vegetation-Fire-Climate
Relationships Differ Among Continents, Science, 343,
548–552, https://doi.org/10.1126/science.1247355, 2014.
Lehsten, V., Arneth, A., Spessa, A., Thonicke, K., and Moustakas, A.: The
effect of fire on tree-grass coexistence in savannas: A simulation study,
Int. J. Wildl. Fire, 25, 137–146, https://doi.org/10.1071/WF14205, 2016.
McMurtrie, R. and Wolf, L.: A Model of Competition between Trees and Grass
for Radiation, Water and Nutrients, Ann. Bot., 52, 449–458,
https://doi.org/10.1093/oxfordjournals.aob.a086600, 1983.
Medlyn, B. E., De Kauwe, M. G., and Duursma, R. A.: New developments in the
effort to model ecosystems under water stress, New Phytol., 212, 5–7,
https://doi.org/10.1111/nph.14082, 2016.
Mortimore, M.: Adapting to drought in the Sahel: Lessons for climate change,
Wires. Clim. Change, 1, 134–143, https://doi.org/10.1002/wcc.25,
2010.
Mougin, E., Hiernaux, P., Kergoat, L., Grippa, M., de Rosnay, P., Timouk,
F., Le Dantec, V., Demarez, V., Lavenu, F., Arjounin, M., Lebel, T.,
Soumaguel, N., Ceschia, E., Mougenot, B., Baup, F., Frappart, F., Frison, P.
L., Gardelle, J., Gruhier, C., Jarlan, L., Mangiarotti, S., Sanou, B.,
Tracol, Y., Guichard, F., Trichon, V., Diarra, L., Soumaré, A.,
Koité, M., Dembélé, F., Lloyd, C., Hanan, N. P., Damesin, C.,
Delon, C., Serça, D., Galy-Lacaux, C., Seghieri, J., Becerra, S., Dia,
H., Gangneron, F., and Mazzega, P.: The AMMA-CATCH Gourma observatory site in
Mali: Relating climatic variations to changes in vegetation, surface
hydrology, fluxes and natural resources, J. Hydrol., 375, 14–33,
https://doi.org/10.1016/j.jhydrol.2009.06.045, 2009.
Nielsen, I. B.: Ground based evidence of woody cover trends and an
examination of the potential of the Senegalese Sahel as a carbon sink,
Copenhagen University, Copenhagen, Denmark, 2016.
Nord, J.: LPJ-GUESS Ecosystem Model, available at: http://web.nateko.lu.se/lpj-guess/,
last access: 27 December 2020.
Panthou, G., Vischel, T., and Lebel, T.: Recent trends in the regime of
extreme rainfall in the Central Sahel, Int. J. Climatol., 34,
3998–4006, https://doi.org/10.1002/joc.3984, 2014.
Pascale, S., Lucarini, V., Feng, X., Porporato, A., and ul Hasson, S.:
Projected changes of rainfall seasonality and dry spells in a high
greenhouse gas emissions scenario, Clim. Dynam., 46, 1331–1350,
https://doi.org/10.1007/s00382-015-2648-4, 2016.
Paschalis, A., Fatichi, S., Zscheischler, J., Ciais, P., Bahn, M., Boysen,
L., Chang, J., De Kauwe, M., Estiarte, M., Goll, D., Hanson, P. J., Harper,
A. B., Hou, E., Kigel, J., Knapp, A. K., Larsen, K. S., Li, W., Lienert, S.,
Luo, Y., Meir, P., Nabel, J. E. M. S., Ogaya, R., Parolari, A. J., Peng, C.,
Peñuelas, J., Pongratz, J., Rambal, S., Schmidt, I. K., Shi, H.,
Sternberg, M., Tian, H., Tschumi, E., Ukkola, A., Vicca, S., Viovy, N.,
Wang, Y. P., Wang, Z., Williams, K., Wu, D., and Zhu, Q.: Rainfall
manipulation experiments as simulated by terrestrial biosphere models: Where
do we stand?, Glob. Change Biol., 26, 3336–3355, https://doi.org/10.1111/gcb.15024,
2020.
Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J.,
Broquet, G., Canadell, J. G., Chevallier, F., Liu, Y. Y., Running, S. W.,
Sitch, S., and Van Der Werf, G. R.: Contribution of semi-arid ecosystems to
interannual variability of the global carbon cycle, Nature, 509,
600–603, https://doi.org/10.1038/nature13376, 2014.
Ramier, D., Boulain, N., Cappelaere, B., Timouk, F., Rabanit, M., Lloyd, C.
R., Boubkraoui, S., Métayer, F., Descroix, L., and Wawrzyniak, V.:
Towards an understanding of coupled physical and biological processes in the
cultivated Sahel – 1. Energy and water, J. Hydrol., 375, 204–216,
https://doi.org/10.1016/j.jhydrol.2008.12.002, 2009.
Reynolds, J. F., Smith, D. M. S., Lambin, E. F., Turner, B. L., Mortimore, M., Batterbury, S. P.
J., Downing, T. E., Dowlatabadi, H., Fernandez, R. J., Herrick, J. E., Huber-Sannwald, E., Jiang, H.,
Leemans, R., Lynam, T., Maestre, F. T., Ayarza, M., and Walker, B.: Global Desertification: Building
a Science for Dryland Development, Science, 316, 847–851, https://doi.org/10.1126/science.1131634,
2007.
Sankaran, M., Hanan, N. P., Scholes, R. J., Ratnam, J., Augustine, D. J.,
Cade, B. S., Gignoux, J., Higgins, S. I., Le Roux, X., Ludwig, F., Ardo, J.,
Banyikwa, F., Bronn, A., Bucini, G., Caylor, K. K., Coughenour, M. B.,
Diouf, A., Ekaya, W., Feral, C. J., February, E. C., Frost, P. G. H.,
Hiernaux, P., Hrabar, H., Metzger, K. L., Prins, H. H. T., Ringrose, S.,
Sea, W., Tews, J., Worden, J., and Zambatis, N.: Determinants of woody cover
in African savannas, Nature, 438, 846–849, https://doi.org/10.1038/nature04070,
2005.
Sankaran, M., Ratnam, J., and Hanan, N.: Woody cover in African savannas: The
role of resources, fire and herbivory, Global Ecol. Biogeogr., 17,
236–245, https://doi.org/10.1111/j.1466-8238.2007.00360.x, 2008.
Sibret, T.: The Sahelian drylands under pressure: studying the impact of
environmental factors on vegetation in Dahra, Senegal, Ghent University, Ghent, Belgium, 2017.
Sibret, T., Verbruggen, W., Peaucelle, M., Verryckt, L. T., Bauters, M.,
Combe, M., Boeckx, P., and Verbeeck, H.: High photosynthetic capacity of
Sahelian C3 and C4 plants, Photosynth. Res., https://doi.org/10.1007/s11120-020-00801-3, 2021.
Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., and Bronaugh, D.:
Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future
climate projections, J. Geophys. Res.-Atmos., 118, 2473–2493,
https://doi.org/10.1002/jgrd.50188, 2013.
Sjöström, M., Ardö, J., Eklundh, L., El-Tahir, B. A., El-Khidir, H. A. M., Hellström, M., Pilesjö, P., and Seaquist, J.: Evaluation of satellite based indices for gross primary production estimates in a sparse savanna in the Sudan, Biogeosciences, 6, 129–138, https://doi.org/10.5194/bg-6-129-2009, 2009.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model, Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, 2014.
Tagesson, T., Fensholt, R., Guiro, I., Rasmussen, M. O., Huber, S., Mbow,
C., Garcia, M., Horion, S., Sandholt, I., Holm-Rasmussen, B., Göttsche,
F. M., Ridler, M.-E., Olén, N., Lundegard Olsen, J., Ehammer, A.,
Madsen, M., Olesen, F. S., and Ardö, J.: Ecosystem properties of semiarid
savanna grassland in West Africa and its relationship with environmental
variability, Glob. Change Biol., 21, 250–264, https://doi.org/10.1111/gcb.12734,
2015.
Tagesson, T., Fensholt, R., Cappelaere, B., Mougin, E., Horion, S., Kergoat,
L., Nieto, H., Mbow, C., Ehammer, A., Demarty, J., and Ardö, J.:
Spatiotemporal variability in carbon exchange fluxes across the Sahel,
Agr. Forest Meteorol., 226/227, 108–118,
https://doi.org/10.1016/j.agrformet.2016.05.013, 2016a.
Tagesson, T., Ardö, J., Guiro, I., Cropley, F., Mbow, C., Horion, S., Ehammer, A., Mougin, E.,
Delon, C., Galy-Lacaux, C., and Fensholt, R.: Very high CO2 exchange fluxes at the peak of the
rainy season in a West African grazed semi-arid savanna ecosystem, Geogr. Tidsskr.-Danish J.
Geogr., 116, 93–109, https://doi.org/10.1080/00167223.2016.1178072, 2016b.
Taylor, C. M., Belusic, D., Guichard, F., Parker, D. J., Vischel, T., Bock,
O., Harris, P. P., Janicot, S., Klein, C., and Panthou, G.: Frequency of
extreme Sahelian storms tripled since 1982 in satellite observations,
Nature, 544, 475–478, https://doi.org/10.1038/nature22069, 2017.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001.
Thonicke, K., Venevsky, S., Sitch, S., and Cramer, W.: The role of fire
disturbance for global vegetation dynamics: Coupling fire into a dynamic
global vegetation model, Glob. Ecol. Biogeogr., 10, 661–677,
https://doi.org/10.1046/j.1466-822X.2001.00175.x, 2001.
Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C.: The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model, Biogeosciences, 7, 1991–2011, https://doi.org/10.5194/bg-7-1991-2010, 2010.
United Nations Office for the Coordination of Humanitarian Affairs: Sahel
Regional Strategy Mid-Year Review, available at: https://reliefweb.int/report/mali/sahel-regional-strategy-midyear-review-2013 (last access: 27 December 2020), 2013.
van Wijk, M. T. and Rodriguez-Iturbe, I.: Tree-grass competition in space
and time: Insights from a simple cellular automata model based on
ecohydrological dynamics, Water Resour. Res., 38, 1–15,
https://doi.org/10.1029/2001wr000768, 2002.
Velluet, C., Demarty, J., Cappelaere, B., Braud, I., Issoufou, H. B.-A., Boulain, N., Ramier, D., Mainassara, I., Charvet, G., Boucher, M., Chazarin, J.-P., Oï, M., Yahou, H., Maidaji, B., Arpin-Pont, F., Benarrosh, N., Mahamane, A., Nazoumou, Y., Favreau, G., and Seghieri, J.: Building a field- and model-based climatology of local water and energy cycles in the cultivated Sahel – annual budgets and seasonality, Hydrol. Earth Syst. Sci., 18, 5001–5024, https://doi.org/10.5194/hess-18-5001-2014, 2014.
Viovy, N.: CRUNCEP Version 7 – Atmospheric Forcing Data for the Community
Land Model, Res. Data Arch. Natl. Cent. Atmos. Res. Comput. Inf. Syst. Lab., available at: https://rda.ucar.edu/datasets/ds314.3/ (last access: 29
November 2019), 2018.
Wang, L., D'Odorico, P., Evans, J. P., Eldridge, D. J., McCabe, M. F., Caylor, K. K., and King, E. G.: Dryland ecohydrology and climate change: critical issues and technical advances, Hydrol. Earth Syst. Sci., 16, 2585–2603, https://doi.org/10.5194/hess-16-2585-2012, 2012.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and
Viterbo, P.: The WFDEI meteorological forcing data set: WATCH Forcing Data
methodology applied to ERA-Interim reanalysis data, Water Resour. Res.,
50, 7505–7514, https://doi.org/10.1002/2014WR015638, 2014.
Whitley, R., Beringer, J., Hutley, L. B., Abramowitz, G., De Kauwe, M. G., Evans, B., Haverd, V., Li, L., Moore, C., Ryu, Y., Scheiter, S., Schymanski, S. J., Smith, B., Wang, Y.-P., Williams, M., and Yu, Q.: Challenges and opportunities in land surface modelling of savanna ecosystems, Biogeosciences, 14, 4711–4732, https://doi.org/10.5194/bg-14-4711-2017, 2017.
Wu, D., Ciais, P., Viovy, N., Knapp, A. K., Wilcox, K., Bahn, M., Smith, M. D., Vicca, S., Fatichi, S., Zscheischler, J., He, Y., Li, X., Ito, A., Arneth, A., Harper, A., Ukkola, A., Paschalis, A., Poulter, B., Peng, C., Ricciuto, D., Reinthaler, D., Chen, G., Tian, H., Genet, H., Mao, J., Ingrisch, J., Nabel, J. E. S. M., Pongratz, J., Boysen, L. R., Kautz, M., Schmitt, M., Meir, P., Zhu, Q., Hasibeder, R., Sippel, S., Dangal, S. R. S., Sitch, S., Shi, X., Wang, Y., Luo, Y., Liu, Y., and Piao, S.: Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites, Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, 2018.
Xu, X., Medvigy, D., and Rodriguez-Iturbe, I.: Relation between rainfall
intensity and savanna tree abundance explained by water use strategies,
P. Natl. Acad. Sci., 112, 12992–12996, https://doi.org/10.1073/pnas.1517382112,
2015.
Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M., and Guan, K.: Diversity
in plant hydraulic traits explains seasonal and inter-annual variations of
vegetation dynamics in seasonally dry tropical forests, New Phytol., 212,
80–95, https://doi.org/10.1111/nph.14009, 2016.
Xu, X., Medvigy, D., Trugman, A. T., Guan, K., Good, S. P., and
Rodriguez-Iturbe, I.: Tree cover shows strong sensitivity to precipitation
variability across the global tropics, Global Ecol. Biogeogr., 27,
450–460, https://doi.org/10.1111/geb.12707, 2018.
Zhang, W., Brandt, M., Guichard, F., Tian, Q., and Fensholt, R.: Using
long-term daily satellite based rainfall data (1983–2015) to analyze
spatio-temporal changes in the sahelian rainfall regime, J. Hydrol., 550,
427–440, https://doi.org/10.1016/j.jhydrol.2017.05.033, 2017.
Zhang, W., Brandt, M., Tong, X., Tian, Q., and Fensholt, R.: Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel, Biogeosciences, 15, 319–330, https://doi.org/10.5194/bg-15-319-2018, 2018.
Zhang, W., Brandt, M., Penuelas, J., Guichard, F., Tong, X., Tian, F., and
Fensholt, R.: Ecosystem structural changes controlled by altered rainfall
climatology in tropical savannas, Nat. Commun., 10, 671,
https://doi.org/10.1038/s41467-019-08602-6, 2019.
Short summary
A large part of Earth's land surface is covered by dryland ecosystems, which are subject to climate extremes that are projected to increase under future climate scenarios. By using a mathematical vegetation model, we studied the impact of single years of extreme rainfall on the vegetation in the Sahel. We found a contrasting response of grasses and trees to these extremes, strongly dependent on the way precipitation is spread over the rainy season, as well as a long-term impact on CO2 uptake.
A large part of Earth's land surface is covered by dryland ecosystems, which are subject to...
Altmetrics
Final-revised paper
Preprint