Articles | Volume 19, issue 12
Biogeosciences, 19, 2989–2999, 2022
https://doi.org/10.5194/bg-19-2989-2022
Biogeosciences, 19, 2989–2999, 2022
https://doi.org/10.5194/bg-19-2989-2022
Research article
21 Jun 2022
Research article | 21 Jun 2022

Updated estimation of forest biomass carbon pools in China, 1977–2018

Chen Yang et al.

Related authors

Patterns of nitrogen and phosphorus pools in terrestrial ecosystems in China
Yi-Wei Zhang, Yanpei Guo, Zhiyao Tang, Yuhao Feng, Xinrong Zhu, Wenting Xu, Yongfei Bai, Guoyi Zhou, Zongqiang Xie, and Jingyun Fang
Earth Syst. Sci. Data, 13, 5337–5351, https://doi.org/10.5194/essd-13-5337-2021,https://doi.org/10.5194/essd-13-5337-2021, 2021
Short summary
Simulating the spatiotemporal variations in aboveground biomass in Inner Mongolian grasslands under environmental changes
Guocheng Wang, Zhongkui Luo, Yao Huang, Wenjuan Sun, Yurong Wei, Liujun Xiao, Xi Deng, Jinhuan Zhu, Tingting Li, and Wen Zhang
Atmos. Chem. Phys., 21, 3059–3071, https://doi.org/10.5194/acp-21-3059-2021,https://doi.org/10.5194/acp-21-3059-2021, 2021
Short summary
Evaluation of CH4MODwetland and Terrestrial Ecosystem Model (TEM) used to estimate global CH4 emissions from natural wetlands
Tingting Li, Yanyu Lu, Lingfei Yu, Wenjuan Sun, Qing Zhang, Wen Zhang, Guocheng Wang, Zhangcai Qin, Lijun Yu, Hailing Li, and Ran Zhang
Geosci. Model Dev., 13, 3769–3788, https://doi.org/10.5194/gmd-13-3769-2020,https://doi.org/10.5194/gmd-13-3769-2020, 2020
Short summary
Increasing soil carbon stocks in eight permanent forest plots in China
Jianxiao Zhu, Chuankuan Wang, Zhang Zhou, Guoyi Zhou, Xueyang Hu, Lai Jiang, Yide Li, Guohua Liu, Chengjun Ji, Shuqing Zhao, Peng Li, Jiangling Zhu, Zhiyao Tang, Chengyang Zheng, Richard A. Birdsey, Yude Pan, and Jingyun Fang
Biogeosciences, 17, 715–726, https://doi.org/10.5194/bg-17-715-2020,https://doi.org/10.5194/bg-17-715-2020, 2020
Short summary
Global soil–climate–biome diagram: linking surface soil properties to climate and biota
Xia Zhao, Yuanhe Yang, Haihua Shen, Xiaoqing Geng, and Jingyun Fang
Biogeosciences, 16, 2857–2871, https://doi.org/10.5194/bg-16-2857-2019,https://doi.org/10.5194/bg-16-2857-2019, 2019
Short summary

Related subject area

Biodiversity and Ecosystem Function: Terrestrial
Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets
Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese
Biogeosciences, 19, 2699–2727, https://doi.org/10.5194/bg-19-2699-2022,https://doi.org/10.5194/bg-19-2699-2022, 2022
Short summary
Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022,https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022,https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary
Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi
Melanie S. Verlinden, Hamada AbdElgawad, Arne Ven, Lore T. Verryckt, Sebastian Wieneke, Ivan A. Janssens, and Sara Vicca
Biogeosciences, 19, 2353–2364, https://doi.org/10.5194/bg-19-2353-2022,https://doi.org/10.5194/bg-19-2353-2022, 2022
Short summary
Main drivers of plant diversity patterns of rubber plantations in the Greater Mekong Subregion
Guoyu Lan, Bangqian Chen, Chuan Yang, Rui Sun, Zhixiang Wu, and Xicai Zhang
Biogeosciences, 19, 1995–2005, https://doi.org/10.5194/bg-19-1995-2022,https://doi.org/10.5194/bg-19-1995-2022, 2022
Short summary

Cited articles

Cai, W., He, N., Li, M., Xu, L., Wang, L., Zhu, J., Zeng, N., Yan, P., Si, G., Zhang, X., Cen, X., Yu, G., and Sun, O.: Carbon sequestration of Chinese forests from 2010 to 2060: Spatiotemporal dynamics and its regulatory strategies, Sci. Bull., 67, 836–843, 2021. 
Cao, J., Wang, X., Tian, Y., Wen, Z., and Zha, T.: Pattern of carbon allocation across three different stages of stand development of a Chinese pine (Pinus tabulaeformis) forest, Ecol. Res., 27, 883–892, 2012. 
Cao, S.: Why large-scale afforestation efforts in China have failed to solve the desertification problem, Environ. Sci. Technol., 42, 1826–1831, 2008. 
Cao, S., Chen, L., Shankman, D., Wang, C., Wang, X., and Zhang, H.: Excessive reliance on afforestation in China's arid and semi-arid regions: Lessons in ecological restoration, Earth-Sci. Rev., 104, 240–245, 2011. 
Download
Short summary
Quantifying China's forest biomass C pool is important in understanding C cycling in forests. However, most of studies on forest biomass C pool were limited to the period of 2004–2008. Here, we used a biomass expansion factor method to estimate C pool from 1977 to 2018. The results suggest that afforestation practices, forest growth, and environmental changes were the main drivers of increased C sink. Thus, this study provided an essential basis for achieving China's C neutrality target.
Altmetrics
Final-revised paper
Preprint