Articles | Volume 19, issue 17
https://doi.org/10.5194/bg-19-4107-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4107-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Carbon isotopic ratios of modern C3 and C4 vegetation on the Indian peninsula and changes along the plant–soil–river continuum – implications for vegetation reconstructions
Frédérique M. S. A. Kirkels
CORRESPONDING AUTHOR
Department of Earth Sciences, Faculty of Geosciences, Utrecht
University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Hugo J. de Boer
Copernicus Institute of
Sustainable Development, Faculty of Geosciences, Utrecht University,
Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Paulina Concha Hernández
Department of Earth Sciences, Faculty of Geosciences, Utrecht
University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Chris R. T. Martes
Department of Earth Sciences, Faculty of Geosciences, Utrecht
University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Marcel T. J. van der Meer
Department of Marine Microbiology and Biogeochemistry, NIOZ Royal
Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the
Netherlands
Sayak Basu
Department of Earth Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur 741246, India
present address: Geological Oceanography Department, National
Institute of Oceanography, Dona Paula, Goa 403004, India
Muhammed O. Usman
Geological Institute, ETH Zurich, Sonneggstrasse 5, 8092
Zurich, Switzerland
present address: Department of Physical & Environmental Sciences,
University of Toronto Scarborough, Toronto, Ontario M1C1A4, Canada
Department of Earth Sciences, Faculty of Geosciences, Utrecht
University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Related authors
Frédérique M. S. A. Kirkels, Huub M. Zwart, Muhammed O. Usman, Suning Hou, Camilo Ponton, Liviu Giosan, Timothy I. Eglinton, and Francien Peterse
Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, https://doi.org/10.5194/bg-19-3979-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Jingjing Guo, Miriam Glendell, Jeroen Meersmans, Frédérique Kirkels, Jack J. Middelburg, and Francien Peterse
Biogeosciences, 17, 3183–3201, https://doi.org/10.5194/bg-17-3183-2020, https://doi.org/10.5194/bg-17-3183-2020, 2020
Short summary
Short summary
The fluxes of soil organic carbon (OC) transport from land to sea are poorly constrained, mostly due to the lack of a specific tracer for soil OC. Here we evaluate the use of specific molecules derived from soil bacteria as a tracer for soil OC in a small river catchment. We find that the initial soil signal is lost upon entering the aquatic environment. However, the local environmental history of the catchment is reflected by these molecules in the lake sediments that act as their sink.
Muhammed Ojoshogu Usman, Frédérique Marie Sophie Anne Kirkels, Huub Michel Zwart, Sayak Basu, Camilo Ponton, Thomas Michael Blattmann, Michael Ploetze, Negar Haghipour, Cameron McIntyre, Francien Peterse, Maarten Lupker, Liviu Giosan, and Timothy Ian Eglinton
Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, https://doi.org/10.5194/bg-15-3357-2018, 2018
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
EGUsphere, https://doi.org/10.5194/egusphere-2024-1915, https://doi.org/10.5194/egusphere-2024-1915, 2024
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2-history during the last glacial to interglacial transition. Using various geochemical tracers on archives from both intermediate and surface waters reveal enhanced storage of carbon at depth during the last glacial maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Allix J. Baxter, Francien Peterse, Dirk Verschuren, Aihemaiti Maitituerdi, Nicolas Waldmann, and Jaap S. Sinninghe Damsté
Biogeosciences, 21, 2877–2908, https://doi.org/10.5194/bg-21-2877-2024, https://doi.org/10.5194/bg-21-2877-2024, 2024
Short summary
Short summary
This study investigates the impact of long-term lake-system evolution on the climate signal recorded by glycerol dialkyl glycerol tetraethers (GDGTs), a popular biomarker in paleoclimate research. It compares downcore changes in GDGTs in the 250 000 year sediment sequence of Lake Chala (Kenya/Tanzania) to independent data for lake mixing and water-column chemistry. These factors influence the GDGT proxies in the earliest depositional phases (before ~180 ka), confounding the climate signal.
Jingjing Guo, Martin Ziegler, Louise Fuchs, Youbin Sun, and Francien Peterse
EGUsphere, https://doi.org/10.5194/egusphere-2024-1648, https://doi.org/10.5194/egusphere-2024-1648, 2024
Short summary
Short summary
In this study, we use the distribution of soil bacterial membrane lipids stored on the Chinese Loess Plateau (CLP) to quantitatively reconstruct variations in precipitation amount over the past 130 kyr. The precipitation record shows orbital- and millennial-scale variations and varies at precession and obliquity scale. The application of this precipitation proxy across the CLP indicates a more pronounced spatial gradient during glacials, when the western CLP experiences more arid conditions.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Raquel González-Armas, Jordi Vilà-Guerau de Arellano, Mary Rose Mangan, Oscar Hartogensis, and Hugo de Boer
Biogeosciences, 21, 2425–2445, https://doi.org/10.5194/bg-21-2425-2024, https://doi.org/10.5194/bg-21-2425-2024, 2024
Short summary
Short summary
This paper investigates the water and CO2 exchange for an alfalfa field with observations and a model with spatial scales ranging from the stomata to the atmospheric boundary layer. To relate the environmental factors to the leaf gas exchange, we developed three equations that quantify how many of the temporal changes of the leaf gas exchange occur due to changes in the environmental variables. The novelty of the research resides in the capacity to dissect the dynamics of the leaf gas exchange.
Yord W. Yedema, Timme Donders, Francien Peterse, and Francesca Sangiorgi
J. Micropalaeontol., 42, 257–276, https://doi.org/10.5194/jm-42-257-2023, https://doi.org/10.5194/jm-42-257-2023, 2023
Short summary
Short summary
The pollen and dinoflagellate cyst content of 21 surface sediments from the northern Gulf of Mexico is used to test the applicability of three palynological ratios (heterotroph/autotroph, pollen/dinocyst, and pollen/bisaccate ratio) as proxies for marine productivity and distance to the coast/river. Redundancy analysis confirms the suitability of these three ratios, where the H/A ratio can be used as an indicator of primary production, and the P/B ratio best tracks the distance to the coast.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Katrin Hättig, Devika Varma, Stefan Schouten, and Marcel T. J. van der Meer
Clim. Past, 19, 1919–1930, https://doi.org/10.5194/cp-19-1919-2023, https://doi.org/10.5194/cp-19-1919-2023, 2023
Short summary
Short summary
Water isotopes, both hydrogen and oxygen, correlate with the salinity of the sea. Here we reconstruct the surface seawater isotopic composition during the last deglaciation based on the measured hydrogen isotopic composition of alkenones, organic compounds derived from haptophyte algae, and compared it to oxygen isotopes of calcite shells produced in the bottom water. Our results suggest that surface seawater experienced more freshening during the last 20 000 years than the bottom seawater.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Frédérique M. S. A. Kirkels, Huub M. Zwart, Muhammed O. Usman, Suning Hou, Camilo Ponton, Liviu Giosan, Timothy I. Eglinton, and Francien Peterse
Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, https://doi.org/10.5194/bg-19-3979-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Gabriella M. Weiss, Julie Lattaud, Marcel T. J. van der Meer, and Timothy I. Eglinton
Clim. Past, 18, 233–248, https://doi.org/10.5194/cp-18-233-2022, https://doi.org/10.5194/cp-18-233-2022, 2022
Short summary
Short summary
Here we study the elemental signatures of plant wax compounds as well as molecules from algae and bacteria to understand how water sources changed over the last 11 000 years in the northeastern part of Europe surrounding the Baltic Sea. Our results show diversity in plant and aquatic microorganisms following the melting of the large ice sheet that covered northern Europe as the regional climate continued to warm. A shift in water source from ice melt to rain also occurred around the same time.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Tessa Sophia van der Voort, Thomas Michael Blattmann, Muhammed Usman, Daniel Montluçon, Thomas Loeffler, Maria Luisa Tavagna, Nicolas Gruber, and Timothy Ian Eglinton
Earth Syst. Sci. Data, 13, 2135–2146, https://doi.org/10.5194/essd-13-2135-2021, https://doi.org/10.5194/essd-13-2135-2021, 2021
Short summary
Short summary
Ocean sediments form the largest and longest-term storage of organic carbon. Despite their global importance, information on these sediments is often scattered, incomplete or inaccessible. Here we present MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon, mosaic.ethz.ch), a (radio)carbon-centric database that addresses this information gap. This database provides a platform for assessing the transport, deposition and storage of carbon in ocean surface sediments.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Loes G. J. van Bree, Francien Peterse, Allix J. Baxter, Wannes De Crop, Sigrid van Grinsven, Laura Villanueva, Dirk Verschuren, and Jaap S. Sinninghe Damsté
Biogeosciences, 17, 5443–5463, https://doi.org/10.5194/bg-17-5443-2020, https://doi.org/10.5194/bg-17-5443-2020, 2020
Short summary
Short summary
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are used as a paleothermometer based on their temperature dependence in global soils, but aquatic production complicates their use in lakes. BrGDGTs in the water column of Lake Chala, East Africa, respond to oxygen conditions and mixing. Changes in their signal can be linked to bacterial community composition rather than membrane adaptation to changing conditions. Their integrated signal in the sediment reflects mean air temperature.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Jordi Vilà-Guerau de Arellano, Patrizia Ney, Oscar Hartogensis, Hugo de Boer, Kevin van Diepen, Dzhaner Emin, Geiske de Groot, Anne Klosterhalfen, Matthias Langensiepen, Maria Matveeva, Gabriela Miranda-García, Arnold F. Moene, Uwe Rascher, Thomas Röckmann, Getachew Adnew, Nicolas Brüggemann, Youri Rothfuss, and Alexander Graf
Biogeosciences, 17, 4375–4404, https://doi.org/10.5194/bg-17-4375-2020, https://doi.org/10.5194/bg-17-4375-2020, 2020
Short summary
Short summary
The CloudRoots field experiment has obtained an open comprehensive observational data set that includes soil, plant, and atmospheric variables to investigate the interactions between a heterogeneous land surface and its overlying atmospheric boundary layer, including the rapid perturbations of clouds in evapotranspiration. Our findings demonstrate that in order to understand and represent diurnal variability, we need to measure and model processes from the leaf to the landscape scales.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Jingjing Guo, Miriam Glendell, Jeroen Meersmans, Frédérique Kirkels, Jack J. Middelburg, and Francien Peterse
Biogeosciences, 17, 3183–3201, https://doi.org/10.5194/bg-17-3183-2020, https://doi.org/10.5194/bg-17-3183-2020, 2020
Short summary
Short summary
The fluxes of soil organic carbon (OC) transport from land to sea are poorly constrained, mostly due to the lack of a specific tracer for soil OC. Here we evaluate the use of specific molecules derived from soil bacteria as a tracer for soil OC in a small river catchment. We find that the initial soil signal is lost upon entering the aquatic environment. However, the local environmental history of the catchment is reflected by these molecules in the lake sediments that act as their sink.
Emily Dearing Crampton-Flood, Lars J. Noorbergen, Damian Smits, R. Christine Boschman, Timme H. Donders, Dirk K. Munsterman, Johan ten Veen, Francien Peterse, Lucas Lourens, and Jaap S. Sinninghe Damsté
Clim. Past, 16, 523–541, https://doi.org/10.5194/cp-16-523-2020, https://doi.org/10.5194/cp-16-523-2020, 2020
Short summary
Short summary
The mid-Pliocene warm period (mPWP; 3.3–3.0 million years ago) is thought to be the last geological interval with similar atmospheric carbon dioxide concentrations as the present day. Further, the mPWP was 2–3 °C warmer than present, making it a good analogue for estimating the effects of future climate change. Here, we construct a new precise age model for the North Sea during the mPWP, and provide a detailed reconstruction of terrestrial and marine climate using a multi-proxy approach.
Caitlyn R. Witkowski, Sylvain Agostini, Ben P. Harvey, Marcel T. J. van der Meer, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 4451–4461, https://doi.org/10.5194/bg-16-4451-2019, https://doi.org/10.5194/bg-16-4451-2019, 2019
Short summary
Short summary
Carbon dioxide concentrations (pCO2) in the atmosphere play an integral role in Earth system dynamics, especially climate. Past climates help us understand future ones, but reconstructing pCO2 over the geologic record remains a challenge. This research demonstrates new approaches for exploring past pCO2 via the carbon isotope fractionation in general algal lipids, which we test over a high CO2 gradient from a naturally occurring CO2 seep.
Charlotte Miller, Jemma Finch, Trevor Hill, Francien Peterse, Marc Humphries, Matthias Zabel, and Enno Schefuß
Clim. Past, 15, 1153–1170, https://doi.org/10.5194/cp-15-1153-2019, https://doi.org/10.5194/cp-15-1153-2019, 2019
Short summary
Short summary
Here we reconstruct vegetation and precipitation, in eastern South Africa, over the last 32 000 years, by measuring the stable carbon and hydrogen isotope composition of plant waxes from Mfabeni peat bog (KwaZulu-Natal). Our results indicate that the late Quaternary climate in eastern South Africa did not respond directly to orbital forcing or to changes in sea-surface temperatures. Our findings stress the influence of the Southern Hemisphere westerlies in driving climate change in the region.
Darci Rush, Helen M. Talbot, Marcel T. J. van der Meer, Ellen C. Hopmans, Ben Douglas, and Jaap S. Sinninghe Damsté
Biogeosciences, 16, 2467–2479, https://doi.org/10.5194/bg-16-2467-2019, https://doi.org/10.5194/bg-16-2467-2019, 2019
Short summary
Short summary
Sapropels are layers of sediment that regularly occur in the Mediterranean. They indicate periods when the Mediterranean Sea water contained no oxygen, a gas vital for most large organisms. This research investigated a key process in the nitrogen cycle (anaerobic ammonium oxidation, anammox), which removes nitrogen – an important nutrient to algae – from the water, during sapropel events. Using lipids to trace this process, we found that anammox was active during the no-oxygen times.
Rémon M. Saaltink, Maria Barciela-Rial, Thijs van Kessel, Stefan C. Dekker, Hugo J. de Boer, Claire Chassange, Jasper Griffioen, Martin J. Wassen, and Johan C. Winterwerp
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-194, https://doi.org/10.5194/hess-2019-194, 2019
Revised manuscript not accepted
Short summary
Short summary
This paper focusses on exploring an alternative approach that uses natural processes, rather than a technological solution, to speed up drainage of soft sediment. In a controlled column experiment, we studied how Phragmites australis can act as an ecological engineer that enhances drainage. The presented results provide information needed for predictive modelling of plants as ecological engineers to speed up soil forming processes in the construction of wetlands with soft cohesive sediment.
Gabriella M. Weiss, David Chivall, Sebastian Kasper, Hideto Nakamura, Fiz da Costa, Philippe Soudant, Jaap S. Sinninghe Damsté, Stefan Schouten, and Marcel T. J. van der Meer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-147, https://doi.org/10.5194/bg-2019-147, 2019
Preprint withdrawn
Short summary
Short summary
In this study, we used four different haptophyte species and six different organic compounds to investigate the relationship between organic matter synthesis and salinity. We showed that creation in different parts of the cell (chloroplast versus cytosol) determined which compounds retain a correlation between their hydrogen isotopes and salinity. This is important for using hydrogen isotopes to reconstruct salinity in the geologic record.
Loeka L. Jongejans, Jens Strauss, Josefine Lenz, Francien Peterse, Kai Mangelsdorf, Matthias Fuchs, and Guido Grosse
Biogeosciences, 15, 6033–6048, https://doi.org/10.5194/bg-15-6033-2018, https://doi.org/10.5194/bg-15-6033-2018, 2018
Short summary
Short summary
Arctic warming mobilizes belowground organic matter in northern high latitudes. This study focused on the size of organic carbon pools and organic matter quality in ice-rich permafrost on the Baldwin Peninsula, West Alaska. We analyzed biogeochemistry and found that three-quarters of the carbon is stored in degraded permafrost deposits. Nonetheless, using biomarker analyses, we showed that the organic matter in undisturbed yedoma permafrost has a higher potential for decomposition.
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Julie Lattaud, Frédérique Kirkels, Francien Peterse, Chantal V. Freymond, Timothy I. Eglinton, Jens Hefter, Gesine Mollenhauer, Sergio Balzano, Laura Villanueva, Marcel T. J. van der Meer, Ellen C. Hopmans, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 4147–4161, https://doi.org/10.5194/bg-15-4147-2018, https://doi.org/10.5194/bg-15-4147-2018, 2018
Short summary
Short summary
Long-chain diols (LCDs) are biomarkers that occur widespread in marine environments and also in lakes and rivers. In this study, we looked at the distribution of LCDs in three river systems (Godavari, Danube, and Rhine) in relation to season, precipitation, and temperature. We found out that the LCDs are likely being produced in calm areas of the river systems and that marine LCDs have a different distribution than riverine LCDs.
Muhammed Ojoshogu Usman, Frédérique Marie Sophie Anne Kirkels, Huub Michel Zwart, Sayak Basu, Camilo Ponton, Thomas Michael Blattmann, Michael Ploetze, Negar Haghipour, Cameron McIntyre, Francien Peterse, Maarten Lupker, Liviu Giosan, and Timothy Ian Eglinton
Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, https://doi.org/10.5194/bg-15-3357-2018, 2018
Timme H. Donders, Niels A. G. M. van Helmond, Roel Verreussel, Dirk Munsterman, Johan ten Veen, Robert P. Speijer, Johan W. H. Weijers, Francesca Sangiorgi, Francien Peterse, Gert-Jan Reichart, Jaap S. Sinninghe Damsté, Lucas Lourens, Gesa Kuhlmann, and Henk Brinkhuis
Clim. Past, 14, 397–411, https://doi.org/10.5194/cp-14-397-2018, https://doi.org/10.5194/cp-14-397-2018, 2018
Short summary
Short summary
The buildup and melting of ice during the early glaciations in the Northern Hemisphere, around 2.5 million years ago, were far shorter in duration than during the last million years. Based on molecular compounds and microfossils from sediments dating back to the early glaciations we show that the temperature on land and in the sea changed simultaneously and was a major factor in the ice buildup in the Northern Hemisphere. These data provide key insights into the dynamics of early glaciations.
Gabriella M. Weiss, Eva Y. Pfannerstill, Stefan Schouten, Jaap S. Sinninghe Damsté, and Marcel T. J. van der Meer
Biogeosciences, 14, 5693–5704, https://doi.org/10.5194/bg-14-5693-2017, https://doi.org/10.5194/bg-14-5693-2017, 2017
Short summary
Short summary
Algal-derived compounds allow us to make assumptions about environmental conditions in the past. In order to better understand how organisms record environmental conditions, we grew microscopic marine algae at different light intensities, salinities, and alkalinities in a temperature-controlled environment. We determined how these environmental parameters affected specific algal-derived compounds, especially their relative deuterium content, which seems to be mainly affected by salinity.
Liviu Giosan, Camilo Ponton, Muhammed Usman, Jerzy Blusztajn, Dorian Q. Fuller, Valier Galy, Negar Haghipour, Joel E. Johnson, Cameron McIntyre, Lukas Wacker, and Timothy I. Eglinton
Earth Surf. Dynam., 5, 781–789, https://doi.org/10.5194/esurf-5-781-2017, https://doi.org/10.5194/esurf-5-781-2017, 2017
Short summary
Short summary
A reconstruction of erosion in the core monsoon zone of India provides unintuitive but fundamental insights: in contrast to semiarid regions that experience enhanced erosion during erratic rain events, the monsoon is annual and acts as a veritable
erosional pumpaccelerating when the land cover is minimal. The existence of such a monsoon erosional pump promises to reconcile conflicting views on the land–sea sediment and carbon transfer as well as the monsoon evolution on longer timescales.
Sandra Mariam Heinzelmann, Nicole Jane Bale, Laura Villanueva, Danielle Sinke-Schoen, Catharina Johanna Maria Philippart, Jaap Smede Sinninghe Damsté, Stefan Schouten, and Marcel Teunis Jan van der Meer
Biogeosciences, 13, 5527–5539, https://doi.org/10.5194/bg-13-5527-2016, https://doi.org/10.5194/bg-13-5527-2016, 2016
Short summary
Short summary
In order to understand microbial communities in the environment it is necessary to assess their metabolic potential. The hydrogen isotopic composition of fatty acids has been shown to be promising tool to study the general metabolism of microorganisms in pure culture. Here we showed that it is possible to study seasonal changes in the general metabolism of the whole community by studying the hydrogen isotopic composition of fatty acids.
F. Peterse, C. M. Moy, and T. I. Eglinton
Biogeosciences, 12, 933–943, https://doi.org/10.5194/bg-12-933-2015, https://doi.org/10.5194/bg-12-933-2015, 2015
S. Kasper, M. T. J. van der Meer, A. Mets, R. Zahn, J. S. Sinninghe Damsté, and S. Schouten
Clim. Past, 10, 251–260, https://doi.org/10.5194/cp-10-251-2014, https://doi.org/10.5194/cp-10-251-2014, 2014
Related subject area
Biogeochemistry: Stable Isotopes & Other Tracers
Bias in calculating gross nitrification rates in forested catchments using the triple oxygen isotopic composition (Δ17O) of stream nitrate
Position-specific kinetic isotope effects for nitrous oxide: a new expansion of the Rayleigh model
Technical note: A Bayesian mixing model to unravel isotopic data and quantify trace gas production and consumption pathways for time series data – Time-resolved FRactionation And Mixing Evaluation (TimeFRAME)
No increase is detected and modeled for the seasonal cycle amplitude of δ13C of atmospheric carbon dioxide
Separating above-canopy CO2 and O2 measurements into their atmospheric and biospheric signatures
How long does carbon stay in a near-pristine central Amazon forest? An empirical estimate with radiocarbon
Climatic controls on leaf wax hydrogen isotope ratios in terrestrial and marine sediments along a hyperarid-to-humid gradient
Fractionation of stable carbon isotopes during microbial propionate consumption in anoxic rice paddy soils
Sources and sinks of carbonyl sulfide inferred from tower and mobile atmospheric observations in the Netherlands
Downpour dynamics: outsized impacts of storm events on unprocessed atmospheric nitrate export in an urban watershed
The hidden role of dissolved organic carbon in the biogeochemical cycle of carbon in modern redox-stratified lakes
Biogeochemical processes captured by carbon isotopes in redox-stratified water columns: a comparative study of four modern stratified lakes along an alkalinity gradient
Partitioning of carbon export in the euphotic zone of the oligotrophic South China Sea
Determination of respiration and photosynthesis fractionation factors for atmospheric dioxygen inferred from a vegetation–soil–atmosphere analogue of the terrestrial biosphere in closed chambers
Permafrost degradation and nitrogen cycling in Arctic rivers: insights from stable nitrogen isotope studies
Neodymium budget in the Mediterranean Sea: evaluating the role of atmospheric dusts using a high-resolution dynamical-biogeochemical model
Nitrate isotope investigations reveal future impacts of climate change on nitrogen inputs and cycling in Arctic fjords: Kongsfjorden and Rijpfjorden (Svalbard)
Mineralization of autochthonous particulate organic carbon is a fast channel of organic matter turnover in Germany's largest drinking water reservoir
Controls on nitrite oxidation in the upper Southern Ocean: insights from winter kinetics experiments in the Indian sector
Tracing the source of nitrate in a forested stream showing elevated concentrations during storm events
Intra-skeletal variability in phosphate oxygen isotope composition reveals regional heterothermies in marine vertebrates
Isotopic differences in soil–plant–atmosphere continuum composition and control factors of different vegetation zones on the northern slope of the Qilian Mountains
An analysis of the variability in δ13C in macroalgae from the Gulf of California: indicative of carbon concentration mechanisms and isotope discrimination during carbon assimilation
Summertime productivity and carbon export potential in the Weddell Sea, with a focus on the waters adjacent to Larsen C Ice Shelf
Particulate biogenic barium tracer of mesopelagic carbon remineralization in the Mediterranean Sea (PEACETIME project)
Hydrogen and carbon isotope fractionation factors of aerobic methane oxidation in deep-sea water
Host-influenced geochemical signature in the parasitic foraminifera Hyrrokkin sarcophaga
Comparing modified substrate-induced respiration with selective inhibition (SIRIN) and N2O isotope approaches to estimate fungal contribution to denitrification in three arable soils under anoxic conditions
How are oxygen budgets influenced by dissolved iron and growth of oxygenic phototrophs in an iron-rich spring system? Initial results from the Espan Spring in Fürth, Germany
Stable isotope ratios in seawater nitrate reflect the influence of Pacific water along the northwest Atlantic margin
High-resolution 14C bomb peak dating and climate response analyses of subseasonal stable isotope signals in wood of the African baobab – a case study from Oman
Geographic variability in freshwater methane hydrogen isotope ratios and its implications for global isotopic source signatures
Seasonality of nitrogen sources, cycling, and loading in a New England river discerned from nitrate isotope ratios
Evaluating the response of δ13C in Haloxylon ammodendron, a dominant C4 species in Asian desert ecosystems, to water and nitrogen addition as well as the availability of its δ13C as an indicator of water use efficiency
Modern silicon dynamics of a small high-latitude subarctic lake
Radium-228-derived ocean mixing and trace element inputs in the South Atlantic
Nitrogen isotopic fractionations during nitric oxide production in an agricultural soil
Silicon uptake and isotope fractionation dynamics by crop species
Barium stable isotopes as a fingerprint of biological cycling in the Amazon River basin
Bottomland hardwood forest growth and stress response to hydroclimatic variation: evidence from dendrochronology and tree ring Δ13C values
N2O isotope approaches for source partitioning of N2O production and estimation of N2O reduction – validation with the 15N gas-flux method in laboratory and field studies
Technical note: Single-shell δ11B analysis of Cibicidoides wuellerstorfi using femtosecond laser ablation MC-ICPMS and secondary ion mass spectrometry
Biogeochemical evidence of anaerobic methane oxidation and anaerobic ammonium oxidation in a stratified lake using stable isotopes
Effects of 238U variability and physical transport on water column 234Th downward fluxes in the coastal upwelling system off Peru
Do degree and rate of silicate weathering depend on plant productivity?
Alpine Holocene tree-ring dataset: age-related trends in the stable isotopes of cellulose show species-specific patterns
Ideas and perspectives: The same carbon behaves like different elements – an insight into position-specific isotope distributions
Seasonal dynamics of the COS and CO2 exchange of a managed temperate grassland
Leaf-scale quantification of the effect of photosynthetic gas exchange on Δ17O of atmospheric CO2
The stable carbon isotope signature of methane produced by saprotrophic fungi
Weitian Ding, Urumu Tsunogai, and Fumiko Nakagawa
Biogeosciences, 21, 4717–4722, https://doi.org/10.5194/bg-21-4717-2024, https://doi.org/10.5194/bg-21-4717-2024, 2024
Short summary
Short summary
Past studies have used the Δ17O of stream nitrate to estimate the gross nitrification rates (GNRs) in each forested catchment by approximating the Δ17O value of soil nitrate to be equal to that of stream nitrate. Based on inference and calculation of measured data, we found that this approximation resulted in an overestimated GNR. Therefore, it is essential to clarify and verify the Δ17O NO3− values in forested soils and streams before applying the Δ17O values of stream NO3− to GNR estimation.
Elise D. Rivett, Wenjuan Ma, Nathaniel E. Ostrom, and Eric L. Hegg
Biogeosciences, 21, 4549–4567, https://doi.org/10.5194/bg-21-4549-2024, https://doi.org/10.5194/bg-21-4549-2024, 2024
Short summary
Short summary
Many different processes produce nitrous oxide (N2O), a potent greenhouse gas. Measuring the ratio of heavy and light nitrogen isotopes (15N/14N) for the non-exchangeable central and outer N atoms of N2O helps to distinguish sources of N2O. To accurately calculate the position-specific isotopic preference, we developed an expansion of the widely used Rayleigh model. Application of our new model to simulated and experimental data demonstrates its improved accuracy for analyzing N2O synthesis.
Eliza Harris, Philipp Fischer, Maciej P. Lewicki, Dominika Lewicka-Szczebak, Stephen J. Harris, and Fernando Perez-Cruz
Biogeosciences, 21, 3641–3663, https://doi.org/10.5194/bg-21-3641-2024, https://doi.org/10.5194/bg-21-3641-2024, 2024
Short summary
Short summary
Greenhouse gases are produced and consumed via a number of pathways. Quantifying these pathways helps reduce the climate and environmental footprint of anthropogenic activities. The contribution of the pathways can be estimated from the isotopic composition, which acts as a fingerprint for these pathways. We have developed the Time-resolved FRactionation And Mixing Evaluation (TimeFRAME) model to simplify interpretation and estimate the contribution of different pathways and their uncertainty.
Fortunat Joos, Sebastian Lienert, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2024-1972, https://doi.org/10.5194/egusphere-2024-1972, 2024
Short summary
Short summary
How plants regulate their exchange of CO2 and water with the atmosphere under global warming is critical for their carbon uptake and their cooling influence. We analyze the isotope ratio of atmospheric CO2 and detect no significant decadal trends in the seasonal cycle amplitude. The data are consistent with the regulation towards leaf CO2 and intrinsic water use efficiency to grow proportionally to atmospheric CO2, in contrast to recent suggestions of downregulation of CO2 and water fluxes.
Kim A. P. Faassen, Jordi Vilà-Guerau de Arellano, Raquel González-Armas, Bert G. Heusinkveld, Ivan Mammarella, Wouter Peters, and Ingrid T. Luijkx
Biogeosciences, 21, 3015–3039, https://doi.org/10.5194/bg-21-3015-2024, https://doi.org/10.5194/bg-21-3015-2024, 2024
Short summary
Short summary
The ratio between atmospheric O2 and CO2 can be used to characterize the carbon balance at the surface. By combining a model and observations from the Hyytiälä forest (Finland), we show that using atmospheric O2 and CO2 measurements from a single height provides a weak constraint on the surface CO2 exchange because large-scale processes such as entrainment confound this signal. We therefore recommend always using multiple heights of O2 and CO2 measurements to study surface CO2 exchange.
Ingrid Chanca, Ingeborg Levin, Susan Trumbore, Kita Macario, Jost Lavric, Carlos Alberto Quesada, Alessandro Carioca de Araújo, Cléo Quaresma Dias Júnior, Hella van Asperen, Samuel Hammer, and Carlos Sierra
EGUsphere, https://doi.org/10.5194/egusphere-2024-883, https://doi.org/10.5194/egusphere-2024-883, 2024
Short summary
Short summary
Assessing the net carbon (C) budget of the Amazon entails considering the magnitude and timing of C absorption and losses through respiration (transit time of C). Radiocarbon-based estimates of the transit time of C in the Amazon Tall Tower Observatory (ATTO) suggest a doubling of the transit time from 6 ± 2 years and 18 ± 5 years (October 2019 and December 2021, respectively). This variability indicates that only a fraction of newly fixed C can be stored for decades or longer.
Nestor Gaviria-Lugo, Charlotte Läuchli, Hella Wittmann, Anne Bernhardt, Patrick Frings, Mahyar Mohtadi, Oliver Rach, and Dirk Sachse
Biogeosciences, 20, 4433–4453, https://doi.org/10.5194/bg-20-4433-2023, https://doi.org/10.5194/bg-20-4433-2023, 2023
Short summary
Short summary
We analyzed how leaf wax hydrogen isotopes in continental and marine sediments respond to climate along one of the strongest aridity gradients in the world, from hyperarid to humid, along Chile. We found that under extreme aridity, the relationship between hydrogen isotopes in waxes and climate is non-linear, suggesting that we should be careful when reconstructing past hydrological changes using leaf wax hydrogen isotopes so as to avoid overestimating how much the climate has changed.
Ralf Conrad and Peter Claus
Biogeosciences, 20, 3625–3635, https://doi.org/10.5194/bg-20-3625-2023, https://doi.org/10.5194/bg-20-3625-2023, 2023
Short summary
Short summary
Knowledge of carbon isotope fractionation is important for the assessment of the pathways involved in the degradation of organic matter. Propionate is an important intermediate. In the presence of sulfate, it was degraded by Syntrophobacter species via acetate to CO2. In the absence of sulfate, it was mainly consumed by Smithella and methanogenic archaeal species via butyrate and acetate to CH4. However, stable carbon isotope fractionation during the degradation process was quite small.
Alessandro Zanchetta, Linda M. J. Kooijmans, Steven van Heuven, Andrea Scifo, Hubertus A. Scheeren, Ivan Mammarella, Ute Karstens, Jin Ma, Maarten Krol, and Huilin Chen
Biogeosciences, 20, 3539–3553, https://doi.org/10.5194/bg-20-3539-2023, https://doi.org/10.5194/bg-20-3539-2023, 2023
Short summary
Short summary
Carbonyl sulfide (COS) has been suggested as a tool to estimate carbon dioxide (CO2) uptake by plants during photosynthesis. However, understanding its sources and sinks is critical to preventing biases in this estimate. Combining observations and models, this study proves that regional sources occasionally influence the measurements at the 60 m tall Lutjewad tower (1 m a.s.l.; 53°24′ N, 6°21′ E) in the Netherlands. Moreover, it estimates nighttime COS fluxes to be −3.0 ± 2.6 pmol m−2 s−1.
Joel T. Bostic, David M. Nelson, and Keith N. Eshleman
Biogeosciences, 20, 2485–2498, https://doi.org/10.5194/bg-20-2485-2023, https://doi.org/10.5194/bg-20-2485-2023, 2023
Short summary
Short summary
Land-use changes can affect water quality. We used tracers of pollution sources and water flow paths to show that an urban watershed exports variable sources during storm events relative to a less developed watershed. Our results imply that changing precipitation patterns combined with increasing urbanization may alter sources of pollution in the future.
Robin Havas, Christophe Thomazo, Miguel Iniesto, Didier Jézéquel, David Moreira, Rosaluz Tavera, Jeanne Caumartin, Elodie Muller, Purificación López-García, and Karim Benzerara
Biogeosciences, 20, 2405–2424, https://doi.org/10.5194/bg-20-2405-2023, https://doi.org/10.5194/bg-20-2405-2023, 2023
Short summary
Short summary
Dissolved organic carbon (DOC) is a reservoir of prime importance in the C cycle of both continental and marine systems. It has also been suggested to influence the past Earth climate but is still poorly characterized in ancient-Earth-like environments. In this paper we show how DOC analyses from modern redox-stratified lakes can evidence specific metabolic reactions and environmental factors and how these can help us to interpret the C cycle of specific periods in the Earth's past.
Robin Havas, Christophe Thomazo, Miguel Iniesto, Didier Jézéquel, David Moreira, Rosaluz Tavera, Jeanne Caumartin, Elodie Muller, Purificación López-García, and Karim Benzerara
Biogeosciences, 20, 2347–2367, https://doi.org/10.5194/bg-20-2347-2023, https://doi.org/10.5194/bg-20-2347-2023, 2023
Short summary
Short summary
We describe the C cycle of four modern stratified water bodies from Mexico, a necessary step to better understand the C cycle of primitive-Earth-like environments, which were dominated by these kinds of conditions. We highlight the importance of local external factors on the C cycle of these systems. Notably, they influence the sensitivity of the carbonate record to environmental changes. We also show the strong C-cycle variability among these lakes and their organic C sediment record.
Yifan Ma, Kuanbo Zhou, Weifang Chen, Junhui Chen, Jin-Yu Terence Yang, and Minhan Dai
Biogeosciences, 20, 2013–2030, https://doi.org/10.5194/bg-20-2013-2023, https://doi.org/10.5194/bg-20-2013-2023, 2023
Short summary
Short summary
We distinguished particulate organic carbon (POC) export fluxes out of the nutrient-depleted layer (NDL) and the euphotic zone. The amount of POC export flux at the NDL base suggests that the NDL could be a hotspot of particle export. The substantial POC export flux at the NDL base challenges traditional concepts that the NDL was limited in terms of POC export. The dominant nutrient source for POC export fluxes should be subsurface nutrients, which was determined by 15N isotopic mass balance.
Clémence Paul, Clément Piel, Joana Sauze, Nicolas Pasquier, Frédéric Prié, Sébastien Devidal, Roxanne Jacob, Arnaud Dapoigny, Olivier Jossoud, Alexandru Milcu, and Amaëlle Landais
Biogeosciences, 20, 1047–1062, https://doi.org/10.5194/bg-20-1047-2023, https://doi.org/10.5194/bg-20-1047-2023, 2023
Short summary
Short summary
To improve the interpretation of the δ18Oatm and Δ17O of O2 in air bubbles in ice cores, we need to better quantify the oxygen fractionation coefficients associated with biological processes. We performed a simplified analogue of the terrestrial biosphere in a closed chamber. We found a respiration fractionation in agreement with the previous estimates at the microorganism scale, and a terrestrial photosynthetic fractionation was found. This has an impact on the estimation of the Dole effect.
Adam Francis, Raja S. Ganeshram, Robyn E. Tuerena, Robert G. M. Spencer, Robert M. Holmes, Jennifer A. Rogers, and Claire Mahaffey
Biogeosciences, 20, 365–382, https://doi.org/10.5194/bg-20-365-2023, https://doi.org/10.5194/bg-20-365-2023, 2023
Short summary
Short summary
Climate change is causing extensive permafrost degradation and nutrient releases into rivers with great ecological impacts on the Arctic Ocean. We focused on nitrogen (N) release from this degradation and associated cycling using N isotopes, an understudied area. Many N species are released at degradation sites with exchanges between species. N inputs from permafrost degradation and seasonal river N trends were identified using isotopes, helping to predict climate change impacts.
Mohamed Ayache, Jean-Claude Dutay, Kazuyo Tachikawa, Thomas Arsouze, and Catherine Jeandel
Biogeosciences, 20, 205–227, https://doi.org/10.5194/bg-20-205-2023, https://doi.org/10.5194/bg-20-205-2023, 2023
Short summary
Short summary
The neodymium (Nd) is one of the most useful tracers to fingerprint water mass provenance. However, the use of Nd is hampered by the lack of adequate quantification of the external sources. Here, we present the first simulation of dissolved Nd concentration and Nd isotopic composition in the Mediterranean Sea using a high-resolution model. We aim to better understand how the various external sources affect the Nd cycle and particularly assess how it is impacted by atmospheric inputs.
Marta Santos-Garcia, Raja S. Ganeshram, Robyn E. Tuerena, Margot C. F. Debyser, Katrine Husum, Philipp Assmy, and Haakon Hop
Biogeosciences, 19, 5973–6002, https://doi.org/10.5194/bg-19-5973-2022, https://doi.org/10.5194/bg-19-5973-2022, 2022
Short summary
Short summary
Terrestrial sources of nitrate are important contributors to the nutrient pool in the fjords of Kongsfjorden and Rijpfjorden in Svalbard during the summer, and they sustain most of the fjord primary productivity. Ongoing tidewater glacier retreat is postulated to favour light limitation and less dynamic circulation in fjords. This is suggested to encourage the export of nutrients to the middle and outer part of the fjord system, which may enhance primary production within and in offshore areas.
Marlene Dordoni, Michael Seewald, Karsten Rinke, Kurt Friese, Robert van Geldern, Jakob Schmidmeier, and Johannes A. C. Barth
Biogeosciences, 19, 5343–5355, https://doi.org/10.5194/bg-19-5343-2022, https://doi.org/10.5194/bg-19-5343-2022, 2022
Short summary
Short summary
Organic matter (OM) turnover into dissolved inorganic carbon (DIC) was investigated by means of carbon isotope mass balances in Germany's largest water reservoir. This includes a metalimnetic oxygen minimum (MOM). Autochthonous particulate organic carbon (POC) was the main contributor to DIC, with rates that were highest for the MOM. Generally low turnover rates outline the environmental fragility of this water body in the case that OM loads increase due to storm events or land use changes.
Mhlangabezi Mdutyana, Tanya Marshall, Xin Sun, Jessica M. Burger, Sandy J. Thomalla, Bess B. Ward, and Sarah E. Fawcett
Biogeosciences, 19, 3425–3444, https://doi.org/10.5194/bg-19-3425-2022, https://doi.org/10.5194/bg-19-3425-2022, 2022
Short summary
Short summary
Nitrite-oxidizing bacteria in the winter Southern Ocean show a high affinity for nitrite but require a minimum (i.e., "threshold") concentration before they increase their rates of nitrite oxidation significantly. The classic Michaelis–Menten model thus cannot be used to derive the kinetic parameters, so a modified equation was employed that also yields the threshold nitrite concentration. Dissolved iron availability may play an important role in limiting nitrite oxidation.
Weitian Ding, Urumu Tsunogai, Fumiko Nakagawa, Takashi Sambuichi, Hiroyuki Sase, Masayuki Morohashi, and Hiroki Yotsuyanagi
Biogeosciences, 19, 3247–3261, https://doi.org/10.5194/bg-19-3247-2022, https://doi.org/10.5194/bg-19-3247-2022, 2022
Short summary
Short summary
Excessive leaching of nitrate from forested catchments during storm events degrades water quality and causes eutrophication in downstream areas. Thus, tracing the source of nitrate increase during storm events in forested streams is important for sustainable forest management. Based on the isotopic compositions of stream nitrate, including Δ17O, this study clarifies that the source of stream nitrate increase during storm events was soil nitrate in the riparian zone.
Nicolas Séon, Romain Amiot, Guillaume Suan, Christophe Lécuyer, François Fourel, Fabien Demaret, Arnauld Vinçon-Laugier, Sylvain Charbonnier, and Peggy Vincent
Biogeosciences, 19, 2671–2681, https://doi.org/10.5194/bg-19-2671-2022, https://doi.org/10.5194/bg-19-2671-2022, 2022
Short summary
Short summary
We analysed the oxygen isotope composition of bones and teeth of four marine species possessing regional heterothermies. We observed a consistent link between oxygen isotope composition and temperature heterogeneities recorded by classical methods. This opens up new perspectives on the determination of the thermoregulatory strategies of extant marine vertebrates where conventional methods are difficult to apply, but also allows us to investigate thermophysiologies of extinct vertebrates.
Yuwei Liu, Guofeng Zhu, Zhuanxia Zhang, Zhigang Sun, Leilei Yong, Liyuan Sang, Lei Wang, and Kailiang Zhao
Biogeosciences, 19, 877–889, https://doi.org/10.5194/bg-19-877-2022, https://doi.org/10.5194/bg-19-877-2022, 2022
Short summary
Short summary
We took the water cycle process of soil–plant–atmospheric precipitation as the research objective. In the water cycle of soil–plant–atmospheric precipitation, precipitation plays the main controlling role. The main source of replenishment for alpine meadow plants is precipitation and alpine meltwater; the main source of replenishment for forest plants is soil water; and the plants in the arid foothills mainly use groundwater.
Roberto Velázquez-Ochoa, María Julia Ochoa-Izaguirre, and Martín Federico Soto-Jiménez
Biogeosciences, 19, 1–27, https://doi.org/10.5194/bg-19-1-2022, https://doi.org/10.5194/bg-19-1-2022, 2022
Short summary
Short summary
Our research is the first approximation to understand the δ13C macroalgal variability in one of the most diverse marine ecosystems in the world, the Gulf of California. The life-form is the principal cause of δ13C macroalgal variability, mainly taxonomy. However, changes in habitat characteristics and environmental conditions also influence the δ13C macroalgal variability. The δ13C macroalgae is indicative of carbon concentration mechanisms and isotope discrimination during carbon assimilation.
Raquel F. Flynn, Thomas G. Bornman, Jessica M. Burger, Shantelle Smith, Kurt A. M. Spence, and Sarah E. Fawcett
Biogeosciences, 18, 6031–6059, https://doi.org/10.5194/bg-18-6031-2021, https://doi.org/10.5194/bg-18-6031-2021, 2021
Short summary
Short summary
Biological activity in the shallow Weddell Sea affects the biogeochemistry of recently formed deep waters. To investigate the drivers of carbon and nutrient export, we measured rates of primary production and nitrogen uptake, characterized the phytoplankton community, and estimated nutrient depletion ratios across the under-sampled western Weddell Sea in mid-summer. Carbon export was highest at the ice shelves and was determined by a combination of physical, chemical, and biological factors.
Stéphanie H. M. Jacquet, Christian Tamburini, Marc Garel, Aurélie Dufour, France Van Vambeke, Frédéric A. C. Le Moigne, Nagib Bhairy, and Sophie Guasco
Biogeosciences, 18, 5891–5902, https://doi.org/10.5194/bg-18-5891-2021, https://doi.org/10.5194/bg-18-5891-2021, 2021
Short summary
Short summary
We compared carbon remineralization rates (MRs) in the western and central Mediterranean Sea in late spring during the PEACETIME cruise, as assessed using the barium tracer. We reported higher and deeper (up to 1000 m depth) MRs in the western basin, potentially sustained by an additional particle export event driven by deep convection. The central basin is the site of a mosaic of blooming and non-blooming water masses and showed lower MRs that were restricted to the upper mesopelagic layer.
Shinsuke Kawagucci, Yohei Matsui, Akiko Makabe, Tatsuhiro Fukuba, Yuji Onishi, Takuro Nunoura, and Taichi Yokokawa
Biogeosciences, 18, 5351–5362, https://doi.org/10.5194/bg-18-5351-2021, https://doi.org/10.5194/bg-18-5351-2021, 2021
Short summary
Short summary
Hydrogen and carbon isotope ratios of methane as well as the relevant biogeochemical parameters and microbial community compositions in hydrothermal plumes in the Okinawa Trough were observed. We succeeded in simultaneously determining hydrogen and carbon isotope fractionation factors associated with aerobic oxidation of methane in seawater (εH = 49.4 ± 5.0 ‰, εC = 5.2 ± 0.4 ‰) – the former being the first of its kind ever reported.
Nicolai Schleinkofer, David Evans, Max Wisshak, Janina Vanessa Büscher, Jens Fiebig, André Freiwald, Sven Härter, Horst R. Marschall, Silke Voigt, and Jacek Raddatz
Biogeosciences, 18, 4733–4753, https://doi.org/10.5194/bg-18-4733-2021, https://doi.org/10.5194/bg-18-4733-2021, 2021
Short summary
Short summary
We have measured the chemical composition of the carbonate shells of the parasitic foraminifera Hyrrokkin sarcophaga in order to test if it is influenced by the host organism (bivalve or coral). We find that both the chemical and isotopic composition is influenced by the host organism. For example strontium is enriched in foraminifera that grew on corals, whose skeleton is built from aragonite, which is naturally enriched in strontium compared to the bivalves' calcite shell.
Lena Rohe, Traute-Heidi Anderson, Heinz Flessa, Anette Goeske, Dominika Lewicka-Szczebak, Nicole Wrage-Mönnig, and Reinhard Well
Biogeosciences, 18, 4629–4650, https://doi.org/10.5194/bg-18-4629-2021, https://doi.org/10.5194/bg-18-4629-2021, 2021
Short summary
Short summary
This is the first experimental setup combining a complex set of methods (microbial inhibitors and isotopic approaches) to differentiate between N2O produced by fungi or bacteria during denitrification in three soils. Quantifying the fungal fraction with inhibitors was not successful due to large amounts of uninhibited N2O production. All successful methods suggested a small or missing fungal contribution. Artefacts occurring with microbial inhibition to determine N2O fluxes are discussed.
Inga Köhler, Raul E. Martinez, David Piatka, Achim J. Herrmann, Arianna Gallo, Michelle M. Gehringer, and Johannes A. C. Barth
Biogeosciences, 18, 4535–4548, https://doi.org/10.5194/bg-18-4535-2021, https://doi.org/10.5194/bg-18-4535-2021, 2021
Short summary
Short summary
We investigated how high Fe(II) levels influence the O2 budget of a circum-neutral Fe(II)-rich spring and if a combined study of dissolved O (DO) and its isotopic composition can help assess this effect. We showed that dissolved Fe(II) can exert strong effects on the δ18ODO even though a constant supply of atmospheric O2 occurs. In the presence of photosynthesis, direct effects of Fe oxidation become masked. Critical Fe(II) concentrations indirectly control the DO by enhancing photosynthesis.
Owen A. Sherwood, Samuel H. Davin, Nadine Lehmann, Carolyn Buchwald, Evan N. Edinger, Moritz F. Lehmann, and Markus Kienast
Biogeosciences, 18, 4491–4510, https://doi.org/10.5194/bg-18-4491-2021, https://doi.org/10.5194/bg-18-4491-2021, 2021
Short summary
Short summary
Pacific water flowing eastward through the Canadian Arctic plays an important role in redistributing nutrients to the northwest Atlantic Ocean. Using samples collected from northern Baffin Bay to the southern Labrador Shelf, we show that stable isotopic ratios in seawater nitrate reflect the fraction of Pacific to Atlantic water. These results provide a new framework for interpreting patterns of nitrogen isotopic variability recorded in modern and archival organic materials in the region.
Franziska Slotta, Lukas Wacker, Frank Riedel, Karl-Uwe Heußner, Kai Hartmann, and Gerhard Helle
Biogeosciences, 18, 3539–3564, https://doi.org/10.5194/bg-18-3539-2021, https://doi.org/10.5194/bg-18-3539-2021, 2021
Short summary
Short summary
The African baobab is a challenging climate and environmental archive for its semi-arid habitat due to dating uncertainties and parenchyma-rich wood anatomy. Annually resolved F14C data of tree-ring cellulose (1941–2005) from a tree in Oman show the annual character of the baobab’s growth rings but were up to 8.8 % lower than expected for 1964–1967. Subseasonal δ13C and δ18O patterns reveal years with low average monsoon rain as well as heavy rainfall events from pre-monsoonal cyclones.
Peter M. J. Douglas, Emerald Stratigopoulos, Sanga Park, and Dawson Phan
Biogeosciences, 18, 3505–3527, https://doi.org/10.5194/bg-18-3505-2021, https://doi.org/10.5194/bg-18-3505-2021, 2021
Short summary
Short summary
Hydrogen isotopes could be a useful tool to help resolve the geographic distribution of methane emissions from freshwater environments. We analyzed an expanded global dataset of freshwater methane hydrogen isotope ratios and found significant geographic variation linked to water isotopic composition. This geographic variability could be used to resolve changing methane fluxes from freshwater environments and provide more accurate estimates of the relative balance of global methane sources.
Veronica R. Rollinson, Julie Granger, Sydney C. Clark, Mackenzie L. Blanusa, Claudia P. Koerting, Jamie M. P. Vaudrey, Lija A. Treibergs, Holly C. Westbrook, Catherine M. Matassa, Meredith G. Hastings, and Craig R. Tobias
Biogeosciences, 18, 3421–3444, https://doi.org/10.5194/bg-18-3421-2021, https://doi.org/10.5194/bg-18-3421-2021, 2021
Short summary
Short summary
We measured nutrients and the naturally occurring nitrogen (N) and oxygen (O) stable isotope ratios of nitrate discharged from a New England river over an annual cycle, to monitor N loading and identify dominant sources from the watershed. We uncovered a seasonality to loading and sources of N from the watershed. Seasonality in the nitrate isotope ratios also informed on N cycling, conforming to theoretical expectations of riverine nutrient cycling.
Zixun Chen, Xuejun Liu, Xiaoqing Cui, Yaowen Han, Guoan Wang, and Jiazhu Li
Biogeosciences, 18, 2859–2870, https://doi.org/10.5194/bg-18-2859-2021, https://doi.org/10.5194/bg-18-2859-2021, 2021
Short summary
Short summary
δ13C in plants is a sensitive long-term indicator of physiological acclimatization. The present study suggests that precipitation change and increasing atmospheric N deposition have little impact on δ13C of H. ammodendron, a dominant plant in central Asian deserts, but affect its gas exchange. In addition, this study shows that δ13C of H. ammodendron could not indicate its water use efficiency (WUE), suggesting that whether δ13C of C4 plants indicates WUE is species-specific.
Petra Zahajská, Carolina Olid, Johanna Stadmark, Sherilyn C. Fritz, Sophie Opfergelt, and Daniel J. Conley
Biogeosciences, 18, 2325–2345, https://doi.org/10.5194/bg-18-2325-2021, https://doi.org/10.5194/bg-18-2325-2021, 2021
Short summary
Short summary
The drivers of high accumulation of single-cell siliceous algae (diatoms) in a high-latitude lake have not been fully characterized before. We studied silicon cycling of the lake through water, radon, silicon, and stable silicon isotope balances. Results showed that groundwater brings 3 times more water and dissolved silica than the stream inlet. We demonstrate that groundwater discharge and low sediment deposition have driven the high diatom accumulation in the studied lake in the past century.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Zhongjie Yu and Emily M. Elliott
Biogeosciences, 18, 805–829, https://doi.org/10.5194/bg-18-805-2021, https://doi.org/10.5194/bg-18-805-2021, 2021
Short summary
Short summary
In this study, we demonstrated distinct nitrogen isotope effects for nitric oxide (NO) production from major microbial and chemical NO sources in an agricultural soil. These results highlight characteristic bond-forming and breaking mechanisms associated with microbial and chemical NO production and implicate that simultaneous isotopic analyses of NO and nitrous oxide (N2O) can lead to unprecedented insights into the sources and processes controlling NO and N2O emissions from agricultural soils.
Daniel A. Frick, Rainer Remus, Michael Sommer, Jürgen Augustin, Danuta Kaczorek, and Friedhelm von Blanckenburg
Biogeosciences, 17, 6475–6490, https://doi.org/10.5194/bg-17-6475-2020, https://doi.org/10.5194/bg-17-6475-2020, 2020
Short summary
Short summary
Silicon is taken up by some plants to increase structural stability and to develop stress resistance and is rejected by others. To explore the underlying mechanisms, we used the stable isotopes of silicon that shift in their relative abundance depending on the biochemical transformation involved. On species with a rejective (tomato, mustard) and active (wheat) uptake mechanism, grown in hydroculture, we found that the transport of silicic acid is controlled by the precipitation of biogenic opal.
Quentin Charbonnier, Julien Bouchez, Jérôme Gaillardet, and Éric Gayer
Biogeosciences, 17, 5989–6015, https://doi.org/10.5194/bg-17-5989-2020, https://doi.org/10.5194/bg-17-5989-2020, 2020
Short summary
Short summary
The abundance and isotope composition of the trace metal barium (Ba) allows us to track and quantify nutrient cycling throughout the Amazon Basin. In particular, we show that the Ba biological fingerprint evolves from that of a strong net nutrient uptake in the mountainous area of the Andes towards efficient nutrient recycling on the plains of the Lower Amazon. Our study highlights the fact that the geochemical signature of rock-derived nutrients transported by the Amazon is scarred by life.
Ajinkya G. Deshpande, Thomas W. Boutton, Ayumi Hyodo, Charles W. Lafon, and Georgianne W. Moore
Biogeosciences, 17, 5639–5653, https://doi.org/10.5194/bg-17-5639-2020, https://doi.org/10.5194/bg-17-5639-2020, 2020
Short summary
Short summary
Wetland forests in the southern USA are threatened by changing climate and human-induced pressures. We used tree ring widths and C isotopes as indicators of forest growth and physiological stress, respectively, and compared these to past climate data. We observed that vegetation growing in the drier patches is susceptible to stress, while vegetation growth and physiology in wetter patches is less sensitive to unfavorable environmental conditions, highlighting the importance of optimal wetness.
Dominika Lewicka-Szczebak, Maciej Piotr Lewicki, and Reinhard Well
Biogeosciences, 17, 5513–5537, https://doi.org/10.5194/bg-17-5513-2020, https://doi.org/10.5194/bg-17-5513-2020, 2020
Short summary
Short summary
We present the first validation of N2O isotopic approaches for estimating N2O source pathways and N2O reduction. These approaches are widely used for tracing soil nitrogen cycling, but the results of these estimations are very uncertain. Here we report the results from parallel treatments allowing for precise validation of these approaches, and we propose the best strategies for results interpretation, including the new idea of an isotope model integrating three isotopic signatures of N2O.
Markus Raitzsch, Claire Rollion-Bard, Ingo Horn, Grit Steinhoefel, Albert Benthien, Klaus-Uwe Richter, Matthieu Buisson, Pascale Louvat, and Jelle Bijma
Biogeosciences, 17, 5365–5375, https://doi.org/10.5194/bg-17-5365-2020, https://doi.org/10.5194/bg-17-5365-2020, 2020
Short summary
Short summary
The isotopic composition of boron in carbonate shells of marine unicellular organisms is a popular tool to estimate seawater pH. Usually, many shells need to be dissolved and measured for boron isotopes, but the information on their spatial distribution is lost. Here, we investigate two techniques that allow for measuring boron isotopes within single shells and show that they yield robust mean values but provide additional information on the heterogeneity within and between single shells.
Florian Einsiedl, Anja Wunderlich, Mathieu Sebilo, Ömer K. Coskun, William D. Orsi, and Bernhard Mayer
Biogeosciences, 17, 5149–5161, https://doi.org/10.5194/bg-17-5149-2020, https://doi.org/10.5194/bg-17-5149-2020, 2020
Short summary
Short summary
Nitrate pollution of freshwaters and methane emissions into the atmosphere are crucial factors in deteriorating the quality of drinking water and in contributing to global climate change. Here, we report vertical concentration and stable isotope profiles of CH4, NO3-, NO2-, and NH4+ in the water column of Fohnsee (southern Bavaria, Germany) that may indicate linkages between nitrate-dependent anaerobic methane oxidation and the anaerobic oxidation of ammonium.
Ruifang C. Xie, Frédéric A. C. Le Moigne, Insa Rapp, Jan Lüdke, Beat Gasser, Marcus Dengler, Volker Liebetrau, and Eric P. Achterberg
Biogeosciences, 17, 4919–4936, https://doi.org/10.5194/bg-17-4919-2020, https://doi.org/10.5194/bg-17-4919-2020, 2020
Short summary
Short summary
Thorium-234 (234Th) is widely used to study carbon fluxes from the surface ocean to depth. But few studies stress the relevance of oceanic advection and diffusion on the downward 234Th fluxes in nearshore environments. Our study in offshore Peru showed strong temporal variations in both the importance of physical processes on 234Th flux estimates and the oceanic residence time of 234Th, whereas salinity-derived seawater 238U activities accounted for up to 40 % errors in 234Th flux estimates.
Ralf A. Oeser and Friedhelm von Blanckenburg
Biogeosciences, 17, 4883–4917, https://doi.org/10.5194/bg-17-4883-2020, https://doi.org/10.5194/bg-17-4883-2020, 2020
Short summary
Short summary
We present a novel strategy to decipher the relative impact of biogenic and abiotic drivers of weathering. We parameterized the nutrient fluxes in four ecosystems along a climate and vegetation gradient situated on the Chilean Coastal Cordillera. We investigated how nutrient demand by plants drives weathering. We found that the increase in biomass nutrient demand is accommodated by faster nutrient recycling rather than an increase in the weathering–release rates.
Tito Arosio, Malin M. Ziehmer, Kurt Nicolussi, Christian Schlüchter, and Markus Leuenberger
Biogeosciences, 17, 4871–4882, https://doi.org/10.5194/bg-17-4871-2020, https://doi.org/10.5194/bg-17-4871-2020, 2020
Short summary
Short summary
Stable isotopes in tree-ring cellulose are tools for climatic reconstructions, but interpretation is challenging due to nonclimate trends. We analyzed the tree-age trends in tree-ring isotopes of deciduous larch and evergreen cembran pine. Samples covering the whole Holocene were collected at the tree line in the Alps. For cambial ages over 100 years, we prove the absence of age trends in δD, δ18O, and δ13C for both species. For lower cambial ages, trends differ for each isotope and species.
Yuyang He, Xiaobin Cao, and Huiming Bao
Biogeosciences, 17, 4785–4795, https://doi.org/10.5194/bg-17-4785-2020, https://doi.org/10.5194/bg-17-4785-2020, 2020
Short summary
Short summary
Different carbon sites in a large organic molecule have different isotope compositions. Different carbon sites may not have the chance to exchange isotopes at all. The lack of appreciation of this notion might be blamed for an unsettled debate on the thermodynamic state of an organism. Here we demonstrate using minerals, N2O, and acetic acid that the dearth of exchange among different carbon sites renders them as independent as if they were different elements in organic molecules.
Felix M. Spielmann, Albin Hammerle, Florian Kitz, Katharina Gerdel, and Georg Wohlfahrt
Biogeosciences, 17, 4281–4295, https://doi.org/10.5194/bg-17-4281-2020, https://doi.org/10.5194/bg-17-4281-2020, 2020
Short summary
Short summary
Carbonyl sulfide (COS) can be used as a proxy for plant photosynthesis on an ecosystem scale. However, the relationships between COS and CO2 fluxes and their dependence on daily to seasonal changes in environmental drivers are still poorly understood. We examined COS and CO2 ecosystem fluxes above an agriculturally used mountain grassland for 6 months. Harvesting of the grassland disturbed the otherwise stable COS-to-CO2 uptake ratio. We even found the canopy to release COS during those times.
Getachew Agmuas Adnew, Thijs L. Pons, Gerbrand Koren, Wouter Peters, and Thomas Röckmann
Biogeosciences, 17, 3903–3922, https://doi.org/10.5194/bg-17-3903-2020, https://doi.org/10.5194/bg-17-3903-2020, 2020
Short summary
Short summary
We measured the effect of photosynthesis, the largest flux in the carbon cycle, on the triple oxygen isotope composition of atmospheric CO2 at the leaf level during gas exchange using three plant species. The main factors that limit the impact of land vegetation on the triple oxygen isotope composition of atmospheric CO2 are identified, characterized and discussed. The effect of photosynthesis on the isotopic composition of CO2 is commonly quantified as discrimination (ΔA).
Moritz Schroll, Frank Keppler, Markus Greule, Christian Eckhardt, Holger Zorn, and Katharina Lenhart
Biogeosciences, 17, 3891–3901, https://doi.org/10.5194/bg-17-3891-2020, https://doi.org/10.5194/bg-17-3891-2020, 2020
Short summary
Short summary
Fungi have recently been identified to produce the greenhouse gas methane. Here, we investigated the stable carbon isotope values of methane produced by saprotrophic fungi. Our results show that stable isotope values of methane from fungi are dependent on the fungal species and the metabolized substrate. They cover a broad range and overlap with stable carbon isotope values of methane reported for methanogenic archaea, the thermogenic degradation of organic matter, and other eukaryotes.
Cited articles
Acharyya, T., Sarma, V., Sridevi, B., Venkataramana, V., Bharathi, M. D.,
Naidu, S. A., Kumar, B., Prasad, V. R., Bandyopadhyay, D., and Reddy, N.:
Reduced river discharge intensifies phytoplankton bloom in Godavari estuary,
India, Mar. Chem., 132, 15–22, 2012.
Agrawal, S., Sanyal, P., Sarkar, A., Jaiswal, M. K., and Dutta, K.:
Variability of Indian monsoonal rainfall over the past 100 ka and its
implication for C3–C4 vegetational change, Quaternary Res., 77, 159–170, 2012.
Asouti, E. and Fuller, D. Q.: Trees and woodlands of South India:
archaeological perspectives, Left Coast Press, Inc., Walnut Creek, Ca., USA, ISBN 978-1-59874-231-2,
2008.
Aucour, A., France-Lanord, C., Pedoja, K., Pierson-Wickmann, A., and
Sheppard, S. M.: Fluxes and sources of particulate organic carbon in the
Ganga-Brahmaputra river system, Global Biogeochem. Cy., 20, 1–12, 2006.
Babar, M. and Kaplay, R. D.: Godavari River: geomorphology and
socio-economic characteristics, in: The Indian Rivers, edited by: Singh, D. S.,
Springer, Singapore, 319–337, https://doi.org/10.1007/978-981-10-2984-4_26, 2018.
Balakrishna, K. and Probst, J.: Organic carbon transport and ratio
variations in a large tropical river: Godavari as a case study, India,
Biogeochemistry, 73, 457–473, 2005.
Banerji, U. S., Arulbalaji, P., and Padmalal, D.: Holocene climate
variability and Indian Summer Monsoon: an overview, Holocene, 30, 744–773,
2020.
Basu, S., Agrawal, S., Sanyal, P., Mahato, P., Kumar, S., and Sarkar, A.:
Carbon isotopic ratios of modern C3–C4 plants from the Gangetic Plain,
India and its implications to paleovegetational reconstruction,
Palaeogeogr. Palaeocl., 440, 22–32, 2015.
Basu, S., Sanyal, P., Sahoo, K., Chauhan, N., Sarkar, A., and Juyal, N.:
Variation in monsoonal rainfall sources (Arabian Sea and Bay of Bengal)
during the late Quaternary: Implications for regional vegetation and fluvial
systems, Palaeogeogr. Palaeocl., 491, 77–91, 2018.
Basu, S., Sanyal, P., Pillai, A. A., and Ambili, A.: Response of grassland
ecosystem to monsoonal precipitation variability during the Mid-Late
Holocene: Inferences based on molecular isotopic records from Banni
grassland, western India, PloS one, 14, e0212743, https://doi.org/10.1371/journal.pone.0212743, 2019a.
Basu, S., Ghosh, S., and Sanyal, P.: Spatial heterogeneity in the
relationship between precipitation and carbon isotopic discrimination in C3
plants: inferences from a global compilation, Global Planet. Change, 176,
123–131, 2019b.
Basu, S., Ghosh, S., and Chattopadhyay, D.: Disentangling the abiotic versus
biotic controls on C3 plant leaf carbon isotopes: inferences from a global
review, Earth-Sci. Rev., 222, 103839, https://doi.org/10.1016/j.earscirev.2021.103839, 2021.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A.,
and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598–600,
2009.
Bender, M. M.: Variations in the 13C/12C ratios of plants in
relation to the pathway of photosynthetic carbon dioxide fixation,
Phytochemistry, 10, 1239–1244, 1971.
Bianchi, T. S., Mitra, S., and McKee, B. A.: Sources of terrestrially-derived
organic carbon in lower Mississippi River and Louisiana shelf sediments:
implications for differential sedimentation and transport at the coastal
margin, Mar. Chem., 77, 211–223, 2002.
Bianchi, T. S., Cui, X., Blair, N. E., Burdige, D. J., Eglinton, T. I., and
Galy, V.: Centers of organic carbon burial and oxidation at the land-ocean
interface, Org. Geochem., 115, 138–155, 2018.
Biksham, G. and Subramanian, V.: Nature of solute transport in the Godavari
basin, India, J. Hydrol., 103, 375–392, 1988a.
Biksham, G. and Subramanian, V.: Sediment transport of the Godavari River
basin and its controlling factors, J. Hydrol., 101, 275–290, 1988b.
Bird, M. I. and Pousai, P.: Variations of δ13C in the surface
soil organic carbon pool, Global Biogeochem. Cy., 11, 313–322, 1997.
Bird, M. I., Chivas, A. R., and Head, J.: A latitudinal gradient in carbon
turnover times in forest soils, Nature, 381, 143–146, 1996.
Birge, H. E., Conant, R. T., Follett, R. F., Haddix, M. L., Morris, S. J.,
Snapp, S. S., Wallenstein, M. D., and Paul, E. A.: Soil respiration is not
limited by reductions in microbial biomass during long-term soil
incubations, Soil Biol. Biochem., 81, 304–310, 2015.
Bouchez, J., Galy, V., Hilton, R. G., Gaillardet, J., Moreira-Turcq, P.,
Pérez, M. A., France-Lanord, C., and Maurice, L.: Source, transport and
fluxes of Amazon River particulate organic carbon: Insights from river
sediment depth-profiles, Geochim. Cosmochim. Ac., 133, 280–298, 2014.
Buchmann, N., Brooks, J. R., Rapp, K. D., and Ehleringer, J. R.: Carbon
isotope composition of C4 grasses is influenced by light and water supply,
Plant Cell Environ., 19, 392–402, 1996.
Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca,
M., Saatchi, S., Santoro, M., Thurner, M., and Weber, U.: Global covariation
of carbon turnover times with climate in terrestrial ecosystems, Nature,
514, 213–217, 2014.
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J.,
Eisenmann, V., and Ehleringer, J. R.: Global vegetation change through the
Miocene/Pliocene boundary, Nature, 389, 153–158, 1997.
Cerling, T. E., Wynn, J. G., Andanje, S. A., Bird, M. I., Korir, D. K.,
Levin, N. E., Mace, W., Macharia, A. N., Quade, J., and Remien, C. H.: Woody
cover and hominin environments in the past 6 million years, Nature, 476,
51–56, 2011.
Contreras-Rosales, L. A., Jennerjahn, T., Tharammal, T., Meyer, V.,
Lückge, A., Paul, A., and Schefuß, E.: Evolution of the Indian Summer
Monsoon and terrestrial vegetation in the Bengal region during the past 18 ka, Quaternary Sci. Rev., 102, 133–148, 2014.
Cui, M., Wang, Z., Nageswara Rao, K., Sangode, S. J., Saito, Y., Chen, T.,
Kulkarni, Y. R., Naga Kumar, K. C. V., and Demudu, G.: A mid- to
late-Holocene record of vegetation decline and erosion triggered by monsoon
weakening and human adaptations in the south-east Indian Peninsula,
Holocene, 27, 1976–1987, 2017.
CWC (Central Water Commission): Government of India, Ministry of Water
Resources, Godavari basin, 1–187, http://cwc.gov.in/sites/default/files/godavaribasin-volume-i.pdf (last access: 31 August 2022), 2014.
Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., and Tu, K. P.:
Stable isotopes in plant ecology, Annu. Rev. Ecol. Syst., 33, 507–559, 2002.
Dehairs, F., Rao, R. G., Mohan, P. C., Raman, A. V., Marguillier, S., and
Hellings, L.: Tracing mangrove carbon in suspended matter and aquatic fauna
of the Gautami–Godavari Delta, Bay of Bengal (India), Hydrobiologia, 431,
225–241, 2000.
Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L., and Freeman, K.
H.: Global patterns in leaf 13C discrimination and implications for
studies of past and future climate, P. Natl. Acad. Sci. USA, 107, 5738–5743, 2010.
Dunlea, A. G., Giosan, L., and Huang, Y.: Pliocene expansion of C4 vegetation in the Core Monsoon Zone on the Indian Peninsula, Clim. Past, 16, 2533–2546, https://doi.org/10.5194/cp-16-2533-2020, 2020.
Dutt, S., Gupta, A. K., Cheng, H., Clemens, S. C., Singh, R. K., and Tewari,
V. C.: Indian summer monsoon variability in northeastern India during the
last two millennia, Quaternary Int., 571, 73–80, 2021.
Eglinton, T. I., Galy, V. V., Hemingway, J. D., Feng, X., Bao, H.,
Blattmann, T. M., Dickens, A. F., Gies, H., Giosan, L., and Haghipour, N.:
Climate control on terrestrial biospheric carbon turnover, P. Natl. Acad. Sci. USA, 118, 1–9,
2021.
Elliott, S., Baker, P. J., and Borchert, R.: Leaf flushing during the dry
season: the paradox of Asian monsoon forests, Global Ecol. Biogeogr., 15,
248–257, 2006.
Ellsworth, P. Z. and Cousins, A. B.: Carbon isotopes and water use
efficiency in C4 plants, Curr. Opin. Plant Biol., 31, 155–161, 2016.
Farquhar, G. D.: On the nature of carbon isotope discrimination in C4
species, Aust. J. Plant Physiol., 10, 205–226, 1983.
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T.: Carbon isotope
discrimination and photosynthesis, Annu. Rev. Plant Physiol., 40, 503–537, 1989.
Feakins, S. J., Liddy, H. M., Tauxe, L., Galy, V., Feng, X., Tierney, J. E.,
Miao, Y., and Warny, S.: Miocene C4 grassland expansion as recorded by the
Indus Fan, Paleoceanogr. Paleocl., 35, e2020PA003856, https://doi.org/10.1029/2020PA003856, 2020.
Feng, X., Feakins, S. J., Liu, Z., Ponton, C., Wang, R. Z., Karkabi, E.,
Galy, V., Berelson, W. M., Nottingham, A. T., and Meir, P.: Source to sink:
Evolution of lignin composition in the Madre de Dios River system with
connection to the Amazon basin and offshore, J. Geophys. Res.-Biogeo.,
121, 1316–1338, 2016.
France-Lanord, C. and Derry, L. A.: δ13C of organic carbon in
the Bengal Fan: source evolution and transport of C3 and C4 plant carbon to
marine sediments, Geochim. Cosmochim. Ac., 58, 4809–4814, 1994.
Freeman, K. H., Mueller, K. E., Diefendorf, A. F., Wing, S. L., and Koch, P.
L.: Clarifying the influence of water availability and plant types on carbon
isotope discrimination by C3 plants, P. Natl. Acad. Sci. USA, 108, E59–E60, 2011.
Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H., and Palhol,
F.: Efficient organic carbon burial in the Bengal fan sustained by the
Himalayan erosional system, Nature, 450, 407–411, 2007.
Galy, V., François, L., France-Lanord, C., Faure, P., Kudrass, H.,
Palhol, F., and Singh, S. K.: C4 plants decline in the Himalayan basin since
the Last Glacial Maximum, Quaternary Sci. Rev., 27, 1396–1409, 2008a.
Galy, V., France-Lanord, C., and Lartiges, B.: Loading and fate of
particulate organic carbon from the Himalaya to the Ganga–Brahmaputra
delta, Geochim. Cosmochim. Ac., 72, 1767–1787, 2008b.
Galy, V., Eglinton, T., France-Lanord, C., and Sylva, S.: The provenance of
vegetation and environmental signatures encoded in vascular plant biomarkers
carried by the Ganges–Brahmaputra rivers, Earth Planet. Sc. Lett., 304,
1–12, 2011.
Garcin, Y., Schefuß, E., Schwab, V. F., Garreta, V., Gleixner, G.,
Vincens, A., Todou, G., Séné, O., Onana, J., and Achoundong, G.:
Reconstructing C3 and C4 vegetation cover using n−alkane carbon isotope ratios
in recent lake sediments from Cameroon, Western Central Africa, Geochim.
Cosmochim. Ac., 142, 482–500, 2014.
Gawade, L., Krishna, M. S., Sarma, V., Hemalatha, K., and Rao, Y. V.:
Spatio-temporal variability in the sources of particulate organic carbon and
nitrogen in a tropical Godavari estuary, Estuar. Coast. Shelf S., 215,
20–29, 2018.
Ghosh, S., Sanyal, P., and Kumar, R.: Evolution of C4 plants and controlling
factors: Insight from n-alkane isotopic values of NW Indian Siwalik paleosols,
Org. Geochem., 110, 110–121, 2017.
Giosan, L., Ponton, C., Usman, M., Blusztajn, J., Fuller, D. Q., Galy, V., Haghipour, N., Johnson, J. E., McIntyre, C., Wacker, L., and Eglinton, T. I.: Short communication: Massive erosion in monsoonal central India linked to late Holocene land cover degradation, Earth Surf. Dynam., 5, 781–789, https://doi.org/10.5194/esurf-5-781-2017, 2017.
Goñi, M. A., Ruttenberg, K. C., and Eglinton, T. I.: Sources and
contribution of terrigenous organic carbon to surface sediments in the Gulf
of Mexico, Nature, 389, 275–278, 1997.
Goñi, M. A., Ruttenberg, K. C., and Eglinton, T. I.: A reassessment of
the sources and importance of land-derived organic matter in surface
sediments from the Gulf of Mexico, Geochim. Cosmochim. Ac., 62, 3055–3075,
1998.
Graven, H., Allison, C. E., Etheridge, D. M., Hammer, S., Keeling, R. F., Levin, I., Meijer, H. A. J., Rubino, M., Tans, P. P., Trudinger, C. M., Vaughn, B. H., and White, J. W. C.: Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6, Geosci. Model Dev., 10, 4405–4417, https://doi.org/10.5194/gmd-10-4405-2017, 2017.
Gupta, L. P., Subramanian, V., and Ittekkot, V.: Biogeochemistry of
particulate organic matter transported by the Godavari River, India,
Biogeochemistry, 38, 103–128, 1997.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, 2014.
Hein, C. J., Usman, M., Eglinton, T. I., Haghipour, N., and Galy, V. V.:
Millennial-scale hydroclimate control of tropical soil carbon storage,
Nature, 581, 63–66, 2020.
Hou, P., Yu, M., Zhao, M., Montluçon, D. B., Su, C., and Eglinton, T. I.:
Terrestrial biomolecular burial efficiencies on continental margins, J.
Geophys. Res.-Biogeo., 125, 1–15, 2020.
Ittekkot, V., Safiullah, S., Mycke, B., and Seifert, R.: Seasonal variability
and geochemical significance of organic matter in the River Ganges,
Bangladesh, Nature, 317, 800–802, 1985.
Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P.,
Heimann, M., and Meijer, H. A.: Exchanges of atmospheric CO2 and
13CO2 with the terrestrial biosphere and oceans from 1978 to 2000.
I. Global aspects, UC San Diego, Scripps Institution of Oceanography, 01–06,
1–28, https://escholarship.org/uc/item/09v319r9 (last access: 31 August 2022), 2001.
Keeling, R. F., Graven, H. D., Welp, L. R., Resplandy, L., Bi, J., Piper, S.
C., Sun, Y., Bollenbacher, A., and Meijer, H. A.: Atmospheric evidence for a
global secular increase in carbon isotopic discrimination of land
photosynthesis, P. Natl. Acad. Sci. USA, 114, 10361–10366, 2017.
Kirkels, F. M., Ponton, C., Galy, V., West, A. J., Feakins, S. J., and
Peterse, F.: From Andes to Amazon: assessing branched tetraether lipids as
tracers for soil organic carbon in the Madre de Dios River system, J.
Geophys. Res.-Bio., 125, 1–18, 2020a.
Kirkels, F. M., Zwart, H. M., Basu, S., Usman, M. O., and Peterse, F.:
Seasonal and spatial variability in δ18O and δD values
in waters of the Godavari River basin: insights into hydrological processes,
J. Hydrol. Reg. Stud., 30, 1–25, 2020b.
Kirkels, F. M. S. A., Zwart, H. M., Usman, M. O., and Peterse,
F.: Branched glycerol monoalkyl glycerol tetraethers (brGMGTs) and
geochemical proxies in soils, SPM and riverbed sediments in the Godavari
River basin (India), PANGAEA [data set] https://doi.org/10.1594/PANGAEA.937965, 2021.
Kirkels, F. M. S. A., de Boer, H., Concha Hernández, P., Martes, C., van der
Meer, M., Basu, S., Usman, M., Sanyal, P., and Peterse, F.: Carbon and
nitrogen (isotopic) signatures in C3 and C4 plants, soils, SPM and riverbed
sediments in the Godavari River basin (India) in 2015, PANGAEA
[data set], https://doi.org/10.1594/PANGAEA.940189, 2022a.
Kirkels, F. M. S. A., Zwart, H. M., Usman, M. O., Hou, S., Ponton, C., Giosan, L., Eglinton, T. I., and Peterse, F.: From soil to sea: sources and transport of organic carbon traced by tetraether lipids in the monsoonal Godavari River, India, Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, 2022b.
Koch, P. L.: Isotopic reconstruction of past continental environments, Annu.
Rev. Earth Pl. Sci., 26, 573–613, 1998.
Kögel-Knabner, I.: The macromolecular organic composition of plant and
microbial residues as inputs to soil organic matter, Soil Biol. Biochem.,
34, 139–162, 2002.
Kohn, M. J.: Carbon isotope compositions of terrestrial C3 plants as
indicators of (paleo) ecology and (paleo) climate, P. Natl. Acad. Sci. USA, 107, 19691–19695,
2010.
Kohn, M. J.: Reply to Freeman et al.: Carbon isotope discrimination by C3
plants, P. Natl. Acad. Sci. USA, 108, E61, https://doi.org/10.1073/pnas.1103222108, 2011.
Komada, T., Anderson, M. R., and Dorfmeier, C. L.: Carbonate removal from
coastal sediments for the determination of organic carbon and its isotopic
signatures, δ13C and Δ14C: comparison of
fumigation and direct acidification by hydrochloric acid, Limnol. Oceanogr.-Meth., 6, 254–262, 2008.
Krishna, M. S., Naidu, S. A., Subbaiah, C. V., Gawade, L., Sarma, V., and
Reddy, N.: Sources, distribution and preservation of organic matter in a
tropical estuary (Godavari, India), Estuar. Coast., 38, 1032–1047, 2015.
Krull, E. S., Skjemstad, J. O., Burrows, W. H., Bray, S. G., Wynn, J. G.,
Bol, R., Spouncer, L., and Harms, B.: Recent vegetation changes in central
Queensland, Australia: evidence from δ13C and 14C analyses
of soil organic matter, Geoderma, 126, 241–259, 2005.
Kushwaha, C. P. and Singh, K. P.: Diversity of leaf phenology in a tropical
deciduous forest in India, J. Trop. Ecol., 21, 47–56, 2005.
Lamb, A. L., Wilson, G. P., and Leng, M. J.: A review of coastal
palaeoclimate and relative sea-level reconstructions using δ13C
and ratios in organic material, Earth-Sci. Rev., 75, 29–57, 2006.
Lee, H., Galy, V., Feng, X., Ponton, C., Galy, A., France-Lanord, C., and
Feakins, S. J.: Sustained wood burial in the Bengal Fan over the last 19 My,
P. Natl. Acad. Sci. USA, 116, 22518–22525, 2019.
Li, Z., Sun, Y., and Nie, X.: Biomarkers as a soil organic carbon tracer of
sediment: Recent advances and challenges, Earth-Sci. Rev., 208, 1–13,
2020.
Liu, Y., Niu, H., and Xu, X.: Foliar δ13C response patterns
along a moisture gradient arising from genetic variation and phenotypic
plasticity in grassland species of Inner Mongolia, Ecol. Evol., 3, 262–267,
2013.
Liu, Y., Zhang, L., Niu, H., Sun, Y., and Xu, X.: Habitat-specific
differences in plasticity of foliar δ13C in temperate steppe
grasses, Ecol. Evol., 4, 648–655, 2014.
Luo, W., Wang, X., Auerswald, K., Wang, Z., Bird, M. I., Still, C. J.,
Lü, X., and Han, X.: Effects of plant intraspecific variation on the
prediction of C3/C4 vegetation ratio from carbon isotope composition of
topsoil organic matter across grasslands, J. Plant Ecol., 14, 628–637, 2021.
Lupker, M., France-Lanord, C., Lavé, J., Bouchez, J., Galy, V.,
Métivier, F., Gaillardet, J., Lartiges, B., and Mugnier, J.: A
Rouse-based method to integrate the chemical composition of river sediments:
application to the Ganga basin, J. Geophys. Res. Earth, 116, 1–24,
2011.
Ma, J., Sun, W., Liu, X., and Chen, F.: Variation in the stable carbon and
nitrogen isotope composition of plants and soil along a precipitation
gradient in northern China, PLoS One, 7, e51894, https://doi.org/10.1371/journal.pone.0051894, 2012.
Martin, A., Mariotti, A., Lavelle, P., and Vuattoux, R.: Estimate of organic
matter turnover rate in a savanna soil by 13C natural abundance
measurements, Soil Biol. Biochem., 22, 517–523, 1990.
Menges, J., Hovius, N., Andermann, C., Lupker, M., Haghipour, N., Märki,
L., and Sachse, D.: Variations in organic carbon sourcing along a
trans-Himalayan river determined by a Bayesian mixing approach, Geochim.
Cosmochim. Ac., 286, 159–176, 2020.
Murphy, B. P. and Bowman, D. M.: The carbon and nitrogen isotope composition
of Australian grasses in relation to climate, Funct. Ecol., 23, 1040–1049,
2009.
NOAA (National Oceanic and Atmospheric Administration): Earth System
Research Laboratories – Global Monitoring Laboratory, https://gml.noaa.gov, last access: 21 June 2022.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell,
G. V., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., and
Morrison, J. C.: Terrestrial ecoregions of the world: a new map of life on
earth: a new global map of terrestrial ecoregions provides an innovative
tool for conserving biodiversity, BioSci., 51, 933–938, 2001.
Phillips, D. L. and Gregg, J. W.: Uncertainty in source partitioning using
stable isotopes, Oecologia, 127, 171–179, 2001.
Ponton, C., Giosan, L., Eglinton, T. I., Fuller, D. Q., Johnson, J. E.,
Kumar, P., and Collett, T. S.: Holocene aridification of India, Geophys. Res.
Lett., 39, L03704–L03709, 2012.
Pradhan, U. K., Wu, Y., Shirodkar, P. V., Zhang, J., and Zhang, G.:
Multi-proxy evidence for compositional change of organic matter in the
largest tropical (peninsular) river basin of India, J. Hydrol., 519,
999–1009, 2014.
Prasad, S., Anoop, A., Riedel, N., Sarkar, S., Menzel, P., Basavaiah, N.,
Krishnan, R., Fuller, D., Plessen, B., and Gaye, B.: Prolonged monsoon
droughts and links to Indo-Pacific warm pool: a Holocene record from Lonar
Lake, central India, Earth Planet. Sc. Lett., 391, 171–182, 2014.
Reddy, S. K. K., Gupta, H., Badimela, U., Reddy, D. V., Kurakalva, R. M., and
Kumar, D.: Export of particulate organic carbon by the mountainous tropical
rivers of Western Ghats, India: variations and controls, Sci. Total
Environ., 751, 142115, https://doi.org/10.1016/j.scitotenv.2020.142115, 2021.
Repasch, M., Scheingross, J. S., Hovius, N., Vieth-Hillebrand, A., Mueller,
C. W., Höschen, C., Szupiany, R. N., and Sachse, D.: River organic carbon
fluxes modulated by hydrodynamic sorting of particulate organic matter,
Geophys. Res. Lett., 49, e2021GL096343, https://doi.org/10.1029/2021GL096343, 2022.
Riedel, N., Stebich, M., Anoop, A., Basavaiah, N., Menzel, P., Prasad, S.,
Sachse, D., Sarkar, S., and Wiesner, M.: Modern pollen vegetation
relationships in a dry deciduous monsoon forest: a case study from Lonar
Crater Lake, central India, Quaternary Int., 371, 268–279, 2015.
Roy, B. and Sanyal, P.: Isotopic and molecular distribution of leaf-wax in
plant-soil system of the Gangetic floodplain and its implication for
paleorecords, Quaternary Int., 607, 89–99, 2022.
Roy, B., Ghosh, S., and Sanyal, P.: Morpho-tectonic control on the
distribution of C3–C4 plants in the central Himalayan Siwaliks during Late
Plio-Pleistocene, Earth Planet. Sc. Lett., 535, 116119, https://doi.org/10.1016/j.epsl.2020.116119, 2020.
Sage, R. F.: The evolution of C4 photosynthesis, New Phytol., 161, 341–370,
2004.
Sage, R. F. and Monson, R. K. (Eds.): C4 plant biology, Academic Press, San
Diego, CA, USA, https://doi.org/10.1016/B978-0-12-614440-6.X5000-9, 1999.
Sankhla, N., Ziegler, H., Vyas, O. P., Stichler, W., and Trimborn, P.:
Eco-physiological studies on Indian arid zone plants, Oecologia, 21,
123–129, 1975.
Sarangi, V., Agrawal, S., and Sanyal, P.: The disparity in the abundance of
C4 plants estimated using the carbon isotopic composition of paleosol
components, Palaeogeogr., Palaeocl., 561, 110068, https://doi.org/10.1016/j.palaeo.2020.110068, 2021.
Sarkar, S., Prasad, S., Wilkes, H., Riedel, N., Stebich, M., Basavaiah, N.,
and Sachse, D.: Monsoon source shifts during the drying mid-Holocene:
Biomarker isotope based evidence from the core monsoon zone (CMZ) of India,
Quarternary Sci. Rev., 123, 144–157, 2015.
Schmidt, H. and Gleixner, G.: Carbon isotope effects on key reactions in
plant metabolism and 13C-patterns in natural compounds, in: Stable
Isotopes and the Integration of Biological, Ecological and Geochemical
Processes, edited by: Griffiths, H., Garland Science, London, 13–26, https://doi.org/10.1201/9781003076865, 1998.
Schulze, E., Ellis, R., Schulze, W., Trimborn, P., and Ziegler, H.:
Diversity, metabolic types and δ13C carbon isotope ratios in
the grass flora of Namibia in relation to growth form, precipitation and
habitat conditions, Oecologia, 106, 352–369, 1996.
Simpson, A. J., Simpson, M. J., Smith, E., and Kelleher, B. P.: Microbially
derived inputs to soil organic matter: are current estimates too low?,
Environ. Sci. Technol., 41, 8070–8076, 2007.
Sinha, A., Berkelhammer, M., Stott, L., Mudelsee, M., Cheng, H., and Biswas,
J.: The leading mode of Indian Summer Monsoon precipitation variability
during the last millennium, Geophys. Res. Lett., 38, https://doi.org/10.1029/2011GL047713, 2011.
Sinha, A., Kathayat, G., Cheng, H., Breitenbach, S. F., Berkelhammer, M.,
Mudelsee, M., Biswas, J., and Edwards, R. L.: Trends and oscillations in the
Indian summer monsoon rainfall over the last two millennia, Nat. Commun., 6,
1–8, 2015.
Sreemany, A. and Bera, M. K.: Does a large delta-fan sedimentary archive
faithfully record floodplain vegetation composition?, Quaternary Sci. Rev., 228,
106108, https://doi.org/10.1016/j.quascirev.2019.106108, 2020.
Stewart, G. R., Turnbull, M. H., Schmidt, S., and Erskine, P. D.: 13C
natural abundance in plant communities along a rainfall gradient: a
biological integrator of water availability, Aust. J. Plant Physiol., 22,
51–55, 1995.
Still, C. J., Berry, J. A., Collatz, G. J., and DeFries, R. S.: Global
distribution of C3 and C4 vegetation: carbon cycle implications, Global
Biogeochem. Cy., 17, 6–14, 2003.
Swap, R. J., Aranibar, J. N., Dowty, P. R., Gilhooly III, W. P., and Macko,
S. A.: Natural abundance of 13C and 15N in C3 and C4 vegetation of
southern Africa: patterns and implications, Glob. Change Biol., 10,
350–358, 2004.
Torres, I. C., Inglett, P. W., Brenner, M., Kenney, W. F., and Reddy, K. R.:
Stable isotope (δ13C and δ15N) values of sediment
organic matter in subtropical lakes of different trophic status, J.
Paleolimnol., 47, 693–706, 2012.
Turner, A. G. and Annamalai, H.: Climate change and the South Asian summer
monsoon, Nat. Clim. Change, 2, 587–595, 2012.
Usman, M. O., Kirkels, F. M. S. A., Zwart, H. M., Basu, S., Ponton, C., Blattmann, T. M., Ploetze, M., Haghipour, N., McIntyre, C., Peterse, F., Lupker, M., Giosan, L., and Eglinton, T. I.: Reconciling drainage and receiving basin signatures of the Godavari River system, Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, 2018.
van der Merwe, N. J. and Medina, E.: The canopy effect, carbon isotope
ratios and foodwebs in Amazonia, J. Archaeol. Sci., 18, 249–259, 1991.
van der Voort, T. S., Hagedorn, F., McIntyre, C., Zell, C., Walthert, L., Schleppi, P., Feng, X., and Eglinton, T. I.: Variability in 14C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients, Biogeosciences, 13, 3427–3439, https://doi.org/10.5194/bg-13-3427-2016, 2016.
van Helmond, N. A., Krupinski, N. B. Q., Lougheed, B. C., Obrochta, S. P.,
Andrén, T., and Slomp, C. P.: Seasonal hypoxia was a natural feature of
the coastal zone in the Little Belt, Denmark, during the past 8 ka, Mar.
Geol., 387, 45–57, 2017.
Vonk, J. E., van Dongen, B. E., and Gustafsson, Ö: Lipid biomarker
investigation of the origin and diagenetic state of sub-arctic terrestrial
organic matter presently exported into the northern Bothnian Bay, Mar.
Chem., 112, 1–10, 2008.
Vonk, J. E., Sánchez-García, L., Semiletov, I., Dudarev, O., Eglinton, T., Andersson, A., and Gustafsson, Ö.: Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea, Biogeosciences, 7, 3153–3166, https://doi.org/10.5194/bg-7-3153-2010, 2010.
Ward, N. D., Bianchi, T. S., Medeiros, P. M., Seidel, M., Richey, J. E.,
Keil, R. G., and Sawakuchi, H. O.: Where carbon goes when water flows: carbon
cycling across the aquatic continuum, Front. Mar. Sci., 4, 1–27, 2017.
Water Resources Information System, Government of India, Ministry of Water
Resources: Rainfall data in the Godavari basin, https://indiawris.gov.in/,
last access: 1 February 2021.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M.,
Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., and
Garcia-Franco, N.: Soil organic carbon storage as a key function of soils – A
review of drivers and indicators at various scales, Geoderma, 333, 149–162,
2019.
Wynn, J. G.: Carbon isotope fractionation during decomposition of organic
matter in soils and paleosols: implications for paleoecological
interpretations of paleosols, Palaeogeogr. Palaeocl.,
251, 437–448, 2007.
Wynn, J. G. and Bird, M. I.: C4-derived soil organic carbon decomposes
faster than its C3 counterpart in mixed C3/C4 soils, Glob. Change Biol.,
13, 2206–2217, 2007.
Wynn, J. G. and Bird, M. I.: Environmental controls on the stable carbon
isotopic composition of soil organic carbon: implications for modelling the
distribution of C3 and C4 plants, Australia, Tellus B,
60, 604–621, 2008.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh,
A.: APHRODITE: Constructing a long-term daily gridded precipitation dataset
for Asia based on a dense network of rain gauges, B. Am. Meteorol. Soc.,
93, 1401–1415, 2012.
Yoneyama, T., Okada, H., and Ando, S.: Seasonal variations in
natural 13C abundances in C3 and C4 plants collected in Thailand and
the Philippines, Soil Sci. Plant Nutr., 56, 422–426, 2010.
Ziegler, H., Batanouny, K. H., Sankhla, N., Vyas, O. P., and Stichler, W.:
The photosynthetic pathway types of some desert plants from India, Saudi
Arabia, Egypt, and Iraq, Oecologia, 48, 93–99, 1981.
Zorzi, C., Goni, M. F. S., Anupama, K., Prasad, S., Hanquiez, V., Johnson,
J., and Giosan, L.: Indian monsoon variations during three contrasting
climatic periods: the Holocene, Heinrich Stadial 2 and the last
interglacial–glacial transition, Quaternary Sci. Rev., 125, 50–60, 2015.
Short summary
The distinct carbon isotopic values of C3 and C4 plants are widely used to reconstruct past hydroclimate, where more C3 plants reflect wetter and C4 plants drier conditions. Here we examine the impact of regional hydroclimatic conditions on plant isotopic values in the Godavari River basin, India. We find that it is crucial to identify regional plant isotopic values and consider drought stress, which introduces a bias in C3 / C4 plant estimates and associated hydroclimate reconstructions.
The distinct carbon isotopic values of C3 and C4 plants are widely used to reconstruct past...
Altmetrics
Final-revised paper
Preprint