Articles | Volume 19, issue 17
https://doi.org/10.5194/bg-19-4107-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4107-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Carbon isotopic ratios of modern C3 and C4 vegetation on the Indian peninsula and changes along the plant–soil–river continuum – implications for vegetation reconstructions
Frédérique M. S. A. Kirkels
CORRESPONDING AUTHOR
Department of Earth Sciences, Faculty of Geosciences, Utrecht
University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Hugo J. de Boer
Copernicus Institute of
Sustainable Development, Faculty of Geosciences, Utrecht University,
Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Paulina Concha Hernández
Department of Earth Sciences, Faculty of Geosciences, Utrecht
University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Chris R. T. Martes
Department of Earth Sciences, Faculty of Geosciences, Utrecht
University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Marcel T. J. van der Meer
Department of Marine Microbiology and Biogeochemistry, NIOZ Royal
Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the
Netherlands
Sayak Basu
Department of Earth Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur 741246, India
present address: Geological Oceanography Department, National
Institute of Oceanography, Dona Paula, Goa 403004, India
Muhammed O. Usman
Geological Institute, ETH Zurich, Sonneggstrasse 5, 8092
Zurich, Switzerland
present address: Department of Physical & Environmental Sciences,
University of Toronto Scarborough, Toronto, Ontario M1C1A4, Canada
Department of Earth Sciences, Faculty of Geosciences, Utrecht
University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Related authors
Frédérique M. S. A. Kirkels, Huub M. Zwart, Muhammed O. Usman, Suning Hou, Camilo Ponton, Liviu Giosan, Timothy I. Eglinton, and Francien Peterse
Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, https://doi.org/10.5194/bg-19-3979-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
Clim. Past, 21, 679–704, https://doi.org/10.5194/cp-21-679-2025, https://doi.org/10.5194/cp-21-679-2025, 2025
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2 history during the last glacial-to-interglacial transition. Using various geochemical tracers on archives from both subsurface and surface waters reveals enhanced storage of carbon at depth during the Last Glacial Maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Jingjing Guo, Martin Ziegler, Louise Fuchs, Youbin Sun, and Francien Peterse
Clim. Past, 21, 343–355, https://doi.org/10.5194/cp-21-343-2025, https://doi.org/10.5194/cp-21-343-2025, 2025
Short summary
Short summary
In this study, we use the distribution of soil bacterial membrane lipids stored on the Chinese Loess Plateau (CLP) to quantitatively reconstruct variations in precipitation amount over the past 130 kyr. The precipitation record shows orbital- and millennial-scale variations and varies at precession and obliquity scale. The application of this precipitation proxy across the CLP indicates a more pronounced spatial gradient during glacials, when the western CLP experiences more arid conditions.
Allix J. Baxter, Francien Peterse, Dirk Verschuren, Aihemaiti Maitituerdi, Nicolas Waldmann, and Jaap S. Sinninghe Damsté
Biogeosciences, 21, 2877–2908, https://doi.org/10.5194/bg-21-2877-2024, https://doi.org/10.5194/bg-21-2877-2024, 2024
Short summary
Short summary
This study investigates the impact of long-term lake-system evolution on the climate signal recorded by glycerol dialkyl glycerol tetraethers (GDGTs), a popular biomarker in paleoclimate research. It compares downcore changes in GDGTs in the 250 000 year sediment sequence of Lake Chala (Kenya/Tanzania) to independent data for lake mixing and water-column chemistry. These factors influence the GDGT proxies in the earliest depositional phases (before ~180 ka), confounding the climate signal.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Raquel González-Armas, Jordi Vilà-Guerau de Arellano, Mary Rose Mangan, Oscar Hartogensis, and Hugo de Boer
Biogeosciences, 21, 2425–2445, https://doi.org/10.5194/bg-21-2425-2024, https://doi.org/10.5194/bg-21-2425-2024, 2024
Short summary
Short summary
This paper investigates the water and CO2 exchange for an alfalfa field with observations and a model with spatial scales ranging from the stomata to the atmospheric boundary layer. To relate the environmental factors to the leaf gas exchange, we developed three equations that quantify how many of the temporal changes of the leaf gas exchange occur due to changes in the environmental variables. The novelty of the research resides in the capacity to dissect the dynamics of the leaf gas exchange.
Yord W. Yedema, Timme Donders, Francien Peterse, and Francesca Sangiorgi
J. Micropalaeontol., 42, 257–276, https://doi.org/10.5194/jm-42-257-2023, https://doi.org/10.5194/jm-42-257-2023, 2023
Short summary
Short summary
The pollen and dinoflagellate cyst content of 21 surface sediments from the northern Gulf of Mexico is used to test the applicability of three palynological ratios (heterotroph/autotroph, pollen/dinocyst, and pollen/bisaccate ratio) as proxies for marine productivity and distance to the coast/river. Redundancy analysis confirms the suitability of these three ratios, where the H/A ratio can be used as an indicator of primary production, and the P/B ratio best tracks the distance to the coast.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Katrin Hättig, Devika Varma, Stefan Schouten, and Marcel T. J. van der Meer
Clim. Past, 19, 1919–1930, https://doi.org/10.5194/cp-19-1919-2023, https://doi.org/10.5194/cp-19-1919-2023, 2023
Short summary
Short summary
Water isotopes, both hydrogen and oxygen, correlate with the salinity of the sea. Here we reconstruct the surface seawater isotopic composition during the last deglaciation based on the measured hydrogen isotopic composition of alkenones, organic compounds derived from haptophyte algae, and compared it to oxygen isotopes of calcite shells produced in the bottom water. Our results suggest that surface seawater experienced more freshening during the last 20 000 years than the bottom seawater.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Frédérique M. S. A. Kirkels, Huub M. Zwart, Muhammed O. Usman, Suning Hou, Camilo Ponton, Liviu Giosan, Timothy I. Eglinton, and Francien Peterse
Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, https://doi.org/10.5194/bg-19-3979-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Gabriella M. Weiss, Julie Lattaud, Marcel T. J. van der Meer, and Timothy I. Eglinton
Clim. Past, 18, 233–248, https://doi.org/10.5194/cp-18-233-2022, https://doi.org/10.5194/cp-18-233-2022, 2022
Short summary
Short summary
Here we study the elemental signatures of plant wax compounds as well as molecules from algae and bacteria to understand how water sources changed over the last 11 000 years in the northeastern part of Europe surrounding the Baltic Sea. Our results show diversity in plant and aquatic microorganisms following the melting of the large ice sheet that covered northern Europe as the regional climate continued to warm. A shift in water source from ice melt to rain also occurred around the same time.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Tessa Sophia van der Voort, Thomas Michael Blattmann, Muhammed Usman, Daniel Montluçon, Thomas Loeffler, Maria Luisa Tavagna, Nicolas Gruber, and Timothy Ian Eglinton
Earth Syst. Sci. Data, 13, 2135–2146, https://doi.org/10.5194/essd-13-2135-2021, https://doi.org/10.5194/essd-13-2135-2021, 2021
Short summary
Short summary
Ocean sediments form the largest and longest-term storage of organic carbon. Despite their global importance, information on these sediments is often scattered, incomplete or inaccessible. Here we present MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon, mosaic.ethz.ch), a (radio)carbon-centric database that addresses this information gap. This database provides a platform for assessing the transport, deposition and storage of carbon in ocean surface sediments.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Loes G. J. van Bree, Francien Peterse, Allix J. Baxter, Wannes De Crop, Sigrid van Grinsven, Laura Villanueva, Dirk Verschuren, and Jaap S. Sinninghe Damsté
Biogeosciences, 17, 5443–5463, https://doi.org/10.5194/bg-17-5443-2020, https://doi.org/10.5194/bg-17-5443-2020, 2020
Short summary
Short summary
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are used as a paleothermometer based on their temperature dependence in global soils, but aquatic production complicates their use in lakes. BrGDGTs in the water column of Lake Chala, East Africa, respond to oxygen conditions and mixing. Changes in their signal can be linked to bacterial community composition rather than membrane adaptation to changing conditions. Their integrated signal in the sediment reflects mean air temperature.
Cited articles
Acharyya, T., Sarma, V., Sridevi, B., Venkataramana, V., Bharathi, M. D.,
Naidu, S. A., Kumar, B., Prasad, V. R., Bandyopadhyay, D., and Reddy, N.:
Reduced river discharge intensifies phytoplankton bloom in Godavari estuary,
India, Mar. Chem., 132, 15–22, 2012.
Agrawal, S., Sanyal, P., Sarkar, A., Jaiswal, M. K., and Dutta, K.:
Variability of Indian monsoonal rainfall over the past 100 ka and its
implication for C3–C4 vegetational change, Quaternary Res., 77, 159–170, 2012.
Asouti, E. and Fuller, D. Q.: Trees and woodlands of South India:
archaeological perspectives, Left Coast Press, Inc., Walnut Creek, Ca., USA, ISBN 978-1-59874-231-2,
2008.
Aucour, A., France-Lanord, C., Pedoja, K., Pierson-Wickmann, A., and
Sheppard, S. M.: Fluxes and sources of particulate organic carbon in the
Ganga-Brahmaputra river system, Global Biogeochem. Cy., 20, 1–12, 2006.
Babar, M. and Kaplay, R. D.: Godavari River: geomorphology and
socio-economic characteristics, in: The Indian Rivers, edited by: Singh, D. S.,
Springer, Singapore, 319–337, https://doi.org/10.1007/978-981-10-2984-4_26, 2018.
Balakrishna, K. and Probst, J.: Organic carbon transport and ratio
variations in a large tropical river: Godavari as a case study, India,
Biogeochemistry, 73, 457–473, 2005.
Banerji, U. S., Arulbalaji, P., and Padmalal, D.: Holocene climate
variability and Indian Summer Monsoon: an overview, Holocene, 30, 744–773,
2020.
Basu, S., Agrawal, S., Sanyal, P., Mahato, P., Kumar, S., and Sarkar, A.:
Carbon isotopic ratios of modern C3–C4 plants from the Gangetic Plain,
India and its implications to paleovegetational reconstruction,
Palaeogeogr. Palaeocl., 440, 22–32, 2015.
Basu, S., Sanyal, P., Sahoo, K., Chauhan, N., Sarkar, A., and Juyal, N.:
Variation in monsoonal rainfall sources (Arabian Sea and Bay of Bengal)
during the late Quaternary: Implications for regional vegetation and fluvial
systems, Palaeogeogr. Palaeocl., 491, 77–91, 2018.
Basu, S., Sanyal, P., Pillai, A. A., and Ambili, A.: Response of grassland
ecosystem to monsoonal precipitation variability during the Mid-Late
Holocene: Inferences based on molecular isotopic records from Banni
grassland, western India, PloS one, 14, e0212743, https://doi.org/10.1371/journal.pone.0212743, 2019a.
Basu, S., Ghosh, S., and Sanyal, P.: Spatial heterogeneity in the
relationship between precipitation and carbon isotopic discrimination in C3
plants: inferences from a global compilation, Global Planet. Change, 176,
123–131, 2019b.
Basu, S., Ghosh, S., and Chattopadhyay, D.: Disentangling the abiotic versus
biotic controls on C3 plant leaf carbon isotopes: inferences from a global
review, Earth-Sci. Rev., 222, 103839, https://doi.org/10.1016/j.earscirev.2021.103839, 2021.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A.,
and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598–600,
2009.
Bender, M. M.: Variations in the 13C/12C ratios of plants in
relation to the pathway of photosynthetic carbon dioxide fixation,
Phytochemistry, 10, 1239–1244, 1971.
Bianchi, T. S., Mitra, S., and McKee, B. A.: Sources of terrestrially-derived
organic carbon in lower Mississippi River and Louisiana shelf sediments:
implications for differential sedimentation and transport at the coastal
margin, Mar. Chem., 77, 211–223, 2002.
Bianchi, T. S., Cui, X., Blair, N. E., Burdige, D. J., Eglinton, T. I., and
Galy, V.: Centers of organic carbon burial and oxidation at the land-ocean
interface, Org. Geochem., 115, 138–155, 2018.
Biksham, G. and Subramanian, V.: Nature of solute transport in the Godavari
basin, India, J. Hydrol., 103, 375–392, 1988a.
Biksham, G. and Subramanian, V.: Sediment transport of the Godavari River
basin and its controlling factors, J. Hydrol., 101, 275–290, 1988b.
Bird, M. I. and Pousai, P.: Variations of δ13C in the surface
soil organic carbon pool, Global Biogeochem. Cy., 11, 313–322, 1997.
Bird, M. I., Chivas, A. R., and Head, J.: A latitudinal gradient in carbon
turnover times in forest soils, Nature, 381, 143–146, 1996.
Birge, H. E., Conant, R. T., Follett, R. F., Haddix, M. L., Morris, S. J.,
Snapp, S. S., Wallenstein, M. D., and Paul, E. A.: Soil respiration is not
limited by reductions in microbial biomass during long-term soil
incubations, Soil Biol. Biochem., 81, 304–310, 2015.
Bouchez, J., Galy, V., Hilton, R. G., Gaillardet, J., Moreira-Turcq, P.,
Pérez, M. A., France-Lanord, C., and Maurice, L.: Source, transport and
fluxes of Amazon River particulate organic carbon: Insights from river
sediment depth-profiles, Geochim. Cosmochim. Ac., 133, 280–298, 2014.
Buchmann, N., Brooks, J. R., Rapp, K. D., and Ehleringer, J. R.: Carbon
isotope composition of C4 grasses is influenced by light and water supply,
Plant Cell Environ., 19, 392–402, 1996.
Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca,
M., Saatchi, S., Santoro, M., Thurner, M., and Weber, U.: Global covariation
of carbon turnover times with climate in terrestrial ecosystems, Nature,
514, 213–217, 2014.
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J.,
Eisenmann, V., and Ehleringer, J. R.: Global vegetation change through the
Miocene/Pliocene boundary, Nature, 389, 153–158, 1997.
Cerling, T. E., Wynn, J. G., Andanje, S. A., Bird, M. I., Korir, D. K.,
Levin, N. E., Mace, W., Macharia, A. N., Quade, J., and Remien, C. H.: Woody
cover and hominin environments in the past 6 million years, Nature, 476,
51–56, 2011.
Contreras-Rosales, L. A., Jennerjahn, T., Tharammal, T., Meyer, V.,
Lückge, A., Paul, A., and Schefuß, E.: Evolution of the Indian Summer
Monsoon and terrestrial vegetation in the Bengal region during the past 18 ka, Quaternary Sci. Rev., 102, 133–148, 2014.
Cui, M., Wang, Z., Nageswara Rao, K., Sangode, S. J., Saito, Y., Chen, T.,
Kulkarni, Y. R., Naga Kumar, K. C. V., and Demudu, G.: A mid- to
late-Holocene record of vegetation decline and erosion triggered by monsoon
weakening and human adaptations in the south-east Indian Peninsula,
Holocene, 27, 1976–1987, 2017.
CWC (Central Water Commission): Government of India, Ministry of Water
Resources, Godavari basin, 1–187, http://cwc.gov.in/sites/default/files/godavaribasin-volume-i.pdf (last access: 31 August 2022), 2014.
Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., and Tu, K. P.:
Stable isotopes in plant ecology, Annu. Rev. Ecol. Syst., 33, 507–559, 2002.
Dehairs, F., Rao, R. G., Mohan, P. C., Raman, A. V., Marguillier, S., and
Hellings, L.: Tracing mangrove carbon in suspended matter and aquatic fauna
of the Gautami–Godavari Delta, Bay of Bengal (India), Hydrobiologia, 431,
225–241, 2000.
Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L., and Freeman, K.
H.: Global patterns in leaf 13C discrimination and implications for
studies of past and future climate, P. Natl. Acad. Sci. USA, 107, 5738–5743, 2010.
Dunlea, A. G., Giosan, L., and Huang, Y.: Pliocene expansion of C4 vegetation in the Core Monsoon Zone on the Indian Peninsula, Clim. Past, 16, 2533–2546, https://doi.org/10.5194/cp-16-2533-2020, 2020.
Dutt, S., Gupta, A. K., Cheng, H., Clemens, S. C., Singh, R. K., and Tewari,
V. C.: Indian summer monsoon variability in northeastern India during the
last two millennia, Quaternary Int., 571, 73–80, 2021.
Eglinton, T. I., Galy, V. V., Hemingway, J. D., Feng, X., Bao, H.,
Blattmann, T. M., Dickens, A. F., Gies, H., Giosan, L., and Haghipour, N.:
Climate control on terrestrial biospheric carbon turnover, P. Natl. Acad. Sci. USA, 118, 1–9,
2021.
Elliott, S., Baker, P. J., and Borchert, R.: Leaf flushing during the dry
season: the paradox of Asian monsoon forests, Global Ecol. Biogeogr., 15,
248–257, 2006.
Ellsworth, P. Z. and Cousins, A. B.: Carbon isotopes and water use
efficiency in C4 plants, Curr. Opin. Plant Biol., 31, 155–161, 2016.
Farquhar, G. D.: On the nature of carbon isotope discrimination in C4
species, Aust. J. Plant Physiol., 10, 205–226, 1983.
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T.: Carbon isotope
discrimination and photosynthesis, Annu. Rev. Plant Physiol., 40, 503–537, 1989.
Feakins, S. J., Liddy, H. M., Tauxe, L., Galy, V., Feng, X., Tierney, J. E.,
Miao, Y., and Warny, S.: Miocene C4 grassland expansion as recorded by the
Indus Fan, Paleoceanogr. Paleocl., 35, e2020PA003856, https://doi.org/10.1029/2020PA003856, 2020.
Feng, X., Feakins, S. J., Liu, Z., Ponton, C., Wang, R. Z., Karkabi, E.,
Galy, V., Berelson, W. M., Nottingham, A. T., and Meir, P.: Source to sink:
Evolution of lignin composition in the Madre de Dios River system with
connection to the Amazon basin and offshore, J. Geophys. Res.-Biogeo.,
121, 1316–1338, 2016.
France-Lanord, C. and Derry, L. A.: δ13C of organic carbon in
the Bengal Fan: source evolution and transport of C3 and C4 plant carbon to
marine sediments, Geochim. Cosmochim. Ac., 58, 4809–4814, 1994.
Freeman, K. H., Mueller, K. E., Diefendorf, A. F., Wing, S. L., and Koch, P.
L.: Clarifying the influence of water availability and plant types on carbon
isotope discrimination by C3 plants, P. Natl. Acad. Sci. USA, 108, E59–E60, 2011.
Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H., and Palhol,
F.: Efficient organic carbon burial in the Bengal fan sustained by the
Himalayan erosional system, Nature, 450, 407–411, 2007.
Galy, V., François, L., France-Lanord, C., Faure, P., Kudrass, H.,
Palhol, F., and Singh, S. K.: C4 plants decline in the Himalayan basin since
the Last Glacial Maximum, Quaternary Sci. Rev., 27, 1396–1409, 2008a.
Galy, V., France-Lanord, C., and Lartiges, B.: Loading and fate of
particulate organic carbon from the Himalaya to the Ganga–Brahmaputra
delta, Geochim. Cosmochim. Ac., 72, 1767–1787, 2008b.
Galy, V., Eglinton, T., France-Lanord, C., and Sylva, S.: The provenance of
vegetation and environmental signatures encoded in vascular plant biomarkers
carried by the Ganges–Brahmaputra rivers, Earth Planet. Sc. Lett., 304,
1–12, 2011.
Garcin, Y., Schefuß, E., Schwab, V. F., Garreta, V., Gleixner, G.,
Vincens, A., Todou, G., Séné, O., Onana, J., and Achoundong, G.:
Reconstructing C3 and C4 vegetation cover using n−alkane carbon isotope ratios
in recent lake sediments from Cameroon, Western Central Africa, Geochim.
Cosmochim. Ac., 142, 482–500, 2014.
Gawade, L., Krishna, M. S., Sarma, V., Hemalatha, K., and Rao, Y. V.:
Spatio-temporal variability in the sources of particulate organic carbon and
nitrogen in a tropical Godavari estuary, Estuar. Coast. Shelf S., 215,
20–29, 2018.
Ghosh, S., Sanyal, P., and Kumar, R.: Evolution of C4 plants and controlling
factors: Insight from n-alkane isotopic values of NW Indian Siwalik paleosols,
Org. Geochem., 110, 110–121, 2017.
Giosan, L., Ponton, C., Usman, M., Blusztajn, J., Fuller, D. Q., Galy, V., Haghipour, N., Johnson, J. E., McIntyre, C., Wacker, L., and Eglinton, T. I.: Short communication: Massive erosion in monsoonal central India linked to late Holocene land cover degradation, Earth Surf. Dynam., 5, 781–789, https://doi.org/10.5194/esurf-5-781-2017, 2017.
Goñi, M. A., Ruttenberg, K. C., and Eglinton, T. I.: Sources and
contribution of terrigenous organic carbon to surface sediments in the Gulf
of Mexico, Nature, 389, 275–278, 1997.
Goñi, M. A., Ruttenberg, K. C., and Eglinton, T. I.: A reassessment of
the sources and importance of land-derived organic matter in surface
sediments from the Gulf of Mexico, Geochim. Cosmochim. Ac., 62, 3055–3075,
1998.
Graven, H., Allison, C. E., Etheridge, D. M., Hammer, S., Keeling, R. F., Levin, I., Meijer, H. A. J., Rubino, M., Tans, P. P., Trudinger, C. M., Vaughn, B. H., and White, J. W. C.: Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6, Geosci. Model Dev., 10, 4405–4417, https://doi.org/10.5194/gmd-10-4405-2017, 2017.
Gupta, L. P., Subramanian, V., and Ittekkot, V.: Biogeochemistry of
particulate organic matter transported by the Godavari River, India,
Biogeochemistry, 38, 103–128, 1997.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, 2014.
Hein, C. J., Usman, M., Eglinton, T. I., Haghipour, N., and Galy, V. V.:
Millennial-scale hydroclimate control of tropical soil carbon storage,
Nature, 581, 63–66, 2020.
Hou, P., Yu, M., Zhao, M., Montluçon, D. B., Su, C., and Eglinton, T. I.:
Terrestrial biomolecular burial efficiencies on continental margins, J.
Geophys. Res.-Biogeo., 125, 1–15, 2020.
Ittekkot, V., Safiullah, S., Mycke, B., and Seifert, R.: Seasonal variability
and geochemical significance of organic matter in the River Ganges,
Bangladesh, Nature, 317, 800–802, 1985.
Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P.,
Heimann, M., and Meijer, H. A.: Exchanges of atmospheric CO2 and
13CO2 with the terrestrial biosphere and oceans from 1978 to 2000.
I. Global aspects, UC San Diego, Scripps Institution of Oceanography, 01–06,
1–28, https://escholarship.org/uc/item/09v319r9 (last access: 31 August 2022), 2001.
Keeling, R. F., Graven, H. D., Welp, L. R., Resplandy, L., Bi, J., Piper, S.
C., Sun, Y., Bollenbacher, A., and Meijer, H. A.: Atmospheric evidence for a
global secular increase in carbon isotopic discrimination of land
photosynthesis, P. Natl. Acad. Sci. USA, 114, 10361–10366, 2017.
Kirkels, F. M., Ponton, C., Galy, V., West, A. J., Feakins, S. J., and
Peterse, F.: From Andes to Amazon: assessing branched tetraether lipids as
tracers for soil organic carbon in the Madre de Dios River system, J.
Geophys. Res.-Bio., 125, 1–18, 2020a.
Kirkels, F. M., Zwart, H. M., Basu, S., Usman, M. O., and Peterse, F.:
Seasonal and spatial variability in δ18O and δD values
in waters of the Godavari River basin: insights into hydrological processes,
J. Hydrol. Reg. Stud., 30, 1–25, 2020b.
Kirkels, F. M. S. A., Zwart, H. M., Usman, M. O., and Peterse,
F.: Branched glycerol monoalkyl glycerol tetraethers (brGMGTs) and
geochemical proxies in soils, SPM and riverbed sediments in the Godavari
River basin (India), PANGAEA [data set] https://doi.org/10.1594/PANGAEA.937965, 2021.
Kirkels, F. M. S. A., de Boer, H., Concha Hernández, P., Martes, C., van der
Meer, M., Basu, S., Usman, M., Sanyal, P., and Peterse, F.: Carbon and
nitrogen (isotopic) signatures in C3 and C4 plants, soils, SPM and riverbed
sediments in the Godavari River basin (India) in 2015, PANGAEA
[data set], https://doi.org/10.1594/PANGAEA.940189, 2022a.
Kirkels, F. M. S. A., Zwart, H. M., Usman, M. O., Hou, S., Ponton, C., Giosan, L., Eglinton, T. I., and Peterse, F.: From soil to sea: sources and transport of organic carbon traced by tetraether lipids in the monsoonal Godavari River, India, Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, 2022b.
Koch, P. L.: Isotopic reconstruction of past continental environments, Annu.
Rev. Earth Pl. Sci., 26, 573–613, 1998.
Kögel-Knabner, I.: The macromolecular organic composition of plant and
microbial residues as inputs to soil organic matter, Soil Biol. Biochem.,
34, 139–162, 2002.
Kohn, M. J.: Carbon isotope compositions of terrestrial C3 plants as
indicators of (paleo) ecology and (paleo) climate, P. Natl. Acad. Sci. USA, 107, 19691–19695,
2010.
Kohn, M. J.: Reply to Freeman et al.: Carbon isotope discrimination by C3
plants, P. Natl. Acad. Sci. USA, 108, E61, https://doi.org/10.1073/pnas.1103222108, 2011.
Komada, T., Anderson, M. R., and Dorfmeier, C. L.: Carbonate removal from
coastal sediments for the determination of organic carbon and its isotopic
signatures, δ13C and Δ14C: comparison of
fumigation and direct acidification by hydrochloric acid, Limnol. Oceanogr.-Meth., 6, 254–262, 2008.
Krishna, M. S., Naidu, S. A., Subbaiah, C. V., Gawade, L., Sarma, V., and
Reddy, N.: Sources, distribution and preservation of organic matter in a
tropical estuary (Godavari, India), Estuar. Coast., 38, 1032–1047, 2015.
Krull, E. S., Skjemstad, J. O., Burrows, W. H., Bray, S. G., Wynn, J. G.,
Bol, R., Spouncer, L., and Harms, B.: Recent vegetation changes in central
Queensland, Australia: evidence from δ13C and 14C analyses
of soil organic matter, Geoderma, 126, 241–259, 2005.
Kushwaha, C. P. and Singh, K. P.: Diversity of leaf phenology in a tropical
deciduous forest in India, J. Trop. Ecol., 21, 47–56, 2005.
Lamb, A. L., Wilson, G. P., and Leng, M. J.: A review of coastal
palaeoclimate and relative sea-level reconstructions using δ13C
and ratios in organic material, Earth-Sci. Rev., 75, 29–57, 2006.
Lee, H., Galy, V., Feng, X., Ponton, C., Galy, A., France-Lanord, C., and
Feakins, S. J.: Sustained wood burial in the Bengal Fan over the last 19 My,
P. Natl. Acad. Sci. USA, 116, 22518–22525, 2019.
Li, Z., Sun, Y., and Nie, X.: Biomarkers as a soil organic carbon tracer of
sediment: Recent advances and challenges, Earth-Sci. Rev., 208, 1–13,
2020.
Liu, Y., Niu, H., and Xu, X.: Foliar δ13C response patterns
along a moisture gradient arising from genetic variation and phenotypic
plasticity in grassland species of Inner Mongolia, Ecol. Evol., 3, 262–267,
2013.
Liu, Y., Zhang, L., Niu, H., Sun, Y., and Xu, X.: Habitat-specific
differences in plasticity of foliar δ13C in temperate steppe
grasses, Ecol. Evol., 4, 648–655, 2014.
Luo, W., Wang, X., Auerswald, K., Wang, Z., Bird, M. I., Still, C. J.,
Lü, X., and Han, X.: Effects of plant intraspecific variation on the
prediction of C3/C4 vegetation ratio from carbon isotope composition of
topsoil organic matter across grasslands, J. Plant Ecol., 14, 628–637, 2021.
Lupker, M., France-Lanord, C., Lavé, J., Bouchez, J., Galy, V.,
Métivier, F., Gaillardet, J., Lartiges, B., and Mugnier, J.: A
Rouse-based method to integrate the chemical composition of river sediments:
application to the Ganga basin, J. Geophys. Res. Earth, 116, 1–24,
2011.
Ma, J., Sun, W., Liu, X., and Chen, F.: Variation in the stable carbon and
nitrogen isotope composition of plants and soil along a precipitation
gradient in northern China, PLoS One, 7, e51894, https://doi.org/10.1371/journal.pone.0051894, 2012.
Martin, A., Mariotti, A., Lavelle, P., and Vuattoux, R.: Estimate of organic
matter turnover rate in a savanna soil by 13C natural abundance
measurements, Soil Biol. Biochem., 22, 517–523, 1990.
Menges, J., Hovius, N., Andermann, C., Lupker, M., Haghipour, N., Märki,
L., and Sachse, D.: Variations in organic carbon sourcing along a
trans-Himalayan river determined by a Bayesian mixing approach, Geochim.
Cosmochim. Ac., 286, 159–176, 2020.
Murphy, B. P. and Bowman, D. M.: The carbon and nitrogen isotope composition
of Australian grasses in relation to climate, Funct. Ecol., 23, 1040–1049,
2009.
NOAA (National Oceanic and Atmospheric Administration): Earth System
Research Laboratories – Global Monitoring Laboratory, https://gml.noaa.gov, last access: 21 June 2022.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell,
G. V., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., and
Morrison, J. C.: Terrestrial ecoregions of the world: a new map of life on
earth: a new global map of terrestrial ecoregions provides an innovative
tool for conserving biodiversity, BioSci., 51, 933–938, 2001.
Phillips, D. L. and Gregg, J. W.: Uncertainty in source partitioning using
stable isotopes, Oecologia, 127, 171–179, 2001.
Ponton, C., Giosan, L., Eglinton, T. I., Fuller, D. Q., Johnson, J. E.,
Kumar, P., and Collett, T. S.: Holocene aridification of India, Geophys. Res.
Lett., 39, L03704–L03709, 2012.
Pradhan, U. K., Wu, Y., Shirodkar, P. V., Zhang, J., and Zhang, G.:
Multi-proxy evidence for compositional change of organic matter in the
largest tropical (peninsular) river basin of India, J. Hydrol., 519,
999–1009, 2014.
Prasad, S., Anoop, A., Riedel, N., Sarkar, S., Menzel, P., Basavaiah, N.,
Krishnan, R., Fuller, D., Plessen, B., and Gaye, B.: Prolonged monsoon
droughts and links to Indo-Pacific warm pool: a Holocene record from Lonar
Lake, central India, Earth Planet. Sc. Lett., 391, 171–182, 2014.
Reddy, S. K. K., Gupta, H., Badimela, U., Reddy, D. V., Kurakalva, R. M., and
Kumar, D.: Export of particulate organic carbon by the mountainous tropical
rivers of Western Ghats, India: variations and controls, Sci. Total
Environ., 751, 142115, https://doi.org/10.1016/j.scitotenv.2020.142115, 2021.
Repasch, M., Scheingross, J. S., Hovius, N., Vieth-Hillebrand, A., Mueller,
C. W., Höschen, C., Szupiany, R. N., and Sachse, D.: River organic carbon
fluxes modulated by hydrodynamic sorting of particulate organic matter,
Geophys. Res. Lett., 49, e2021GL096343, https://doi.org/10.1029/2021GL096343, 2022.
Riedel, N., Stebich, M., Anoop, A., Basavaiah, N., Menzel, P., Prasad, S.,
Sachse, D., Sarkar, S., and Wiesner, M.: Modern pollen vegetation
relationships in a dry deciduous monsoon forest: a case study from Lonar
Crater Lake, central India, Quaternary Int., 371, 268–279, 2015.
Roy, B. and Sanyal, P.: Isotopic and molecular distribution of leaf-wax in
plant-soil system of the Gangetic floodplain and its implication for
paleorecords, Quaternary Int., 607, 89–99, 2022.
Roy, B., Ghosh, S., and Sanyal, P.: Morpho-tectonic control on the
distribution of C3–C4 plants in the central Himalayan Siwaliks during Late
Plio-Pleistocene, Earth Planet. Sc. Lett., 535, 116119, https://doi.org/10.1016/j.epsl.2020.116119, 2020.
Sage, R. F.: The evolution of C4 photosynthesis, New Phytol., 161, 341–370,
2004.
Sage, R. F. and Monson, R. K. (Eds.): C4 plant biology, Academic Press, San
Diego, CA, USA, https://doi.org/10.1016/B978-0-12-614440-6.X5000-9, 1999.
Sankhla, N., Ziegler, H., Vyas, O. P., Stichler, W., and Trimborn, P.:
Eco-physiological studies on Indian arid zone plants, Oecologia, 21,
123–129, 1975.
Sarangi, V., Agrawal, S., and Sanyal, P.: The disparity in the abundance of
C4 plants estimated using the carbon isotopic composition of paleosol
components, Palaeogeogr., Palaeocl., 561, 110068, https://doi.org/10.1016/j.palaeo.2020.110068, 2021.
Sarkar, S., Prasad, S., Wilkes, H., Riedel, N., Stebich, M., Basavaiah, N.,
and Sachse, D.: Monsoon source shifts during the drying mid-Holocene:
Biomarker isotope based evidence from the core monsoon zone (CMZ) of India,
Quarternary Sci. Rev., 123, 144–157, 2015.
Schmidt, H. and Gleixner, G.: Carbon isotope effects on key reactions in
plant metabolism and 13C-patterns in natural compounds, in: Stable
Isotopes and the Integration of Biological, Ecological and Geochemical
Processes, edited by: Griffiths, H., Garland Science, London, 13–26, https://doi.org/10.1201/9781003076865, 1998.
Schulze, E., Ellis, R., Schulze, W., Trimborn, P., and Ziegler, H.:
Diversity, metabolic types and δ13C carbon isotope ratios in
the grass flora of Namibia in relation to growth form, precipitation and
habitat conditions, Oecologia, 106, 352–369, 1996.
Simpson, A. J., Simpson, M. J., Smith, E., and Kelleher, B. P.: Microbially
derived inputs to soil organic matter: are current estimates too low?,
Environ. Sci. Technol., 41, 8070–8076, 2007.
Sinha, A., Berkelhammer, M., Stott, L., Mudelsee, M., Cheng, H., and Biswas,
J.: The leading mode of Indian Summer Monsoon precipitation variability
during the last millennium, Geophys. Res. Lett., 38, https://doi.org/10.1029/2011GL047713, 2011.
Sinha, A., Kathayat, G., Cheng, H., Breitenbach, S. F., Berkelhammer, M.,
Mudelsee, M., Biswas, J., and Edwards, R. L.: Trends and oscillations in the
Indian summer monsoon rainfall over the last two millennia, Nat. Commun., 6,
1–8, 2015.
Sreemany, A. and Bera, M. K.: Does a large delta-fan sedimentary archive
faithfully record floodplain vegetation composition?, Quaternary Sci. Rev., 228,
106108, https://doi.org/10.1016/j.quascirev.2019.106108, 2020.
Stewart, G. R., Turnbull, M. H., Schmidt, S., and Erskine, P. D.: 13C
natural abundance in plant communities along a rainfall gradient: a
biological integrator of water availability, Aust. J. Plant Physiol., 22,
51–55, 1995.
Still, C. J., Berry, J. A., Collatz, G. J., and DeFries, R. S.: Global
distribution of C3 and C4 vegetation: carbon cycle implications, Global
Biogeochem. Cy., 17, 6–14, 2003.
Swap, R. J., Aranibar, J. N., Dowty, P. R., Gilhooly III, W. P., and Macko,
S. A.: Natural abundance of 13C and 15N in C3 and C4 vegetation of
southern Africa: patterns and implications, Glob. Change Biol., 10,
350–358, 2004.
Torres, I. C., Inglett, P. W., Brenner, M., Kenney, W. F., and Reddy, K. R.:
Stable isotope (δ13C and δ15N) values of sediment
organic matter in subtropical lakes of different trophic status, J.
Paleolimnol., 47, 693–706, 2012.
Turner, A. G. and Annamalai, H.: Climate change and the South Asian summer
monsoon, Nat. Clim. Change, 2, 587–595, 2012.
Usman, M. O., Kirkels, F. M. S. A., Zwart, H. M., Basu, S., Ponton, C., Blattmann, T. M., Ploetze, M., Haghipour, N., McIntyre, C., Peterse, F., Lupker, M., Giosan, L., and Eglinton, T. I.: Reconciling drainage and receiving basin signatures of the Godavari River system, Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, 2018.
van der Merwe, N. J. and Medina, E.: The canopy effect, carbon isotope
ratios and foodwebs in Amazonia, J. Archaeol. Sci., 18, 249–259, 1991.
van der Voort, T. S., Hagedorn, F., McIntyre, C., Zell, C., Walthert, L., Schleppi, P., Feng, X., and Eglinton, T. I.: Variability in 14C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients, Biogeosciences, 13, 3427–3439, https://doi.org/10.5194/bg-13-3427-2016, 2016.
van Helmond, N. A., Krupinski, N. B. Q., Lougheed, B. C., Obrochta, S. P.,
Andrén, T., and Slomp, C. P.: Seasonal hypoxia was a natural feature of
the coastal zone in the Little Belt, Denmark, during the past 8 ka, Mar.
Geol., 387, 45–57, 2017.
Vonk, J. E., van Dongen, B. E., and Gustafsson, Ö: Lipid biomarker
investigation of the origin and diagenetic state of sub-arctic terrestrial
organic matter presently exported into the northern Bothnian Bay, Mar.
Chem., 112, 1–10, 2008.
Vonk, J. E., Sánchez-García, L., Semiletov, I., Dudarev, O., Eglinton, T., Andersson, A., and Gustafsson, Ö.: Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea, Biogeosciences, 7, 3153–3166, https://doi.org/10.5194/bg-7-3153-2010, 2010.
Ward, N. D., Bianchi, T. S., Medeiros, P. M., Seidel, M., Richey, J. E.,
Keil, R. G., and Sawakuchi, H. O.: Where carbon goes when water flows: carbon
cycling across the aquatic continuum, Front. Mar. Sci., 4, 1–27, 2017.
Water Resources Information System, Government of India, Ministry of Water
Resources: Rainfall data in the Godavari basin, https://indiawris.gov.in/,
last access: 1 February 2021.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M.,
Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., and
Garcia-Franco, N.: Soil organic carbon storage as a key function of soils – A
review of drivers and indicators at various scales, Geoderma, 333, 149–162,
2019.
Wynn, J. G.: Carbon isotope fractionation during decomposition of organic
matter in soils and paleosols: implications for paleoecological
interpretations of paleosols, Palaeogeogr. Palaeocl.,
251, 437–448, 2007.
Wynn, J. G. and Bird, M. I.: C4-derived soil organic carbon decomposes
faster than its C3 counterpart in mixed C3/C4 soils, Glob. Change Biol.,
13, 2206–2217, 2007.
Wynn, J. G. and Bird, M. I.: Environmental controls on the stable carbon
isotopic composition of soil organic carbon: implications for modelling the
distribution of C3 and C4 plants, Australia, Tellus B,
60, 604–621, 2008.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh,
A.: APHRODITE: Constructing a long-term daily gridded precipitation dataset
for Asia based on a dense network of rain gauges, B. Am. Meteorol. Soc.,
93, 1401–1415, 2012.
Yoneyama, T., Okada, H., and Ando, S.: Seasonal variations in
natural 13C abundances in C3 and C4 plants collected in Thailand and
the Philippines, Soil Sci. Plant Nutr., 56, 422–426, 2010.
Ziegler, H., Batanouny, K. H., Sankhla, N., Vyas, O. P., and Stichler, W.:
The photosynthetic pathway types of some desert plants from India, Saudi
Arabia, Egypt, and Iraq, Oecologia, 48, 93–99, 1981.
Zorzi, C., Goni, M. F. S., Anupama, K., Prasad, S., Hanquiez, V., Johnson,
J., and Giosan, L.: Indian monsoon variations during three contrasting
climatic periods: the Holocene, Heinrich Stadial 2 and the last
interglacial–glacial transition, Quaternary Sci. Rev., 125, 50–60, 2015.
Short summary
The distinct carbon isotopic values of C3 and C4 plants are widely used to reconstruct past hydroclimate, where more C3 plants reflect wetter and C4 plants drier conditions. Here we examine the impact of regional hydroclimatic conditions on plant isotopic values in the Godavari River basin, India. We find that it is crucial to identify regional plant isotopic values and consider drought stress, which introduces a bias in C3 / C4 plant estimates and associated hydroclimate reconstructions.
The distinct carbon isotopic values of C3 and C4 plants are widely used to reconstruct past...
Altmetrics
Final-revised paper
Preprint