Articles | Volume 19, issue 17
https://doi.org/10.5194/bg-19-4387-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4387-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Consistent responses of vegetation gas exchange to elevated atmospheric CO2 emerge from heuristic and optimization models
Stefano Manzoni
CORRESPONDING AUTHOR
Department of Physical Geography, Stockholm University, Stockholm,
10691, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm,
10691, Sweden
Simone Fatichi
Department of Civil and Environmental Engineering, National University
of Singapore, Singapore
Xue Feng
Department of Civil, Environmental, and Geo-Engineering, University of
Minnesota, Minneapolis, MN 55455, USA
St. Anthony Falls Laboratory, University of Minnesota, Minneapolis,
MN 55455, USA
Gabriel G. Katul
Department of Civil and Environmental Engineering, Duke University,
Durham, NC 27708-0287, USA
Nicholas School of the Environment, Duke University, Durham, NC 27708-0287,
USA
Danielle Way
Nicholas School of the Environment, Duke University, Durham, NC 27708-0287,
USA
Department of Biology, University of Western Ontario, London, Ontario,
N6A 5B7, Canada
Environmental and Climate Sciences Department, Brookhaven National
Laboratory, Upton, NY 11973, USA
Giulia Vico
Department of Crop Production Ecology, Swedish University of
Agricultural Sciences (SLU), Uppsala, 75007, Sweden
Related authors
Xiankun Li, Marleen Pallandt, Dilip Naidu, Johannes Rousk, Gustaf Hugelius, and Stefano Manzoni
EGUsphere, https://doi.org/10.5194/egusphere-2024-3324, https://doi.org/10.5194/egusphere-2024-3324, 2024
Short summary
Short summary
While laboratory studies have identified many drivers and their effects on the carbon emission pulse after rewetting of dry soils, a validation with field data is still missing. Here, we show that the carbon emission pulse in the laboratory and in the field increases with soil organic carbon and temperature, but their trends with pre-rewetting dryness and moisture increment at rewetting differ. We conclude that the laboratory findings can be partially validated.
Daniel Escobar, Stefano Manzoni, Jeimar Tapasco, and Salim Belyazid
EGUsphere, https://doi.org/10.5194/egusphere-2024-2754, https://doi.org/10.5194/egusphere-2024-2754, 2024
Short summary
Short summary
We studied carbon dynamics in afforested, drained peatlands using the ForSAFE-Peat model over two forest rotations. Our simulations showed that while trees store carbon, significant soil carbon losses occur, particularly early on, indicating that forest growth may not fully offset these losses once carbon time dynamics are considered. This emphasizes the need to consider both soil and harvested wood products when evaluating the climate impact of such systems.
Stefano Manzoni and M. Francesca Cotrufo
Biogeosciences, 21, 4077–4098, https://doi.org/10.5194/bg-21-4077-2024, https://doi.org/10.5194/bg-21-4077-2024, 2024
Short summary
Short summary
Organic carbon and nitrogen are stabilized in soils via microbial assimilation and stabilization of necromass (in vivo pathway) or via adsorption of the products of extracellular decomposition (ex vivo pathway). Here we use a diagnostic model to quantify which stabilization pathway is prevalent using data on residue-derived carbon and nitrogen incorporation in mineral-associated organic matter. We find that the in vivo pathway is dominant in fine-textured soils with low organic matter content.
Erik Schwarz, Samia Ghersheen, Salim Belyazid, and Stefano Manzoni
Biogeosciences, 21, 3441–3461, https://doi.org/10.5194/bg-21-3441-2024, https://doi.org/10.5194/bg-21-3441-2024, 2024
Short summary
Short summary
The occurrence of unstable equilibrium points (EPs) could impede the applicability of microbial-explicit soil organic carbon models. For archetypal model versions we identify when instability can occur and describe mathematical conditions to avoid such unstable EPs. We discuss implications for further model development, highlighting the important role of considering basic ecological principles to ensure biologically meaningful models.
Martin Thurner, Kailiang Yu, Stefano Manzoni, Anatoly Prokushkin, Melanie A. Thurner, Zhiqiang Wang, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1794, https://doi.org/10.5194/egusphere-2024-1794, 2024
Short summary
Short summary
Nitrogen concentrations in tree tissues (leaves, branches, stems, and roots) control photosynthesis, growth and respiration, and thus influence vegetation carbon uptake. Our novel database allows us to identify the controls of tree tissue nitrogen concentrations in boreal and temperate forests, such as tree age/size, species and climate. Changes therein will affect tissue N concentrations and thus also vegetation carbon uptake.
Boris Ťupek, Aleksi Lehtonen, Alla Yurova, Rose Abramoff, Bertrand Guenet, Elisa Bruni, Samuli Launiainen, Mikko Peltoniemi, Shoji Hashimoto, Xianglin Tian, Juha Heikkinen, Kari Minkkinen, and Raisa Mäkipää
Geosci. Model Dev., 17, 5349–5367, https://doi.org/10.5194/gmd-17-5349-2024, https://doi.org/10.5194/gmd-17-5349-2024, 2024
Short summary
Short summary
Updating the Yasso07 soil C model's dependency on decomposition with a hump-shaped Ricker moisture function improved modelled soil organic C (SOC) stocks in a catena of mineral and organic soils in boreal forest. The Ricker function, set to peak at a rate of 1 and calibrated against SOC and CO2 data using a Bayesian approach, showed a maximum in well-drained soils. Using SOC and CO2 data together with the moisture only from the topsoil humus was crucial for accurate model estimates.
Daniela Guasconi, Sara Cousins, Stefano Manzoni, Nina Roth, and Gustaf Hugelius
EGUsphere, https://doi.org/10.5194/egusphere-2023-2673, https://doi.org/10.5194/egusphere-2023-2673, 2023
Short summary
Short summary
This study assesses the effects of experimental drought and of a soil amendment on soil and vegetation carbon pools, at different soil depths. Drought consistently reduced soil moisture and aboveground biomass, while compost increased total soil carbon content and aboveground biomass, and effects were more pronounced in the topsoil. Root biomass was not significantly affected by the treatments. The contrasting response of roots and shoots improves our understanding of ecosystem carbon dynamics.
Benjamin M. C. Fischer, Laura Morillas, Johanna Rojas Conejo, Ricardo Sánchez-Murillo, Andrea Suárez Serrano, Jay Frentress, Chih-Hsin Cheng, Monica Garcia, Stefano Manzoni, Mark S. Johnson, and Steve W. Lyon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-404, https://doi.org/10.5194/hess-2020-404, 2020
Preprint withdrawn
Short summary
Short summary
We investigated in an upland rice experiment in Costa Rica whether mixing biochar (a charcoal) in soils could increase the resilience of rainfed agriculture to climate variability. We found that rice plants with biochar had access to larger stores of water more consistently and thus could withstand seven extra dry days relative to rice grown in non-treated soils. However, biochar can complement, but not necessarily replace, other water management strategies.
Stefano Manzoni, Arjun Chakrawal, Thomas Fischer, Joshua P. Schimel, Amilcare Porporato, and Giulia Vico
Biogeosciences, 17, 4007–4023, https://doi.org/10.5194/bg-17-4007-2020, https://doi.org/10.5194/bg-17-4007-2020, 2020
Short summary
Short summary
Carbon dioxide is produced by soil microbes through respiration, which is particularly fast when soils are moistened by rain. Will respiration increase with future more intense rains and longer dry spells? With a mathematical model, we show that wetter conditions increase respiration. In contrast, if rainfall totals stay the same, but rain comes all at once after long dry spells, the average respiration will not change, but the contribution of the respiration bursts after rain will increase.
Stefano Manzoni, Giorgos Maneas, Anna Scaini, Basil E. Psiloglou, Georgia Destouni, and Steve W. Lyon
Hydrol. Earth Syst. Sci., 24, 3557–3571, https://doi.org/10.5194/hess-24-3557-2020, https://doi.org/10.5194/hess-24-3557-2020, 2020
Short summary
Short summary
A modeling tool is developed to assess the vulnerability of coastal wetlands to climatic and water management changes. Applied to the case study of the Gialova lagoon (Greece), this tool highlights the reliance of the lagoon functionality on scarce freshwater sources already under high demand from agriculture. Climatic changes will likely increase lagoon salinity, despite efforts to improve water management.
Arjun Chakrawal, Anke M. Herrmann, John Koestel, Jerker Jarsjö, Naoise Nunan, Thomas Kätterer, and Stefano Manzoni
Geosci. Model Dev., 13, 1399–1429, https://doi.org/10.5194/gmd-13-1399-2020, https://doi.org/10.5194/gmd-13-1399-2020, 2020
Short summary
Short summary
Soils are heterogeneous, which results in a nonuniform spatial distribution of substrates and the microorganisms feeding on them. Our results show that the variability in the spatial distribution of substrates and microorganisms at the pore scale is crucial because it affects how fast substrates are used by microorganisms and thus the decomposition rate observed at the soil core scale. This work provides a methodology to include microscale heterogeneity in soil carbon cycling models.
Haicheng Zhang, Daniel S. Goll, Stefano Manzoni, Philippe Ciais, Bertrand Guenet, and Yuanyuan Huang
Geosci. Model Dev., 11, 4779–4796, https://doi.org/10.5194/gmd-11-4779-2018, https://doi.org/10.5194/gmd-11-4779-2018, 2018
Short summary
Short summary
Carbon use efficiency (CUE) of decomposers depends strongly on the organic matter quality (C : N ratio) and soil nutrient availability rather than a fixed value. A soil biogeochemical model with flexible CUE can better capture the differences in respiration rate of litter with contrasting C : N ratios and under different levels of mineral N availability than the model with fixed CUE, and well represent the effect of varying litter quality (N content) on SOM formation across temporal scales.
Stefano Manzoni, Petr Čapek, Philipp Porada, Martin Thurner, Mattias Winterdahl, Christian Beer, Volker Brüchert, Jan Frouz, Anke M. Herrmann, Björn D. Lindahl, Steve W. Lyon, Hana Šantrůčková, Giulia Vico, and Danielle Way
Biogeosciences, 15, 5929–5949, https://doi.org/10.5194/bg-15-5929-2018, https://doi.org/10.5194/bg-15-5929-2018, 2018
Short summary
Short summary
Carbon fixed by plants and phytoplankton through photosynthesis is ultimately stored in soils and sediments or released to the atmosphere during decomposition of dead biomass. Carbon-use efficiency is a useful metric to quantify the fate of carbon – higher efficiency means higher storage and lower release to the atmosphere. Here we summarize many definitions of carbon-use efficiency and study how this metric changes from organisms to ecosystems and from terrestrial to aquatic environments.
Corina Buendía, Axel Kleidon, Stefano Manzoni, Björn Reu, and Amilcare Porporato
Biogeosciences, 15, 279–295, https://doi.org/10.5194/bg-15-279-2018, https://doi.org/10.5194/bg-15-279-2018, 2018
Short summary
Short summary
Amazonia is highly biodiverse and of global importance for regulating the climate system. Because soils are highly weathered, phosphorus (P) is suggested to limit ecosystem productivity. Here, we evaluate the importance of P redistribution by animals using a simple mathematical model synthesizing the major processes of the Amazon P cycle. Our findings suggest that food web complexity plays an important role for sustaining the productivity of terra firme forests.
Yue Zhu, Paolo Burlando, Puay Yok Tan, Christian Geiß, and Simone Fatichi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-207, https://doi.org/10.5194/nhess-2024-207, 2024
Preprint under review for NHESS
Short summary
Short summary
This study addresses the challenge of accurately predicting floods in regions with limited terrain data. By utilizing a deep learning model, we developed a method that improves the resolution of digital elevation data by fusing low-resolution elevation data with high-resolution satellite imagery. This approach not only substantially enhances flood prediction accuracy, but also holds potential for broader applications in simulating natural hazards that require terrain information.
Xiankun Li, Marleen Pallandt, Dilip Naidu, Johannes Rousk, Gustaf Hugelius, and Stefano Manzoni
EGUsphere, https://doi.org/10.5194/egusphere-2024-3324, https://doi.org/10.5194/egusphere-2024-3324, 2024
Short summary
Short summary
While laboratory studies have identified many drivers and their effects on the carbon emission pulse after rewetting of dry soils, a validation with field data is still missing. Here, we show that the carbon emission pulse in the laboratory and in the field increases with soil organic carbon and temperature, but their trends with pre-rewetting dryness and moisture increment at rewetting differ. We conclude that the laboratory findings can be partially validated.
Shanti Shwarup Mahto, Simone Fatichi, and Stefano Galelli
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-441, https://doi.org/10.5194/essd-2024-441, 2024
Preprint under review for ESSD
Short summary
Short summary
The MSEA-Res database offers an open-access dataset tracking absolute water storage for 185 large reservoirs across Mainland Southeast Asia from 1985–2023. It provides valuable insights into how reservoir storage has grown by 130 % between 2008 and 2017, driven by dams in key river basins. Our data also reveal how droughts, like the 2019–2020 event, significantly impacted water reservoirs. This resource can aid water management, drought planning, and research globally.
Daniel Escobar, Stefano Manzoni, Jeimar Tapasco, and Salim Belyazid
EGUsphere, https://doi.org/10.5194/egusphere-2024-2754, https://doi.org/10.5194/egusphere-2024-2754, 2024
Short summary
Short summary
We studied carbon dynamics in afforested, drained peatlands using the ForSAFE-Peat model over two forest rotations. Our simulations showed that while trees store carbon, significant soil carbon losses occur, particularly early on, indicating that forest growth may not fully offset these losses once carbon time dynamics are considered. This emphasizes the need to consider both soil and harvested wood products when evaluating the climate impact of such systems.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Stefano Manzoni and M. Francesca Cotrufo
Biogeosciences, 21, 4077–4098, https://doi.org/10.5194/bg-21-4077-2024, https://doi.org/10.5194/bg-21-4077-2024, 2024
Short summary
Short summary
Organic carbon and nitrogen are stabilized in soils via microbial assimilation and stabilization of necromass (in vivo pathway) or via adsorption of the products of extracellular decomposition (ex vivo pathway). Here we use a diagnostic model to quantify which stabilization pathway is prevalent using data on residue-derived carbon and nitrogen incorporation in mineral-associated organic matter. We find that the in vivo pathway is dominant in fine-textured soils with low organic matter content.
Jordi Buckley Paules, Simone Fatichi, Bonnie Warring, and Athanasios Paschalis
EGUsphere, https://doi.org/10.5194/egusphere-2024-2072, https://doi.org/10.5194/egusphere-2024-2072, 2024
Short summary
Short summary
We outline and validate developments to the pre-existing process-based model T&C to better represent cropland processes. Foreseen applications of T&C-CROP include hydrological and carbon storage implications of land-use transitions involving crop, forest, and pasture conversion, as well as studies on optimal irrigation and fertilization under a changing climate.
Mohammad Allouche, Vladislav I. Sevostianov, Einara Zahn, Mark A. Zondlo, Nelson Luís Dias, Gabriel G. Katul, Jose D. Fuentes, and Elie Bou-Zeid
Atmos. Chem. Phys., 24, 9697–9711, https://doi.org/10.5194/acp-24-9697-2024, https://doi.org/10.5194/acp-24-9697-2024, 2024
Short summary
Short summary
The significance of surface–atmosphere exchanges of aerosol species to atmospheric composition is underscored by their rising concentrations that are modulating the Earth's climate and having detrimental consequences for human health and the environment. Estimating these exchanges, using field measurements, and offering alternative models are the aims here. Limitations in measuring some species misrepresent their actual exchanges, so our proposed models serve to better quantify them.
Erik Schwarz, Samia Ghersheen, Salim Belyazid, and Stefano Manzoni
Biogeosciences, 21, 3441–3461, https://doi.org/10.5194/bg-21-3441-2024, https://doi.org/10.5194/bg-21-3441-2024, 2024
Short summary
Short summary
The occurrence of unstable equilibrium points (EPs) could impede the applicability of microbial-explicit soil organic carbon models. For archetypal model versions we identify when instability can occur and describe mathematical conditions to avoid such unstable EPs. We discuss implications for further model development, highlighting the important role of considering basic ecological principles to ensure biologically meaningful models.
Martin Thurner, Kailiang Yu, Stefano Manzoni, Anatoly Prokushkin, Melanie A. Thurner, Zhiqiang Wang, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1794, https://doi.org/10.5194/egusphere-2024-1794, 2024
Short summary
Short summary
Nitrogen concentrations in tree tissues (leaves, branches, stems, and roots) control photosynthesis, growth and respiration, and thus influence vegetation carbon uptake. Our novel database allows us to identify the controls of tree tissue nitrogen concentrations in boreal and temperate forests, such as tree age/size, species and climate. Changes therein will affect tissue N concentrations and thus also vegetation carbon uptake.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Boris Ťupek, Aleksi Lehtonen, Alla Yurova, Rose Abramoff, Bertrand Guenet, Elisa Bruni, Samuli Launiainen, Mikko Peltoniemi, Shoji Hashimoto, Xianglin Tian, Juha Heikkinen, Kari Minkkinen, and Raisa Mäkipää
Geosci. Model Dev., 17, 5349–5367, https://doi.org/10.5194/gmd-17-5349-2024, https://doi.org/10.5194/gmd-17-5349-2024, 2024
Short summary
Short summary
Updating the Yasso07 soil C model's dependency on decomposition with a hump-shaped Ricker moisture function improved modelled soil organic C (SOC) stocks in a catena of mineral and organic soils in boreal forest. The Ricker function, set to peak at a rate of 1 and calibrated against SOC and CO2 data using a Bayesian approach, showed a maximum in well-drained soils. Using SOC and CO2 data together with the moisture only from the topsoil humus was crucial for accurate model estimates.
Yiran Wang, Naika Meili, and Simone Fatichi
EGUsphere, https://doi.org/10.5194/egusphere-2024-768, https://doi.org/10.5194/egusphere-2024-768, 2024
Short summary
Short summary
Our study uses climate model simulations and process-based ecohydrological modeling to assess the direct and climate feedback induced effects of solar radiation changes on hydrological variables. Results show that solar radiation without climate feedback primarily affects sensible heat with limited effects on hydrology and vegetation. However, climate feedback exacerbates the effects of radiation changes on evapotranspiration and affects vegetation productivity.
Daniela Guasconi, Sara Cousins, Stefano Manzoni, Nina Roth, and Gustaf Hugelius
EGUsphere, https://doi.org/10.5194/egusphere-2023-2673, https://doi.org/10.5194/egusphere-2023-2673, 2023
Short summary
Short summary
This study assesses the effects of experimental drought and of a soil amendment on soil and vegetation carbon pools, at different soil depths. Drought consistently reduced soil moisture and aboveground biomass, while compost increased total soil carbon content and aboveground biomass, and effects were more pronounced in the topsoil. Root biomass was not significantly affected by the treatments. The contrasting response of roots and shoots improves our understanding of ecosystem carbon dynamics.
Norbert Pirk, Kristoffer Aalstad, Sebastian Westermann, Astrid Vatne, Alouette van Hove, Lena Merete Tallaksen, Massimo Cassiani, and Gabriel Katul
Atmos. Meas. Tech., 15, 7293–7314, https://doi.org/10.5194/amt-15-7293-2022, https://doi.org/10.5194/amt-15-7293-2022, 2022
Short summary
Short summary
In this study, we show how sparse and noisy drone measurements can be combined with an ensemble of turbulence-resolving wind simulations to estimate uncertainty-aware surface energy exchange. We demonstrate the feasibility of this drone data assimilation framework in a series of synthetic and real-world experiments. This new framework can, in future, be applied to estimate energy and gas exchange in heterogeneous landscapes more representatively than conventional methods.
Matti Räsänen, Mika Aurela, Ville Vakkari, Johan P. Beukes, Juha-Pekka Tuovinen, Pieter G. Van Zyl, Miroslav Josipovic, Stefan J. Siebert, Tuomas Laurila, Markku Kulmala, Lauri Laakso, Janne Rinne, Ram Oren, and Gabriel Katul
Hydrol. Earth Syst. Sci., 26, 5773–5791, https://doi.org/10.5194/hess-26-5773-2022, https://doi.org/10.5194/hess-26-5773-2022, 2022
Short summary
Short summary
The productivity of semiarid grazed grasslands is linked to the variation in rainfall and transpiration. By combining carbon dioxide and water flux measurements, we show that the annual transpiration is nearly constant during wet years while grasses react quickly to dry spells and drought, which reduce transpiration. The planning of annual grazing strategies could consider the early-season rainfall frequency that was linked to the portion of annual transpiration.
Stefan Fugger, Catriona L. Fyffe, Simone Fatichi, Evan Miles, Michael McCarthy, Thomas E. Shaw, Baohong Ding, Wei Yang, Patrick Wagnon, Walter Immerzeel, Qiao Liu, and Francesca Pellicciotti
The Cryosphere, 16, 1631–1652, https://doi.org/10.5194/tc-16-1631-2022, https://doi.org/10.5194/tc-16-1631-2022, 2022
Short summary
Short summary
The monsoon is important for the shrinking and growing of glaciers in the Himalaya during summer. We calculate the melt of seven glaciers in the region using a complex glacier melt model and weather data. We find that monsoonal weather affects glaciers that are covered with a layer of rocky debris and glaciers without such a layer in different ways. It is important to take so-called turbulent fluxes into account. This knowledge is vital for predicting the future of the Himalayan glaciers.
Brandon P. Sloan, Sally E. Thompson, and Xue Feng
Hydrol. Earth Syst. Sci., 25, 4259–4274, https://doi.org/10.5194/hess-25-4259-2021, https://doi.org/10.5194/hess-25-4259-2021, 2021
Short summary
Short summary
Plants affect the global water and carbon cycles by modifying their water use and carbon intake in response to soil moisture. Global climate models represent this response with either simple empirical models or complex physical models. We reveal that the latter improves predictions in plants with large flow resistance; however, adding dependence on atmospheric moisture demand to the former matches performance of the latter, leading to a new tool for improving carbon and water cycle predictions.
Pavel Alekseychik, Gabriel Katul, Ilkka Korpela, and Samuli Launiainen
Atmos. Meas. Tech., 14, 3501–3521, https://doi.org/10.5194/amt-14-3501-2021, https://doi.org/10.5194/amt-14-3501-2021, 2021
Short summary
Short summary
Drones with thermal cameras are powerful new tools with the potential to provide new insights into atmospheric turbulence and heat fluxes. In a pioneering experiment, a Matrice 210 drone with a Zenmuse XT2 thermal camera was used to record 10–20 min thermal videos at 500 m a.g.l. over the Siikaneva peatland in southern Finland. A method to visualize the turbulent structures and derive their parameters from thermal videos is developed. The study provides a novel approach for turbulence analysis.
Xiangyu Luan and Giulia Vico
Hydrol. Earth Syst. Sci., 25, 1411–1423, https://doi.org/10.5194/hess-25-1411-2021, https://doi.org/10.5194/hess-25-1411-2021, 2021
Short summary
Short summary
Crop yield is reduced by heat and water stress, particularly when they co-occur. We quantify the joint effects of (unpredictable) air temperature and soil water availability on crop heat stress via a mechanistic model. Larger but more infrequent precipitation increased crop canopy temperatures. Keeping crops well watered via irrigation could reduce canopy temperature but not enough to always exclude heat damage. Thus, irrigation is only a partial solution to adapt to warmer and drier climates.
Martina Botter, Matthias Zeeman, Paolo Burlando, and Simone Fatichi
Biogeosciences, 18, 1917–1939, https://doi.org/10.5194/bg-18-1917-2021, https://doi.org/10.5194/bg-18-1917-2021, 2021
Lianyu Yu, Simone Fatichi, Yijian Zeng, and Zhongbo Su
The Cryosphere, 14, 4653–4673, https://doi.org/10.5194/tc-14-4653-2020, https://doi.org/10.5194/tc-14-4653-2020, 2020
Short summary
Short summary
The role of soil water and heat transfer physics in portraying the function of a cold region ecosystem was investigated. We found that explicitly considering the frozen soil physics and coupled water and heat transfer is important in mimicking soil hydrothermal dynamics. The presence of soil ice can alter the vegetation leaf onset date and deep leakage. Different complexity in representing vadose zone physics does not considerably affect interannual energy, water, and carbon fluxes.
Benjamin M. C. Fischer, Laura Morillas, Johanna Rojas Conejo, Ricardo Sánchez-Murillo, Andrea Suárez Serrano, Jay Frentress, Chih-Hsin Cheng, Monica Garcia, Stefano Manzoni, Mark S. Johnson, and Steve W. Lyon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-404, https://doi.org/10.5194/hess-2020-404, 2020
Preprint withdrawn
Short summary
Short summary
We investigated in an upland rice experiment in Costa Rica whether mixing biochar (a charcoal) in soils could increase the resilience of rainfed agriculture to climate variability. We found that rice plants with biochar had access to larger stores of water more consistently and thus could withstand seven extra dry days relative to rice grown in non-treated soils. However, biochar can complement, but not necessarily replace, other water management strategies.
Stefano Manzoni, Arjun Chakrawal, Thomas Fischer, Joshua P. Schimel, Amilcare Porporato, and Giulia Vico
Biogeosciences, 17, 4007–4023, https://doi.org/10.5194/bg-17-4007-2020, https://doi.org/10.5194/bg-17-4007-2020, 2020
Short summary
Short summary
Carbon dioxide is produced by soil microbes through respiration, which is particularly fast when soils are moistened by rain. Will respiration increase with future more intense rains and longer dry spells? With a mathematical model, we show that wetter conditions increase respiration. In contrast, if rainfall totals stay the same, but rain comes all at once after long dry spells, the average respiration will not change, but the contribution of the respiration bursts after rain will increase.
Stefano Manzoni, Giorgos Maneas, Anna Scaini, Basil E. Psiloglou, Georgia Destouni, and Steve W. Lyon
Hydrol. Earth Syst. Sci., 24, 3557–3571, https://doi.org/10.5194/hess-24-3557-2020, https://doi.org/10.5194/hess-24-3557-2020, 2020
Short summary
Short summary
A modeling tool is developed to assess the vulnerability of coastal wetlands to climatic and water management changes. Applied to the case study of the Gialova lagoon (Greece), this tool highlights the reliance of the lagoon functionality on scarce freshwater sources already under high demand from agriculture. Climatic changes will likely increase lagoon salinity, despite efforts to improve water management.
Arjun Chakrawal, Anke M. Herrmann, John Koestel, Jerker Jarsjö, Naoise Nunan, Thomas Kätterer, and Stefano Manzoni
Geosci. Model Dev., 13, 1399–1429, https://doi.org/10.5194/gmd-13-1399-2020, https://doi.org/10.5194/gmd-13-1399-2020, 2020
Short summary
Short summary
Soils are heterogeneous, which results in a nonuniform spatial distribution of substrates and the microorganisms feeding on them. Our results show that the variability in the spatial distribution of substrates and microorganisms at the pore scale is crucial because it affects how fast substrates are used by microorganisms and thus the decomposition rate observed at the soil core scale. This work provides a methodology to include microscale heterogeneity in soil carbon cycling models.
Naika Meili, Gabriele Manoli, Paolo Burlando, Elie Bou-Zeid, Winston T. L. Chow, Andrew M. Coutts, Edoardo Daly, Kerry A. Nice, Matthias Roth, Nigel J. Tapper, Erik Velasco, Enrique R. Vivoni, and Simone Fatichi
Geosci. Model Dev., 13, 335–362, https://doi.org/10.5194/gmd-13-335-2020, https://doi.org/10.5194/gmd-13-335-2020, 2020
Short summary
Short summary
We developed a novel urban ecohydrological model (UT&C v1.0) that is able to account for the effects of different plant types on the urban climate and hydrology, as well as the effects of the urban environment on plant well-being and performance. UT&C performs well when compared against energy flux measurements in three cities in different climates (Singapore, Melbourne, Phoenix) and can be used to assess urban climate mitigation strategies that aim at increasing or changing urban green cover.
Nadav Peleg, Chris Skinner, Simone Fatichi, and Peter Molnar
Earth Surf. Dynam., 8, 17–36, https://doi.org/10.5194/esurf-8-17-2020, https://doi.org/10.5194/esurf-8-17-2020, 2020
Short summary
Short summary
Extreme rainfall is expected to intensify with increasing temperatures, which will likely affect rainfall spatial structure. The spatial variability of rainfall can affect streamflow and sediment transport volumes and peaks. The sensitivity of the hydro-morphological response to changes in the structure of heavy rainfall was investigated. It was found that the morphological components are more sensitive to changes in rainfall spatial structure in comparison to the hydrological components.
Matti Räsänen, Mika Aurela, Ville Vakkari, Johan P. Beukes, Juha-Pekka Tuovinen, Pieter G. Van Zyl, Miroslav Josipovic, Stefan J. Siebert, Tuomas Laurila, Markku Kulmala, Lauri Laakso, Janne Rinne, Ram Oren, and Gabriel Katul
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-651, https://doi.org/10.5194/hess-2019-651, 2020
Revised manuscript not accepted
Short summary
Short summary
The annual ET is approximately equal to precipitation during six measured years for grazed savanna grassland. The computed annual transpiration was highly constrained when rainfall was near or above the long-term mean but was reduced during severe drought year. The developed methodologies can be used in a wide range of arid and semi-arid ecosystems.
Martina Botter, Paolo Burlando, and Simone Fatichi
Hydrol. Earth Syst. Sci., 23, 1885–1904, https://doi.org/10.5194/hess-23-1885-2019, https://doi.org/10.5194/hess-23-1885-2019, 2019
Short summary
Short summary
The study focuses on the solute export from rivers with the purpose of discerning the impacts of anthropic activities and catchment characteristics on water quality. The results revealed a more detectable impact of the anthropic activities than of the catchment characteristics. The solute export follows different dynamics depending on catchment characteristics and mainly on solute-specific properties. The export modality is consistent across different catchments only for a minority of solutes.
Qiaozhi Zha, Chao Yan, Heikki Junninen, Matthieu Riva, Nina Sarnela, Juho Aalto, Lauriane Quéléver, Simon Schallhart, Lubna Dada, Liine Heikkinen, Otso Peräkylä, Jun Zou, Clémence Rose, Yonghong Wang, Ivan Mammarella, Gabriel Katul, Timo Vesala, Douglas R. Worsnop, Markku Kulmala, Tuukka Petäjä, Federico Bianchi, and Mikael Ehn
Atmos. Chem. Phys., 18, 17437–17450, https://doi.org/10.5194/acp-18-17437-2018, https://doi.org/10.5194/acp-18-17437-2018, 2018
Short summary
Short summary
Vertical measurements of highly oxygenated molecules (HOMs) below and above the forest canopy were performed for the first time in a boreal forest during September 2016. Our results highlight that near-ground HOM measurements may only be representative of a small fraction of the entire nocturnal boundary layer, which may sequentially influence the growth of newly formed particles and SOA formation close to ground surface, where the majority of measurements are conducted.
Haicheng Zhang, Daniel S. Goll, Stefano Manzoni, Philippe Ciais, Bertrand Guenet, and Yuanyuan Huang
Geosci. Model Dev., 11, 4779–4796, https://doi.org/10.5194/gmd-11-4779-2018, https://doi.org/10.5194/gmd-11-4779-2018, 2018
Short summary
Short summary
Carbon use efficiency (CUE) of decomposers depends strongly on the organic matter quality (C : N ratio) and soil nutrient availability rather than a fixed value. A soil biogeochemical model with flexible CUE can better capture the differences in respiration rate of litter with contrasting C : N ratios and under different levels of mineral N availability than the model with fixed CUE, and well represent the effect of varying litter quality (N content) on SOM formation across temporal scales.
Stefano Manzoni, Petr Čapek, Philipp Porada, Martin Thurner, Mattias Winterdahl, Christian Beer, Volker Brüchert, Jan Frouz, Anke M. Herrmann, Björn D. Lindahl, Steve W. Lyon, Hana Šantrůčková, Giulia Vico, and Danielle Way
Biogeosciences, 15, 5929–5949, https://doi.org/10.5194/bg-15-5929-2018, https://doi.org/10.5194/bg-15-5929-2018, 2018
Short summary
Short summary
Carbon fixed by plants and phytoplankton through photosynthesis is ultimately stored in soils and sediments or released to the atmosphere during decomposition of dead biomass. Carbon-use efficiency is a useful metric to quantify the fate of carbon – higher efficiency means higher storage and lower release to the atmosphere. Here we summarize many definitions of carbon-use efficiency and study how this metric changes from organisms to ecosystems and from terrestrial to aquatic environments.
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Corina Buendía, Axel Kleidon, Stefano Manzoni, Björn Reu, and Amilcare Porporato
Biogeosciences, 15, 279–295, https://doi.org/10.5194/bg-15-279-2018, https://doi.org/10.5194/bg-15-279-2018, 2018
Short summary
Short summary
Amazonia is highly biodiverse and of global importance for regulating the climate system. Because soils are highly weathered, phosphorus (P) is suggested to limit ecosystem productivity. Here, we evaluate the importance of P redistribution by animals using a simple mathematical model synthesizing the major processes of the Amazon P cycle. Our findings suggest that food web complexity plays an important role for sustaining the productivity of terra firme forests.
Nadav Peleg, Frank Blumensaat, Peter Molnar, Simone Fatichi, and Paolo Burlando
Hydrol. Earth Syst. Sci., 21, 1559–1572, https://doi.org/10.5194/hess-21-1559-2017, https://doi.org/10.5194/hess-21-1559-2017, 2017
Short summary
Short summary
We investigated the relative contribution of the spatial versus climatic rainfall variability for flow peaks by applying an advanced stochastic rainfall generator to simulate rainfall for a small urban catchment and simulate flow dynamics in the sewer system. We found that the main contribution to the total flow variability originates from the natural climate variability. The contribution of spatial rainfall variability to the total flow variability was found to increase with return periods.
Bahareh Kianfar, Simone Fatichi, Athansios Paschalis, Max Maurer, and Peter Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-536, https://doi.org/10.5194/hess-2016-536, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Raingauge observations show a large variability in extreme rainfall depths in the current climate. Climate model predictions of extreme rainfall in the future have to be compared with this natural variability. Our work shows that predictions of future extreme rainfall often lie within the range of natural variability of present-day climate, and therefore predictions of change are highly uncertain. We demonstrate this by using stochastic rainfall models and 10-min rainfall data in Switzerland.
P. Molnar, S. Fatichi, L. Gaál, J. Szolgay, and P. Burlando
Hydrol. Earth Syst. Sci., 19, 1753–1766, https://doi.org/10.5194/hess-19-1753-2015, https://doi.org/10.5194/hess-19-1753-2015, 2015
Short summary
Short summary
We present an empirical study of the rates of increase in precipitation intensity with air temperature using high-resolution 10 min precipitation records in Switzerland. We estimated the scaling rates for lightning (convective) and non-lightning event subsets and show that scaling rates are between 7 and 14%/C for convective rain and that mixing of storm types exaggerates the relations to air temperature. Doubled CC rates reported by other studies are an exception in our data set.
S. Fatichi, S. Rimkus, P. Burlando, R. Bordoy, and P. Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-3743-2013, https://doi.org/10.5194/hessd-10-3743-2013, 2013
Revised manuscript not accepted
Related subject area
Biogeophysics: Ecohydrology
Reviews and syntheses: A scoping review evaluating the potential application of ecohydrological models for northern peatland restoration
Drought and radiation explain fluctuations in Amazon rainforest greenness during the 2015–2016 drought
Inclusion of bedrock vadose zone in dynamic global vegetation models is key for simulating vegetation structure and function
The dynamics of marsh-channel slump blocks: an observational study using repeated drone imagery
Understanding the effects of revegetated shrubs on fluxes of energy, water, and gross primary productivity in a desert steppe ecosystem using the STEMMUS–SCOPE model
Imaging of the electrical activity in the root zone under limited-water-availability stress: a laboratory study for Vitis vinifera
Coordination of rooting, xylem, and stomatal strategies explains the response of conifer forest stands to multi-year drought in the southern Sierra Nevada of California
Historical variation in the normalized difference vegetation index compared with soil moisture in a taiga forest ecosystem in northeastern Siberia
A process-based model for quantifying the effects of canal blocking on water table and CO2 emissions in tropical peatlands
Continuous ground monitoring of vegetation optical depth and water content with GPS signals
Technical note: Common ambiguities in plant hydraulics
Pioneer biocrust communities prevent soil erosion in temperate forests after disturbances
Modelling temporal variability of in situ soil water and vegetation isotopes reveals ecohydrological couplings in a riparian willow plot
Toward estimation of seasonal water dynamics of winter wheat from ground-based L-band radiometry: a concept study
Spatially varying relevance of hydrometeorological hazards for vegetation productivity extremes
Temporal dynamics of tree xylem water isotopes: in situ monitoring and modeling
Reviews and syntheses: Gaining insights into evapotranspiration partitioning with novel isotopic monitoring methods
What determines the sign of the evapotranspiration response to afforestation in European summer?
Predicting evapotranspiration from drone-based thermography – a method comparison in a tropical oil palm plantation
Patterns of plant rehydration and growth following pulses of soil moisture availability
Climatic traits on daily clearness and cloudiness indices
Estimates of tree root water uptake from soil moisture profile dynamics
Causes and consequences of pronounced variation in the isotope composition of plant xylem water
Risk of crop failure due to compound dry and hot extremes estimated with nested copulas
Canal blocking optimization in restoration of drained peatlands
Large-scale biospheric drought response intensifies linearly with drought duration in arid regions
Global biosphere–climate interaction: a causal appraisal of observations and models over multiple temporal scales
Examining the evidence for decoupling between photosynthesis and transpiration during heat extremes
Ideas and perspectives: Tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes – challenges and opportunities from an interdisciplinary perspective
Does predictability of fluxes vary between FLUXNET sites?
Community-specific hydraulic conductance potential of soil water decomposed for two Alpine grasslands by small-scale lysimetry
Ideas and perspectives: how coupled is the vegetation to the boundary layer?
Crop water stress maps for an entire growing season from visible and thermal UAV imagery
MODIS vegetation products as proxies of photosynthetic potential along a gradient of meteorologically and biologically driven ecosystem productivity
Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments
Transpiration in an oil palm landscape: effects of palm age
Does EO NDVI seasonal metrics capture variations in species composition and biomass due to grazing in semi-arid grassland savannas?
Assessing vegetation structure and ANPP dynamics in a grassland–shrubland Chihuahuan ecotone using NDVI–rainfall relationships
On the use of the post-closure methods uncertainty band to evaluate the performance of land surface models against eddy covariance flux data
Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes
Continental-scale impacts of intra-seasonal rainfall variability on simulated ecosystem responses in Africa
Dew formation on the surface of biological soil crusts in central European sand ecosystems
Nonlinear controls on evapotranspiration in arctic coastal wetlands
Organic carbon efflux from a deciduous forest catchment in Korea
A simple ecohydrological model captures essentials of seasonal leaf dynamics in semi-arid tropical grasslands
Mariana P. Silva, Mark G. Healy, and Laurence Gill
Biogeosciences, 21, 3143–3163, https://doi.org/10.5194/bg-21-3143-2024, https://doi.org/10.5194/bg-21-3143-2024, 2024
Short summary
Short summary
Peatland restoration combats climate change and protects ecosystem health in many northern regions. This review gathers data about models used on northern peatlands to further envision their application in the specific scenario of restoration. A total of 211 papers were included in the review: location trends for peatland modelling were catalogued, and key themes in model outputs were highlighted. Valuable context is provided for future efforts in modelling the peatland restoration process.
Yi Y. Liu, Albert I. J. M. van Dijk, Patrick Meir, and Tim R. McVicar
Biogeosciences, 21, 2273–2295, https://doi.org/10.5194/bg-21-2273-2024, https://doi.org/10.5194/bg-21-2273-2024, 2024
Short summary
Short summary
Greenness of the Amazon forest fluctuated during the 2015–2016 drought, but no satisfactory explanation has been found. Based on water storage, temperature, and atmospheric moisture demand, we developed a method to delineate the regions where forests were under stress. These drought-affected regions were mainly identified at the beginning and end of the drought, resulting in below-average greenness. For the months in between, without stress, greenness responded positively to intense sunlight.
Dana A. Lapides, W. Jesse Hahm, Matthew Forrest, Daniella M. Rempe, Thomas Hickler, and David N. Dralle
Biogeosciences, 21, 1801–1826, https://doi.org/10.5194/bg-21-1801-2024, https://doi.org/10.5194/bg-21-1801-2024, 2024
Short summary
Short summary
Water stored in weathered bedrock is rarely incorporated into vegetation and Earth system models despite increasing recognition of its importance. Here, we add a weathered bedrock component to a widely used vegetation model. Using a case study of two sites in California and model runs across the United States, we show that more accurately representing subsurface water storage and hydrology increases summer plant water use so that it better matches patterns in distributed data products.
Zhicheng Yang, Clark Alexander, and Merryl Alber
Biogeosciences, 21, 1757–1772, https://doi.org/10.5194/bg-21-1757-2024, https://doi.org/10.5194/bg-21-1757-2024, 2024
Short summary
Short summary
We used repeat UAV imagery to study the spatial and temporal dynamics of slump blocks in a Georgia salt marsh. Although slump blocks are common in marshes, tracking them with the UAV provided novel insights. Blocks are highly dynamic, with new blocks appearing in each image while some are lost. Most blocks were lost by submergence, but we report for the first time their reconnection to the marsh platform. We also found that slump blocks can be an important contributor to creek widening.
Enting Tang, Yijian Zeng, Yunfei Wang, Zengjing Song, Danyang Yu, Hongyue Wu, Chenglong Qiao, Christiaan van der Tol, Lingtong Du, and Zhongbo Su
Biogeosciences, 21, 893–909, https://doi.org/10.5194/bg-21-893-2024, https://doi.org/10.5194/bg-21-893-2024, 2024
Short summary
Short summary
Our study shows that planting shrubs in a semiarid grassland reduced the soil moisture and increased plant water uptake and transpiration. Notably, the water used by the ecosystem exceeded the rainfall received during the growing seasons, indicating an imbalance in the water cycle. The findings demonstrate the effectiveness of the STEMMUS–SCOPE model as a tool to represent ecohydrological processes and highlight the need to consider energy and water budgets for future revegetation projects.
Benjamin Mary, Veronika Iván, Franco Meggio, Luca Peruzzo, Guillaume Blanchy, Chunwei Chou, Benedetto Ruperti, Yuxin Wu, and Giorgio Cassiani
Biogeosciences, 20, 4625–4650, https://doi.org/10.5194/bg-20-4625-2023, https://doi.org/10.5194/bg-20-4625-2023, 2023
Short summary
Short summary
The study explores the partial root zone drying method, an irrigation strategy aimed at improving water use efficiency. We imaged the root–soil interaction using non-destructive techniques consisting of soil and plant current stimulation. The study found that imaging the processes in time was effective in identifying spatial patterns associated with irrigation and root water uptake. The results will be useful for developing more efficient root detection methods in natural soil conditions.
Junyan Ding, Polly Buotte, Roger Bales, Bradley Christoffersen, Rosie A. Fisher, Michael Goulden, Ryan Knox, Lara Kueppers, Jacquelyn Shuman, Chonggang Xu, and Charles D. Koven
Biogeosciences, 20, 4491–4510, https://doi.org/10.5194/bg-20-4491-2023, https://doi.org/10.5194/bg-20-4491-2023, 2023
Short summary
Short summary
We used a vegetation model to investigate how the different combinations of plant rooting depths and the sensitivity of leaves and stems to drying lead to differential responses of a pine forest to drought conditions in California, USA. We found that rooting depths are the strongest control in that ecosystem. Deep roots allow trees to fully utilize the soil water during a normal year but result in prolonged depletion of soil moisture during a severe drought and hence a high tree mortality risk.
Aleksandr Nogovitcyn, Ruslan Shakhmatov, Tomoki Morozumi, Shunsuke Tei, Yumiko Miyamoto, Nagai Shin, Trofim C. Maximov, and Atsuko Sugimoto
Biogeosciences, 20, 3185–3201, https://doi.org/10.5194/bg-20-3185-2023, https://doi.org/10.5194/bg-20-3185-2023, 2023
Short summary
Short summary
The taiga ecosystem in northeastern Siberia changed during the extreme wet event in 2007. Before the wet event, the NDVI in a typical larch forest showed a positive correlation with soil moisture, and after the event it showed a negative correlation. For both periods, NDVI correlated negatively with foliar C/N. These results indicate that high soil moisture availability after the event decreased needle production, which may have resulted from lower N availability.
Iñaki Urzainki, Marjo Palviainen, Hannu Hökkä, Sebastian Persch, Jeffrey Chatellier, Ophelia Wang, Prasetya Mahardhitama, Rizaldy Yudhista, and Annamari Laurén
Biogeosciences, 20, 2099–2116, https://doi.org/10.5194/bg-20-2099-2023, https://doi.org/10.5194/bg-20-2099-2023, 2023
Short summary
Short summary
Drained peatlands (peat areas where ditches have been excavated to enhance crop productivity) are one of the main sources of carbon dioxide emissions globally. Blocking the ditches by building dams is a common strategy to raise the water table and to mitigate carbon dioxide emissions. But how effective is ditch blocking in raising the overall water table over a large area? Our work tackles this question by making use of the available data and physics-based hydrological modeling.
Vincent Humphrey and Christian Frankenberg
Biogeosciences, 20, 1789–1811, https://doi.org/10.5194/bg-20-1789-2023, https://doi.org/10.5194/bg-20-1789-2023, 2023
Short summary
Short summary
Microwave satellites can be used to monitor how vegetation biomass changes over time or how droughts affect the world's forests. However, such satellite data are still difficult to validate and interpret because of a lack of comparable field observations. Here, we present a remote sensing technique that uses the Global Navigation Satellite System (GNSS) as a makeshift radar, making it possible to observe canopy transmissivity at any existing environmental research site in a cost-efficient way.
Yujie Wang and Christian Frankenberg
Biogeosciences, 19, 4705–4714, https://doi.org/10.5194/bg-19-4705-2022, https://doi.org/10.5194/bg-19-4705-2022, 2022
Short summary
Short summary
Plant hydraulics is often misrepresented in topical research. We highlight the commonly seen ambiguities and/or mistakes, with equations and figures to help visualize the potential biases. We recommend careful thinking when using or modifying existing plant hydraulic terms, methods, and models.
Corinna Gall, Martin Nebel, Dietmar Quandt, Thomas Scholten, and Steffen Seitz
Biogeosciences, 19, 3225–3245, https://doi.org/10.5194/bg-19-3225-2022, https://doi.org/10.5194/bg-19-3225-2022, 2022
Short summary
Short summary
Soil erosion is one of the most serious environmental challenges of our time, which also applies to forests when forest soil is disturbed. Biological soil crusts (biocrusts) can play a key role as erosion control. In this study, we combined soil erosion measurements with vegetation surveys in disturbed forest areas. We found that soil erosion was reduced primarily by pioneer bryophyte-dominated biocrusts and that bryophytes contributed more to soil erosion mitigation than vascular plants.
Aaron Smith, Doerthe Tetzlaff, Jessica Landgraf, Maren Dubbert, and Chris Soulsby
Biogeosciences, 19, 2465–2485, https://doi.org/10.5194/bg-19-2465-2022, https://doi.org/10.5194/bg-19-2465-2022, 2022
Short summary
Short summary
This research utilizes high-spatiotemporal-resolution soil and vegetation measurements, including water stable isotopes, within an ecohydrological model to partition water flux dynamics and identify flow paths and durations. Results showed high vegetation water use and high spatiotemporal dynamics of vegetation water source and vegetation isotopes. The evaluation of these dynamics further revealed relatively fast flow paths through both shallow soil and vegetation.
Thomas Jagdhuber, François Jonard, Anke Fluhrer, David Chaparro, Martin J. Baur, Thomas Meyer, and María Piles
Biogeosciences, 19, 2273–2294, https://doi.org/10.5194/bg-19-2273-2022, https://doi.org/10.5194/bg-19-2273-2022, 2022
Short summary
Short summary
This is a concept study of water dynamics across winter wheat starting from ground-based L-band radiometry in combination with on-site measurements of soil and atmosphere. We research the feasibility of estimating water potentials and seasonal flux rates of water (water uptake from soil and transpiration rates into the atmosphere) within the soil-plant-atmosphere system (SPAS) of a winter wheat field. The main finding is that L-band radiometry can be integrated into field-based SPAS assessment.
Josephin Kroll, Jasper M. C. Denissen, Mirco Migliavacca, Wantong Li, Anke Hildebrandt, and Rene Orth
Biogeosciences, 19, 477–489, https://doi.org/10.5194/bg-19-477-2022, https://doi.org/10.5194/bg-19-477-2022, 2022
Short summary
Short summary
Plant growth relies on having access to energy (solar radiation) and water (soil moisture). This energy and water availability is impacted by weather extremes, like heat waves and droughts, which will occur more frequently in response to climate change. In this context, we analysed global satellite data to detect in which regions extreme plant growth is controlled by energy or water. We find that extreme plant growth is associated with temperature- or soil-moisture-related extremes.
Stefan Seeger and Markus Weiler
Biogeosciences, 18, 4603–4627, https://doi.org/10.5194/bg-18-4603-2021, https://doi.org/10.5194/bg-18-4603-2021, 2021
Short summary
Short summary
We developed a setup for fully automated in situ measurements of stable water isotopes in soil and the stems of fully grown trees. We used this setup in a 12-week field campaign to monitor the propagation of a labelling pulse from the soil up to a stem height of 8 m.
We could observe trees shifting their main water uptake depths multiple times, depending on water availability.
The gained knowledge about the temporal dynamics can help to improve water uptake models and future study designs.
Youri Rothfuss, Maria Quade, Nicolas Brüggemann, Alexander Graf, Harry Vereecken, and Maren Dubbert
Biogeosciences, 18, 3701–3732, https://doi.org/10.5194/bg-18-3701-2021, https://doi.org/10.5194/bg-18-3701-2021, 2021
Short summary
Short summary
The partitioning of evapotranspiration into evaporation from soil and transpiration from plants is crucial for a wide range of parties, from farmers to policymakers. In this work, we focus on a particular partitioning method, based on the stable isotopic analysis of water. In particular, we aim at highlighting the challenges that this method is currently facing and, in light of recent methodological developments, propose ways forward for the isotopic-partitioning community.
Marcus Breil, Edouard L. Davin, and Diana Rechid
Biogeosciences, 18, 1499–1510, https://doi.org/10.5194/bg-18-1499-2021, https://doi.org/10.5194/bg-18-1499-2021, 2021
Short summary
Short summary
The physical processes behind varying evapotranspiration rates in forests and grasslands in Europe are investigated in a regional model study with idealized afforestation scenarios. The results show that the evapotranspiration response to afforestation depends on the interplay of two counteracting factors: the transpiration facilitating characteristics of a forest and the reduced saturation deficits of forests caused by an increased surface roughness and associated lower surface temperatures.
Florian Ellsäßer, Christian Stiegler, Alexander Röll, Tania June, Hendrayanto, Alexander Knohl, and Dirk Hölscher
Biogeosciences, 18, 861–872, https://doi.org/10.5194/bg-18-861-2021, https://doi.org/10.5194/bg-18-861-2021, 2021
Short summary
Short summary
Recording land surface temperatures using drones offers new options to predict evapotranspiration based on energy balance models. This study compares predictions from three energy balance models with the eddy covariance method. A model II Deming regression indicates interchangeability for latent heat flux estimates from certain modeling methods and eddy covariance measurements. This complements the available methods for evapotranspiration studies by fine grain and spatially explicit assessments.
Andrew F. Feldman, Daniel J. Short Gianotti, Alexandra G. Konings, Pierre Gentine, and Dara Entekhabi
Biogeosciences, 18, 831–847, https://doi.org/10.5194/bg-18-831-2021, https://doi.org/10.5194/bg-18-831-2021, 2021
Short summary
Short summary
We quantify global plant water uptake durations after rainfall using satellite-based plant water content measurements. In wetter regions, plant water uptake occurs within a day due to rapid coupling between soil and plant water content. Drylands show multi-day plant water uptake after rain pulses, providing widespread evidence for slow rehydration responses and pulse-driven growth responses. Our results suggest that drylands are sensitive to projected shifts in rainfall intensity and frequency.
Estefanía Muñoz and Andrés Ochoa
Biogeosciences, 18, 573–584, https://doi.org/10.5194/bg-18-573-2021, https://doi.org/10.5194/bg-18-573-2021, 2021
Short summary
Short summary
We inspect for climatic traits in the shape of the PDF of the clear-day (c) and the clearness (k) indices at 37 FLUXNET sites for the SW and the PAR spectral bands. We identified three types of PDF, unimodal with low dispersion, unimodal with high dispersion and bimodal, with no difference in the PDF type between c and k at each site. We found that latitude, global climate zone and Köppen climate type have a weak relation and the Holdridge life zone a stronger relation with c and k PDF types.
Conrad Jackisch, Samuel Knoblauch, Theresa Blume, Erwin Zehe, and Sibylle K. Hassler
Biogeosciences, 17, 5787–5808, https://doi.org/10.5194/bg-17-5787-2020, https://doi.org/10.5194/bg-17-5787-2020, 2020
Short summary
Short summary
We developed software to calculate the root water uptake (RWU) of beech tree roots from soil moisture dynamics. We present our approach and compare RWU to measured sap flow in the tree stem. The study relates to two sites that are similar in topography and weather but with contrasting soils. While sap flow is very similar between the two sites, the RWU is different. This suggests that soil characteristics have substantial influence. Our easy-to-implement RWU estimate may help further studies.
Hannes P. T. De Deurwaerder, Marco D. Visser, Matteo Detto, Pascal Boeckx, Félicien Meunier, Kathrin Kuehnhammer, Ruth-Kristina Magh, John D. Marshall, Lixin Wang, Liangju Zhao, and Hans Verbeeck
Biogeosciences, 17, 4853–4870, https://doi.org/10.5194/bg-17-4853-2020, https://doi.org/10.5194/bg-17-4853-2020, 2020
Short summary
Short summary
The depths at which plants take up water is challenging to observe directly. To do so, scientists have relied on measuring the isotopic composition of xylem water as this provides information on the water’s source. Our work shows that this isotopic composition changes throughout the day, which complicates the interpretation of the water’s source and has been currently overlooked. We build a model to help understand the origin of these composition changes and their consequences for science.
Andreia Filipa Silva Ribeiro, Ana Russo, Célia Marina Gouveia, Patrícia Páscoa, and Jakob Zscheischler
Biogeosciences, 17, 4815–4830, https://doi.org/10.5194/bg-17-4815-2020, https://doi.org/10.5194/bg-17-4815-2020, 2020
Short summary
Short summary
This study investigates the impacts of compound dry and hot extremes on crop yields, namely wheat and barley, over two regions in Spain dominated by rainfed agriculture. We provide estimates of the conditional probability of crop loss under compound dry and hot conditions, which could be an important tool for responsible authorities to mitigate the impacts magnified by the interactions between the different hazards.
Iñaki Urzainki, Ari Laurén, Marjo Palviainen, Kersti Haahti, Arif Budiman, Imam Basuki, Michael Netzer, and Hannu Hökkä
Biogeosciences, 17, 4769–4784, https://doi.org/10.5194/bg-17-4769-2020, https://doi.org/10.5194/bg-17-4769-2020, 2020
Short summary
Short summary
Drained peatlands (peat areas where ditches have been excavated to enhance plant production) are one of the main sources of carbon dioxide emissions globally. Blocking these ditches by building dams is a common strategy to restore the self-sustaining peat ecosystem and mitigate carbon dioxide emissions. Where should these dams be located in order to maximize the benefits? Our work tackles this question by making use of the available data, hydrological modeling and numerical optimization methods.
René Orth, Georgia Destouni, Martin Jung, and Markus Reichstein
Biogeosciences, 17, 2647–2656, https://doi.org/10.5194/bg-17-2647-2020, https://doi.org/10.5194/bg-17-2647-2020, 2020
Short summary
Short summary
Drought duration is a key control of the large-scale biospheric drought response.
Thereby, the vegetation responds linearly to drought duration at large spatial scales.
The slope of the linear relationship between the vegetation drought response and drought duration is steeper in drier climates.
Jeroen Claessen, Annalisa Molini, Brecht Martens, Matteo Detto, Matthias Demuzere, and Diego G. Miralles
Biogeosciences, 16, 4851–4874, https://doi.org/10.5194/bg-16-4851-2019, https://doi.org/10.5194/bg-16-4851-2019, 2019
Short summary
Short summary
Bidirectional interactions between vegetation and climate are unraveled over short (monthly) and long (inter-annual) temporal scales. Analyses use a novel causal inference method based on wavelet theory. The performance of climate models at representing these interactions is benchmarked against satellite data. Climate models can reproduce the overall climate controls on vegetation at all temporal scales, while their performance at representing biophysical feedbacks on climate is less adequate.
Martin G. De Kauwe, Belinda E. Medlyn, Andrew J. Pitman, John E. Drake, Anna Ukkola, Anne Griebel, Elise Pendall, Suzanne Prober, and Michael Roderick
Biogeosciences, 16, 903–916, https://doi.org/10.5194/bg-16-903-2019, https://doi.org/10.5194/bg-16-903-2019, 2019
Short summary
Short summary
Recent experimental evidence suggests that during heat extremes, trees may reduce photosynthesis to near zero but increase transpiration. Using eddy covariance data and examining the 3 days leading up to a temperature extreme, we found evidence of reduced photosynthesis and sustained or increased latent heat fluxes at Australian wooded flux sites. However, when focusing on heatwaves, we were unable to disentangle photosynthetic decoupling from the effect of increasing vapour pressure deficit.
Daniele Penna, Luisa Hopp, Francesca Scandellari, Scott T. Allen, Paolo Benettin, Matthias Beyer, Josie Geris, Julian Klaus, John D. Marshall, Luitgard Schwendenmann, Till H. M. Volkmann, Jana von Freyberg, Anam Amin, Natalie Ceperley, Michael Engel, Jay Frentress, Yamuna Giambastiani, Jeff J. McDonnell, Giulia Zuecco, Pilar Llorens, Rolf T. W. Siegwolf, Todd E. Dawson, and James W. Kirchner
Biogeosciences, 15, 6399–6415, https://doi.org/10.5194/bg-15-6399-2018, https://doi.org/10.5194/bg-15-6399-2018, 2018
Short summary
Short summary
Understanding how water flows through ecosystems is needed to provide society and policymakers with the scientific background to manage water resources sustainably. Stable isotopes of hydrogen and oxygen in water are a powerful tool for tracking water fluxes, although the heterogeneity of natural systems and practical methodological issues still limit their full application. Here, we examine the challenges in this research field and highlight new perspectives based on interdisciplinary research.
Ned Haughton, Gab Abramowitz, Martin G. De Kauwe, and Andy J. Pitman
Biogeosciences, 15, 4495–4513, https://doi.org/10.5194/bg-15-4495-2018, https://doi.org/10.5194/bg-15-4495-2018, 2018
Short summary
Short summary
This project explores predictability in energy, water, and carbon fluxes in the free-use Tier 1 of the FLUXNET 2015 dataset using a uniqueness metric based on comparison of locally and globally trained models. While there is broad spread in predictability between sites, we found strikingly few strong patterns. Nevertheless, these results can contribute to the standardisation of site selection for land surface model evaluation and help pinpoint regions that are ripe for further FLUXNET research.
Georg Frenck, Georg Leitinger, Nikolaus Obojes, Magdalena Hofmann, Christian Newesely, Mario Deutschmann, Ulrike Tappeiner, and Erich Tasser
Biogeosciences, 15, 1065–1078, https://doi.org/10.5194/bg-15-1065-2018, https://doi.org/10.5194/bg-15-1065-2018, 2018
Short summary
Short summary
For central Europe in addition to rising temperatures, an increasing variability in precipitation is predicted. In a replicated mesocosm experiment we compared evapotranspiration and the biomass productivity of two differently drought-adapted vegetation communities during two irrigation regimes (with and without drought periods). Significant differences between the different communities were found in the response to variations in the water supply and biomass production.
Martin G. De Kauwe, Belinda E. Medlyn, Jürgen Knauer, and Christopher A. Williams
Biogeosciences, 14, 4435–4453, https://doi.org/10.5194/bg-14-4435-2017, https://doi.org/10.5194/bg-14-4435-2017, 2017
Short summary
Short summary
Understanding the sensitivity of transpiration to stomatal conductance is critical to simulating the water cycle. This sensitivity is a function of the degree of coupling between the vegetation and the atmosphere. We combined an extensive literature summary with estimates of coupling derived from FLUXNET data. We found notable departures from the values previously reported. These data form a model benchmarking metric to test existing coupling assumptions.
Helene Hoffmann, Rasmus Jensen, Anton Thomsen, Hector Nieto, Jesper Rasmussen, and Thomas Friborg
Biogeosciences, 13, 6545–6563, https://doi.org/10.5194/bg-13-6545-2016, https://doi.org/10.5194/bg-13-6545-2016, 2016
Short summary
Short summary
This study investigates whether the UAV (drone) based WDI can determine crop water stress from fields with open canopies (land surface consisting of both soil and canopy) and from fields where canopies are starting to senesce. This utility could solve issues that arise when applying the commonly used CWSI stress index. The WDI succeeded in providing accurate, high-resolution estimates of crop water stress at different growth stages of barley.
Natalia Restrepo-Coupe, Alfredo Huete, Kevin Davies, James Cleverly, Jason Beringer, Derek Eamus, Eva van Gorsel, Lindsay B. Hutley, and Wayne S. Meyer
Biogeosciences, 13, 5587–5608, https://doi.org/10.5194/bg-13-5587-2016, https://doi.org/10.5194/bg-13-5587-2016, 2016
Short summary
Short summary
We re-evaluated the connection between satellite greenness products and C-flux tower data in four Australian ecosystems. We identify key mechanisms driving the carbon cycle, and provide an ecological basis for the interpretation of vegetation indices. We found relationships between productivity and greenness to be non-significant in meteorologically driven evergreen forests and sites where climate and vegetation phenology were asynchronous, and highly correlated in phenology-driven ecosystems.
Zahra Thomas, Benjamin W. Abbott, Olivier Troccaz, Jacques Baudry, and Gilles Pinay
Biogeosciences, 13, 1863–1875, https://doi.org/10.5194/bg-13-1863-2016, https://doi.org/10.5194/bg-13-1863-2016, 2016
Short summary
Short summary
Direct human impact on a catchment (fertilizer input, soil disturbance, urbanization) is asymmetrically linked with inherent catchment properties (geology, soil, topography), which together determine catchment vulnerability to human activity. To quantify the influence of physical, hydrologic, and anthropogenic controls on surface water quality, we used a 5-year high-frequency water chemistry data set from three contrasting headwater catchments in western France.
A. Röll, F. Niu, A. Meijide, A. Hardanto, Hendrayanto, A. Knohl, and D. Hölscher
Biogeosciences, 12, 5619–5633, https://doi.org/10.5194/bg-12-5619-2015, https://doi.org/10.5194/bg-12-5619-2015, 2015
Short summary
Short summary
The study provides first insight into eco-hydrological consequences of the continuing oil palm expansion in the tropics. Stand transpiration rates of some studied oil palm stands compared to or even exceeded values reported for tropical forests, indicating high water use of oil palms under certain conditions. Oil palm landscapes show some spatial variations in (evapo)transpiration rates, e.g. due to varying plantation age, but the day-to-day variability of oil palm transpiration is rather low.
J. L. Olsen, S. Miehe, P. Ceccato, and R. Fensholt
Biogeosciences, 12, 4407–4419, https://doi.org/10.5194/bg-12-4407-2015, https://doi.org/10.5194/bg-12-4407-2015, 2015
Short summary
Short summary
Limitations of satellite-based normalized difference vegetation index (NDVI) for monitoring vegetation trends are investigated using observations from the Widou Thiengoly test site in northern Senegal. NDVI do not reflect the large differences found in biomass production and species composition between grazed and ungrazed plots. This is problematic for vegetation trend analysis in the context of drastically increasing numbers of Sahelian livestock in recent decades.
M. Moreno-de las Heras, R. Díaz-Sierra, L. Turnbull, and J. Wainwright
Biogeosciences, 12, 2907–2925, https://doi.org/10.5194/bg-12-2907-2015, https://doi.org/10.5194/bg-12-2907-2015, 2015
Short summary
Short summary
Exploration of NDVI-rainfall relationships provided ready biophysically based criteria to study the spatial distribution and dynamics of ANPP for herbaceous and shrub vegetation across a grassland-shrubland Chihuahuan ecotone (Sevilleta NWR, New Mexico). Overall our results suggest that shrub encroachment has not been particularly active for 2000-2013 in the area, although future reductions in summer precipitation and/or increases in winter rainfall may intensify the shrub-encroachment process.
J. Ingwersen, K. Imukova, P. Högy, and T. Streck
Biogeosciences, 12, 2311–2326, https://doi.org/10.5194/bg-12-2311-2015, https://doi.org/10.5194/bg-12-2311-2015, 2015
Short summary
Short summary
The energy balance of eddy covariance (EC) flux data is normally not closed. Therefore, EC flux data are usually post-closed, i.e. the measured turbulent fluxes are adjusted so as to close the energy balance. We propose to use in model evaluation the post-closure method uncertainty band (PUB) to account for the uncertainty in EC data originating from lacking energy balance closure. Working with only a single post-closing method might result in severe misinterpretations in model-data comparison.
C. D. Arp, M. S. Whitman, B. M. Jones, G. Grosse, B. V. Gaglioti, and K. C. Heim
Biogeosciences, 12, 29–47, https://doi.org/10.5194/bg-12-29-2015, https://doi.org/10.5194/bg-12-29-2015, 2015
Short summary
Short summary
Beaded streams have deep elliptical pools connected by narrow runs that we show are common landforms in the continuous permafrost zone. These fluvial systems often initiate from lakes and occur predictably in headwater portions of moderately sloping watersheds. Snow capture along stream courses reduces ice thickness allowing thawed sediment to persist under most pools. Interpool thermal variability and hydrologic regimes provide important aquatic habitat and connectivity in Arctic landscapes.
K. Guan, S. P. Good, K. K. Caylor, H. Sato, E. F. Wood, and H. Li
Biogeosciences, 11, 6939–6954, https://doi.org/10.5194/bg-11-6939-2014, https://doi.org/10.5194/bg-11-6939-2014, 2014
Short summary
Short summary
Climate change is expected to modify the way that rainfall arrives, namely the frequency and intensity of rainfall events and rainy season length. Yet, the quantification of the impact of these possible rainfall changes across large biomes is lacking. Our study fills this gap by developing a new modeling framework, applying it to continental Africa. We show that African ecosystems are highly sensitive to these rainfall variabilities, with esp. large sensitivity to changes in rainy season length.
T. Fischer, M. Veste, O. Bens, and R. F. Hüttl
Biogeosciences, 9, 4621–4628, https://doi.org/10.5194/bg-9-4621-2012, https://doi.org/10.5194/bg-9-4621-2012, 2012
A. K. Liljedahl, L. D. Hinzman, Y. Harazono, D. Zona, C. E. Tweedie, R. D. Hollister, R. Engstrom, and W. C. Oechel
Biogeosciences, 8, 3375–3389, https://doi.org/10.5194/bg-8-3375-2011, https://doi.org/10.5194/bg-8-3375-2011, 2011
S. J. Kim, J. Kim, and K. Kim
Biogeosciences, 7, 1323–1334, https://doi.org/10.5194/bg-7-1323-2010, https://doi.org/10.5194/bg-7-1323-2010, 2010
P. Choler, W. Sea, P. Briggs, M. Raupach, and R. Leuning
Biogeosciences, 7, 907–920, https://doi.org/10.5194/bg-7-907-2010, https://doi.org/10.5194/bg-7-907-2010, 2010
Cited articles
Adams, M. A., Buckley, T. N., and Turnbull, T. L.: Diminishing CO2-driven
gains in water-use efficiency of global forests, Nat. Clim. Change, 10, 466–471, https://doi.org/10.1038/s41558-020-0747-7, 2020.
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of
free-air CO2 enrichment (FACE)?, A meta-analytic review of the responses of
photosynthesis, canopy properties and plant production to rising CO2, New
Phytol., 165, 351–371, 2005.
Bader, M., Leuzinger, S., Keel, S., Siegwolf, R., Hagedorn, F., Schleppi,
P., and Korner, C.: Central European hardwood trees in a high-CO2 future:
synthesis of an 8-year forest canopy CO2 enrichment project, J. Ecol., 101,
1509–1519, https://doi.org/10.1111/1365-2745.12149, 2013.
Bassiouni, M. and Vico, G.: Parsimony vs predictive and functional
performance of three stomatal optimization principles in a big-leaf
framework, New Phytol., 231, 586–600, https://doi.org/10.1111/nph.17392,
2021.
Bell, L.: Relative growth rate, resource allocation and root morphology in
the perennial legumes, Medicago sativa, Dorycnium rectum and D-hirsutum
grown under controlled conditions, Plant Soil, 270, 199–211,
https://doi.org/10.1007/s11104-004-1495-6, 2005.
Betts, R., Boucher, O., Collins, M., Cox, P., Falloon, P., Gedney, N.,
Hemming, D., Huntingford, C., Jones, C., Sexton, D., and Webb, M.: Projected
increase in continental runoff due to plant responses to increasing carbon
dioxide, Nature, 448, 1037–1041, https://doi.org/10.1038/nature06045, 2007.
Breinl, K., Di Baldassarre, G., Mazzoleni, M., Lun, D., and Vico, G.:
Extreme dry and wet spells face changes in their duration and timing,
Environ. Res. Lett., 15, 074040, https://doi.org/10.1088/1748-9326/ab7d05,
2020.
Buckley, T. N.: The role of stomatal acclimation in modelling tree
adaptation to high CO2, J. Exp. Bot., 59, 1951–1961, 2008.
Buckley, T. N. and Schymanski, S. J.: Stomatal optimisation in relation to
atmospheric CO2, New Phytol., 201, 372–377,
https://doi.org/10.1111/nph.12552, 2014.
Campbell, G. S. and Norman, J. M.: An Introduction to Environmental
Biophysics, 2 Edn., Springer, 286 pp., 1998.
Chilundo, M., Joel, A., Wesstrom, I., Brito, R., and Messing, I.: Response
of maize root growth to irrigation and nitrogen management strategies in
semi-arid loamy sandy soil, Field Crops Res., 200, 143–162,
https://doi.org/10.1016/j.fcr.2016.10.005, 2017.
Cowan, I. and Farquhar, G. D.: Stomatal Function in Relation to Leaf
Metabolism an Environment, Integration of Activity in the Higher Plants,
Sym. Soc. Exp. Biol., 31, 471–505, 1977.
Cruiziat, P., Cochard, H., and Ameglio, T.: Hydraulic architecture of trees:
main concepts and results, Ann. For. Sci., 59, 723–752,
https://doi.org/10.1051/forest:2002060, 2002.
De Kauwe, M. G., Medlyn, B. E., and Tissue, D. T.: To what extent can rising
[CO2] ameliorate plant drought stress?, New Phytol., 231, 2118–2124,
https://doi.org/10.1111/nph.17540, 2021.
Dekker, S. C., Groenendijk, M., Booth, B. B. B., Huntingford, C., and Cox, P. M.: Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations, Earth Syst. Dynam., 7, 525–533, https://doi.org/10.5194/esd-7-525-2016, 2016.
dePury, D. G. G. and Farquhar, G. D.: Simple scaling of photosynthesis from
leaves to canopies without the errors of big-leaf models, Plant Cell
Environ., 20, 537–557, 1997.
Dewar, R., Mauranen, A., Makela, A., Holtta, T., Medlyn, B., and Vesala, T.:
New insights into the covariation of stomatal, mesophyll and hydraulic
conductances from optimization models incorporating nonstomatal limitations
to photosynthesis, New Phytol., 217, 571–585,
https://doi.org/10.1111/nph.14848, 2018.
Donohue, R. J., Roderick, M. L., McVicar, T. R., and Farquhar, G. D.: Impact
of CO2 fertilization on maximum foliage cover across the globe's warm, arid
environments, Geophys. Res. Lett., 40, 3031–3035,
https://doi.org/10.1002/grl.50563, 2013.
Donohue, R. J., Roderick, M. L., McVicar, T. R., and Yang, Y. T.: A simple
hypothesis of how leaf and canopy-level transpiration and assimilation
respond to elevated CO2 reveals distinct response patterns between disturbed
and undisturbed vegetation, J. Geophys. Res.-Biogeo., 122, 168–184,
https://doi.org/10.1002/2016jg003505, 2017.
Duursma, R., Gimeno, T., Boer, M., Crous, K., Tjoelker, M., and Ellsworth,
D.: Canopy leaf area of a mature evergreen Eucalyptus woodland does not
respond to elevated atmospheric [CO2] but tracks water availability, Global Change Biol., 22, 1666–1676, https://doi.org/10.1111/gcb.13151, 2016.
Farquhar, G. D., Caemmerer, S. V., and Berry, J. A.: A biochemical-model of
photosynthetic CO2 assimilation in leaves of C-3 species, Planta, 149,
78–90, 1980.
Fatichi, S. and Pappas, C.: Constrained variability of modeled T:ET ratio
across biomes, Geophys. Res. Lett., 44, 6795–6803,
https://doi.org/10.1002/2017GL074041, 2017.
Fatichi, S., Leuzinger, S., Paschalis, A., Langley, J. A., Barraclough, A.
D., and Hovenden, M. J.: Partitioning direct and indirect effects reveals
the response of water-limited ecosystems to elevated CO2, P. Natl. Acad. Sci. USA, 113, 12757–12762, https://doi.org/10.1073/pnas.1605036113,
2016.
Fatichi, S., Peleg, N., Mastrotheodoros, T., Pappas, C., and Manoli, G.: An
ecohydrological journey of 4500 years reveals a stable but threatened
precipitation-groundwater recharge relation around Jerusalem, Sci. Adv., 7,
eabe6303, https://doi.org/10.1126/sciadv.abe6303, 2021.
Fay, P. A., Carlisle, J. D., Danner, B. T., Lett, M. S., McCarron, J. K.,
Stewart, C., Knapp, A. K., Blair, J. M., and Collins, S. L.: Altered
rainfall patterns, gas exchange, and growth in grasses and forbs, Int. J.
Plant Sci., 163, 549–557, 2002.
Fay, P. A., Carlisle, J. D., Knapp, A. K., Blair, J. M., and Collins, S. L.:
Productivity responses to altered rainfall patterns in a C4-dominated
grassland, Oecologia, 137, 245–251, 2003.
Fay, P. A., Jin, V. L., Way, D. A., Potter, K. N., Gill, R. A., Jackson, R.
B., and Polley, H. W.: Soil-mediated effects of subambient to increased
carbon dioxide on grassland productivity, Nat. Clim. Change, 2, 742–746,
https://doi.org/10.1038/NCLIMATE1573, 2012.
Federer, C. A.: Soil-plant-atmosphere model for transpiration and
availability of soil-water, Water Resour. Res., 15, 555–562,
https://doi.org/10.1029/WR015i003p00555, 1979.
Feng, X., Lu, Y., Jiang, M., Katul, G. G., Manzoni, S., Mrad, A., and Vico,
G.: Instantaneous stomatal optimization results in suboptimal carbon gain due to legacy effects,
Plant Cell Environ., PCE14427, https://doi.org/10.1111/pce.14427, 2022.
Ficklin, D. L. and Novick, K. A.: Historic and projected changes in vapor
pressure deficit suggest a continental-scale drying of the United States
atmosphere, J. Geophys. Res.-Atmos., 122, 2061–2079,
https://doi.org/10.1002/2016JD025855, 2017.
Fowler, M., Kooperman, G., Randerson, J., and Pritchard, M.: The effect of
plant physiological responses to rising CO2 on global streamflow, Nat. Clim.
Change, 9, 873–879, https://doi.org/10.1038/s41558-019-0602-x, 2019.
Frank, D., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle, G.,
Treydte, K., Zimmermann, N., Schleser, G., Ahlstrom, A., Ciais, P.,
Friedlingstein, P., Levis, S., Lomas, M., Sitch, S., Viovy, N.,
Andreu-Hayles, L., Bednarz, Z., Berninger, F., Boettger, T., D'Alessandro,
C., Daux, V., Filot, M., Grabner, M., Gutierrez, E., Haupt, M., Hilasvuori,
E., Jungner, H., Kalela-Brundin, M., Krapiec, M., Leuenberger, M., Loader,
N., Marah, H., Masson-Delmotte, V., Pazdur, A., Pawelczyk, S., Pierre, M.,
Planells, O., Pukiene, R., Reynolds-Henne, C., Rinne, K., Saracino, A.,
Sonninen, E., Stievenard, M., Switsur, V., Szczepanek, M.,
Szychowska-Krapiec, E., Todaro, L., Waterhouse, J., and Weigl, M.: Water-use
efficiency and transpiration across European forests during the
Anthropocene, Nat. Clim. Change, 5, 579–583, 2015.
Hari, P., Mäkelä, A., Korpilahti, E., and Holmberg, M.: Optimal
control of gas exchange, Tree Physiol., 2, 169–175, 1986.
Harrison, S. P., Cramer, W., Franklin, O., Prentice, I. C., Wang, H.,
Brännström, Å., de Boer, H., Dieckmann, U., Joshi, J., Keenan,
T. F., Lavergne, A., Manzoni, S., Mengoli, G., Morfopoulos, C.,
Peñuelas, J., Pietsch, S., Rebel, K. T., Ryu, Y., Smith, N. G., Stocker,
B. D., and Wright, I. J.: Eco-evolutionary optimality as a means to improve
vegetation and land-surface models, New Phytol., 231, 2125–2141,
https://doi.org/10.1111/nph.17558, 2021.
Heisler-White, J. L., Knapp, A. K., and Kelly, E. F.: Increasing
precipitation event size increases aboveground net primary productivity in a
semi-arid grassland, Oecologia, 158, 129–140,
https://doi.org/10.1007/s00442-008-1116-9, 2008.
Huang, C.-W., Domec, J.-C., Palmroth, S., Pockman, W. T., Litvak, M. E., and
Katul, G. G.: Transport in a coordinated soil-root-xylem-phloem leaf system,
Adv. Water Resour., 119, 1–16,
https://doi.org/10.1016/j.advwatres.2018.06.002, 2018.
Hunt, A. G. and Manzoni, S.: Networks on Networks, Morgan & Claypool
Publishers, 175 pp., https://doi.org/10.1088/978-1-6817-4159-8, 2015.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge University Press, Cambridge (UK) and New
York, NY (USA), https://doi.org/10.1017/9781009157896, 2021.
Joshi, J., Stocker, B. D., Hofhansl, F., Zhou, S., Dieckmann, U., and
Prentice, I. C.: Towards a unified theory of plant photosynthesis and
hydraulics, bioRxiv, https://doi.org/10.1101/2020.12.17.423132, 2022.
Juang, J. Y., Katul, G. G., Siqueira, M. B., Stoy, P. C., and McCarthy, H.
R.: Investigating a hierarchy of Eulerian closure models for scalar transfer
inside forested canopies, Bound.-Lay. Meteorol., 128, 1–32, 2008.
Katul, G., Palmroth, S., and Oren, R.: Leaf stomatal responses to vapour
pressure deficit under current and CO2-enriched atmosphere explained by the
economics of gas exchange, Plant Cell Environ., 32, 968–979, 2009.
Katul, G., Manzoni, S., Palmroth, S., and Oren, R.: A stomatal optimization
theory to describe the effects of atmospheric CO2 on leaf photosynthesis and
transpiration, Ann. Bot., 105, 431–442, 2010.
Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W.,
Schmid, H. P., and Richardson, A. D.: Increase in forest water-use
efficiency as atmospheric carbon dioxide concentrations rise, Nature, 499, 324–327, https://doi.org/10.1038/nature12291, 2013.
Kempes, C. P., West, G. B., Crowell, K., and Girvan, M.: Predicting Maximum
Tree Heights and Other Traits from Allometric Scaling and Resource
Limitations, PLoS ONE, 6, e20551,
https://doi.org/10.1371/journal.pone.0020551, 2011.
Klein, T.: The variability of stomatal sensitivity to leaf water potential
across tree species indicates a continuum between isohydric and anisohydric
behaviours, Funct. Ecol., 28, 1313–1320,
https://doi.org/10.1111/1365-2435.12289, 2014.
Knapp, A. K., Fay, P. A., Blair, J. M., Collins, S. L., Smith, M. D.,
Carlisle, J. D., Harper, C. W., Danner, B. T., Lett, M. S., and McCarron, J.
K.: Rainfall variability, carbon cycling, and plant species diversity in a
mesic grassland, Science, 298, 2202–2205, 2002.
Knauer, J., Zaehle, S., Reichstein, M., Medlyn, B., Forkel, M., Hagemann,
S., and Werner, C.: The response of ecosystem water-use efficiency to rising
atmospheric CO2 concentrations: sensitivity and large-scale biogeochemical
implications, New Phytol., 213, 1654–1666,
https://doi.org/10.1111/nph.14288, 2017.
Kumar, R., Shankar, V., and Kumar Jat, M.: Efficacy of Nonlinear
Root Water Uptake Model for a Multilayer Crop Root Zone, J. Irrig. Drain.
Eng., 139, 898–910, https://doi.org/10.1061/(ASCE)IR.1943-4774.0000626,
2013.
Kumarathunge, D. P., Medlyn, B. E., Drake, J. E., Tjoelker, M. G.,
Aspinwall, M. J., Battaglia, M., Cano, F. J., Carter, K. R., Cavaleri, M.
A., Cernusak, L. A., Chambers, J. Q., Crous, K. Y., De Kauwe, M. G.,
Dillaway, D. N., Dreyer, E., Ellsworth, D. S., Ghannoum, O., Han, Q.,
Hikosaka, K., Jensen, A. M., Kelly, J. W. G., Kruger, E. L., Mercado, L. M.,
Onoda, Y., Reich, P. B., Rogers, A., Slot, M., Smith, N. G., Tarvainen, L.,
Tissue, D. T., Togashi, H. F., Tribuzy, E. S., Uddling, J., Vårhammar,
A., Wallin, G., Warren, J. M., and Way, D. A.: Acclimation and adaptation
components of the temperature dependence of plant photosynthesis at the
global scale, New Phytol., 222, 768–784, https://doi.org/10.1111/nph.15668,
2019.
Lavergne, A., Graven, H., De Kauwe, M. G., Keenan, T. F., Medlyn, B. E., and
Prentice, I. C.: Observed and modelled historical trends in the water-use
efficiency of plants and ecosystems, Global Change Biol., 25, 2242–2257,
https://doi.org/10.1111/gcb.14634, 2019.
Lindh, M. and Manzoni, S.: Plant evolution along the “fast–slow” growth
economics spectrum under altered precipitation regimes, Ecol. Model., 448,
109531, https://doi.org/10.1016/j.ecolmodel.2021.109531, 2021.
Lloyd, J. and Farquhar, G. D.: C-13 discrimination during CO2 assimilation
by the terrestrial biosphere, Oecologia, 99, 201–215, 1994.
Lopez, J., Way, D., and Sadok, W.: Systemic effects of rising atmospheric
vapor pressure deficit on plant physiology and productivity, Global Change Biol., 27, 1704–1720, https://doi.org/10.1111/gcb.15548, 2021.
Lu, X., Wang, L., and McCabe, M. F.: Elevated CO2 as a driver of global
dryland greening, Sci. Rep., 6, 20716, https://doi.org/10.1038/srep20716,
2016a.
Lu, Y., Duursma, R. A., and Medlyn, B. E.: Optimal stomatal behaviour under
stochastic rainfall, J. Theor. Biol., 394, 160–71,
https://doi.org/10.1016/j.jtbi.2016.01.003, 2016b.
Lu, Y. J., Duursma, R. A., Farrior, C. E., Medlyn, B. E., and Feng, X.:
Optimal stomatal drought response shaped by competition for water and
hydraulic risk can explain plant trait covariation, New Phytol., 225,
1206–1217, https://doi.org/10.1111/nph.16207, 2020.
Mankin, J., Seager, R., Smerdon, J., Cook, B., and Williams, A.:
Mid-latitude freshwater availability reduced by projected vegetation
responses to climate change, Nat. Geosci., 12, 983–988,
https://doi.org/10.1038/s41561-019-0480-x, 2019.
Manzoni, S., Katul, G., Fay, P. A., Polley, H. W., and Porporato, A.:
Modeling the vegetation-atmosphere carbon dioxide and water vapor
interactions along a controlled CO2 gradient, Ecol. Model., 222, 653–665,
2011.
Manzoni, S., Vico, G., Palmroth, S., Porporato, A., and Katul, G.:
Optimization of stomatal conductance for maximum carbon gain under dynamic
soil moisture, Adv. Water Resour., 62, 90–105,
https://doi.org/10.1016/j.advwatres.2013.09.020, 2013.
Mastrotheodoros, T., Pappas, C., Molnar, P., Burlando, P., Keenan, T.,
Gentine, P., Gough, C., and Fatichi, S.: Linking plant functional trait
plasticity and the large increase in forest water use efficiency, J.
Geophys. Res.-Biogeo., 122, 2393–2408,
https://doi.org/10.1002/2017JG003890, 2017.
McCarthy, H. R., Oren, R., Finzi, A. C., and Johnsen, K. H.: Canopy leaf
area constrains [CO2]-induced enhancement of productivity and partitioning
among aboveground carbon pools, P. Natl. Acad. Sci. USA, 103,
19356–19361, 2006.
Medlyn, B. E., Barton, C. V. M., Broadmeadow, M. S. J., Ceulemans, R., De
Angelis, P., Forstreuter, M., Freeman, M., Jackson, S. B., Kellomaki, S.,
Laitat, E., Rey, A., Roberntz, P., Sigurdsson, B. D., Strassemeyer, J.,
Wang, K., Curtis, P. S., and Jarvis, P. G.: Stomatal conductance of forest
species after long-term exposure to elevated CO2 concentration: a synthesis,
New Phytol., 149, 247–264, 2001.
Medlyn, B. E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P. C.,
Kirschbaum, M. U. F., Le Roux, X., Montpied, P., Strassemeyer, J., Walcroft,
A., Wang, K., and Loustau, D.: Temperature response of parameters of a
biochemically based model of photosynthesis. II. A review of experimental
data, Plant Cell Environ., 25, 1167–1179,
https://doi.org/10.1046/j.1365-3040.2002.00891.x, 2002.
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C.,
Barton, C. V. M., Crous, K. Y., de Angelis, P., Freeman, M., and Wingate,
L.: Reconciling the optimal and empirical approaches to modelling stomatal
conductance, Global Change Biol., 17, 2134–2144,
https://doi.org/10.1111/j.1365-2486.2010.02375.x, 2011.
Mencuccini, M., Manzoni, S., and Christoffersen, B.: Modelling water fluxes
in plants: from tissues to biosphere, New Phytol., 222, 1207–1222,
https://doi.org/10.1111/nph.15681, 2019.
Mrad, A., Sevanto, S., Domec, J.-C., Liu, Y., Nakad, M., and Katul, G.: A
Dynamic Optimality Principle for Water Use Strategies Explains Isohydric to
Anisohydric Plant Responses to Drought, Front. For. Glob. Change, 2, 49,
https://doi.org/10.3389/ffgc.2019.00049, 2019.
Mualem, Y.: Hydraulic conductivity of unsaturated soils: Prediction and
formulas, in: Methods of Soil Analysis, Part I. Physical and Mineralogical
Methods, edited by: Campbell, G. S., Jackson, R. D., Klute, A., Mortland, M.
M., and Nielsen, D. R., American Society of Agronomy – Soil Science Socity
of America, Madison, WI, 799–823, 1986.
Norby, R. J., Wullschleger, S. D., Gunderson, C. A., Johnson, D. W., and
Ceulemans, R.: Tree responses to rising CO2 in field experiments:
implications for the future forest, Plant Cell Environ., 22, 683–714, 1999.
Oren, R., Sperry, J. S., Katul, G. G., Pataki, D. E., Ewers, B. E.,
Phillips, N., and Schafer, K. V. R.: Survey and synthesis of intra- and
interspecific variation in stomatal sensitivity to vapour pressure deficit,
Plant Cell Environ., 22, 1515–1526, 1999.
Palmroth, S., Berninger, F., Nikinmaa, E., Lloyd, J., Pulkkinen, P., and
Hari, P.: Structural adaptation rather than water conservation was observed
in Scots pine over a range of wet to dry climates, Oecologia, 121, 302–309,
1999.
Pan, Y., Jackson, R. B., Hollinger, D. Y., Phillips, O. L., Nowak, R. S.,
Norby, R. J., Oren, R., Reich, P. B., Lüscher, A., Mueller, K. E.,
Owensby, C., Birdsey, R., Hom, J., and Luo, Y.: Contrasting responses of
woody and grassland ecosystems to increased CO2 as water supply varies, Nat.
Ecol. Evol., 6, 315–323, https://doi.org/10.1038/s41559-021-01642-6, 2022.
Paschalis, A., Fatichi, S., Pappas, C., and Or, D.: Covariation of
vegetation and climate constrains present and future T/ET variability,
Environ. Res. Lett., 13, 104012, https://doi.org/10.1088/1748-9326/aae267,
2018.
Penuelas, J., Canadell, J. G., and Ogaya, R.: Increased water-use efficiency
during the 20th century did not translate into enhanced tree growth, Glob.
Ecol. Biogeogr., 20, 597–608,
https://doi.org/10.1111/j.1466-8238.2010.00608.x, 2011.
Pirtel, N. L., Hubbard, R. M., Bradford, J. B., Kolb, T. E., Litvak, M. E.,
Abella, S. R., Porter, S. L., and Petrie, M. D.: The aboveground and
belowground growth characteristics of juvenile conifers in the southwestern
United States, Ecosphere, 12, e03839, https://doi.org/10.1002/ecs2.3839,
2021.
Porporato, A., Daly, E., and Rodriguez-Iturbe, I.: Soil water balance and
ecosystem response to climate change, Am. Nat., 164, 625–632, 2004.
Prentice, I. C., Dong, N., Gleason, S. M., Maire, V., and Wright, I. J.:
Balancing the costs of carbon gain and water transport: testing a new
theoretical framework for plant functional ecology, Ecol. Lett., 17, 82–91,
https://doi.org/10.1111/ele.12211, 2014.
Pritchard, S. G., Rogers, H. H., Prior, S. A., and Peterson, C. M.: Elevated
CO2 and plant structure: a review, Global Change Biol., 5, 807–837,
https://doi.org/10.1046/j.1365-2486.1999.00268.x, 1999.
Roberts, J.: Forest transpiration – A conservative hydrological process, J.
Hydrol., 66, 133–141, 1983.
Rodriguez-Iturbe, I. and Porporato, A.: Ecohydrology of Water-Controlled
Ecosystems, Soil Moisture and Plant Dynamics, Cambridge University Press,
Cambridge, ISBN 9780521036740, 2004.
Sadras, V. O. and Milroy, S. P.: Soil-water thresholds for the responses of
leaf expansion and gas exchange: A review, Field Crops Res., 47, 253–266,
1996.
Sadras, V., Hall, A., Trapani, N., and Vilella, F.: Dynamics of rooting and
root-length – leaf-area relationships as affected by plant-population in
sunflower crops, Field Crops Res., 22, 45–57,
https://doi.org/10.1016/0378-4290(89)90088-9, 1989.
Saurer, M., Spahni, R., Frank, D. C., Joos, F., Leuenberger, M., Loader, N.
J., McCarroll, D., Gagen, M., Poulter, B., Siegwolf, R. T. W.,
Andreu-Hayles, L., Boettger, T., Dorado Linan, I., Fairchild, I. J.,
Friedrich, M., Gutierrez, E., Haupt, M., Hilasvuori, E., Heinrich, I.,
Helle, G., Grudd, H., Jalkanen, R., Levanic, T., Linderholm, H. W.,
Robertson, I., Sonninen, E., Treydte, K., Waterhouse, J. S., Woodley, E. J.,
Wynn, P. M., and Young, G. H. F.: Spatial variability and temporal trends in
water-use efficiency of European forests, Global Change Biol., 20,
3700–3712, https://doi.org/10.1111/gcb.12717, 2014.
Schäfer, K. V. R., Oren, R., Lai, C.-T., and Katul, G. G.: Hydrologic
balance in an intact temperate forest ecosystem under ambient and elevated
atmospheric CO2 concentration, Global Change Biol., 8, 895–911,
https://doi.org/10.1046/j.1365-2486.2002.00513.x, 2002.
Schymanski, S. J., Roderick, M. L., and Sivapalan, M.: Using an optimality
model to understand medium and long-term responses of vegetation water use
to elevated atmospheric CO2 concentrations, Aob Plants, 7, plv060,
https://doi.org/10.1093/aobpla/plv060, 2015.
Sheley, R. and Larson, L.: Comparative growth and interference between
cheatgrass and yellow starthistle seedlings, J. Range Manage., 47, 470–474,
https://doi.org/10.2307/4002999, 1994.
Sloan, B. P., Thompson, S. E., and Feng, X.: Plant hydraulic transport controls transpiration sensitivity to soil water stress, Hydrol. Earth Syst. Sci., 25, 4259–4274, https://doi.org/10.5194/hess-25-4259-2021, 2021.
Smith, M. N., Taylor, T. C., van Haren, J., Rosolem, R., Restrepo-Coupe, N.,
Adams, J., Wu, J., de Oliveira, R. C., Silva, R., de Araujo, A. C., de
Camargo, P. B., Huxman, T. E., and Saleska, S. R.: Empirical evidence for
resilience of tropical forest photosynthesis in a warmer world, Nat. Plants,
6, 1225–1230, https://doi.org/10.1038/s41477-020-00780-2, 2020.
Sperry, J. S., Venturas, M. D., Anderegg, W. R. L., Mencuccini, M., Mackay,
D. S., Wang, Y., and Love, D. M.: Predicting stomatal responses to the
environment from the optimization of photosynthetic gain and hydraulic cost,
Plant Cell Environ., 40, 816–830, https://doi.org/10.1111/pce.12852, 2017.
Stocker, B. D., Wang, H., Smith, N. G., Harrison, S. P., Keenan, T. F., Sandoval, D., Davis, T., and Prentice, I. C.: P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production, Geosci. Model Dev., 13, 1545–1581, https://doi.org/10.5194/gmd-13-1545-2020, 2020.
Swann, A., Hoffman, F., Koven, C., and Randerson, J.: Plant responses to
increasing CO2 reduce estimates of climate impacts on drought severity,
P. Natl. Acad. Sci. USA, 113, 10019–10024,
https://doi.org/10.1073/pnas.1604581113, 2016.
Tor-ngern, P., Oren, R., Ward, E. J., Palmroth, S., McCarthy, H. R., and
Domec, J.-C.: Increases in atmospheric CO2 have little influence on
transpiration of a temperate forest canopy, New Phytol., 205, 518–525,
https://doi.org/10.1111/nph.13148, 2015.
Ukkola, A., Prentice, I., Keenan, T., van Dijk, A., Viney, N., Myneni, R.,
and Bi, J.: Reduced streamflow in water-stressed climates consistent with
CO2 effects on vegetation, Nat. Clim. Change, 6, 75–78,
https://doi.org/10.1038/NCLIMATE2831, 2016.
Vico, G., Manzoni, S., Palmroth, S., Weih, M., and Katul, G.: A perspective
on optimal leaf stomatal conductance under CO2 and light co-limitations,
Agric. For. Meteorol., 182, 191–199,
https://doi.org/10.1016/j.agrformet.2013.07.005, 2013.
Vico, G., Way, D. A., Hurry, V., and Manzoni, S.: Can leaf net
photosynthesis acclimate to rising and more variable temperatures?, Plant
Cell Environ., 42, 1913–1928, https://doi.org/10.1111/pce.13525, 2019.
Wang, Y., Sperry, J. S., Anderegg, W. R. L., Venturas, M. D., and Trugman,
A. T.: A theoretical and empirical assessment of stomatal optimization
modeling, New Phytol., 227, 311–325, https://doi.org/10.1111/nph.16572, 2020.
Wasyliw, J. and Karst, J.: Shifts in ectomycorrhizal exploration types
parallel leaf and fine root area with forest age, J. Ecol., 108, 2270–2282,
https://doi.org/10.1111/1365-2745.13484, 2020.
Way, D. A. and Oren, R.: Differential responses to changes in growth
temperature between trees from different functional groups and biomes: a
review and synthesis of data, Tree Physiol., 30, 669–688,
https://doi.org/10.1093/treephys/tpq015, 2010.
Williams, C. A., Reichstein, M., Buchmann, N., Baldocchi, D., Beer, C.,
Schwalm, C., Wohlfahrt, G., Hasler, N., Bernhofer, C., Foken, T., Papale,
D., Schymanski, S., and Schaefer, K.: Climate and vegetation controls on the
surface water balance: Synthesis of evapotranspiration measured across a
global network of flux towers, Water Resour. Res., 48,
https://doi.org/10.1029/2011wr011586, 2012.
Yang, Y., McVicar, T. R., Yang, D., Zhang, Y., Piao, S., Peng, S., and Beck, H. E.: Low and contrasting impacts of vegetation CO2 fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO2 effects, Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, 2021.
Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu,
Y., Chen, G., Dong, W., Hu, Z., Jain, A., Jiang, C., Kato, E., Li, S.,
Lienert, S., Liu, S., Nabel, J., Qin, Z., Quine, T., Sitch, S., Smith, W.,
Wang, F., Wu, C., Xiao, Z., and Yang, S.: Increased atmospheric vapor
pressure deficit reduces global vegetation growth, Sci. Adv., 5, eaax139,
https://doi.org/10.1126/sciadv.aax1396, 2019.
Zhang, Q., Ficklin, D. L., Manzoni, S., Wang, L., Way, D., Phillips, R. P.,
and Novick, K. A.: Response of ecosystem intrinsic water use efficiency and
gross primary productivity to rising vapor pressure deficit, Environ. Res.
Lett., 14, 074023, https://doi.org/10.1088/1748-9326/ab2603, 2019.
Short summary
Increasing atmospheric carbon dioxide (CO2) causes leaves to close their stomata (through which water evaporates) but also promotes leaf growth. Even if individual leaves save water, how much will be consumed by a whole plant with possibly more leaves? Using different mathematical models, we show that plant stands that are not very dense and can grow more leaves will benefit from higher CO2 by photosynthesizing more while adjusting their stomata to consume similar amounts of water.
Increasing atmospheric carbon dioxide (CO2) causes leaves to close their stomata (through which...
Altmetrics
Final-revised paper
Preprint