Articles | Volume 19, issue 18
https://doi.org/10.5194/bg-19-4431-2022
https://doi.org/10.5194/bg-19-4431-2022
Research article
 | Highlight paper
 | 
15 Sep 2022
Research article | Highlight paper |  | 15 Sep 2022

Observation-constrained estimates of the global ocean carbon sink from Earth system models

Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos

Related authors

Southern Ocean phytoplankton under climate change: shifting balance of bottom-up and top-down control
Tianfei Xue, Ivy Frenger, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, and Andreas Oschlies
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-171,https://doi.org/10.5194/bg-2023-171, 2023
Preprint under review for BG
Short summary
Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble
Jens Terhaar, Olivier Torres, Timothée Bourgeois, and Lester Kwiatkowski
Biogeosciences, 18, 2221–2240, https://doi.org/10.5194/bg-18-2221-2021,https://doi.org/10.5194/bg-18-2221-2021, 2021
Short summary
Model constraints on the anthropogenic carbon budget of the Arctic Ocean
Jens Terhaar, James C. Orr, Marion Gehlen, Christian Ethé, and Laurent Bopp
Biogeosciences, 16, 2343–2367, https://doi.org/10.5194/bg-16-2343-2019,https://doi.org/10.5194/bg-16-2343-2019, 2019
Short summary
Coastal-ocean uptake of anthropogenic carbon
Timothée Bourgeois, James C. Orr, Laure Resplandy, Jens Terhaar, Christian Ethé, Marion Gehlen, and Laurent Bopp
Biogeosciences, 13, 4167–4185, https://doi.org/10.5194/bg-13-4167-2016,https://doi.org/10.5194/bg-13-4167-2016, 2016
Short summary

Related subject area

Biogeochemistry: Open Ocean
Seasonal cycles of biogeochemical fluxes in the Scotia Sea, Southern Ocean: a stable isotope approach
Anna Belcher, Sian F. Henley, Katharine Hendry, Marianne Wootton, Lisa Friberg, Ursula Dallman, Tong Wang, Christopher Coath, and Clara Manno
Biogeosciences, 20, 3573–3591, https://doi.org/10.5194/bg-20-3573-2023,https://doi.org/10.5194/bg-20-3573-2023, 2023
Short summary
Absence of photophysiological response to iron addition in autumn phytoplankton in the Antarctic sea-ice zone
Asmita Singh, Susanne Fietz, Sandy J. Thomalla, Nicolas Sanchez, Murat V. Ardelan, Sébastien Moreau, Hanna M. Kauko, Agneta Fransson, Melissa Chierici, Saumik Samanta, Thato N. Mtshali, Alakendra N. Roychoudhury, and Thomas J. Ryan-Keogh
Biogeosciences, 20, 3073–3091, https://doi.org/10.5194/bg-20-3073-2023,https://doi.org/10.5194/bg-20-3073-2023, 2023
Short summary
Optimal parameters for the ocean's nutrient, carbon, and oxygen cycles compensate for circulation biases but replumb the biological pump
Benoît Pasquier, Mark Holzer, Matthew A. Chamberlain, Richard J. Matear, Nathaniel L. Bindoff, and François W. Primeau
Biogeosciences, 20, 2985–3009, https://doi.org/10.5194/bg-20-2985-2023,https://doi.org/10.5194/bg-20-2985-2023, 2023
Short summary
Importance of multiple sources of iron for the upper-ocean biogeochemistry over the northern Indian Ocean
Priyanka Banerjee
Biogeosciences, 20, 2613–2643, https://doi.org/10.5194/bg-20-2613-2023,https://doi.org/10.5194/bg-20-2613-2023, 2023
Short summary
Exploring the role of different data types and timescales in the quality of marine biogeochemical model calibration
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences, 20, 2645–2669, https://doi.org/10.5194/bg-20-2645-2023,https://doi.org/10.5194/bg-20-2645-2023, 2023
Short summary

Cited articles

Aumont, O., Orr, J. C., Monfray, P., Ludwig, W., Amiotte-Suchet, P., and Probst, J.-L.: Riverine-driven interhemispheric transport of carbon, Global Biogeochem. Cy., 15, 393–405, https://doi.org/10.1029/1999GB001238, 2001. 
Bakker, P., Schmittner, A., Lenaerts, J. T. M., Abe-Ouchi, A., Bi, D., van den Broeke, M. R., Chan, W.-L., Hu, A., Beadling, R. L., Marsland, S. J., Mernild, S. H., Saenko, O. A., Swingedouw, D., Sullivan, A., and Yin, J.: Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued warming and Greenland melting, Geophys. Res. Lett., 43, 12252–12260, https://doi.org/10.1002/2016GL070457, 2016. 
Bednaršek, N., Tarling, G. A., Bakker, D. C. E., Fielding, S., and Feely, R. A.: Dissolution Dominating Calcification Process in Polar Pteropods Close to the Point of Aragonite Undersaturation, PLoS One, 9, e109183, https://doi.org/10.1371/journal.pone.0109183, 2014. 
Behrenfeld, M. J., Gaube, P., Della Penna, A., O'Malley, R. T., Burt, W. J., Hu, Y., Bontempi, P. S., Steinberg, D. K., Boss, E. S., Siegel, D. A., Hostetler, C. A., Tortell, P. D., and Doney, S. C.: Global satellite-observed daily vertical migrations of ocean animals, Nature, 576, 257–261, https://doi.org/10.1038/s41586-019-1796-9, 2019. 
Download
Co-editor-in-chief
Accurate constraining the ocean carbon sink is of utmost importance to improve our understanding of the fate of anthropogenic carbon and to better project anthropogenic carbon uptake in the coming decades. This study combines the outcomes of a suite of earth-system models with three well-documented observations (sea surface salinity in the Southern Ocean, strength of Atlantic Overturning and Revelle factor) to reduce bias and uncertainty in the global ocean carbon sink. The results suggest that the ocean carbon sink is about 10% larger than estimated before. This has implications for the global carbon budget.
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Altmetrics
Final-revised paper
Preprint