Articles | Volume 19, issue 18
https://doi.org/10.5194/bg-19-4479-2022
https://doi.org/10.5194/bg-19-4479-2022
Research article
 | 
16 Sep 2022
Research article |  | 16 Sep 2022

Observed and projected global warming pressure on coastal hypoxia

Michael M. Whitney

Related subject area

Biogeochemistry: Coastal Ocean
Multiple nitrogen sources for primary production inferred from δ13C and δ15N in the southern Sea of Japan
Taketoshi Kodama, Atsushi Nishimoto, Ken-ichi Nakamura, Misato Nakae, Naoki Iguchi, Yosuke Igeta, and Yoichi Kogure
Biogeosciences, 20, 3667–3682, https://doi.org/10.5194/bg-20-3667-2023,https://doi.org/10.5194/bg-20-3667-2023, 2023
Short summary
Influence of manganese cycling on alkalinity in the redox stratified water column of Chesapeake Bay
Aubin Thibault de Chanvalon, George W. Luther, Emily R. Estes, Jennifer Necker, Bradley M. Tebo, Jianzhong Su, and Wei-Jun Cai
Biogeosciences, 20, 3053–3071, https://doi.org/10.5194/bg-20-3053-2023,https://doi.org/10.5194/bg-20-3053-2023, 2023
Short summary
Estuarine flocculation dynamics of organic carbon and metals from boreal acid sulfate soils
Joonas J. Virtasalo, Peter Österholm, and Eero Asmala
Biogeosciences, 20, 2883–2901, https://doi.org/10.5194/bg-20-2883-2023,https://doi.org/10.5194/bg-20-2883-2023, 2023
Short summary
Drivers of particle sinking velocities in the Peruvian upwelling system
Moritz Baumann, Allanah Joy Paul, Jan Taucher, Lennart Thomas Bach, Silvan Goldenberg, Paul Stange, Fabrizio Minutolo, and Ulf Riebesell
Biogeosciences, 20, 2595–2612, https://doi.org/10.5194/bg-20-2595-2023,https://doi.org/10.5194/bg-20-2595-2023, 2023
Short summary
Impacts and uncertainties of climate-induced changes in watershed inputs on estuarine hypoxia
Kyle E. Hinson, Marjorie A. M. Friedrichs, Raymond G. Najjar, Maria Herrmann, Zihao Bian, Gopal Bhatt, Pierre St-Laurent, Hanqin Tian, and Gary Shenk
Biogeosciences, 20, 1937–1961, https://doi.org/10.5194/bg-20-1937-2023,https://doi.org/10.5194/bg-20-1937-2023, 2023
Short summary

Cited articles

Altieri, A. H. and Gedan, K. B.: Climate change and dead zones, Global Change Biol., 21, 1395–1406, https://doi.org/10.1111/gcb.12754, 2015. 
Bernal, D., Reid, J. P., Roessig, J. M., Matsumoto, S., Sepulveda, C. A., Cech, J. J., and Graham, J. B.: Temperature effects on the blood oxygen affinity in sharks, Fish Physiol. Biochem., 44, 949–967, https://doi.org/10.1007/s10695-018-0484-2, 2018. 
Black, E. C.: The transport of oxygen by the blood of freshwater fish, Biological Bull., 79, 215–229, https://doi.org/10.2307/1537841, 1940. 
Beaufort Lagoon Ecosystems LTER: Physiochemical water column parameters and hydrographic time series from river, lagoon, and open ocean sites along the Alaska Beaufort Sea coast, 2018-ongoing ver 1. Environmental Data Initiative, [data set], https://doi.org/10.6073/pasta/e0e71c2d59bf7b08928061f546be6a9a, 2020. 
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013. 
Download
Short summary
Coastal hypoxia is a major environmental problem of increasing severity. The 21st-century projections analyzed indicate global coastal waters will warm and experience rapid declines in oxygen. The forecasted median coastal trends for increasing sea surface temperature and decreasing oxygen capacity are 48 % and 18 % faster than the rates observed over the last 4 decades. Existing hypoxic areas are expected to worsen, and new hypoxic areas likely will emerge under these warming-related pressures.
Altmetrics
Final-revised paper
Preprint