Articles | Volume 19, issue 18
https://doi.org/10.5194/bg-19-4479-2022
https://doi.org/10.5194/bg-19-4479-2022
Research article
 | 
16 Sep 2022
Research article |  | 16 Sep 2022

Observed and projected global warming pressure on coastal hypoxia

Michael M. Whitney

Related subject area

Biogeochemistry: Coastal Ocean
Technical note: Ocean Alkalinity Enhancement Pelagic Impact Intercomparison Project (OAEPIIP)
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024,https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Estimates of carbon sequestration potential in an expanding Arctic fjord (Hornsund, Svalbard) affected by dark plumes of glacial meltwater
Marlena Szeligowska, Déborah Benkort, Anna Przyborska, Mateusz Moskalik, Bernabé Moreno, Emilia Trudnowska, and Katarzyna Błachowiak-Samołyk
Biogeosciences, 21, 3617–3639, https://doi.org/10.5194/bg-21-3617-2024,https://doi.org/10.5194/bg-21-3617-2024, 2024
Short summary
An assessment of ocean alkalinity enhancement using aqueous hydroxides: kinetics, efficiency, and precipitation thresholds
Mallory C. Ringham, Nathan Hirtle, Cody Shaw, Xi Lu, Julian Herndon, Brendan R. Carter, and Matthew D. Eisaman
Biogeosciences, 21, 3551–3570, https://doi.org/10.5194/bg-21-3551-2024,https://doi.org/10.5194/bg-21-3551-2024, 2024
Short summary
Dissolved nitric oxide in the lower Elbe Estuary and the Port of Hamburg area
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024,https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Variable contribution of wastewater treatment plant effluents to downstream nitrous oxide concentrations and emissions
Weiyi Tang, Jeff Talbott, Timothy Jones, and Bess B. Ward
Biogeosciences, 21, 3239–3250, https://doi.org/10.5194/bg-21-3239-2024,https://doi.org/10.5194/bg-21-3239-2024, 2024
Short summary

Cited articles

Altieri, A. H. and Gedan, K. B.: Climate change and dead zones, Global Change Biol., 21, 1395–1406, https://doi.org/10.1111/gcb.12754, 2015. 
Bernal, D., Reid, J. P., Roessig, J. M., Matsumoto, S., Sepulveda, C. A., Cech, J. J., and Graham, J. B.: Temperature effects on the blood oxygen affinity in sharks, Fish Physiol. Biochem., 44, 949–967, https://doi.org/10.1007/s10695-018-0484-2, 2018. 
Black, E. C.: The transport of oxygen by the blood of freshwater fish, Biological Bull., 79, 215–229, https://doi.org/10.2307/1537841, 1940. 
Beaufort Lagoon Ecosystems LTER: Physiochemical water column parameters and hydrographic time series from river, lagoon, and open ocean sites along the Alaska Beaufort Sea coast, 2018-ongoing ver 1. Environmental Data Initiative, [data set], https://doi.org/10.6073/pasta/e0e71c2d59bf7b08928061f546be6a9a, 2020. 
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013. 
Download
Short summary
Coastal hypoxia is a major environmental problem of increasing severity. The 21st-century projections analyzed indicate global coastal waters will warm and experience rapid declines in oxygen. The forecasted median coastal trends for increasing sea surface temperature and decreasing oxygen capacity are 48 % and 18 % faster than the rates observed over the last 4 decades. Existing hypoxic areas are expected to worsen, and new hypoxic areas likely will emerge under these warming-related pressures.
Altmetrics
Final-revised paper
Preprint