Articles | Volume 19, issue 23
https://doi.org/10.5194/bg-19-5449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
First phytoplankton community assessment of the Kong Håkon VII Hav, Southern Ocean, during austral autumn
Hanna M. Kauko
CORRESPONDING AUTHOR
Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Philipp Assmy
Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Ilka Peeken
Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
Magdalena Różańska-Pluta
Marine Protist Laboratory, Department of Marine Ecology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Józef M. Wiktor
Marine Protist Laboratory, Department of Marine Ecology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Gunnar Bratbak
Department of Biological Sciences, University of Bergen, Bergen,
Norway
Asmita Singh
Southern Ocean Carbon-Climate Observatory (SOCCO), Council for
Scientific and Industrial Research (CSIR), Cape Town, South Africa
Department of Earth Sciences, Stellenbosch University, Stellenbosch,
South Africa
Thomas J. Ryan-Keogh
Southern Ocean Carbon-Climate Observatory (SOCCO), Council for
Scientific and Industrial Research (CSIR), Cape Town, South Africa
Sebastien Moreau
Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Related authors
Asmita Singh, Susanne Fietz, Sandy J. Thomalla, Nicolas Sanchez, Murat V. Ardelan, Sébastien Moreau, Hanna M. Kauko, Agneta Fransson, Melissa Chierici, Saumik Samanta, Thato N. Mtshali, Alakendra N. Roychoudhury, and Thomas J. Ryan-Keogh
Biogeosciences, 20, 3073–3091, https://doi.org/10.5194/bg-20-3073-2023, https://doi.org/10.5194/bg-20-3073-2023, 2023
Short summary
Short summary
Despite the scarcity of iron in the Southern Ocean, seasonal blooms occur due to changes in nutrient and light availability. Surprisingly, during an autumn bloom in the Antarctic sea-ice zone, the results from incubation experiments showed no significant photophysiological response of phytoplankton to iron addition. This suggests that ambient iron concentrations were sufficient, challenging the notion of iron deficiency in the Southern Ocean through extended iron-replete post-bloom conditions.
Guillaume Liniger, Delphine Lannuzel, Sébastien Moreau, Michael S. Dinniman, and Peter G. Strutton
EGUsphere, https://doi.org/10.5194/egusphere-2025-3149, https://doi.org/10.5194/egusphere-2025-3149, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Our study investigates the links between the phytoplankton bloom and environmental parameters in the Amundsen polynyas (areas of open water within sea ice). Between 1998 and 2017, we find that changes in melting ice shelves may have different impacts on biological productivity between the Pine Island (PIP) and Amundsen Sea (ASP) polynyas. While ice shelf melting seems to play an important role for phytoplankton growth in the ASP, light and warmer waters appear to be more important in the PIP.
Sarah-Anne Nicholson, Thomas J. Ryan-Keogh, Sandy J. Thomalla, Nicolette Chang, and Marié E. Smith
Earth Syst. Sci. Data, 17, 1959–1975, https://doi.org/10.5194/essd-17-1959-2025, https://doi.org/10.5194/essd-17-1959-2025, 2025
Short summary
Short summary
The annual widespread growth of phytoplankton blooms across the global ocean has far-reaching impacts on food security, ecosystem health, and climate. This study uses satellite-derived observations to generate long-term, sustained indices of phytoplankton phenology, capturing the timing, variability, and magnitude of blooms across the global ocean. These indices support the effective monitoring and management of marine resources and help assess the impacts of climate change on ocean ecosystems.
Letizia Tedesco, Giulia Castellani, Pedro Duarte, Meibing Jin, Sebastien Moreau, Eric Mortenson, Benjamin Tobey Saenz, Nadja Steiner, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2025-1107, https://doi.org/10.5194/egusphere-2025-1107, 2025
Short summary
Short summary
Sea ice is home to tiny algae that support polar marine life, but understanding how they grow and interact with their environment remains challenging. We compared six computer models that simulate these algae and nutrients in sea ice, testing them against real-world data from Arctic sea ice. Our results show that while models can capture algal growth, they struggle to represent nutrient changes. Improving these models will help in understanding how climate change affects polar marine ecosystems.
Thomas J. Ryan-Keogh, Sandy J. Thomalla, Nicolette Chang, and Tumelo Moalusi
Earth Syst. Sci. Data, 15, 4829–4848, https://doi.org/10.5194/essd-15-4829-2023, https://doi.org/10.5194/essd-15-4829-2023, 2023
Short summary
Short summary
Oceanic productivity has been highlighted as an important environmental indicator of climate change in comparison to other existing metrics. However, the availability of these data to assess trends and trajectories is plagued with issues, such as application to only a single satellite reducing the time period for assessment. We have applied multiple algorithms to the longest ocean colour record to provide a record for assessing climate-change-driven trends.
Hongyan Xi, Marine Bretagnon, Svetlana N. Losa, Vanda Brotas, Mara Gomes, Ilka Peeken, Leonardo M. A. Alvarado, Antoine Mangin, and Astrid Bracher
State Planet, 1-osr7, 5, https://doi.org/10.5194/sp-1-osr7-5-2023, https://doi.org/10.5194/sp-1-osr7-5-2023, 2023
Short summary
Short summary
Continuous monitoring of phytoplankton groups using satellite data is crucial for understanding global ocean phytoplankton variability on different scales in both space and time. This study focuses on four important phytoplankton groups in the Atlantic Ocean to investigate their trend, anomaly and phenological characteristics both over the whole region and at subscales. This study paves the way to promote potentially important ocean monitoring indicators to help sustain the ocean health.
Asmita Singh, Susanne Fietz, Sandy J. Thomalla, Nicolas Sanchez, Murat V. Ardelan, Sébastien Moreau, Hanna M. Kauko, Agneta Fransson, Melissa Chierici, Saumik Samanta, Thato N. Mtshali, Alakendra N. Roychoudhury, and Thomas J. Ryan-Keogh
Biogeosciences, 20, 3073–3091, https://doi.org/10.5194/bg-20-3073-2023, https://doi.org/10.5194/bg-20-3073-2023, 2023
Short summary
Short summary
Despite the scarcity of iron in the Southern Ocean, seasonal blooms occur due to changes in nutrient and light availability. Surprisingly, during an autumn bloom in the Antarctic sea-ice zone, the results from incubation experiments showed no significant photophysiological response of phytoplankton to iron addition. This suggests that ambient iron concentrations were sufficient, challenging the notion of iron deficiency in the Southern Ocean through extended iron-replete post-bloom conditions.
Valérie Gros, Bernard Bonsang, Roland Sarda-Estève, Anna Nikolopoulos, Katja Metfies, Matthias Wietz, and Ilka Peeken
Biogeosciences, 20, 851–867, https://doi.org/10.5194/bg-20-851-2023, https://doi.org/10.5194/bg-20-851-2023, 2023
Short summary
Short summary
The oceans are both sources and sinks for trace gases important for atmospheric chemistry and marine ecology. Here, we quantified selected trace gases (including the biological metabolites dissolved dimethyl sulfide, methanethiol and isoprene) along a 2500 km transect from the North Atlantic to the Arctic Ocean. In the context of phytoplankton and bacterial communities, our study suggests that methanethiol (rarely measured before) might substantially influence ocean–atmosphere cycling.
Marta Santos-Garcia, Raja S. Ganeshram, Robyn E. Tuerena, Margot C. F. Debyser, Katrine Husum, Philipp Assmy, and Haakon Hop
Biogeosciences, 19, 5973–6002, https://doi.org/10.5194/bg-19-5973-2022, https://doi.org/10.5194/bg-19-5973-2022, 2022
Short summary
Short summary
Terrestrial sources of nitrate are important contributors to the nutrient pool in the fjords of Kongsfjorden and Rijpfjorden in Svalbard during the summer, and they sustain most of the fjord primary productivity. Ongoing tidewater glacier retreat is postulated to favour light limitation and less dynamic circulation in fjords. This is suggested to encourage the export of nutrients to the middle and outer part of the fjord system, which may enhance primary production within and in offshore areas.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Natasha René van Horsten, Hélène Planquette, Géraldine Sarthou, Thomas James Ryan-Keogh, Nolwenn Lemaitre, Thato Nicholas Mtshali, Alakendra Roychoudhury, and Eva Bucciarelli
Biogeosciences, 19, 3209–3224, https://doi.org/10.5194/bg-19-3209-2022, https://doi.org/10.5194/bg-19-3209-2022, 2022
Short summary
Short summary
The remineralisation proxy, barite, was measured along 30°E in the southern Indian Ocean during early austral winter. To our knowledge this is the first reported Southern Ocean winter study. Concentrations throughout the water column were comparable to observations during spring to autumn. By linking satellite primary production to this proxy a possible annual timescale is proposed. These findings also suggest possible carbon remineralisation from satellite data on a basin scale.
Pedro Duarte, Philipp Assmy, Karley Campbell, and Arild Sundfjord
Geosci. Model Dev., 15, 841–857, https://doi.org/10.5194/gmd-15-841-2022, https://doi.org/10.5194/gmd-15-841-2022, 2022
Short summary
Short summary
Sea ice modeling is an important part of Earth system models (ESMs). The results of ESMs are used by the Intergovernmental Panel on Climate Change in their reports. In this study we present an improvement to calculate the exchange of nutrients between the ocean and the sea ice. This nutrient exchange is an essential process to keep the ice-associated ecosystem functioning. We found out that previous calculation methods may underestimate the primary production of the ice-associated ecosystem.
Elianne Egge, Stephanie Elferink, Daniel Vaulot, Uwe John, Gunnar Bratbak, Aud Larsen, and Bente Edvardsen
Earth Syst. Sci. Data, 13, 4913–4928, https://doi.org/10.5194/essd-13-4913-2021, https://doi.org/10.5194/essd-13-4913-2021, 2021
Short summary
Short summary
Here we present a dataset of DNA sequences obtained from size-fractionated seawater samples from the Arctic Ocean that are used to identify taxonomic groups of unicellular plankton. This dataset can be used to investigate the diversity and distribution of plankton groups both by season and by depth and thus increase our understanding of the factors influencing the dynamics of this important part of the Arctic marine ecosystem.
Stefanie Arndt, Christian Haas, Hanno Meyer, Ilka Peeken, and Thomas Krumpen
The Cryosphere, 15, 4165–4178, https://doi.org/10.5194/tc-15-4165-2021, https://doi.org/10.5194/tc-15-4165-2021, 2021
Short summary
Short summary
We present here snow and ice core data from the northwestern Weddell Sea in late austral summer 2019, which allow insights into possible reasons for the recent low summer sea ice extent in the Weddell Sea. We suggest that the fraction of superimposed ice and snow ice can be used here as a sensitive indicator. However, snow and ice properties were not exceptional, suggesting that the summer surface energy balance and related seasonal transition of snow properties have changed little in the past.
Cited articles
Abelmann, A., Gersonde, R., Cortese, G., Kuhn, G., and Smetacek, V.:
Extensive phytoplankton blooms in the Atlantic sector of the glacial
Southern Ocean, Paleoceanography, 21, PA1013, https://doi.org/10.1029/2005PA001199,
2006.
Ackley, S. F., Buck, K. R., and Taguchi, S.: Standing crop of algae in the
sea ice of the Weddell Sea region, Deep Sea Res., 26, 269–281,
https://doi.org/10.1016/0198-0149(79)90024-4, 1979.
Anderson, M. J. and Walsh, D. C. I.: PERMANOVA, ANOSIM, and the Mantel test
in the face of heterogeneous dispersions: What null hypothesis are you
testing?, Ecol. Monogr., 83, 557–574, https://doi.org/10.1890/12-2010.1, 2013.
Armand, L. K., Cornet-Barthaux, V., Mosseri, J., and Quéguiner, B.: Late
summer diatom biomass and community structure on and around the naturally
iron-fertilised Kerguelen Plateau in the Southern Ocean, Deep-Sea Res. Pt. II, 55, 653–676, https://doi.org/10.1016/j.dsr2.2007.12.031,
2008.
Arrigo, K. R. and van Dijken, G. L.: Phytoplankton dynamics within 37
Antarctic coastal polynya systems, J. Geophys. Res., 108, C83271,
https://doi.org/10.1029/2002jc001739, 2003.
Arrigo, K. R., Robinson, D. H., Worthen, D. L., Dunbar, R. B., DiTullio, G.
R., VanWoert, M., and Lizotte, M. P.: Phytoplankton community structure and
the drawdown of nutrients and CO2 in the Southern Ocean, Science,
283, 365–367, https://doi.org/10.1126/science.283.5400.365, 1999.
Assmy, P., Hernández-Becerril, D. U., and Montresor, M.: Morphological
variability and life cycle traits of the type species of the diatom genus
Chaetoceros, C. dichaeta, J. Phycol., 44, 152–163, https://doi.org/10.1111/j.1529-8817.2007.00430.x, 2008.
Assmy, P., Smetacek, V., Montresor, M., Klaas, C., Henjes, J., Strass, V.
H., Arrieta, J. M., Bathmann, U., Berg, G. M., Breitbarth, E., Cisewski, B.,
Friedrichs, L., Fuchs, N., Herndl, G. J., Jansen, S., Krägefsky, S.,
Latasa, M., Peeken, I., Röttgers, R., Scharek, R., Schüller, S. E.,
Steigenberger, S., Webb, A., and Wolf-Gladrow, D.: Thick-shelled,
grazer-protected diatoms decouple ocean carbon and silicon cycles in the
iron-limited Antarctic Circumpolar Current, P. Natl. Acad. Sci. USA,
110, 20633–20638, https://doi.org/10.1073/pnas.1309345110, 2013.
Balch, W. M., Bates, N. R., Lam, P. J., Twining, B. S., Rosengard, S. Z.,
Bowler, B. C., Drapeau, D. T., Garley, R., Lubelczyk, L. C., Mitchell, C.,
and Rauschenberg, S.: Factors regulating the Great Calcite Belt in the
Southern Ocean and its biogeochemical significance, Global Biogeochem.
Cy., 30, 1199–1214, https://doi.org/10.1002/2016GB005414, 2016.
Baldry, K., Strutton, P. G., Hill, N. A., and Boyd, P. W.: Subsurface
chlorophyll-a maxima in the Southern Ocean, Front. Mar. Sci., 7, 671,
https://doi.org/10.3389/fmars.2020.00671, 2020.
Bendif, E. M., Nevado, B., Wong, E. L. Y., Hagino, K., Probert, I., Young,
J. R., Rickaby, R. E. M., and Filatov, D. A.: Repeated species radiations in
the recent evolution of the key marine phytoplankton lineage Gephyrocapsa, Nat. Commun.,
10, 4234, https://doi.org/10.1038/s41467-019-12169-7, 2019.
Blain, S., Quéguiner, B., Armand, L., Belviso, S., Bombled, B., Bopp,
L., Bowie, A., Brunet, C., Brussaard, C., Carlotti, F., Christaki, U.,
Corbière, A., Durand, I., Ebersbach, F., Fuda, J. L., Garcia, N.,
Gerringa, L., Griffiths, B., Guigue, C., Guillerm, C., Jacquet, S., Jeandel,
C., Laan, P., Lefèvre, D., Lo Monaco, C., Malits, A., Mosseri, J.,
Obernosterer, I., Park, Y. H., Picheral, M., Pondaven, P., Remenyi, T.,
Sandroni, V., Sarthou, G., Savoye, N., Scouarnec, L., Souhaut, M., Thuiller,
D., Timmermans, K., Trull, T., Uitz, J., Van Beek, P., Veldhuis, M.,
Vincent, D., Viollier, E., Vong, L., and Wagener, T.: Effect of natural iron
fertilization on carbon sequestration in the Southern Ocean, Nature,
446, 1070–1074, https://doi.org/10.1038/nature05700, 2007.
Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler, K. O., Coale, K. H., Cullen, J. J., de Baar, H. J. W., Follows, M., Harvey, M., Lancelot, C., Levasseur, M., Owens, N. P. J., Pollard, R., Rivkin, R. B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A., Turner, S., and Watson, A. J.: Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions, Science, 315, 612–617, https://doi.org/10.1126/science.1131669, 2007.
Buck, K. R. and Garrison, D. L.: Protists from the ice-edge region of the
Weddell Sea, Deep-Sea Res., 30, 1261–1277,
https://doi.org/10.1016/0198-0149(83)90084-5, 1983.
Buma, A. G. J., Treguer, P., Kraaij, G. W., and Morvan, J.: Algal pigment
patterns in different watermasses of the Atlantic sector of the Southern
Ocean during fall 1987, Polar Biol., 11, 55–62, https://doi.org/10.1007/BF00236522,
1990.
Chierici, M. and Fransson, A.: Nutrient data (nitrate, phosphate and
silicate) in the eastern Weddell gyre, Kong Haakon VII Hav, and the coast of
Dronning Maud Land in the Atlantic sector of the Southern Ocean in March
2019, Norwegian Marine Data Centre, https://doi.org/10.21335/NMDC-1503664923, 2020.
Coale, K. H., Johnson, K. S., Chavez, F. P., Buesseler, K. O., Barber, R.
T., Brzezinski, M. A., Cochlan, W. P., Millero, F. J., Falkowski, P. G.,
Bauer, J. E., Wanninkhof, R. H., Kudela, R. M., Altabet, M. A., Hales, B.
E., Takahashi, T., Landry, M. R., Bidigare, R. R., Wang, X., Chase, Z.,
Strutton, P. G., Friederich, G. E., Gorbunov, M. Y., Lance, V. P., Hilting,
A. K., Hiscock, M. R., Demarest, M., Hiscock, W. T., Sullivan, K. F.,
Tanner, S. J., Gordon, R. M., Hunter, C. N., Elrod, V. A., Fitzwater, S. E.,
Jones, J. L., Tozzi, S., Koblizek, M., Roberts, A. E., Herndon, J.,
Brewster, J., Ladizinsky, N., Smith, G., Cooper, D., Timothy, D., Brown, S.
L., Selph, K. E., Sheridan, C. C., Twining, B. S., and Johnson, Z. I.:
Southern Ocean iron enrichment experiment: carbon cycling in high- and
low-Si waters, Science, 304, 408–414, https://doi.org/10.1126/science.1089778,
2004.
Davidson, A. T., Scott, F. J., Nash, G. V., Wright, S. W., and Raymond, B.:
Physical and biological control of protistan community composition,
distribution and abundance in the seasonal ice zone of the Southern Ocean
between 30 and 80∘ E, Deep-Sea Res. Pt. II,
57, 828–848, https://doi.org/10.1016/j.dsr2.2009.02.011, 2010.
Deppeler, S. L. and Davidson, A. T.: Southern Ocean phytoplankton in a
changing climate, Front. Mar. Sci., 4, 40, https://doi.org/10.3389/fmars.2017.00040,
2017.
de Steur, L., Holland, D. M., Muench, R. D., and Mcphee, M. G.: The
warm-water “`Halo”' around Maud Rise: Properties, dynamics and impact,
Deep-Sea Res. Pt. I, 54, 871–896, https://doi.org/10.1016/j.dsr.2007.03.009, 2007.
Detmer, A. E. and Bathmann, U. V.: Distribution patterns of autotrophic
pico- and nanoplankton and their relative contribution to algal biomass
during spring in the Atlantic sector of the Southern Ocean, Deep-Sea Res. Pt.
II, 44, 299–320,
https://doi.org/10.1016/S0967-0645(96)00068-9, 1997.
Dinniman, M. S., St-Laurent, P., Arrigo, K. R., Hofmann, E. E., and van
Dijken, G. L.: Analysis of iron sources in Antarctic Continental Shelf
waters, J. Geophys. Res.-Ocean., 125, e2019JC015736,
https://doi.org/10.1029/2019JC015736, 2020.
Dong, J., Speer, K., and Jullion, L.: The Antarctic Slope Current near
30∘ E, J. Geophys. Res.-Ocean., 121, 1051–1062,
https://doi.org/10.1038/175238c0, 2016.
Edler, L. and Elbrächter, M.: The Utermöhl method for quantitative
phytoplankton analysis, in: Microscopic and Molecular Methods for Quantative
Phytoplankton analysis, edited by: Karlson, B., Cusack, C., and Bresnan, E.,
13–20, Intergovernmental Oceanographic Commission of UNESCO, Paris, UNESCO, https://unesdoc.unesco.org/ark:/48223/pf0000187824 (last access: 7 September 2022), 2010.
Garrison, D. L., Ackley, S. F., and Buck, K. R.: A physical mechanism for
establishing algal populations in frazil ice, Nature, 306, 363–365, 1983.
Garrison, D. L., Buck, K. R., and Fryxell, G. A.: Algal assemblages in
Antarctic pack ice and in ice-edge plankton, J. Phycol., 23, 564–572,
https://doi.org/10.1111/j.1529-8817.1987.tb04206.x, 1987.
Gibberd, M. J., Kean, E., Barlow, R., Thomalla, S., and Lucas, M.:
Phytoplankton chemotaxonomy in the Atlantic sector of the Southern Ocean
during late summer 2009, Deep-Sea Res. Pt. I, 78, 70–78,
https://doi.org/10.1016/j.dsr.2013.04.007, 2013.
Gomi, Y., Fukuchi, M., and Taniguchi, A.: Diatom assemblages at subsurface
chlorophyll maximum layer in the eastern Indian sector of the Southern Ocean
in summer, J. Plank. Res., 32, 1039–1050, https://doi.org/10.1093/plankt/fbq031,
2010.
Granéli, E., Granéli, W., Rabbani, M. M., Daugbjerg, N., Fransz, G.,
Roudy, J. C., and Alder, V. A.: The influence of copepod and krill grazing on
the species composition of phytoplankton communities from the Scotia Weddell
sea – An experimental approach, Polar Biol., 13, 201–213,
https://doi.org/10.1007/BF00238930, 1993.
Hansen, B., Bjornsen, P. K., and Hansen, P. J.: The size ratio between
planktonic predators and their prey, Limnol. Oceanogr., 39, 395–403,
https://doi.org/10.4319/lo.1994.39.2.0395, 1994.
Hardge, K., Peeken, I., Neuhaus, S., Lange, B. A., Stock, A., Stoeck, T.,
Weinisch, L., and Metfies, K.: The importance of sea ice for exchange of
habitat-specific protist communities in the Central Arctic Ocean, J. Mar.
Syst., 165, 124–138, https://doi.org/10.1016/j.jmarsys.2016.10.004, 2017.
Hattermann, T. and de Steur, L.: Southern Ocean Ecosystem cruise 2019
conductivity-temperature-depth (CTD) data, Norwegian Polar
Institute [data set],
https://data.npolar.no/dataset/bb2a91df-b2e7-48e3-8855-d61d516d15c3, last access: 7 September 2022.
Higgins, H. W., Wright, S. W., and Schlüter, L.: Quantative
interpretation of chemotaxonomic pigment data, in: Phytoplankton Pigments –
Characterization, Chemotaxonomy and Applications in Oceanography, edited by:
Roy, S., LLewellyn, C. A., Egeland, E. S., and Johnsen, G., 257–313,
Cambridge University Press, New York, ISBN: 9781107000667, 2011.
Hop, H., Vihtakari, M., Bluhm, B. A., Assmy, P., Poulin, M., Gradinger, R.,
Peeken, I., von Quillfeldt, C., Olsen, L. M., Zhitina, L., and Melnikov, I.
A.: Changes in sea-ice protist diversity with declining sea ice in the
Arctic Ocean from the 1980s to 2010s, Front. Mar. Sci., 7, 243,
https://doi.org/10.3389/fmars.2020.00243, 2020.
Irigoien, X., Hulsman, J., and Harris, R. P.: Global biodiversity patterns of
marine phytoplankton and zooplankton, Nature, 429, 863–867,
https://doi.org/10.1038/nature02593, 2004.
Irigoien, X., Flynn, K. J., and Harris, R. P.: Phytoplankton blooms: A
“loophole” in microzooplankton grazing impact?, J. Plank. Res., 27,
313–321, https://doi.org/10.1093/plankt/fbi011, 2005.
Jeffrey, S. W., Wright, S. W., and Zapata, M.: Microalgal classes and their
signature pigments, in: Phytoplankton Pigments – Characterization,
Chemotaxonomy and Applications in Oceanography, edited by: Roy, S.,
LLewellyn, C. A., Egeland, E. S., and Johnsen, G., 3–77, Cambridge University
Press, Cambridge, ISBN: 9781107000667, 2011.
Jena, B. and Pillai, A. N.: Satellite observations of unprecedented phytoplankton blooms in the Maud Rise polynya, Southern Ocean, The Cryosphere, 14, 1385–1398, https://doi.org/10.5194/tc-14-1385-2020, 2020.
Kang, S. H. and Fryxell, G. A.: Phytoplankton in the Weddell Sea,
Antarctica: composition, abundance and distribution in water-column
assemblages of the marginal ice-edge zone during austral autumn, Mar. Biol.,
116, 335–348, https://doi.org/10.1007/BF00350024, 1993.
Kauko, H. M., Olsen, L. M., Duarte, P., Peeken, I., Granskog, M. A.,
Johnsen, G., Fernández-Méndez, M., Pavlov, A. K., Mundy, C. J., and
Assmy, P.: Algal colonization of young Arctic sea ice in Spring, Front. Mar.
Sci., 5, 199, https://doi.org/10.3389/fmars.2018.00199, 2018.
Kauko, H. M., Moreau, S., and Hattermann, T.: Southern Ocean Ecosystem cruise
2019 vertical in situ chlorophyll a profiles, Norwegian Polar
Institute [data set], https://doi.org/10.21334/npolar.2021.5e510f85, 2020.
Kauko, H. M., Hattermann, T., Ryan-Keogh, T., Singh, A., de Steur, L.,
Fransson, A., Chierici, M., Falkenhaug, T., Hallfredsson, E. H., Bratbak,
G., Tsagaraki, T., Berge, T., Zhou, Q., and Moreau, S.: Phenology and
environmental control of phytoplankton blooms in the Kong Håkon VII Hav
in the Southern Ocean, Front. Mar. Sci., 8, 623856,
https://doi.org/10.3389/fmars.2021.623856, 2021.
Kauko, H. M., Moreau, S., Rózañska, M., and Wiktor, J. M.: Southern
Ocean Ecosystem cruise 2019 phytoplankton taxonomy and abundance,
Norwegian Polar Institute [data set], https://doi.org/10.21334/npolar.2022.283e500c, 2022.
Kopczynska, E. E.: Dominance of microflagellates over diatoms in the
Antarctic areas of deep vertical mixing and krill concentrations, J.
Plankton Res., 14, 1031–1054, https://doi.org/10.1093/plankt/14.8.1031, 1992.
Lafond, A., Leblanc, K., Legras, J., Cornet, V., and Quéguiner, B.: The
structure of diatom communities constrains biogeochemical properties in
surface waters of the Southern Ocean (Kerguelen Plateau), J. Mar. Syst.,
212, 103458, https://doi.org/10.1016/j.jmarsys.2020.103458, 2020.
Lasbleiz, M., Leblanc, K., Armand, L. K., Christaki, U., Georges, C.,
Obernosterer, I., and Quéguiner, B.: Composition of diatom communities
and their contribution to plankton biomass in the naturally iron-fertilized
region of Kerguelen in the Southern Ocean, FEMS Microbiol. Ecol., 92,
fiw171, https://doi.org/10.1093/femsec/fiw171, 2016.
Le Paih, N., Hattermann, T., Boebel, O., Kanzow, T., Lüpkes, C.,
Rohardt, G., Strass, V., and Herbette, S.: Coherent seasonal acceleration of
the Weddell Sea boundary current system driven by upstream winds, J.
Geophys. Res.-Ocean., 125, e2020JC016316, https://doi.org/10.1029/2020jc016316, 2020.
Leu, E., Mundy, C. J., Assmy, P., Campbell, K., Gabrielsen, T. M., Gosselin,
M., Juul-Pedersen, T., and Gradinger, R.: Arctic spring awakening – Steering
principles behind the phenology of vernal ice algal blooms, Prog. Oceanogr.,
139, 151–170, https://doi.org/10.1016/j.pocean.2015.07.012, 2015.
Ligowski, R., Godlewski, M., and Łukowski, A.: Sea ice diatoms
and ice edge planktonic diatoms at the nothern limit of the Weddell Sea pack
ice, Proc. NIPR Symp. Polar Biol., 5, 9–20, 1992.
Löder, M. G. J., Meunier, C., Wiltshire, K. H., Boersma, M., and Aberle,
N.: The role of ciliates, heterotrophic dinoflagellates and copepods in
structuring spring plankton communities at Helgoland Roads, North Sea, Mar.
Biol., 158, 1551–1580, https://doi.org/10.1007/s00227-011-1670-2, 2011.
Mackey, M. D., Mackey, D. J., Higgins, H. W., and Wright, S. W.: CHEMTAX – A
program for estimating class abundances from chemical markers: Application
to HPLC measurements of phytoplankton, Mar. Ecol. Prog. Ser., 144,
265–283, https://doi.org/10.3354/meps144265, 1996.
Mendes, C. R. B., Tavano, V. M., Kerr, R., Dotto, T. S., Maximiano, T., and
Secchi, E. R.: Impact of sea ice on the structure of phytoplankton
communities in the northern Antarctic Peninsula, Deep-Sea Res. Pt. II, 149,
111–123, https://doi.org/10.1016/j.dsr2.2017.12.003, 2018.
Moreau, S., Kauko, H. M., Ryan-Keogh, T., Singh, A., and Bratbak, G.:
Southern Ocean Ecosystem cruise 2019 biogeochemistry, Norwegian
Polar Institute [data set], https://doi.org/10.21334/npolar.2021.28fbddd2, 2020.
Moreau, S., Hattermann, T., de Steur, L., Kauko, H. M., Steen, H., Ahonen,
H., Ardelan, M., Assmy, P., Chierici, M., Descamps, S., Dinter, T.,
Falkenhaug, T., Fransson, A., Grønningsæter, E., Halfredsson, E.,
Lebrun, A., Lowther, A., Lubcker, N., Monteiro, P., Peeken, I.,
Roychoudhury, A., RóŸañska, M., Ryan-Keogh, T., Sanchez, N.,
Singh, A., Simonsen, J.-H., Steiger, N., Thomalla, S. J., van Tonder, A.,
and Wiktor, J.: Wind-driven upwelling unveils a large phytoplankton bloom and
rich ecosystem in the open Southern Ocean, Nat. Commun., in preparation, 2022.
Nöthig, E.-M., Assmy, P., Klaas, C., and Scharek, R.: Phyto-and
protozooplankton in polar waters, in: Biological Studies in Polar Oceans:
Exploration of Life in Icy Waters, edited by: Hempel, G. and Hempel, I.,
65–73, Wirtschaftsverlag NW, Bremerhaven, Germany, ISBN: 978-3-86509-865-8, 2009.
Ogundare, M. O., Fransson, A., Chierici, M., Joubert, W. R., and
Roychoudhury, A. N.: Variability of sea-air carbon dioxide flux in Autumn
across the Weddell Gyre and offshore Dronning Maud Land in the Southern
Ocean, Front. Mar. Sci., 7, 614263, https://doi.org/10.3389/fmars.2020.614263, 2021.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P.,
Stevens, M. H. H., Szoecs, E., and Wagner, H.: vegan: Community Ecology
Package,
https://cran.r-project.org/package=vegan (last access: 9 August 2022), 2017.
Panèiã, M. and Kiørboe, T.: Phytoplankton defence mechanisms:
traits and trade-offs, Biol. Rev., 93, 1269–1303, https://doi.org/10.1111/brv.12395,
2018.
Peeken, I.: Photosynthetic pigment fingerprints as indicators of
phytoplankton biomass and development in different water masses of the
Southern Ocean during austral spring, Deep-Sea Res. Pt. II, 44, 261–282, https://doi.org/10.1016/S0967-0645(96)00077-X, 1997.
Pollard, R. T., Salter, I., Sanders, R. J., Lucas, M. I., Moore, C. M.,
Mills, R. A., Statham, P. J., Allen, J. T., Baker, A. R., Bakker, D. C. E.,
Charette, M. A., Fielding, S., Fones, G. R., French, M., Hickman, A. E.,
Holland, R. J., Hughes, J. A., Jickells, T. D., Lampitt, R. S., Morris, P.
J., Nédélec, F. H., Nielsdóttir, M., Planquette, H., Popova, E.
E., Poulton, A. J., Read, J. F., Seeyave, S., Smith, T., Stinchcombe, M.,
Taylor, S., Thomalla, S., Venables, H. J., Williamson, R., and Zubkov, M. V.:
Southern Ocean deep-water carbon export enhanced by natural iron
fertilization, Nature, 457, 577–580, https://doi.org/10.1038/nature07716, 2009.
Poulin, M., Daugbjerg, N., Gradinger, R., Ilyash, L., Ratkova, T., and von
Quillfeldt, C.: The pan-Arctic biodiversity of marine pelagic and sea-ice
unicellular eukaryotes: A first-attempt assessment, Mar. Biodivers., 41,
13–28, https://doi.org/10.1007/s12526-010-0058-8, 2011.
Quéguiner, B.: Iron fertilization and the structure of planktonic
communities in high nutrient regions of the Southern Ocean, Deep-Sea Res. Pt.
II, 90, 43–54, https://doi.org/10.1016/j.dsr2.2012.07.024, 2013.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org (last access: 9 August 2022), 2017.
Rembauville, M., Briggs, N., Ardyna, M., Uitz, J., Catala, P., Penkerc'h,
C., Poteau, A., Claustre, H., and Blain, S.: Plankton assemblage estimated
with BGC-Argo floats in the Southern Ocean: Implications for seasonal
successions and particle export, J. Geophys. Res.-Ocean., 122,
8278–8292, https://doi.org/10.1002/2017JC013067, 2017.
Roy, S., LLewellyn, C. A., Egeland, E. S., and Johnsen, G. (Eds.):
Phytoplankton Pigments – Characterization, Chemotaxonomy and Applications in
Oceanography, 1 Edn., Cambridge University Press, Cambridge, ISBN: 9781107000667, 2011.
Saavedra-Pellitero, M., Baumann, K.-H., Flores, J.-A., and Gersonde, R.:
Biogeographic distribution of living coccolithophores in the Pacific sector
of the Southern Ocean, Mar. Micropaleontol., 109, 1–20, 2014.
Sachs, O., Sauter, E. J., Schlüter, M., Rutgers van der Loeff, M. M.,
Jerosch, K., and Holby, O.: Benthic organic carbon flux and oxygen
penetration reflect different plankton provinces in the Southern Ocean,
Deep-Sea Res. Pt. I, 56, 1319–1335, https://doi.org/10.1016/j.dsr.2009.02.003, 2009.
Schulz, I., Montresor, M., Klaas, C., Assmy, P., Wolzenburg, S., Gauns, M.,
Sarkar, A., Thiele, S., Wolf-Gladrow, D., Naqvi, W., and Smetacek, V.:
Remarkable structural resistance of a nanoflagellate-dominated plankton
community to iron fertilization during the Southern Ocean experiment
LOHAFEX, Mar. Ecol. Prog. Ser., 601, 77–95, https://doi.org/10.3354/meps12685, 2018.
Singh, A., Fietz, S., Thomalla, S. J., Sanchez, N., Ardelan, M., Moreau, S.,
Kauko, H. M., Fransson, A., Chierici, M., Samanta, S., Mtshali, T. N.,
Roychoudhury, A., and Ryan-Keogh, T. J.: Photophysiological response of autumn phytoplankton in the Antarctic Sea-Ice Zone, Biogeosciences, in preparation, 2022.
Smetacek, V., Assmy, P., and Henjes, J.: The role of grazing in structuring
Southern Ocean pelagic ecosystems and biogeochemical cycles, Antarct. Sci.,
16, 541–558, https://doi.org/10.1017/S0954102004002317, 2004.
Smetacek, V., Klaas, C., Strass, V. H., Assmy, P., Montresor, M., Cisewski,
B., Savoye, N., Webb, A., D'Ovidio, F., Arrieta, J. M., Bathmann, U.,
Bellerby, R., Berg, G. M., Croot, P., Gonzalez, S., Henjes, J., Herndl, G.
J., Hoffmann, L. J., Leach, H., Losch, M., Mills, M. M., Neill, C., Peeken,
I., Röttgers, R., Sachs, O., Sauter, E., Schmidt, M. M., Schwarz, J.,
Terbrüggen, A., and Wolf-Gladrow, D.: Deep carbon export from a Southern
Ocean iron-fertilized diatom bloom, Nature, 487, 313–319,
https://doi.org/10.1038/nature11229, 2012.
Tran, S., Bonsang, B., Gros, V., Peeken, I., Sarda-Esteve, R., Bernhardt, A.,
and Belviso, S.: A survey of carbon monoxide and non-methane hydrocarbons in
the Arctic Ocean during summer 2010, Biogeosciences, 10, 1909–1935,
https://doi.org/10.5194/bg-10-1909-2013, 2013.
Tréguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M.,
Aumont, O., Bittner, L., Dugdale, R., Finkel, Z., Iudicone, D., Jahn, O.,
Guidi, L., Lasbleiz, M., Leblanc, K., Levy, M., and Pondaven, P.: Influence
of diatom diversity on the ocean biological carbon pump, Nat. Geosci.,
11, 27–37, https://doi.org/10.1038/s41561-017-0028-x, 2018.
Trull, T. W., Passmore, A., Davies, D. M., Smit, T., Berry, K., and Tilbrook,
B.: Distribution of planktonic biogenic carbonate organisms in the Southern
Ocean south of Australia: A baseline for ocean acidification impact
assessment, Biogeosciences, 15, 31–49, https://doi.org/10.5194/bg-15-31-2018, 2018.
Vallina, S. M., Follows, M. J., Dutkiewicz, S., Montoya, J. M., Cermeno, P.,
and Loreau, M.: Global relationship between phytoplankton diversity and
productivity in the ocean, Nat. Commun., 5, 4299, https://doi.org/10.1038/ncomms5299,
2014.
Van den Meersche, K., Soetaert, K., and Middelburg, J. J.: A Bayesian
compositional estimator for microbial taxonomy based on biomarkers, Limnol.
Oceanogr. Method., 6, 190–199, https://doi.org/10.4319/lom.2008.6.190, 2008.
van Leeuwe, M. A. and Stefels, J.: Effects of iron and light stress on the
biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae), II. Pigment
composition, J. Phycol., 34, 496–503,
https://doi.org/10.1046/j.1529-8817.1998.340486.x, 1998.
van Leeuwe, M. A., Kattner, G., van Oijen, T., de Jong, J. T. M., and de
Baar, H. J. W.: Phytoplankton and pigment patterns across frontal zones in
the Atlantic sector of the Southern Ocean, Mar. Chem., 177, 510–517,
https://doi.org/10.1016/j.marchem.2015.08.003, 2015.
van Leeuwe, M. A., Tedesco, L., Arrigo, K. R., Assmy, P., Campbell, K.,
Meiners, K. M., Rintala, J.-M., Selz, V., Thomas, D. N., and Stefels, J.:
Microalgal community structure and primary production in Arctic and
Antarctic sea ice: A synthesis, Elem. Sci. Anthr., 6, 4,
https://doi.org/10.1525/elementa.267, 2018.
van Leeuwe, M. A., Webb, A. L., Venables, H. J., Visser, R. J. W., Meredith,
M. P., Elzenga, J. T. M., and Stefels, J.: Annual patterns in phytoplankton
phenology in Antarctic coastal waters explained by environmental drivers,
Limnol. Oceanogr., 65, 1651–1668, https://doi.org/10.1002/lno.11477, 2020.
van Leeuwe, M. A., Fenton, M., Davey, E., Rintala, J.-M., Jones, E. M.,
Meredith, M. P., and Stefels, J.: On the phenology and seeding potential of
sea-ice microalgal species, Elem. Sci. Anthr., 10, 00029,
https://doi.org/10.1525/elementa.2021.00029, 2022.
Venables, W. N. and Ripley, B. D.: Modern applied statistics with S, 4
Edn., Springer, New York, ISBN: 978-0-387-21706-2, 2002.
Vernet, M., Geibert, W., Hoppema, M., Brown, P. J., Haas, C., Hellmer, H.
H., Jokat, W., Jullion, L., Mazloff, M., Bakker, D. C. E., Brearley, J. A.,
Croot, P., Hattermann, T., Hauck, J., Hillenbrand, C.-D., Hoppe, C. J. M.,
Huhn, O., Koch, B. P., Lechtenfeld, O. J., Meredith, M. P., Naveira
Garabato, A. C., Nöthig, E.-M., Peeken, I., van der Loeff, M. M. R.,
Schmidtko, S., Schröder, M., Strass, V. H., Torres-Valdés, S., and
Verdy, A.: The Weddell Gyre, Southern Ocean: Present knowledge and future
challenges, Rev. Geophys., 57, 623–708, https://doi.org/10.1029/2018RG000604, 2019.
von Berg, L., Prend, C. J., Campbell, E. C., Mazloff, M. R., Talley, L. D.,
and Gille, S. T.: Weddell Sea phytoplankton blooms modulated by sea ice
variability and polynya formation, Geophys. Res. Lett., 47, e2020GL087954,
https://doi.org/10.1029/2020GL087954, 2020.
Wright, S.: Chemtax version 1.95 for calculating the taxonomic composition
of phytoplankton populations, Australian Antarctic Data Centre, https://doi.org/10.4225/15/59fff1c5ea8fc, 2008.
Wright, S. W., van den Enden, R. L., Pearce, I., Davidson, A. T., Scott, F.
J., and Westwood, K. J.: Phytoplankton community structure and stocks in the
Southern Ocean (30–80∘ E) determined by CHEMTAX analysis of HPLC
pigment signatures, Deep-Sea Res. Pt. II, 57,
758–778, https://doi.org/10.1016/j.dsr2.2009.06.015, 2010.
Zapata, M., Jeffrey, S. W., Wright, S. W., Rodríguez, F., Garrido, J.
L., and Clementson, L.: Photosynthetic pigments in 37 species (65 strains) of
Haptophyta: Implications for oceanography and chemotaxonomy, Mar. Ecol.
Prog. Ser., 270, 83–102, https://doi.org/10.3354/meps270083, 2004.
Short summary
This article studies phytoplankton (microscopic
plantsin the ocean capable of photosynthesis) in Kong Håkon VII Hav in the Southern Ocean. Different species play different roles in the ecosystem, and it is therefore important to assess the species composition. We observed that phytoplankton blooms in this area are formed by large diatoms with strong silica armors, which can lead to high silica (and sometimes carbon) export to depth and be important prey for krill.
This article studies phytoplankton (microscopic
plantsin the ocean capable of photosynthesis)...
Altmetrics
Final-revised paper
Preprint