Articles | Volume 19, issue 24
https://doi.org/10.5194/bg-19-5973-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5973-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nitrate isotope investigations reveal future impacts of climate change on nitrogen inputs and cycling in Arctic fjords: Kongsfjorden and Rijpfjorden (Svalbard)
Marta Santos-Garcia
CORRESPONDING AUTHOR
School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FE,
United Kingdom
Raja S. Ganeshram
School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FE,
United Kingdom
Robyn E. Tuerena
School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FE,
United Kingdom
Scottish Association for Marine Science, Dunstaffnage, PA37 1QA,
United Kingdom
Margot C. F. Debyser
School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FE,
United Kingdom
Katrine Husum
Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway
Philipp Assmy
Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway
Haakon Hop
Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway
Related authors
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
EGUsphere, https://doi.org/10.5194/egusphere-2022-696, https://doi.org/10.5194/egusphere-2022-696, 2022
Preprint archived
Short summary
Short summary
Snow pack in high Arctic plays a key role in polar atmospheric chemistry, especially in spring when photochemistry becomes active. By sampling surface snow from a Canadian high Arctic location at Eureka, Nunavut (80° N, 86° W), we demonstrate that surface snow is a net sink rather than a source of atmospheric reactive bromine and nitrate. This finding is new and opposite to previous conclusions that snowpack is a large and direct source of reactive bromine in polar spring.
Pearse J. Buchanan, Juan J. Pierella Karlusich, Robyn E. Tuerena, Roxana Shafiee, E. Malcolm S. Woodward, Chris Bowler, and Alessandro Tagliabue
Biogeosciences, 22, 4865–4883, https://doi.org/10.5194/bg-22-4865-2025, https://doi.org/10.5194/bg-22-4865-2025, 2025
Short summary
Short summary
Ammonium is a form of nitrogen that may become more important for growth of marine primary producers (i.e., phytoplankton) in the future. Because some phytoplankton taxa have a greater affinity for ammonium than others, the relative increase in ammonium could cause shifts in community composition. We quantify ammonium enrichment, identify its drivers and isolate the possible effect on phytoplankton community composition under a high-emissions scenario.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
Kevin Zoller, Jan Sverre Laberg, Tom Arne Rydningen, Katrine Husum, and Matthias Forwick
Clim. Past, 19, 1321–1343, https://doi.org/10.5194/cp-19-1321-2023, https://doi.org/10.5194/cp-19-1321-2023, 2023
Short summary
Short summary
Marine geologic data from NE Greenland provide new information about the behavior of the Greenland Ice Sheet from the last glacial period to present. Seafloor landforms suggest that a large, fast-flowing ice stream moved south through southern Dove Bugt. This region is believed to have been deglaciated from at least 11.4 ka cal BP. Ice in an adjacent fjord, Bessel Fjord, may have retreated to its modern position by 7.1 ka cal BP, and the ice halted or readvanced multiple times upon deglaciation.
Adam Francis, Raja S. Ganeshram, Robyn E. Tuerena, Robert G. M. Spencer, Robert M. Holmes, Jennifer A. Rogers, and Claire Mahaffey
Biogeosciences, 20, 365–382, https://doi.org/10.5194/bg-20-365-2023, https://doi.org/10.5194/bg-20-365-2023, 2023
Short summary
Short summary
Climate change is causing extensive permafrost degradation and nutrient releases into rivers with great ecological impacts on the Arctic Ocean. We focused on nitrogen (N) release from this degradation and associated cycling using N isotopes, an understudied area. Many N species are released at degradation sites with exchanges between species. N inputs from permafrost degradation and seasonal river N trends were identified using isotopes, helping to predict climate change impacts.
Margot C. F. Debyser, Laetitia Pichevin, Robyn E. Tuerena, Paul A. Dodd, Antonia Doncila, and Raja S. Ganeshram
Biogeosciences, 19, 5499–5520, https://doi.org/10.5194/bg-19-5499-2022, https://doi.org/10.5194/bg-19-5499-2022, 2022
Short summary
Short summary
We focus on the exchange of key nutrients for algae production between the Arctic and Atlantic oceans through the Fram Strait. We show that the export of dissolved silicon here is controlled by the availability of nitrate which is influenced by denitrification on Arctic shelves. We suggest that any future changes in the river inputs of silica and changes in denitrification due to climate change will impact the amount of silicon exported, with impacts on Atlantic algal productivity and ecology.
Hanna M. Kauko, Philipp Assmy, Ilka Peeken, Magdalena Różańska-Pluta, Józef M. Wiktor, Gunnar Bratbak, Asmita Singh, Thomas J. Ryan-Keogh, and Sebastien Moreau
Biogeosciences, 19, 5449–5482, https://doi.org/10.5194/bg-19-5449-2022, https://doi.org/10.5194/bg-19-5449-2022, 2022
Short summary
Short summary
This article studies phytoplankton (microscopic
plantsin the ocean capable of photosynthesis) in Kong Håkon VII Hav in the Southern Ocean. Different species play different roles in the ecosystem, and it is therefore important to assess the species composition. We observed that phytoplankton blooms in this area are formed by large diatoms with strong silica armors, which can lead to high silica (and sometimes carbon) export to depth and be important prey for krill.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
EGUsphere, https://doi.org/10.5194/egusphere-2022-696, https://doi.org/10.5194/egusphere-2022-696, 2022
Preprint archived
Short summary
Short summary
Snow pack in high Arctic plays a key role in polar atmospheric chemistry, especially in spring when photochemistry becomes active. By sampling surface snow from a Canadian high Arctic location at Eureka, Nunavut (80° N, 86° W), we demonstrate that surface snow is a net sink rather than a source of atmospheric reactive bromine and nitrate. This finding is new and opposite to previous conclusions that snowpack is a large and direct source of reactive bromine in polar spring.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Pedro Duarte, Philipp Assmy, Karley Campbell, and Arild Sundfjord
Geosci. Model Dev., 15, 841–857, https://doi.org/10.5194/gmd-15-841-2022, https://doi.org/10.5194/gmd-15-841-2022, 2022
Short summary
Short summary
Sea ice modeling is an important part of Earth system models (ESMs). The results of ESMs are used by the Intergovernmental Panel on Climate Change in their reports. In this study we present an improvement to calculate the exchange of nutrients between the ocean and the sea ice. This nutrient exchange is an essential process to keep the ice-associated ecosystem functioning. We found out that previous calculation methods may underestimate the primary production of the ice-associated ecosystem.
Maria-Theresia Verwega, Christopher J. Somes, Markus Schartau, Robyn Elizabeth Tuerena, Anne Lorrain, Andreas Oschlies, and Thomas Slawig
Earth Syst. Sci. Data, 13, 4861–4880, https://doi.org/10.5194/essd-13-4861-2021, https://doi.org/10.5194/essd-13-4861-2021, 2021
Short summary
Short summary
This work describes a ready-to-use collection of particulate organic carbon stable isotope ratio data sets. It covers the 1960s–2010s and all main oceans, providing meta-information and gridded data. The best coverage exists in Atlantic, Indian and Southern Ocean surface waters during the 1990s. It indicates no major difference between methods and shows decreasing values towards high latitudes, with the lowest in the Southern Ocean, and a long-term decline in all regions but the Southern Ocean.
Robyn E. Tuerena, Joanne Hopkins, Raja S. Ganeshram, Louisa Norman, Camille de la Vega, Rachel Jeffreys, and Claire Mahaffey
Biogeosciences, 18, 637–653, https://doi.org/10.5194/bg-18-637-2021, https://doi.org/10.5194/bg-18-637-2021, 2021
Short summary
Short summary
The Barents Sea is a rapidly changing shallow sea within the Arctic. Here, nitrate, an essential nutrient, is fully consumed by algae in surface waters during summer months. Nitrate is efficiently regenerated in the Barents Sea, and there is no evidence for nitrogen loss from the sediments by denitrification, which is prevalent on other Arctic shelves. This suggests that nitrogen availability in the Barents Sea is largely determined by the supply of nutrients in water masses from the Atlantic.
Ingrid Leirvik Olsen, Tom Arne Rydningen, Matthias Forwick, Jan Sverre Laberg, and Katrine Husum
The Cryosphere, 14, 4475–4494, https://doi.org/10.5194/tc-14-4475-2020, https://doi.org/10.5194/tc-14-4475-2020, 2020
Short summary
Short summary
We present marine geoscientific data from Store Koldewey Trough, one of the largest glacial troughs offshore NE Greenland, to reconstruct the ice drainage pathways, ice sheet extent and ice stream dynamics of this sector during the last glacial and deglaciation. The complex landform assemblage in the trough reflects a dynamic retreat with several periods of stabilization and readvances, interrupting the deglaciation. Estimates indicate that the ice front locally retreated between 80–400 m/year.
Cited articles
Adakudlu, M., Andersen, J., Bakke, J., Beldring, S., Benestad, R., Bilt, W.
V. D., and Wong, W. K.: Climate in Svalbard 2100 – a knowledge base for
climate adaptation. Norway, Norwegian Centre of Climate Services (NCCS) for
Norwegian Environment Agency (Miljødirektoratet), 208 pp., NCCS report, Norwegian Centre for Climate Services (NCCS) for Norwegian Environment Agency (Miljødirektoratet),
https://doi.org/10.25607/OBP-888, 2019.
Altabet, M. A. and Francois, R.: Nitrogen isotope biogeochemistry of the
Antarctic Polar Frontal Zone at 170∘ W, Deep-Sea Res. Pt. II, 48,
4247–4273, https://doi.org/10.1016/S0967-0645(01)00088-1, 2001.
Ansari, A. H., Hodson, A J, Heaton, T. H. E., Kaiser, J., and Marca-Bell, A.:
Stable isotopic evidence for nitrification and denitrification in a High
Arctic glacial ecosystem, Biogeochemistry, 113, 341–357, https://doi.org/10.1007/s10533-012-9761-9, 2013.
Arctic Climate Impact Assessment (ACIA).: Arctic Climate Impact Assessment,
1042 pp., Cambridge Univ. Press, Cambridge, UK, ISBN: 13 978-0-521-86509, 2005.
Beszczynska-Moller, A., Fahrbach, E., Schauer, U., and Hansen, E.:
Variability in Atlantic water temperature and transport at the entrance to
the Arctic Ocean, 19972010, ICES J. Mar. Sci., 69, 852–863,
https://doi.org/10.1093/ICESJMS/FSS056, 2012.
Björkman, M. P., Vega, C. P., Kühnel, R., Spataro, F., Ianniello,
A., Esposito, G., Kaiser, J., Marca, A., Hodson, A., Isaksson, E., and
Roberts, T. J.: Nitrate postdeposition processes in Svalbard surface snow,
J. Geophys. Res.-Atmos., 119, 12953–12976, https://doi.org/10.1002/2013JD021234,
2014.
Blais, M., Tremblay, J. -É., Jungblut, A. D., Gagnon, J., Martin, J.,
Thaler, M., and Lovejoy, C.: Nitrogen fixation and identification of
potential diazotrophs in the Canadian Arctic, Global Biogeochem. Cy., 26, GB3022,
https://doi.org/10.1029/2011GB004096, 2012.
Bokhorst, S., Huiskes, A., Convey, P., and Aerts, R.: External nutrient
inputs into terrestrial ecosystems of the Falkland Islands and the Maritime
Antarctic region, Polar Biol., 30, 1315–1321,
2007.
Brandes, J. A. and Devol, A. H.: A global marine-fixed nitrogen isotopic
budget: Implications for Holocene nitrogen cycling, Global Biogeochem.
Cy., 16, 67–1, https://doi.org/10.1029/2001GB001856, 2002.
Brzezinski, M. A.: The Si : C : N ratio of marine diatoms: interspecific
variability and the effect of some environmental variables1, J. Phycol.,
21, 347–357, https://doi.org/10.1111/J.0022-3646.1985.00347.X, 1985.
Buchwald, C., Santoro, A. E., Mcilvin, M. R., and Casciotti, K. L.: Oxygen
isotopic composition of nitrate and nitrite produced by nitrifying
cocultures and natural marine assemblages, Limnol. Oceanogr., 57, 1361–1375, https://doi.org/10.4319/lo.2012.57.5.1361,
2012.
Calleja, M. L. I., Kerherve, P., Bourgeois, S., Kedra, M., Leynaert, A.,
Devred, E., Babin, M., and Morata, N.: Effects of increase glacier discharge
on phytoplankton bloom dynamics and pelagic geochemistry in a high Arctic
fjord, Progr. Oceanogr., 159, 195–210, https://doi.org/10.1016/j.pocean.2017.07.005,
2017.
Cape, M. R., Straneo, F., Beaird, N., Bundy, R. M., and Charette, M. A.:
Nutrient release to oceans from buoyancy-driven upwelling at Greenland
tidewater glaciers, Nat. Geosci., 12, 34–39,
https://doi.org/10.1038/S41561-018-0268-4, 2019.
Carpenter, E. J., Harvey, H. R., Brian, F., and Capone, D. G.: Biogeochemical
tracers of the marine cyanobacterium Trichodesmium, Deep-Sea Res. Pt. I, 44, 27–38, https://doi.org/10.1016/S0967-0637(96)00091-X, 1997.
Carroll, D., Sutherland, D. A., Shroyer, E. L., Nash, J. D., Catania, G. A.,
and Stearns, L. A.: Modeling turbulent subglacial meltwater plumes:
Implications for fjord-scale buoyancy-driven circulation, J. Phys.
Oceanogr., 45, 2169–2185, https://doi.org/10.1175/JPO-D-15-0033.1, 2015.
Carroll, D., Sutherland, D. A., Hudson, B., Moon, T., Catania, G. A.,
Shroyer, E. L., Nash, J. D., Bartholomaus, T. C., Felikson, D., Stearns, L.
A., Noël, B. P. Y., and van den Broeke, M. R.: The impact of glacier
geometry on meltwater plume structure and submarine melt in Greenland
fjords, Geophys. Res. Lett., 43, 9739–9748, https://doi.org/10.1002/2016GL070170,
2016.
Casciotti, K. L. and Buchwald, C.: Insights on the marine microbial nitrogen
cycle from isotopic approaches to nitrification, Front. Microbiol., 3, p. 356,
https://doi.org/10.3389/FMICB.2012.00356, 2012.
Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K., and
Hilkert, A.: Measurement of the oxygen isotopic composition of nitrate in
seawater and freshwater using the denitrifier method, Anal. Chem., 74,
4905–4912, https://doi.org/10.1021/AC020113W, 2002.
Cokelet, E. D., Tervalon, N., and Bellingham, J. G.: Hydrography of the West
Spitsbergen Current, Svalbard Branch: Autumn, J. Geophys. Res, 113, 1006,
https://doi.org/10.1029/2007JC004150, 2008.
Cottier, F., Tverberg, V., Inall, M., Svendsen, H., Nilsen, F., and
Griffiths, C.: Water mass modification in an Arctic fjord through
cross-shelf exchange: The seasonal hydrography of Kongsfjorden, Svalbard, J.
Geophys. Res.-Ocean., 110, 1–18, https://doi.org/10.1029/2004JC002757, 2005.
Cottier, F. R., Nilsen, F., Enall, M. E., Gerland, S., Tverberg, V., and
Svendsen, H.: Wintertime warming of an Arctic shelf in response to
large-scale atmospheric circulation, Geophys. Res. Lett., 34,
https://doi.org/10.1029/2007GL029948, 2007.
Cottier, F. R., Nilsen, F., Skogseth, R., Tverberg, V., Skardhamar, J., and
Svendsen, H.: Arctic fjords: a review of the oceanographic environment and
dominant physical processes, Geol. Soc. Lond. Spec. Publ., 344, 35–50,
https://doi.org/10.1144/SP344.4, 2010.
Cowan, E. A.: Meltwater and tidal currents: Controls on circulation in a
small glacial fjord, Estuar. Coast. Shelf Sci., 34, 381–392,
https://doi.org/10.1016/S0272-7714(05)80077-0, 1992.
Cowton, T., Slater, D., Sole, A., Goldberg, D., and Nienow, P.: Modeling the
impact of glacial runoff on fjord circulation and submarine melt rate using
a new subgrid-scale parameterization for glacial plumes, J. Geophys. Res.-Ocean., 120, 796–812, https://doi.org/10.1002/2014JC010324, 2015.
Dähnke, K. and Thamdrup, B.: Nitrogen isotope dynamics and fractionation
during sedimentary denitrification in Boknis Eck, Baltic Sea,
Biogeosciences, 10, 3079–3088, https://doi.org/10.5194/bg-10-3079-2013, 2013.
D'Angelo, A., Giglio, F., Miserocchi, S., Sanchez-Vidal, A., Aliani, S.,
Tesi, T., Viola, A., Mazzola, M., and Langone, L.: Multi-year particle fluxes
in Kongsfjorden, Svalbard, Biogeosciences, 15, 5343–5363,
https://doi.org/10.5194/bg-15-5343-2018, 2018.
Darlington, E. F.: Meltwater delivery from the tidewater glacier Kronebreen
to Kongsfjorden, Svalbard; insights from in-situ and remote-sensing analyses
of sediment plumes, Doctoral dissertation, Loughborough University, https://hdl.handle.net/2134/19399 (last access: 20 December 2022), 2015.
David, T. D. and Krishnan, K. P.: Recent variability in the Atlantic water
intrusion and water masses in Kongsfjorden, an Arctic fjord, Polar Sci., 11,
30–41, https://doi.org/10.1016/J.POLAR.2016.11.004, 2017.
Debyser, M. C. F., Pichevin, L., Tuerena, R. E., Dodd, P. A., Doncila, A., and Ganeshram, R. S.: Tracing the role of Arctic shelf processes in Si and N cycling and export through the Fram Strait: Insights from combined silicon and nitrate isotopes, Biogeosciences, 19, 5499–5520, https://doi.org/10.5194/bg-19-5499-2022, 2022.
De Rovere, F., Langone, L., Schroeder, K., Miserocchi, S., Giglio, F.,
Aliani, S., and Chiggiato, J.: Water masses variability in inner Kongsfjorden
(Svalbard) during 2010–2020, Front. Mar. Sci., 9,
https://doi.org/10.3389/fmars.2022.741075, 2022.
DiFiore, P. J., Sigman, D. M., and Dunbar, R. B.: Upper ocean nitrogen fluxes
in the Polar Antarctic Zone: Constraints from the nitrogen and oxygen
isotopes of nitrate, Geochem. Geophy. Geosy., 10, Q11016,
https://doi.org/10.1029/2009GC002468, 2009.
Dugdale, R. C. and Wilkerson, F. P.: Sources and fates of silicon in the
ocean: The role of diatoms in the climate and glacial cycles, Sci. Mar.,
65, 141–152, https://doi.org/10.3989/SCIMAR.2001.65S2141, 2001.
Dugdale, R. C., Wilkerson, F. P., and Minas, H. J.: The role of a silicate
pump in driving new production, Deep-Sea Res. Pt. I,
42, 697–719, https://doi.org/10.1016/0967-0637(95)00015-X, 1995.
Dürr, H. H., Laruelle, G. G., van Kempen, C. M., Slomp, C. P., Meybeck,
M., and Middelkoop, H.: Worldwide Typology of nearshore coastal systems:
Defining the estuarine filter of river inputs to the Oceans, Estuar. Coast.,
34, 441–458, https://doi.org/10.1007/S12237-011-9381-Y/TABLES/5, 2011.
Egge, J. K.: Are diatoms poor competitors at low phosphate concentrations?,
J. Mar. Syst., 16, 191–198, https://doi.org/10.1016/S0924-7963(97)00113-9, 1998.
Elverhøi, A., Lønne, Ø., and Seland, R..: Glaciomarine
sedimentation in a modern fjord environment, Spitsbergen, Polar Res., 1,
127–149, https://doi.org/10.3402/POLAR.V1I2.6978, 1983.
Eriksen, E., Gjøsæter, H., Prozorkevich, D., Shamray, E., Dolgov, A.,
Skern-Mauritzen, M., Stiansen, J. E., Kovalev, Y., and Sunnanå, K.: From
single species surveys towards monitoring of the Barents Sea ecosystem,
Prog. Oceanogr., 166, 4–14, https://doi.org/10.1016/J.POCEAN.2017.09.007, 2018.
Everett, A., Kohler, J., Sundfjord, A., Kovacs, K. M., Torsvik, T.,
Pramanik, A., Boehme, L., and Lydersen, C.: Subglacial discharge plume
behaviour revealed by CTD-instrumented ringed seals, Sci. Rep., 8, 13467,
https://doi.org/10.1038/s41598-018-31875-8, 2018
Geyer, W. R. and Ralston, D. K.: The dynamics of strongly stratified
estuaries, Treat. Estuar. Coast. Sci., 2, 37–51,
https://doi.org/10.1016/B978-0-12-374711-2.00206-0, 2011.
Granger, J., Sigman, D. M., Gagnon, J., Tremblay, J. E., and Mucci, A.: On
the properties of the Arctic halocline and deep water masses of the Canada
Basin from nitrate isotope ratios, J. Geophys. Res.-Ocean., 123,
5443–5458, https://doi.org/10.1029/2018JC014110, 2018.
Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen fixation
and denitrification, Global Biogeochem. Cy., 11, 235–266, https://doi.org/10.1029/97GB00077, 1997.
Halbach, L., Vihtakari, M., Duarte, P., Everett, A., Granskog, M. A., Hop,
H., Kauko, H. M., Kristiansen, S., Myhre, P. I., Pavlov, A. K., Pramanik,
A., Tatarek, A., Torsvik, T., Wiktor, J. M., Wold, A., Wulff, A., Steen, H.,
and Assmy, P.: Tidewater glaciers and bedrock characteristics control the
phytoplankton growth environment in a fjord in the Arctic, Front. Mar. Sci.,
6, p. 254, https://doi.org/10.3389/FMARS.2019.00254/BIBTEX, 2019.
Hawkings, J. R., Wadham, J. L., Tranter, M., Lawson, E., Sole, A., Cowton,
T., Tedstone, A. J., Bartholomew, I., Nienow, P., Chandler, D., and Telling,
J.: The effect of warming climate on nutrient and solute export from the
Greenland Ice Sheet, Geochem. Perspect. Lett., 1, 94–104,
https://doi.org/10.7185/GEOCHEMLET.1510, 2015.
Hayashi, K., Tanabe, Y., Ono, K., Loonen, M. J. J. E., Asano, M., Fujitani,
H., Tokida, T., Uchida, M., and Hayatsu, M.: Seabird-affected taluses are
denitrification hotspots and potential N2O emitters in the High Arctic,
Sci. Rep., 8, 1–11, https://doi.org/10.1038/s41598-018-35669-w, 2018.
Heaton, T. H. E., Wynn, P., and Tye, A. M.: Low 15N 14N ratios for
nitrate in snow in the High Arctic (79∘ N), Atmos. Environ.,
38, 5611–5621, https://doi.org/10.1016/J.ATMOSENV.2004.06.028, 2004.
Hegseth, E. N., Assmy, P., Wiktor, J. M., Wiktor, J., Kristiansen, S., Leu,
E., Tverberg, V., Gabrielsen, T. M., Skogseth, R., and Cottier, F.:
Phytoplankton seasonal dynamics in Kongsfjorden, Svalbard and the adjacent shelf, in: The Ecosystem of Kongsfjorden, Svalbard, eds Haakon Hop and Christian Wiencke, Cham, Springer, 173–227, https://doi.org/10.1007/978-3-319-46425-1_6,
Chap. 3 – Pelagic Production, Phytoplankton and Zooplankton,
2019.
Hodal, H., Falk-Petersen, S., Hop, H., Kristiansen, S., and Reigstad, M.:
Spring bloom dynamics in Kongsfjorden, Svalbard: Nutrients, phytoplankton,
protozoans and primary production, Polar Biol., 35, 191–203,
2012.
Hodson, A. J., Mumford, P. N., Kohler, J., and Wynn, P. M.: The High Arctic
glacial ecosystem: new insights from nutrient budgets, Biogeochemistry,
72, 233–256, https://doi.org/10.1007/S10533-004-0362-0, 2005.
Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina,
E., Eglinton, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A.,
Repeta, D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S.
A.: Seasonal and annual fluxes of nutrients and organic matter from large
rivers to the Arctic Ocean and surrounding seas, Estuar. Coast.,
35, 369–382, 2012.
Hop, H. and Wiencke, C.: Editorial: The ecosystem of Kongsfjorden, Svalbard.
Advances in Polar Ecology 2, Springer, Cham,
https://doi.org/10.1007/978-3-319-46425-1_1, 2019
Hop, H., Assmy, P., Wold, A., Sundfjord, A., Daase, M., Duarte, P.,
Kwasniewski, S., Gluchowska, M., Wiktor, J. M., Tatarek, A., Wiktor, J.,
Kristiansen, S., Fransson, A., Chierici, M., and Vihtakari, M.: Pelagic
ecosystem characteristics across the Atlantic Water Boundary Current from
Rijpfjorden, Svalbard, to the Arctic ocean during summer (2010–2014), Front.
Mar. Sci., 6, 181, https://doi.org/10.3389/fmars.2019.00181, 2019.
Hopwood, M. J., Carroll, D., Dunse, T., Hodson, A., Holding, J. M., Iriarte,
J. L., Ribeiro, S., Achterberg, E. P., Cantoni, C., Carlson, D. F.,
Chierici, M., Clarke, J. S., Cozzi, S., Fransson, A., Juul-Pedersen, T.,
Winding, M. H. S., and Meire, L.: Review article: How does glacier discharge
affect marine biogeochemistry and primary production in the Arctic?,
The Cryosphere, 14, 1347–1383, https://doi.org/10.5194/tc-14-1347-2020, 2020.
How, P., Benn, D. I., Hulton, N. R. J., Hubbard, B., Luckman, A., Sevestre,
H., Pelt, W. J. J. V., Lindbäck, K., Kohler, J., and Boot, W.: Rapidly
changing subglacial hydrological pathways at a tidewater glacier revealed
through simultaneous observations of water pressure, supraglacial lakes,
meltwater plumes and surface velocities, The Cryosphere, 11, 2691–2710,
https://doi.org/10.5194/tc-11-2691-2017, 2017.
Howe, J. A., Harland, R., Cottier, F. R., Brand, T., Willis, K. J., Berge,
J. R., Grøsfjeld, K., and Eriksson, A.: Dinoflagellate cysts as proxies
for palaeoceanographic conditions in Arctic fjords, Geol. Soc. Spec. Publ.,
344, 61–74, https://doi.org/10.1144/SP344.6, 2010.
Ilicak, M., Drange, H., Wang, Q., Gerdes, R., Aksenov, Y., Bailey, D.,
Bentsen, M., Biastoch, A., Bozec, A., Böning, C., Cassou, C.,
Chassignet, E., Coward, A. C., Curry, B., Danabasoglu, G., Danilov, S.,
Fernandez, E., Fogli, P. G., Fujii, Y., Griffies, S. M., Iovino, D., Jahn,
A., Jung, T., Large, W. G., Lee, C., Lique, C., Lu, J., Masina, S., George
Nurser, A. J., Roth, C., Salas y Mélia, D., Samuels, B. L., Spence, P.,
Tsujino, H., Valcke, S., Voldoire, A., Wang, X., and Yeager, S. G.: An
assessment of the Arctic Ocean in a suite of interannual CORE-II
simulations. Part III: Hydrography and fluxes, Ocean Model., 100, 141–161,
https://doi.org/10.1016/J.OCEMOD.2016.02.004, 2016.
Ingvaldsen, R., Reitan, M. B., Svendsen, H., and Asplin, L.: The upper layer
circulation in Kongsfjorden and Krossfjorden – A complex fjord system on the
west coast of Spitsbergen (scientific paper), Memoirs of National Institute of Polar Research, Special Issue, 54, 393–407, 2001.
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S.,
Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M.,
Schenke, H. W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R.
M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V.,
Hall, J. K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C.,
Mohammad, R., Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G.,
and Weatherall, P.: The International Bathymetric Chart of the Arctic Ocean
(IBCAO) Version 3.0, Geophys. Res. Lett., 39, 12609,
https://doi.org/10.1029/2012GL052219, 2012.
Kanna, N., Sugiyama, S., Ohashi, Y., Sakakibara, D., Fukamachi, Y., and
Nomura, D.: Upwelling of macronutrients and dissolved inorganic carbon by a
subglacial freshwater driven plume in Bowdoin Fjord, Northwestern Greenland,
J. Geophys. Res.-Biogeo., 123, 1666–1682,
https://doi.org/10.1029/2017JG004248, 2018.
Kehrl, L. M., Hawley, R. L., Powell, R. D., and Brigham-Grette, J.:
Glacimarine sedimentation processes at Kronebreen and Kongsvegen, Svalbard,
J. Glaciol., 57, 841–847, https://doi.org/10.3189/002214311798043708, 2011.
Kendall, C.: Tracing nitrogen sources and cycling in catchments, Isot.
Tracers Catchment Hydrol., chap. 16 – Tracing Nitrogen Sources and Cycling, in: Catchments, edited by: Kendall, C. and Mcdonnell, J. J.,
Isotope Tracers in Catchment Hydrology,
Elsevier, ISBN: 9780444815460,
519–576, https://doi.org/10.1016/B978-0-444-81546-0.50023-9,
1998.
Kohler, J., James, T. D., Murray, T., Nuth, C., Brandt, O., Barrand, N. E.,
Aas, H. F., and Luckman, A.: Acceleration in thinning rate on western
Svalbard glaciers, Geophys. Res. Lett., 34, 18, https://doi.org/10.1029/2007GL030681,
2007.
Krause, J. W., Duarte, C. M., Marquez, I. A., Assmy, P.,
Fernández-Méndez, M., Wiedmann, I., Wassmann, P., Kristiansen, S.,
and Agustí, S.: Biogenic silica production and diatom dynamics in the
Svalbard region during spring, Biogeosciences, 15, 6503–6517,
https://doi.org/10.5194/bg-15-6503-2018, 2018.
Krause, J. W., Schulz, I. K., Rowe, K. A., Dobbins, W., Winding, M. H. S.,
Sejr, M. K., Duarte, C. M., and Agustí, S.: Silicic acid limitation
drives bloom termination and potential carbon sequestration in an Arctic
bloom, Sci. Rep., 9, 1–11, https://doi.org/10.1038/s41598-019-44587-4,
2019.
Krisch, S., Browning, T. J., Graeve, M., Ludwichowski, K.-U., Lodeiro, P.,
Hopwood, M. J., Roig, S., Yong, J.-C., Kanzow, T., and Achterberg, E. P.: The
influence of Arctic Fe and Atlantic fixed N on summertime primary production
in Fram Strait, North Greenland Sea, Sci. Rep., 10, 15230, https://doi.org/10.1038/s41598-020-72100-9, 2020.
Kulk, G., van de Poll, W. H., and Buma, A. G. J.: Photophysiology of nitrate
limited phytoplankton communities in Kongsfjorden, Spitsbergen, Limnol.
Oceanogr., 63, 2606–2617, https://doi.org/10.1002/LNO.10963, 2018.
Kumar, V., Tiwari, M., and Rengarajan, R.: Warming in the Arctic captured by
productivity variability at an Arctic fjord over the past two centuries,
PLoS One, 13, e0201456, https://doi.org/10.1371/JOURNAL.PONE.0201456, 2018.
Leifer, I., Chen, F. R., McClimans, T., Muller Karger, F., and Yurganov, L.: Satellite ice extent, sea surface temperature, and atmospheric methane trends in the Barents and Kara seas, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2018-75, in review, 2018.
Li, W. K. W., McLaughlin, F. A., Lovejoy, C., and Carmack, E. C.: Smallest
algae thrive as the Arctic Ocean freshens, Science, 326, p. 539,
https://doi.org/10.1126/science.1179798/suppl_file/li.som.pdf, 2009.
McGovern, M., Pavlov, A. K., Deininger, A., Granskog, M. A., Leu, E.,
Søreide, J. E., and Poste, A. E.: Terrestrial inputs drive seasonality in
organic matter and nutrient biogeochemistry in a high Arctic fjord system
(Isfjorden, Svalbard), Front. Mar. Sci., 7, 542563,
https://doi.org/10.3389/FMARS.2020.542563/BIBTEX, 2020.
McIlvin, M. R. and Casciotti, K. L.: Technical updates to the bacterial
method for nitrate isotopic analyses, Anal. Chem., 83, 1850–1856,
https://doi.org/10.1021/AC1028984, 2011.
Meire, L., Mortensen, J., Meire, P., Juul-Pedersen, T., Sejr, M. K.,
Rysgaard, S., Nygaard, R., Huybrechts, P., and Meysman, F. J. R.:
Marine-terminating glaciers sustain high productivity in Greenland fjords,
Glob. Change Biol., 23, 5344–5357, https://doi.org/10.1111/GCB.13801, 2017.
Meslard, F., Bourrin, F., Many, G., and Kerhervé, P.: Suspended particle
dynamics and fluxes in an Arctic fjord (Kongsfjorden, Svalbard), Estuar.
Coast. Shelf Sci., 204, 212–224, https://doi.org/10.1016/J.ECSS.2018.02.020, 2018.
Monteban, D., Pedersen, J. O. P., and Nielsen, M. H.: Physical oceanographic
conditions and a sensitivity study on meltwater runoff in a West Greenland
fjord: Kangerlussuaq, Oceanologia, 62, 460–477,
https://doi.org/10.1016/J.OCEANO.2020.06.001, 2020.
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J.
L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty,
I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M.,
Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y.,
O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J.,
Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and
Zinglersen, K. B.: BedMachine v3: Complete bed topography and ocean
bathymetry mapping of Greenland from multibeam echo sounding combined with
mass conservation, Geophys. Res. Lett., 44, 11051–11061,
https://doi.org/10.1002/2017GL074954, 2017.
Nuth, C., Kohler, J., König, M., von Deschwanden, A., Hagen, J. O., Kääb, A., Moholdt, G., and Pettersson, R.: Decadal changes from a multi-temporal glacier inventory of Svalbard, The Cryosphere, 7, 1603–1621, https://doi.org/10.5194/tc-7-1603-2013, 2013.
Onarheim, I. H., Smedsrud, L. H., Ingvaldsen, R. B., and Nilsen, F.: Loss of
sea ice during winter north of Svalbard, Dynam. Meteorol.
Oceanogr., 66, 23933, https://doi.org/10.3402/TELLUSA.V66.23933, 2014.
Østby, T. I., Vikhamar Schuler, T., Ove Hagen, J., Hock, R., Kohler, J.,
and Reijmer, C. H.: Diagnosing the decline in climatic mass balance of
glaciers in Svalbard over 1957–2014, The Cryosphere, 11, 191–215,
https://doi.org/10.5194/tc-11-191-2017, 2017.
Payne, C. M. and Roesler, C. S.: Characterizing the influence of Atlantic
water intrusion on water mass formation and phytoplankton distribution in
Kongsfjorden, Svalbard, Cont. Shelf Res., 191, 104005,
https://doi.org/10.1016/J.CSR.2019.104005, 2019.
Pérez-Hernández, M. D., Pickart, R. S., Pavlov, V., Våge, K.,
Ingvaldsen, R., Sundfjord, A., Renner, A. H. H., Torres, D. J., and Erofeeva,
S. Y.: The Atlantic Water boundary current north of Svalbard in late summer,
J. Geophys. Res.-Ocean., 122, 2269–2290, https://doi.org/10.1002/2016JC012486, 2017.
Piquet, A. M. T., van de Poll, W. H., Visser, R. J. W., Wiencke, C.,
Bolhuis, H., and Buma, A. G. J.: Springtime phytoplankton dynamics in Arctic
Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier
proximity, Biogeosciences, 11, 2263–2279, https://doi.org/10.5194/bg-11-2263-2014,
2014.
Piwosz, K., Spich, K., Calkiewicz, J., Weydmann, A., Kubiszyn, A. M., and
Wiktor, J. M.: Distribution of small phytoflagellates along an Arctic fjord
transect, Environ. Microbiol., 17, 2393–2406,
https://doi.org/10.1111/1462-2920.12705, 2015.
Pohjola, V. A., Moore, J. C., Isaksson, E., Jauhiainen, T., van de Wal, R.
S. W., Martma, T., Meijer, H. A. J., Vaikmäe, R., Pohjola, V. A., Moore,
J. C., Isaksson, E., Jauhiainen, T., van de Wal, R. S. W., Martma, T.,
Meijer, H. A. J., and Vaikmäe, R.: Effect of periodic melting on
geochemical and isotopic signals in an ice core from Lomonosovfonna,
Svalbard, J. Geophys. Res.-Atmos., 107, ACL 1-1–ACL 1-14, https://doi.org/10.1029/2000JD000149, 2002.
Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T.
M., Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T.,
Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., and Yulin,
A.: Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin
of the Arctic Ocean, Science, 356, 285–291, 2017.
Randelhoff, A., Reigstad, M., Chierici, M., Sundfjord, A., Ivanov, V., Cape,
M., Vernet, M., Tremblay, J.-É, Bratbak, G., and Kristiansen, S.:
Seasonality of the physical and biogeochemical hydrography in the inflow to
the Arctic Ocean through Fram Strait, Front. Mar. Sci., 5, p. 224, https://doi.org/10.3389/fmars.2018.00224, 2018
Renner, A. H. H., Sundfjord, A., Janout, M. A., Ingvaldsen, R. B.,
Beszczynska-Möller, A., Pickart, R. S., and Pérez-Hernández, M.
D.: Variability and redistribution of heat in the Atlantic Water Boundary
Current north of Svalbard, J. Geophys. Res.-Ocean., 123, 6373–6391,
https://doi.org/10.1029/2018JC013814, 2018.
Rokkan Iversen, K. and Seuthe, L.: Seasonal microbial processes in a
high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria,
picoplankton and nanoflagellates, Polar Biol., 34, 731–749,
https://doi.org/10.1007/S00300-010-0929-2/TABLES/6, 2011.
Rudels, B.: The formation of polar surface water, the ice export and the
exchanges through the Fram Strait, Prog. Oceanogr., 22, 205–248,
https://doi.org/10.1016/0079-6611(89)90013-X, 1989.
Rudels, B., Björk, G., Nilsson, J., Winsor, P., Lake, I., and Nohr, C.:
The interaction between waters from the Arctic Ocean and the Nordic Seas
north of Fram Strait and along the East Greenland Current: results from the
Arctic Ocean-02 Oden expedition, J. Mar. Syst., 1–2, 1–30,
https://doi.org/10.1016/J.JMARSYS.2004.06.008, 2005.
Ryabenko, E.: Stable Isotope Methods for the Study of the Nitrogen Cycle,
in: Topics in Oceanography, edited by: Zambianchi, E., London, IntechOpen, 1–40, https://doi.org/10.5772/56105, 2013.
Sarmiento, J. L., Gruber, N., Brzezinski, M. A., and Dunne, J. P.:
High-latitude controls of thermocline nutrients and low latitude biological
productivity, Nature, 427, 56–60, https://doi.org/10.1038/nature02204.1.,
2004.
Schild, K. M., Hawley, R. L., Chipman, J. W., and Benn, D. I.: Quantifying
suspended sediment concentration in subglacial sediment plumes discharging
from two Svalbard tidewater glaciers using Landsat-8 and in situ
measurements, Int. J. Rem. Sens. 38, 6865–6881,
https://doi.org/10.1080/01431161.2017.1365388, 2017.
Shi, F., Shi, X., Su, X., Fang, X., Wu, Y., Cheng, Z., and Yao, Z.: Clay
minerals in Arctic Kongsfjorden surface sediments and their implications on
provenance and paleoenvironmental change, Acta Oceanol. Sin. 37, 29–38,
https://doi.org/10.1007/S13131-018-1220-6, 2018.
Sigman, D. M. and Casciotti, K. L.: Nitrogen Isotopes in the Ocean,
Encycl. Ocean Sci., 1884–1894, Elsevier,
https://doi.org/10.1006/rwos.2001.0172, 2001.
Sigman, D. M. and Fripiat, F.: Nitrogen isotopes in the ocean, Encycl. Ocean
Sci., 3, 263–278, https://doi.org/10.1016/B978-0-12-409548-9.11605-7, 2019.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., and
Böhlke, J. K.: A Bacterial method for the nitrogen isotopic analysis of
nitrate in seawater and freshwater, Anal. Chem., 73, 4145–4153,
https://doi.org/10.1021/AC010088E, 2001.
Sigman, D. M., Granger, J., DiFiore, P. J., Lehmann, M. M., Ho, R., Cane, G.,
and van Geen, A.: Coupled nitrogen and oxygen isotope measurements of
nitrate along the eastern North Pacific margin, Global Biogeochem. Cy.,
19, 4, https://doi.org/10.1029/2005GB002458, 2005.
Sigman, D. M., DiFiore, P. J., Hain, M. P., Deutsch, C., and Karl, D. M.:
Sinking organic matter spreads the nitrogen isotope signal of pelagic
denitrification in the North Pacific, Geophys. Res. Lett., 36, 8,
https://doi.org/10.1029/2008GL035784, 2009a.
Sigman, D. M., DiFiore, P. J., Hain, M. P., Deutsch, C., Wang, Y., Karl, D.
M., Knapp, A. N., Lehmann, M. F., and Pantoja, S.: The dual isotopes of deep
nitrate as a constraint on the cycle and budget of oceanic fixed nitrogen,
Deep-Sea Res. Pt. I, 56, 1419–1439,
https://doi.org/10.1016/J.DSR.2009.04.007, 2009b.
Skogseth, R., Olivier, L. L. A., Nilsen, F., Flack, E., Fraser, N.,
Tverberg, V., Ledang, A. B., Vader, A., Jonassen, M. O., Søreide, J.,
Cottier, F., Berge, J., Ivanov, B. V., and Falk-Petersen, S.: Variability and
decadal trends in the Isfjorden (Svalbard) ocean climate and circulation –
An indicator for climate change in the European Arctic, Progr. Oceanogr.,
187, 102394, https://doi.org/10.1016/j.pocean.2020.102394, 2020.
Skrzypek, G., Wojtuń, B., Richter, D., Jakubas, D., Wojczulanis-Jakubas,
K., and Samecka-Cymerman, A.: Diversification of nitrogen sources in various
tundra vegetation types in the High Arctic, PLoS One, 10, e0136536,
https://doi.org/10.1371/journal.pone.0136536, 2015.
Slater, D. A., Straneo, F., Felikson, D., Little, C. M., Goelzer, H.,
Fettweis, X., and Holte, J.: Estimating Greenland tidewater glacier retreat
driven by submarine melting, The Cryosphere, 13, 2489–2509,
https://doi.org/10.5194/tc-13-2489-2019, 2019.
Smart, S. M., Fawcett, S. E., Thomalla, S. J., Weigand, M. A., Reason, C. J.
C., and Sigman, D. M.: Isotopic evidence for nitrification in the Antarctic
winter mixed layer, Global Biogeochem. Cy., 29, 427–445,
https://doi.org/10.1002/2014GB005013, 2015.
Smith, W. H. F. and Sandwell, D. T.: Global sea floor topography from
satellite altimetry and ship depth soundings, Science, 277,
1956–1962, https://doi.org/10.1126/SCIENCE.277.5334.1956, 1997.
Straneo, F. and Cenedese, C.: The Dynamics of Greenland's glacial fjords and
their role in climate, Ann. Rev. Mar. Sci., 7, 89–112,
https://doi.org/10.1146/ANNUREV-MARINE-010213-135133, 2015.
Straneo, F., Hamilton, G. S., Sutherland, D. A., Stearns, L. A., Davidson,
F., Hammill, M. O., Stenson, G. B., and Rosing-Asvid, A.: Rapid circulation
of warm subtropical waters in a major glacial fjord in East Greenland, Nat.
Geosci., 3, 182–186, https://doi.org/10.1038/NGEO764, 2010.
Strøm, H., Descamps, S., and Bakken, V.: Seabird Colonies by the Barents
Sea, White Sea and Kara Sea, Norwegian Polar Institute, Tromsø, Norway [data set], https://doi.org/10.21334/npolar.2008.fd4fd3aa, 2008.
Strom, S. L., Olson, M. B., Macri, E. L., and Mordy, C. W.: Cross-shelf
gradients in phytoplankton community structure, nutrient utilization, and
growth rate in the coastal Gulf of Alaska, Mar. Ecol. Prog. Ser., 328,
75–92, https://doi.org/10.3354/MEPS328075, 2006.
Svendsen, H., Beszczynska-Møller, A., Hagen, J. O., Lefauconnier, B.,
Tverberg, V., Gerland, S., Ørbæk, J. B., Bischof, K., Papucci, C.,
Zajaczkowski, M., Azzolini, R., Bruland, O., Wiencke, C., Winther, J.-G.,
and Dallmann, W.: The physical environment of Kongsfjorden–Krossfjorden, an
Arctic fjord system in Svalbard, Polar Res., 21, 133–166,
https://doi.org/10.1111/J.1751-8369.2002.TB00072.X, 2002.
Szpak, P., Longstaffe, F. J., Millaire, J. F., and White, C. D.: Stable
isotope biogeochemistry of seabird guano fertilization: results from growth
chamber studies with maize (Zea mays), PLoS One, 7, e33741,
https://doi.org/10.1371/JOURNAL.PONE.0033741, 2012.
Telling, J., Anesio, A. M., Tranter, M., Irvine-Fynn, T., Hodson, A.,
Butler, C., and Wadham, J.: Nitrogen fixation on Arctic glaciers, Svalbard,
J. Geophys. Res.-Biogeo., 116, G3, https://doi.org/10.1029/2010JG001632, 2011.
Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N., and Bopp, L.: Around one
third of current Arctic Ocean primary production sustained by rivers and
coastal erosion, Nat. Commun., 12, 1–10, https://doi.org/10.1038/s41467-020-20470-z, 2021.
Tiwari, M., Nagoji, S., Kumar, V., Tripathi, S., and Behera, P.: Oxygen
isotope-salinity relation in an Arctic fjord (Kongsfjorden): Implications to
hydrographic variability, Geosci. Front., 9, 1937–1943,
https://doi.org/10.1016/J.GSF.2017.12.007, 2018.
Torsvik, T., Albretsen, J., Sundfjord, A., Kohler, J., Sandvik, A. D.,
Skarðhamar, J., Lindbäck, K., and Everett, A.: Impact of tidewater
glacier retreat on the fjord system: Modeling present and future circulation
in Kongsfjorden, Svalbard, Estuar. Coast. Shelf Sci., 220, 152–165,
https://doi.org/10.1016/J.ECSS.2019.02.005, 2019.
Trusel, L. D., Powell, R. D., Cumpston, R. M., and Brigham-Grette, J.: Modern
glacimarine processes and potential future behaviour of Kronebreen and
Kongsvegen polythermal tidewater glaciers, Kongsfjorden, Svalbard, Geol.
Soc. Spec. Publ., 344, 89–102, https://doi.org/10.1144/SP344.9, 2010.
Tuerena, R. E., Ganeshram, R. S., Geibert, W., Fallick, A. E., Dougans, J.,
Tait, A., Henley, S. F., and Woodward, E. M. S.: Nutrient cycling in the
Atlantic basin: The evolution of nitrate isotope signatures in water masses,
Global Biogeochem. Cy., 29, 1830–1844, https://doi.org/10.1002/2015GB005164,
2015.
Tuerena, R. E., Hopkins, J., Buchanan, P. J., Ganeshram, R. S., Norman, L.,
von Appen, W. J., Tagliabue, A., Doncila, A., Graeve, M., Ludwichowski, K.
U., Dodd, P. A., de la Vega, C., Salter, I., and Mahaffey, C.: An Arctic
strait of two halves: The changing dynamics of nutrient uptake and
limitation across the Fram Strait, Global Biogeochem. Cy., 35,
e2021GB006961, https://doi.org/10.1029/2021GB006961, 2021a.
Tuerena, R. E., Hopkins, J., Ganeshram, R. S., Norman, L., De La Vega, C.,
Jeffreys, R., and Mahaffey, C.: Nitrate assimilation and regeneration in the
Barents Sea: Insights from nitrate isotopes, Biogeosciences, 18,
637–653, https://doi.org/10.5194/bg-18-637-2021, 2021b.
Tverberg, V., Skogseth, R., Cottier, F., Sundfjord, A., Walczowski, W.,
Inall, M. E., Falck, E., Pavlova, O., and Nilsen, F.: The Kongsfjorden Transect: Seasonal and Inter-annual Variability in Hydrograph, in: The Ecosystem of Kongsfjorden, Svalbard, edited by: Hop, H. and Wiencke, C., Advances in Polar Ecology, Vol. 2, Springer, Cham, 49–104,
https://doi.org/10.1007/978-3-319-46425-1_3, 2019.
Vega, C. P., Björkman, M. P., Pohjola, V. A., Isaksson, E., Pettersson,
R., Martma, T., Marca, A., and Kaiser, J.: Nitrate stable isotopes and major
ions in snow and ice samples from four Svalbard sites, Polar Res., 34, 23246, https://doi.org/10.3402/polar.v34.23246,
2015.
Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F.,
Alekseychik, P., Amyot, M., Billet, M. F., Canário, J., Cory, R. M.,
Deshpande, B. N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J.,
Macmillan, G., Rautio, M., Walter Anthony, K. M., and Wickland, K. P.:
Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic
ecosystems, Biogeosciences, 12, 7129–7167, https://doi.org/10.5194/bg-12-7129-2015,
2015.
Wallace, M. I., Cottier, F. R., Berge, J., Tarling, G. A., Griffiths, C., and
Brierley, A. S.: Comparison of zooplankton vertical migration in an ice-free
and a seasonally ice-covered Arctic fjord: An insight into the influence of
sea ice cover on zooplankton behavior, Limnol. Oceanogr., 55, 831–845,
https://doi.org/10.4319/LO.2010.55.2.0831, 2010.
Wang, C., Shi, L., Gerland, S., Granskog, M. A., Renner, A. H. H., Li, Z.,
Hansen, E., and Martma, T.: Spring sea-ice evolution in Rijpfjorden
(80∘ N), Svalbard, from in situ measurements and ice mass-balance
buoy (IMB) data, Ann. Glaciol., 54, 253–260, https://doi.org/10.3189/2013AOG62A135,
2013.
Wankel, S. D., Kendall, C., and Paytan, A.: Using nitrate dual isotopic
composition (δ15N and δ18O) as a tool for
exploring sources and cycling of nitrate in an estuarine system: Elkhorn
Slough, California, J. Geophys. Res.-Biogeo., 114, 1011,
https://doi.org/10.1029/2008JG000729, 2009.
Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S., and Sigman, D. M.:
Updates to instrumentation and protocols for isotopic analysis of nitrate by
the denitrifier method, Rapid Commun. Mass Spectrom., 30, 1365–1383,
https://doi.org/10.1002/rcm.7570, 2016.
Wynn, P. M., Hodson, A. J., Heaton, T. H. E., and Chenery, S. R.: Nitrate
production beneath a High Arctic glacier, Svalbard, Chem. Geol., 244,
88–102, https://doi.org/10.1016/J.CHEMGEO.2007.06.008, 2007.
Yamamoto-Kawai, M., Carmack, E., and McLaughlin, F.: Nitrogen balance and
Arctic throughflow, Nature, 443, p. 43, https://doi.org/10.1038/443043a, 2006.
Yang, Y., Ren, J., and Zhu, Z.: Distributions and Influencing Factors of
Dissolved Manganese in Kongsfjorden and Ny-Ålesund, Svalbard, ACS Earth
Sp. Chem., 6, 1259–1268, https://doi.org/10.1021/acsearthspacechem.1c00388, 2022.
Zehr, J. P. and Capone, D. G.: Changing perspectives in marine nitrogen
fixation, Science, 368, 6492, https://doi.org/10.1126/science.aay9514, 2020.
Zhu, Z. Y., Wu, Y., Liu, S. M., Wenger, F., Hu, J., Zhang, J., and Zhang, R.
F: Organic carbon flux and particulate organic matter composition in Arctic
valley glaciers: examples from the Bayelva River and adjacent Kongsfjorden,
Biogeosciences, 13, 975–987, https://doi.org/10.5194/bg-13-975-2016, 2016.
Short summary
Terrestrial sources of nitrate are important contributors to the nutrient pool in the fjords of Kongsfjorden and Rijpfjorden in Svalbard during the summer, and they sustain most of the fjord primary productivity. Ongoing tidewater glacier retreat is postulated to favour light limitation and less dynamic circulation in fjords. This is suggested to encourage the export of nutrients to the middle and outer part of the fjord system, which may enhance primary production within and in offshore areas.
Terrestrial sources of nitrate are important contributors to the nutrient pool in the fjords of...
Altmetrics
Final-revised paper
Preprint