Articles | Volume 19, issue 3
https://doi.org/10.5194/bg-19-715-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-715-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biogeochemical controls on ammonium accumulation in the surface layer of the Southern Ocean
Shantelle Smith
CORRESPONDING AUTHOR
Department of Oceanography, University of Cape Town, Private Bag X3,
Rondebosch, Cape Town, South Africa
Katye E. Altieri
Department of Oceanography, University of Cape Town, Private Bag X3,
Rondebosch, Cape Town, South Africa
Mhlangabezi Mdutyana
Department of Oceanography, University of Cape Town, Private Bag X3,
Rondebosch, Cape Town, South Africa
Southern Ocean Carbon and Climate Observatory (SOCCO), CSIR,
Rosebank, Cape Town, South Africa
David R. Walker
Department of Conservation and Marine Sciences, Cape Peninsula
University of Technology, Cape Town, South Africa
Ruan G. Parrott
Department of Oceanography, University of Cape Town, Private Bag X3,
Rondebosch, Cape Town, South Africa
Sedick Gallie
Department of Conservation and Marine Sciences, Cape Peninsula
University of Technology, Cape Town, South Africa
Kurt A. M. Spence
Department of Oceanography, University of Cape Town, Private Bag X3,
Rondebosch, Cape Town, South Africa
Jessica M. Burger
Department of Oceanography, University of Cape Town, Private Bag X3,
Rondebosch, Cape Town, South Africa
Sarah E. Fawcett
Department of Oceanography, University of Cape Town, Private Bag X3,
Rondebosch, Cape Town, South Africa
Marine and Antarctic Research centre for Innovation and
Sustainability (MARIS), University of Cape Town, Cape Town, South Africa
Related authors
No articles found.
Rebecca M. Garland, Katye E. Altieri, Laura Dawidowski, Laura Gallardo, Aderiana Mbandi, Nestor Y. Rojas, and N'datchoh E. Touré
Atmos. Chem. Phys., 24, 5757–5764, https://doi.org/10.5194/acp-24-5757-2024, https://doi.org/10.5194/acp-24-5757-2024, 2024
Short summary
Short summary
This opinion piece focuses on two geographical areas in the Global South where the authors are based that are underrepresented in atmospheric science. This opinion provides context on common challenges and constraints, with suggestions on how the community can address these. The focus is on the strengths of atmospheric science research in these regions. It is these strengths, we believe, that highlight the critical role of Global South researchers in the future of atmospheric science research.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Jessica M. Burger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 23, 5605–5622, https://doi.org/10.5194/acp-23-5605-2023, https://doi.org/10.5194/acp-23-5605-2023, 2023
Short summary
Short summary
A seasonal analysis of the nitrogen isotopes of atmospheric nitrate over the remote Southern Ocean reveals that similar natural NOx sources dominate in spring and summer, while winter is representative of background-level conditions. The oxygen isotopes suggest that similar oxidation pathways involving more ozone occur in spring and winter, while the hydroxyl radical is the main oxidant in summer. This work helps to constrain NOx cycling and oxidant budgets in a data-sparse remote marine region.
Mhlangabezi Mdutyana, Tanya Marshall, Xin Sun, Jessica M. Burger, Sandy J. Thomalla, Bess B. Ward, and Sarah E. Fawcett
Biogeosciences, 19, 3425–3444, https://doi.org/10.5194/bg-19-3425-2022, https://doi.org/10.5194/bg-19-3425-2022, 2022
Short summary
Short summary
Nitrite-oxidizing bacteria in the winter Southern Ocean show a high affinity for nitrite but require a minimum (i.e., "threshold") concentration before they increase their rates of nitrite oxidation significantly. The classic Michaelis–Menten model thus cannot be used to derive the kinetic parameters, so a modified equation was employed that also yields the threshold nitrite concentration. Dissolved iron availability may play an important role in limiting nitrite oxidation.
Jessica M. Burger, Julie Granger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 22, 1081–1096, https://doi.org/10.5194/acp-22-1081-2022, https://doi.org/10.5194/acp-22-1081-2022, 2022
Short summary
Short summary
The nitrogen (N) isotopic composition of atmospheric nitrate in the Southern Ocean (SO) marine boundary layer (MBL) reveals the importance of oceanic alkyl nitrate emissions as a source of reactive N to the atmosphere. The oxygen isotopic composition suggests peroxy radicals contribute up to 63 % to NO oxidation and that nitrate forms via the OH pathway. This work improves our understanding of reactive N sources and cycling in a remote marine region, a proxy for the pre-industrial atmosphere.
Sebastian Landwehr, Michele Volpi, F. Alexander Haumann, Charlotte M. Robinson, Iris Thurnherr, Valerio Ferracci, Andrea Baccarini, Jenny Thomas, Irina Gorodetskaya, Christian Tatzelt, Silvia Henning, Rob L. Modini, Heather J. Forrer, Yajuan Lin, Nicolas Cassar, Rafel Simó, Christel Hassler, Alireza Moallemi, Sarah E. Fawcett, Neil Harris, Ruth Airs, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli, Gang Chen, Pablo Rodríguez-Ros, Marina Zamanillo, Pau Cortés-Greus, Lei Xue, Conor G. Bolas, Katherine C. Leonard, Fernando Perez-Cruz, David Walton, and Julia Schmale
Earth Syst. Dynam., 12, 1295–1369, https://doi.org/10.5194/esd-12-1295-2021, https://doi.org/10.5194/esd-12-1295-2021, 2021
Short summary
Short summary
The Antarctic Circumnavigation Expedition surveyed a large number of variables describing the dynamic state of ocean and atmosphere, freshwater cycle, atmospheric chemistry, ocean biogeochemistry, and microbiology in the Southern Ocean. To reduce the dimensionality of the dataset, we apply a sparse principal component analysis and identify temporal patterns from diurnal to seasonal cycles, as well as geographical gradients and
hotspotsof interaction. Code and data are open access.
Raquel F. Flynn, Thomas G. Bornman, Jessica M. Burger, Shantelle Smith, Kurt A. M. Spence, and Sarah E. Fawcett
Biogeosciences, 18, 6031–6059, https://doi.org/10.5194/bg-18-6031-2021, https://doi.org/10.5194/bg-18-6031-2021, 2021
Short summary
Short summary
Biological activity in the shallow Weddell Sea affects the biogeochemistry of recently formed deep waters. To investigate the drivers of carbon and nutrient export, we measured rates of primary production and nitrogen uptake, characterized the phytoplankton community, and estimated nutrient depletion ratios across the under-sampled western Weddell Sea in mid-summer. Carbon export was highest at the ice shelves and was determined by a combination of physical, chemical, and biological factors.
Cited articles
Aarnos, H., Ylöstalo, P., and Vähätalo, A. V.: Seasonal
phototransformation of dissolved organic matter to ammonium, dissolved
inorganic carbon, and labile substrates supporting bacterial biomass across
the Baltic Sea, J. Geophys. Res.-Biogeo., 117, https://doi.org/10.1029/2010JG001633, 2012.
Altabet, M. A.: Variations in nitrogen isotopic composition between sinking
and suspended particles: Implications for nitrogen cycling and particle
transformation in the open ocean, Deep-Sea Res., 35, 535–554,
https://doi.org/10.1016/0198-0149(88)90130-6, 1988.
Altieri, K. E., Spence, K. A. M., and Smith, S.: Air-Sea Ammonia Fluxes
Calculated from High-Resolution Summertime Observations Across the Atlantic
Southern Ocean, Geophys. Res. Lett., https://doi.org/10.1029/2020GL091963, 2021.
Amin, S. A., Moffett, J. W., Martens-Habbena, W., Jacquot, J. E., Han, Y.,
Devol, A., Ingalls, A. E., Stahl, D. A., and Armbrust, E. V.: Copper
requirements of the ammonia-oxidizing archaeon Nitrosopumilus maritimus SCM1
and implications for nitrification in the marine environment, Limnol.
Oceanogr., 58, 2037–2045, https://doi.org/10.4319/lo.2013.58.6.2037, 2013.
Armstrong, R. A.: An optimization-based model of iron-light-ammonium
colimitation of nitrate uptake and phytoplankton growth, Limnol. Oceanogr.,
44, 1436–1446, https://doi.org/10.4319/lo.1999.44.6.1436, 1999.
Arrigo, K. R., Dijken, G. L., and Bushinsky, S.: Primary production in the
Southern Ocean, 1997–2006, J. Geophys. Res., 113, C08004,
https://doi.org/10.1029/2007JC004551, 2008.
Atkinson, A., Ward, P., Hunt, B. P. V., Pakhomov, E. A., and Hosie, G. W.:
An overview of Southern Ocean zooplankton data: abundance, biomass, feeding
and functional relationships, CCAMLR Science, 19, 171–218, 2012.
Baer, S. E., Connelly, T. L., Sipler, R. E., Yager, P. L., and Bronk, D. A.:
Effect of temperature on rates of ammonium uptake and nitrification in the
western coastal Arctic during winter, Global Biogeochem. Cy., 28, 1455–1466,
https://doi.org/10.1002/2013GB004765, 2014.
Baird, M. E., Emsley, S. M., and Mcglade, J. M.: Modelling the interacting
effects of nutrient uptake, light capture and temperature on phytoplankton
growth, J. Plankton Res., 23, 829–840,
https://doi.org/10.1093/plankt/23.8.829, 2001.
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
Bathmann, U. V., Scharek, R., Klaas, C., Dubischar, C. D., and Smetacek, V.:
Spring development of phytoplankton biomass and composition in major water
masses of the Atlantic sector of the Southern Ocean, Deep-Sea Res. Pt. II, 44,
51–67, https://doi.org/10.1016/S0967-0645(96)00063-X, 1997.
Becquevort, S., Menon, P., and Lancelot, C.: Differences of the protozoan
biomass and grazing during spring and summer in the Indian sector of the
Southern Ocean, Polar. Biol., 23, 309–320,
https://doi.org/10.1007/s003000050450, 2000.
Belkin, I. M. and Gordon, A. L.: Southern Ocean fronts from the Greenwich
meridian to Tasmania, J. Geophys. Res.-Oceans, 101, 3675–3696,
https://doi.org/10.1029/95JC02750, 1996.
Bendschneider, K. and Robinson, R. J.: A new spectrophotometric method for
the determination of nitrite in sea water, 1952.
Bianchi, M., Feliatra, F., Tréguer, P., Vincendeau, M. A., and Morvan,
J.: Nitrification rates, ammonium and nitrate distribution in upper layers
of the water column and in sediments of the Indian sector of the Southern
Ocean, Deep-Sea Res. Pt. II, 44, 1017–1032,
https://doi.org/10.1016/S0967-0645(96)00109-9, 1997.
Billen, G.: Heterotrophic utilization and regeneration of nitrogen, in:
Heterotrophic activity in the sea, NATO Conference Series (IV Marine
Sciences), Boston, Massachusetts, United States of America,
https://doi.org/10.1007/978-1-4684-9010-7_15, 1984.
Boyd, P. W., Crossley, A. C., DiTullio, G. R., Griffiths, F. B., Hutchins,
D. A., Queguiner, B., Sedwick, P. N., and Trull, T. W.: Control of
phytoplankton growth by iron supply and irradiance in the subantarctic
Southern Ocean: Experimental results from the SAZ Project, J. Geophys. Res.-Oceans, 106, 31573–31583, https://doi.org/10.1029/2000JC000348, 2001.
Boyd, P. W., Rynearson, T. A., Armstrong, E. A., Fu, F., Hayashi, K., Hu,
Z., Hutchins, D. A., Kudela, R. M., Litchman, E., Mulholland, M. R., Passow,
U., Strzepek, R. F., Whittaker, K. A., Yu, E., and Thomas, M. K.: Marine
Phytoplankton Temperature versus Growth Responses from Polar to Tropical
Waters – Outcome of a Scientific Community-Wide Study, PLoS ONE, 8, 1–17,
https://doi.org/10.1371/journal.pone.0063091, 2013.
Bracher, A. U., Kroon, B. M. A., and Lucas, M. I.: Primary production,
physiological state and composition of phytoplankton in the Atlantic sector
of the Southern Ocean, Mar. Ecol. Prog. Ser., 190, 1–16,
https://doi.org/10.3354/meps190001, 1999.
Broecker, W. S. and Peng, T. H.: Interhemispheric transport of carbon
dioxide by ocean circulation, Nature, 356, 587–589,
https://doi.org/10.1038/356587a0, 1992.
Buongiorno Nardelli, B., Guinehut, S., Verbrugge, N., Cotroneo, Y.,
Zambianchi, E., and Iudicone, D.: Southern Ocean mixed-layer seasonal and
interannual variations from combined satellite and in situ data, J. Geophys. Res.-Oceans, 122, 10042–10060, https://doi.org/10.1002/2017JC013314, 2017.
Campitelli, E.: metR: Tools for Easier Analysis of Meteorological Fields, Zenodo [code], https://doi.org/10.5281/zenodo.2593516, 2019.
Carvalho, F., Kohut, J., Oliver, M. J., and Schofield, O.: Defining the
ecologically relevant mixed-layer depth for Antarctica's coastal seas,
Geophys. Res. Lett., 44, 338–345, https://doi.org/10.1002/2016GL071205, 2017.
Cavagna, A. J., Fripiat, F., Elskens, M., Mangion, P., Chirurgien, L., Closset, I., Lasbleiz, M., Florez-Leiva, L., Cardinal, D., Leblanc, K., Fernandez, C., Lefèvre, D., Oriol, L., Blain, S., Quéguiner, B., and Dehairs, F.: Production regime and associated N cycling in the vicinity of Kerguelen Island, Southern Ocean, Biogeosciences, 12, 6515–6528, https://doi.org/10.5194/bg-12-6515-2015, 2015.
Cavalieri, D. J. and Parkinson, C. L.: Antarctic sea ice variability and
trends, 1979–2006, J. Geophys. Res.-Oceans, 113, C07004,
https://doi.org/10.1029/2007JC004564, 2008.
Cavender-Bares, K. K., Mann, E. L., Chisholm, S. W., Ondrusek, M. E., and
Bidigare, R. R.: Differential response of equatorial Pacific phytoplankton
to iron fertilization, Limnol. Oceanogr., 44, 237–246,
https://doi.org/10.4319/lo.1999.44.2.0237, 1999.
Checkley Jr., D. M. and Miller, C. A.: Nitrogen isotope fractionation by
oceanic zooplankton, Deep-Sea Res., 36, 1449–1456,
https://doi.org/10.1016/0198-0149(89)90050-2, 1989.
Church, M. J., DeLong, E. F., Ducklow, H. W., Karner, M. B., Preston, C. M.,
and Karl, D. M.: Abundance and distribution of planktonic Archaea and
Bacteria in the waters west of the Antarctic Peninsula, Limnol. Oceanogr., 48,
1893–1902, https://doi.org/10.4319/lo.2003.48.5.1893, 2003.
Coale, K. H., Gordon, R. M., and Wang, X.: The distribution and behaviour of
dissolved and particulate iron and zinc in the Ross Sea and Antarctic
circumpolar current along 170∘W, Deep-Sea Res. Pt. I, 52, 295–318,
https://doi.org/10.1016/j.dsr.2004.09.008, 2005.
Cochlan, W. P.: Seasonal study of uptake and regeneration of nitrogen on the
Scotian Shelf, Cont. Shelf. Res., 5, 555–577,
https://doi.org/10.1016/0278-4343(86)90076-2, 1986.
Cochlan, W. P.: Nitrogen uptake in the Southern Ocean, in: Nitrogen in the
Marine Environment, edited by: Capone, D. G., Bronk, D. A., Mulholland, M.
R., and Carpenter, E. J., Academic Press, Elsevier, 569–596,
https://doi.org/10.1016/B978-0-12-372522-6.00012-8, 2008.
Cochlan, W. P., Bronk, D. A., and Coale, K. H.: Trace metals and nitrogenous
nutrition of Antarctic phytoplankton: experimental observations in the Ross
Sea, Deep-Sea Res. Pt. II., 49, 3365–3390,
https://doi.org/10.1016/S0967-0645(02)00088-7, 2002.
Coello-Camba, A. and Agustí, S.: Thermal thresholds of phytoplankton
growth in polar waters and their consequences for a warming polar ocean,
Front. Mar. Sci., 4, 168,
https://doi.org/10.3389/fmars.2017.00168, 2017.
Cota, G. F., Smith, W. O., Nelson, D. M., Muench, R. D., and Gordon, L. I.:
Nutrient and biogenic particulate distributions, primary productivity and
nitrogen uptake in the Weddell-Scotia Sea marginal ice zone during winter, J.
Mar. Res., 50, 155–181, https://doi.org/10.1357/002224092784797764, 1992.
Daly, K. L., Smith, W. O., Johnson, G. C., DiTullio, G. R., Jones, D. R.,
Mordy, C. W., Feely, R. A., Hansell, D. A., and Zhang, J.-Z.: Hydrography,
nutrients, and carbon pools in the Pacific sector of the Southern Ocean:
Implications for carbon flux, J. Geophys. Res.-Oceans, 106, 7107–7124,
https://doi.org/10.1029/1999JC000090, 2001.
Deary, A.: A high-resolution study of the early- to late summer progression
in primary production and carbon export potential in the Atlantic Southern
Ocean, Honours thesis, University of Cape Town, South Africa, https://doi.org/10.5281/zenodo.5865488, 2020.
Dennett, M. R., Mathot, S., Caron, D. A., Smith, W. O., and Lonsdale, D. J.:
Abundance and distribution of phototrophic and heterotrophic nano- and
microplankton in the southern Ross Sea, Deep-Sea Res. Pt. II, 48, 4019–4037,
https://doi.org/10.1016/S0967-0645(01)00079-0, 2001.
Deppeler, S. L. and Davidson, A. T.: Southern Ocean phytoplankton in a
changing climate, Front. Mar. Sci., 4, 40,
https://doi.org/10.3389/fmars.2017.00040, 2017.
Detmer, A. E. and Bathmann, U. V.: Distribution patterns of autotrophic
pico-and nanoplankton and their relative contribution to algal biomass
during spring in the Atlantic sector of the Southern Ocean, Deep-Sea Res. Pt. II, 44, 299–320, https://doi.org/10.1016/S0967-0645(96)00068-9, 1997.
Dong, S., Sprintall, J., Gille, S. T., and Talley, L.: Southern Ocean
mixed-layer depth from Argo float profiles, J. Geophys. Res.-Oceans, 113, C06013,
https://doi.org/10.1029/2006JC004051, 2008.
Dortch, Q.: The interaction between ammonium and nitrate uptake in
phytoplankton, Mar. Ecol. Prog. Ser., 61, 183–201,
https://doi.org/10.3354/meps061183, 1990.
Dugdale, R. C. and Goering, J. J.: Uptake of new and regenerated forms of
nitrogen in primary productivity, Limnol. Oceanogr., 12, 196–206,
https://doi.org/10.4319/lo.1967.12.2.0196, 1967.
Dugdale, R. C. and Wilkerson, F. P.: The use of 15N to measure nitrogen
uptake in eutrophic oceans, experimental considerations 1, 2, Limnol. Oceanogr., 31, 673–689, https://doi.org/10.4319/lo.1986.31.4.0673, 1986.
Ellwood, M. J., Boyd, P. W., and Sutton, P.: Winter-time dissolved iron and
nutrient distributions in the Subantarctic Zone from 40–52∘S; 155–160∘E,
Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL033699, 2008.
Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and
planktonic new production in the deep ocean, Nature, 282, 677–680,
https://doi.org/10.1038/282677a0, 1979.
Fawcett, S. E. and Ward, B. B.: Phytoplankton succession and nitrogen
utilization during the development of an upwelling bloom, Mar. Ecol. Prog. Ser.,
428, 13–31, https://doi.org/10.3354/meps09070, 2011.
Fawcett, S. E., Lomas, M. W., Casey, J. R., Ward, B. B., and Sigman, D. M.:
Assimilation of upwelled nitrate by small eukaryotes in the Sargasso Sea,
Nat. Geosci., 4, 717–722, https://doi.org/10.1038/ngeo1265, 2011.
Fawcett, S. E., Lomas, M. W., Ward, B. B., and Sigman, D. M.: The
counterintuitive effect of summer-to-fall mixed layer deepening on
eukaryotic new production in the Sargasso Sea, Global Biogeochem. Cy., 28,
86–102, https://doi.org/10.1002/2013GB004579, 2014.
Fiala, M. and Oriol, L.: Light-temperature interactions on the growth of
Antarctic diatoms, Polar. Biol., 10, 629–636,
https://doi.org/10.1007/BF00239374, 1990.
Fiala, M., Semeneh, M., and Oriol, L.: Size-fractionated phytoplankton
biomass and species composition in the Indian sector of the Southern Ocean
during austral summer, J. Mar. Syst., 17, 179–194,
https://doi.org/10.1016/S0924-7963(98)00037-2, 1998.
Finkel, Z. V., Irwin, A. J., and Schofield, O.: Resource limitation alters
the 3/4 size scaling of metabolic rates in phytoplankton, Mar. Ecol. Prog. Ser.,
273, 269–279, https://doi.org/10.3354/meps273269, 2004.
Finley, A., Banerjee, S., and Hjelle, Ø.: MBA: Multilevel B-Spline Approximation, https://CRAN.R-project.org/package=MBA, 2017.
Forsythe, W. C., Rykiel Jr., E. J., Stahl, R. S., Wu, H. I., and Schoolfield,
R. M.: A model comparison for daylength as a function of latitude and day of
year, Ecol. Model., 80, 87–95, https://doi.org/10.1016/0304-3800(94)00034-F,
1995.
Franck, V. M., Smith, G. J., Bruland, K. W., and Brzezinski, M. A.:
Comparison of size-dependent carbon, nitrate, and silicic acid uptake rates
in high-and low-iron waters, Limnol. Oceanogr., 50, 825–838,
https://doi.org/10.4319/lo.2005.50.3.0825, 2005.
Francois, R., Altabet, M. A., and Burckle, L. H.: Glacial to interglacial
changes in surface nitrate utilization in the Indian sector of the Southern
Ocean as recorded by sediment δ15N, Paleoceanography, 7, 589–606,
https://doi.org/10.1029/92PA01573, 1992.
Fripiat, F., Elskens, M., Trull, T.W., Blain, S., Cavagna, A.J., Fernandez,
C., Fonseca-Batista, D., Planchon, F., Raimbault, P., Roukaerts, A. and
Dehairs, F.: Significant mixed layer nitrification in a natural
iron-fertilized bloom of the Southern Ocean, Global Biogeochem. Cy., 29,
1929–1943, https://doi.org/10.1002/2014GB005051, 2015.
Fripiat, F., Martínez-García, A., Fawcett, S. E., Kemeny, P. C.,
Studer, A. S., Smart, S. M., Rubach, F., Oleynik, S., Sigman, D. M., and
Haug, G. H.: The isotope effect of nitrate assimilation in the Antarctic
Zone: Improved estimates and paleoceanographic implications, Geochim.
Cosmochim. Ac., 247, 261–279, https://doi.org/10.1016/j.gca.2018.12.003,
2019.
Fripiat, F., Martínez-García, A., Marconi, D., Fawcett, S. E.,
Kopf, S., Luu, V., Rafter, P., Zhang, R., Sigman, D., and Haug, G.: Nitrogen
isotopic constraints on nutrient transport to the upper ocean, Nat. Geosci., 14, 855–861, https://doi.org/10.1038/s41561-021-00836-8, 2021.
Frölicher, T. L., Sarmiento, J. L., Paynter, D. J., Dunne, J. P.,
Krasting, J. P., and Winton, M.: Dominance of the Southern Ocean in
anthropogenic carbon and heat uptake in CMIP5 models, J. Climate, 28,
862–886, https://doi.org/10.1175/JCLI-D-14-00117.1, 2015.
Froneman, P. W., Ansorge, I. J., Pakhomov, E. A., and Lutjeharms, J. R. E.:
Plankton community structure in the physical environment surrounding the
Prince Edward Islands (Southern Ocean), Polar. Biol., 22, 145–155,
https://doi.org/10.1007/s003000050404, 1999.
Fujiki, T. and Taguchi, S.: Variability in chlorophyll a specific absorption
coefficient in marine phytoplankton as a function of cell size and
irradiance, J. Plankton Res., 24, 859–874,
https://doi.org/10.1093/plankt/24.9.859, 2002.
Gasol, J. M. and Giorgio, P. A.: Using flow cytometry for counting natural
planktonic bacteria and understanding the structure of planktonic bacterial
communities, Sci. Mar., 64, 197–224,
https://doi.org/10.3989/scimar.2000.64n2197, 2000.
Gibson, J. A. and Trull, T. W.: Annual cycle of fCO2 under sea-ice and in
open water in Prydz Bay, East Antarctica, Mar. Chem., 66, 187–200,
https://doi.org/10.1016/S0304-4203(99)00040-7, 1999.
Glibert, P. M.: Regional studies of daily, seasonal and size fraction
variability in ammonium remineralization, Mar. Biol., 70, 209–222,
https://doi.org/10.1007/BF00397687, 1982.
Goeyens, L., Tréguer, P., Lancelot, C., Mathot, S., Becquevort, S.,
Morvan, J., Dehairs, F., and Baeyens, W.: Ammonium regeneration in the
Scotia-Weddell Confluence area during spring 1988, Mar. Ecol. Prog. Ser.,
345–361, https://doi.org/10.3354/meps078241, 1991.
Goeyens, L., Tréguer, P., Baumann, M. E. M., Baeyens, W., and Dehairs,
F.: The leading role of ammonium in the nitrogen uptake regime of Southern
Ocean marginal ice zones, J. Mar. Syst., 6, 345–361,
https://doi.org/10.1016/0924-7963(94)00033-8, 1995.
Granger, J., Sigman, D. M., Needoba, J. A., and Harrison, P. J.: Coupled
nitrogen and oxygen isotope fractionation of nitrate during assimilation by
cultures of marine phytoplankton, Limnol. Oceanogr., 49, 1763–1773,
https://doi.org/10.4319/lo.2004.49.5.1763, 2004.
Granger, J., Sigman, D. M., Rohde, M. M., Maldonado, M. T., and Tortell, P.
D.: N and O isotope effects during nitrate assimilation by unicellular
prokaryotic and eukaryotic plankton cultures, Geochim. Cosmochim. Ac., 74,
1030–1040, https://doi.org/10.1016/j.gca.2009.10.044, 2010.
Gray, A. R., Johnson, K. S., Bushinsky, S. M., Riser, S. C., Russell, J. L.,
Talley, L. D., Wanninkhof, R., Williams, N. L., and Sarmiento, J. L.:
Autonomous biogeochemical floats detect significant carbon dioxide
outgassing in the high-latitude Southern Ocean, Geophys. Res. Lett., 45,
9049–9057, https://doi.org/10.1029/2018GL078013, 2018.
Grolemund, G. and Wickham, H.: Dates and Times Made Easy with lubridate, J. Stat. Softw., 40, 1–25, https://www.jstatsoft.org/v40/i03/, 2011.
Hasle, R. G.: The inverted microscope method, in: Phytoplankton manual,
88–96, 1978.
Hauck, J., Völker, C., Wolf-Gladrow, D. A., Laufkötter, C., Vogt,
M., Aumont, O., Bopp, L., Buitenhuis, E. T., Doney, S. C., Dunne, J., and
Gruber, N.: On the Southern Ocean CO2 uptake and the role of the biological
carbon pump in the 21st century, Global Biogeochem. Cy., 29, 1451–1470,
https://doi.org/10.1002/2015GB005140, 2015.
Henley, S. F., Tuerena, R. E., Annett, A. L., Fallick, A. E., Meredith, M.
P., Venables, H. J., Clarke, A., and Ganeshram, R. S.: Macronutrient supply,
uptake and recycling in the coastal ocean of the west Antarctic Peninsula,
Deep-Sea Res. Pt. II, 139, 58–76, https://doi.org/10.1016/j.dsr2.2016.10.003,
2017.
Henley, S. F., Cavan, E. L., Fawcett, S. E., Kerr, R., Monteiro, T.,
Sherrell, R. M., Bowie, A. R., Boyd, P. W., Barnes, D. K., Schloss, I. R.,
Marshall, T., Flynn, R., and Smith, S.: Changing biogeochemistry of the
Southern Ocean and its ecosystem implications, Front. Mar. Sci.,
7, 581, https://doi.org/10.3389/fmars.2020.00581, 2020.
Herbert, R. A.: Nitrogen cycling in coastal marine ecosystems, FEMS
Microbiol. Rev., 23, 563–590,
https://doi.org/10.1111/j.1574-6976.1999.tb00414.x, 1999.
Hewes, C. D., Holm-Hansen, O., and Sakshaug, E.: Alternate carbon pathways
at lower trophic levels in the Antarctic food web, in: Antarctic nutrient
cycles and food webs, edited by: Siegfried, W. R., Condy, P. R., Laws, R. M.,
Springer, Berlin, Heidelberg, 277–283,
https://doi.org/10.1007/978-3-642-82275-9_40, 1985.
Hewes, C. D., Sakshaug, E., Reid, F. M., and Holm-Hansen, O.: Microbial
autotrophic and heterotrophic eucaryotes in Antarctic waters: relationships
between biomass and chlorophyll, adenosine triphosphate and particulate
organic carbon, Mar. Ecol. Prog. Ser., 63, 27–36, 1990.
Hiscock, M. R., Marra, J., Smith Jr., W. O., Goericke, R., Measures, C., Vink,
S., Olson, R. J., Sosik, H. M., and Barber, R. T.: Primary productivity and its
regulation in the Pacific Sector of the Southern Ocean, Deep-Sea Res. Pt. II,
50, 533–558, https://doi.org/10.1016/S0967-0645(02)00583-0, 2003.
Holmes, R. M., Aminot, A., Kérouel, R., Hooker, B. A., and Peterson, B.
J.: A simple and precise method for measuring ammonium in marine and
freshwater ecosystems, Can. J. Fish. Aquat. Sci., 56, 1801–1808,
https://doi.org/10.1139/f99-128, 1999.
Honjo, S., Francois, R., Manganini, S., Dymond, J., and Collier, R.:
Particle fluxes to the interior of the Southern Ocean in the Western Pacific
sector along 170 W, Deep-Sea Res. Pt. II, 47, 3521–3548,
https://doi.org/10.1016/S0967-0645(00)00077-1, 2000.
Hooper, A. B. and Terry, K. R.: Photoinactivation of ammonia oxidation in
Nitrosomonas, J. Bacteriol., 119, 899–906,
https://doi.org/10.1128/jb.119.3.899-906.1974, 1974.
Horak, R. E., Qin, W., Schauer, A. J., Armbrust, E. V., Ingalls, A. E.,
Moffett, J. W., Stahl, D. A., and Devol, A. H.: Ammonia oxidation kinetics
and temperature sensitivity of a natural marine community dominated by
Archaea, ISME J., 7, 2023–2033, https://doi.org/10.1038/ismej.2013.75, 2013.
Horrigan, S. G. and Springer, A. L.: Oceanic and estuarine ammonium
oxidation: Effects of light, Limnol. Oceanogr., 35, 479–482,
https://doi.org/10.4319/lo.1990.35.2.0479, 1990.
Hudson, R. J. and Morel, F. M.: Trace metal transport by marine
microorganisms: implications of metal coordination kinetics, Deep-Sea Res. Pt. I, 40, 129–150, https://doi.org/10.1016/0967-0637(93)90057-A, 1993.
Iida, T. and Odate, T.: Seasonal variability of phytoplankton biomass and
composition in the major water masses of the Indian Ocean sector of the
Southern Ocean, Polar. Sci., 8, 283–297,
https://doi.org/10.1016/j.polar.2014.03.003, 2014.
Ishikawa, A., Wright, S. W., Enden, R., Davidson, A. T., and Marchant, H.
J.: Abundance, size structure and community composition of phytoplankton in
the Southern Ocean in the austral summer 1999/2000, Polar Biogeosci.,
15, 11–26, https://doi.org/10.15094/00006180, 2002.
Janssen, D. J., Sieber, M., Ellwood, M. J., Conway, T. M., Barrett, P. M.,
Chen, X., Souza, G. F., Hassler, C. S., and Jaccard, S. L.: Trace metal and
nutrient dynamics across broad biogeochemical gradients in the Indian and
Pacific sectors of the Southern Ocean, Mar. Chem., 221, 103773,
https://doi.org/10.1016/j.marchem.2020.103773, 2020.
Jeong, H. J. and Latz, M. I.: Growth and grazing rates of the heterotrophic
dinoflagellates Protoperidinium spp. on red tide dinoflagellates, Mar. Ecol. Prog. Ser., 106, 173–173, https://doi.org/10.3354/meps106173, 1994.
Jiang, H. B., Fu, F. X., Rivero-Calle, S., Levine, N. M.,
Sañudo-Wilhelmy, S. A., Qu, P. P., Wang, X. W., Pinedo-Gonzalez, P.,
Zhu, Z., and Hutchins, D. A.: Ocean warming alleviates iron limitation of
marine nitrogen fixation, Nat. Clim. Change, 8, 709–712,
https://doi.org/10.1038/s41558-018-0216-8, 2018.
Johnson, K. S., Plant, J. N., Dunne, J. P., Talley, L. D., and Sarmiento, J.
L.: Annual nitrate drawdown observed by SOCCOM profiling floats and the
relationship to annual net community production, J. Geophys. Res.-Oceans, 122,
6668–6683, https://doi.org/10.1002/2017JC012839, 2017.
Joubert, W. R., Thomalla, S. J., Waldron, H. N., Lucas, M. I., Boye, M., Le Moigne, F. A. C., Planchon, F., and Speich, S.: Nitrogen uptake by phytoplankton in the Atlantic sector of the Southern Ocean during late austral summer, Biogeosciences, 8, 2947–2959, https://doi.org/10.5194/bg-8-2947-2011, 2011.
Kassambara, A.: ggpubr: “ggplot2” Based Publication Ready Plots, https://CRAN.R-project.org/package=ggpubr, 2019.
Kattner, G., Thomas, D. N., Haas, C., Kennedy, H., and Dieckmann, G. S.:
Surface ice and gap layers in Antarctic sea ice: highly productive habitats,
Mar. Ecol. Prog. Ser., 277, 1–12, https://doi.org/10.3354/meps277001, 2004.
Kelley, D. and Richards, C.: oce: Analysis of Oceanographic Data, R package version 1.5-0, https://dankelley.github.io/oce/, 2022.
Kirchman, D. L.: The Uptake of Inorganic Nutrients by Heterotrophic
Bacteria, Microb. Ecol., 28, 255–271, https://doi.org/10.1007/BF00166816,
1994.
Kitzinger, K., Padilla, C. C., Marchant, H. K., Hach, P. F., Herbold, C. W.,
Kidane, A. T., Könneke, M., Littmann, S., Mooshammer, M., Niggemann, J.,
and Petrov, S.: Cyanate and urea are substrates for nitrification by
Thaumarchaeota in the marine environment, Nat. Microbiol., 4, 234–243,
https://doi.org/10.1038/s41564-018-0316-2, 2019.
Klawonn, I., Bonaglia, S., Whitehouse, M. J., Littmann, S., Tienken, D.,
Kuypers, M. M., Brüchert, V., and Ploug, H.: Untangling hidden nutrient
dynamics: rapid ammonium cycling and single-cell ammonium assimilation in
marine plankton communities, ISME J., 13, 1960–1974,
https://doi.org/10.1038/s41396-019-0386-z, 2019.
Knapp, A. N., Dekaezemacker, J., Bonnet, S., Sohm, J. A., and Capone, D. G.:
Sensitivity of Trichodesmium erythraeum and Crocosphaera watsonii abundance
and N2 fixation rates to varying NO and PO concentrations in batch
cultures, Aquat. Microb. Ecol., 66, 223–236, https://doi.org/10.3354/ame01577,
2012.
Kobayashi, F. and Takahashi, K.: Distribution of diatoms along the
equatorial transect in the western and central Pacific during the 1999 La
Niña conditions, Deep-Sea Res. Pt. II, 49, 2801–2821,
https://doi.org/10.1016/S0967-0645(02)00059-0, 2002.
Koike, I., Holm-Hansen, O., and Biggs, D. C.: Phytoplankton With Special
Reference To Ammonium Cycling, Mar. Ecol., 30, 105–116,
https://doi.org/10.3354/meps030105, 1986.
Kopczyńska, E. E., Savoye, N., Dehairs, F., Cardinal, D., and Elskens,
M.: Spring phytoplankton assemblages in the Southern Ocean between Australia
and Antarctica, Polar. Biol., 31, 77–88,
https://doi.org/10.1007/s00300-007-0335-6, 2007.
Kottmeier, S. T. and Sullivan, C. W.: Late winter primary production and
bacterial production in sea ice and seawater west of the Antarctic
Peninsula, Mar. Ecol. Prog. Ser., 36, 287–298,
https://doi.org/10.3354/meps036287, 1987.
Kustka, A. B., Sañudo-Wilhelmy, S. A., Carpenter, E. J., Capone, D., Burns,
J., and Sunda, W. G.: Iron requirements for dinitrogen-and ammonium-supported
growth in cultures of Trichodesmium (IMS 101): Comparison with nitrogen
fixation rates and iron: Carbon ratios of field populations, Limnol. Oceanogr., 48, 1869–1884, https://doi.org/10.4319/lo.2003.48.5.1869, 2003.
La Roche, J.: Ammonium regeneration: its contribution to phytoplankton
nitrogen requirements in a eutrophic environment, Mar. Biol., 75, 231–240,
https://doi.org/10.1007/BF00406007, 1983.
Lauderdale, J. M., Garabato, A. C. N., Oliver, K. I., Follows, M. J., and
Williams, R. G.: Wind-driven changes in Southern Ocean residual circulation,
ocean carbon reservoirs and atmospheric CO2, Clim. Dynam., 41, 2145–2164,
https://doi.org/10.1007/s00382-012-1650-3, 2013.
Le Moigne, F. A. C., Boye, M., Masson, A., Corvaisier, R., Grossteffan, E., Guéneugues, A., and Pondaven, P.: Description of the biogeochemical features of the subtropical southeastern Atlantic and the Southern Ocean south of South Africa during the austral summer of the International Polar Year, Biogeosciences, 10, 281–295, https://doi.org/10.5194/bg-10-281-2013, 2013.
Lee, S. H., Joo, H. M., Liu, Z., Chen, J., and He, J.: Phytoplankton
productivity in newly opened waters of the Western Arctic Ocean, Deep-Sea Res. Pt. II, 81, 18–27, https://doi.org/10.1016/j.dsr2.2011.06.005, 2012.
Lee, S. H., Yun, M. S., Kim, B. K., Joo, H., Kang, S. H., Kang, C. K., and
Whitledge, T. E.: Contribution of small phytoplankton to total primary
production in the Chukchi Sea, Cont. Shelf. Res., 68, 43–50,
https://doi.org/10.1016/j.csr.2013.08.008, 2013.
Legrand, M., Ducroz, F., Wagenbach, D., Mulvaney, R., and Hall, J.: Ammonium
in coastal Antarctic aerosol and snow: Role of polar ocean and penguin
emissions, J. Geophys. Res.-Atmos., 103, 11043–11056,
https://doi.org/10.1029/97JD01976, 1998.
Lehette, P., Tovar-Sánchez, A., Duarte, C. M., and Hernández-León,
S.: Krill excretion and its effect on primary production, Mar. Ecol. Prog. Ser.,
459, 29–38, https://doi.org/10.3354/meps09746, 2012.
Lipschultz, F.: Isotope tracer methods for studies of the marine nitrogen
cycle, in: Nitrogen in the Marine Environment, 2nd ed., edited by: Capone,
D. G., Bronk, D. A., Mulholland, M. R., and Carpenter, E. J., Academic Press,
Burlington, Massachusetts, United States of America,
https://doi.org/10.1016/B978-0-12-372522-6.00031-1, 2008.
Llort, J., Lévy, M., Sallée, J. B., and Tagliabue, A.: Nonmonotonic
response of primary production and export to changes in mixed-layer depth in
the Southern Ocean, Geophys. Res. Lett., 46, 3368–3377,
https://doi.org/10.1029/2018GL081788, 2019.
Lourey, M. J., Trull, T. W., and Sigman, D. M.: Sensitivity of δ 15
N of nitrate, surface suspended and deep sinking particulate nitrogen to
seasonal nitrate depletion in the Southern Ocean, Global Biogeochem. Cy., 17, 1081,
https://doi.org/10.1029/2002GB001973, 2003.
Lu, S., Liu, X., Liu, C., Cheng, G., and Shen, H.: Influence of
photoinhibition on nitrification by ammonia-oxidizing microorganisms in
aquatic ecosystems, Rev. Environ. Sci. Bio., 19, 531–542,
https://doi.org/10.1007/s11157-020-09540-2, 2020.
Lutjeharms, J. R. E. and Valentine, H. R.: Southern ocean thermal fronts
south of Africa, Deep-Sea Res., 31, 1461–1475,
https://doi.org/10.1016/0198-0149(84)90082-7, 1984.
Macko, S. A., Estep, M. L. F., Engel, M. H., and Hare, P. E.: Kinetic
fractionation of stable nitrogen isotopes during amino acid transamination,
Geochim. Cosmochim. Ac., 50, 2143–2146,
https://doi.org/10.1016/0016-7037(86)90068-2, 1986.
Maldonado, M. T., Allen, A. E., Chong, J. S., Lin, K., Leus, D., Karpenko,
N., and Harris, S. L.: Copper-dependent iron transport in coastal and
oceanic diatoms, Limnol. Oceanogr., 51, 1729–1743,
https://doi.org/10.4319/lo.2006.51.4.1729, 2006.
Marie, D., Partensky, F., Jacquet, S., and Vaulot, D.: Enumeration and cell
cycle analysis of natural populations of marine picoplankton by flow
cytometry using the nucleic acid stain SYBR Green I, Appl. Environ. Microb.,
63, 186–193, https://doi.org/10.1128/aem.63.1.186-193.1997, 1997.
Marie, D., Simon, N., and Vaulot, D.: Phytoplankton cell counting by flow
cytometry, Algal Culturing Techniques, 1, 253–267,
https://doi.org/10.1016/B978-012088426-1/50018-4, 2005.
Martin, J. H., Fitzwater, S. E., and Gordon, R. M.: Iron deficiency limits
phytoplankton growth in Antarctic waters, Global Biogeochem. Cy., 4, 5–12,
https://doi.org/10.1029/GB004i001p00005, 1990.
Mayzaud, P., Razouls, S., Errhif, A., Tirelli, V., and Labat, J. P.:
Feeding, respiration and egg production rates of copepods during austral
spring in the Indian sector of the Antarctic Ocean: role of the zooplankton
community in carbon transformation, Deep-Sea Res. Pt. I, 49, 1027–1048,
https://doi.org/10.1016/S0967-0637(02)00012-2, 2002.
McIlvin, M. R. and Altabet, M. A.: Chemical conversion of nitrate and
nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in
freshwater and seawater, Anal. Chem., 77, 5589–5595,
https://doi.org/10.1021/ac050528s, 2005.
McIlvin, M. R. and Casciotti, K. L.: Technical updates to the bacterial
method for nitrate isotopic analyses, Anal. Chem., 83, 1850–1856,
https://doi.org/10.1021/ac1028984, 2011.
Mdutyana, M.: Mixed layer nitrogen cycling in the Southern Ocean:
seasonality, kinetics, and biogeochemical implications, Ph.D. dissertation,
University of Cape Town, South Africa, https://doi.org/10.5281/zenodo.5865349, 2021.
Mdutyana, M., Thomalla, S. J., Philibert, R., Ward, B. B., and Fawcett, S.
E.: The seasonal cycle of nitrogen uptake and nitrification in the Atlantic
sector of the Southern Ocean, Global Biogeochem. Cy., 34, 006363,
https://doi.org/10.1029/2019GB006363, 2020.
Mei, Z. P., Finkel, Z. V., and Irwin, A. J.: Light and nutrient availability
affect the size-scaling of growth in phytoplankton, J. Theor. Biol., 259,
582–588, https://doi.org/10.1016/j.jtbi.2009.04.018, 2009.
Mengesha, S., Dehairs, F., Fiala, M., Elskens, M., and Goeyens, L.: Seasonal
variation of phytoplankton community structure and nitrogen uptake regime in
the Indian Sector of the Southern Ocean, Polar. Biol., 20, 259–272,
https://doi.org/10.1007/s003000050302, 1998.
Möbius, J.: Isotope fractionation during nitrogen remineralization
(ammonification): Implications for nitrogen isotope biogeochemistry, Geochim.
Cosmochim. Ac., 105, 422–432, https://doi.org/10.1016/j.gca.2012.11.048,
2013.
Mongwe, N. P., Vichi, M., and Monteiro, P. M. S.: The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models, Biogeosciences, 15, 2851–2872, https://doi.org/10.5194/bg-15-2851-2018, 2018.
Mordy, C. W., Penny, D. M., and Sullivan, C. W.: Spatial distribution of
bacterioplankton biomass and production in the marginal ice-edge zone of the
Weddell-Scotia Sea during austral winter, Mar. Ecol. Prog. Ser., 122, 9–19,
https://doi.org/10.3354/meps122009, 1995.
Morel, F. M., Hudson, R. J., and Price, N. M.: Limitation of productivity by
trace metals in the sea, Limnol. Oceanogr., 36, 1742–1755,
https://doi.org/10.4319/lo.1991.36.8.1742, 1991.
Mtshali, T. N., Horsten, N. R., Thomalla, S. J., Ryan-Keogh, T. J.,
Nicholson, S. A., Roychoudhury, A. N., Bucciarelli, E., Sarthou, G.,
Tagliabue, A., and Monteiro, P. M.: Seasonal depletion of the dissolved iron
reservoirs in the sub-Antarctic zone of the Southern Atlantic Ocean, Geophys. Res. Lett., 46, 4386–4395, https://doi.org/10.1029/2018GL081355, 2019.
Murphy, J. and Riley, J. P.: A modified single solution method for the
determination of phosphate in natural waters, Anal. Chim. Acta, 27, 31–36,
https://doi.org/10.1016/S0003-2670(00)88444-5, 1962.
Nelson, D. M., Brzezinski, M. A., Sigmon, D. E., and Franck, V. M.: A
seasonal progression of Si limitation in the Pacific sector of the Southern
Ocean, Deep-Sea Res. Pt. II, 48, 3973–3995,
https://doi.org/10.1016/S0967-0645(01)00076-5, 2001.
Nicholson, S. A., Lévy, M., Jouanno, J., Capet, X., Swart, S., and
Monteiro, P. M.: Iron supply pathways between the surface and subsurface
waters of the Southern Ocean: from winter entrainment to summer storms,
Geophys. Res. Lett., 46, 14567–14575, https://doi.org/10.1029/2019GL084657,
2019.
Olson, R. J.: Differential photoinhibition of marine nitrifying bacteria: a
possible mechanism for the formation of the primary nitrite maximum, J. Mar.
Res., 39, 227–238, 1981.
Orsi, A. H., Whitworth, T., and Nowlin, W. D.: On the meridional extent and
fronts of the Antarctic Circumpolar Current, Deep-Sea Res. Pt. I, 42,
641–673, https://doi.org/10.1016/0967-0637(95)00021-W, 1995.
Painter, S. C., Patey, M. D., Tarran, G. A., and Torres-Valdés, S.:
Picoeukaryote distribution in relation to nitrate uptake in the oceanic
nitracline, Aquat. Microb. Ecol., 72, 195–213,
https://doi.org/10.3354/ame01695, 2014.
Paulot, F., Jacob, D. J., Johnson, M. T., Bell, T. G., Baker, A. R., Keene,
W. C., Lima, I. D., Doney, S. C., and Stock, C. A.: Global oceanic emission
of ammonia: Constraints from seawater and atmospheric observations, Global Biogeochem. Cy., 29, 1165–1178, https://doi.org/10.1002/2015GB005106, 2015.
Pausch, F., Bischof, K., and Trimborn, S.: Iron and manganese co-limit
growth of the Southern Ocean diatom Chaetoceros debilis, PLoS ONE, 14,
0221959, https://doi.org/10.1371/journal.pone.0221959, 2019.
Pearce, I., Davidson, A. T., Thomson, P. G., Wright, S., and Enden, R.:
Marine microbial ecology off East Antarctica (30–80∘ E): Rates
of bacterial and phytoplankton growth and grazing by heterotrophic protists,
Deep-Sea Res. Pt. II, 57, 849–862,
https://doi.org/10.1016/j.dsr2.2008.04.039, 2010.
Peng, X., Fuchsman, C. A., Jayakumar, A., Oleynik, S., Martens-Habbena, W.,
Devol, A. H., and Ward, B. B.: Ammonia and nitrite oxidation in the Eastern
Tropical North Pacific, Global Biogeochem. Cy., 29, 2034–2049,
https://doi.org/10.1002/2015GB005278, 2015.
Philibert, R., Waldron, H., and Clark, D.: A geographical and seasonal
comparison of nitrogen uptake by phytoplankton in the Southern Ocean, Ocean
Sci., 11, 251–267, https://doi.org/10.5194/os-11-251-2015, 2015.
Plate, T. and Heiberger, R.: abind: Combine multi-dimensional arrays v1.1, https://CRAN.R-project.org/package=abind, 2019.
Pomeroy, L. R. and Wiebe, W. J.: Temperature and substrates as interactive
limiting factors for marine heterotrophic bacteria, Aquat. Microb. Ecol., 23,
187–204, https://doi.org/10.3354/ame023187, 2001.
Prézelin, B. B., Hofmann, E. E., Mengelt, C., and Klinck, J. M.: The
linkage between Upper Circumpolar Deep Water (UCDW) and phytoplankton
assemblages on the west Antarctic Peninsula continental shelf, J. Mar. Res.,
58, 165–202, https://doi.org/10.1357/002224000321511133, 2000.
Price, N. M., Ahner, B. A., and Morel, F. M.: The equatorial Pacific Ocean:
Grazer-controlled phytoplankton populations in an iron-limited ecosystem 1,
Limnol. Oceanogr., 39, 520–534, https://doi.org/10.4319/lo.1994.39.3.0520,
1994.
Priddle, J., Nedwell, D. B., Whitehouse, M. J., Reay, D. S., Savidge, G.,
Gilpin, L. C., Murphy, E. J., and Ellis-Evans, J. C.: Re-examining the
Antarctic Paradox: speculation on the Southern Ocean as a nutrient-limited
system, Ann. Glaciol., 27, 661–668,
https://doi.org/10.3189/1998AoG27-1-661-668, 1998.
Primeau, F. W., Holzer, M., and DeVries, T.: Southern Ocean nutrient
trapping and the efficiency of the biological pump, J. Geophys. Res.-Oceans,
118, 2547–2564, https://doi.org/10.1002/jgrc.20181, 2013.
R Core Team: R: A language and environment for statistical computing, https://www.R-project.org/, 2020.
Raven, J. A.: The iron and molybdenum use efficiencies of plant growth with
different energy, carbon and nitrogen sources, New Phytol., 109, 279–287,
https://doi.org/10.1111/j.1469-8137.1988.tb04196.x, 1988.
Reay, D. S., Priddle, J., Nedwell, D. B., Whitehouse, M. J., Ellis-Evans, J.
C., Deubert, C., and Connelly, D. P.: Regulation by low temperature of
phytoplankton growth and nutrient uptake in the Southern Ocean, Mar. Ecol. Prog. Ser., 219, 51–64, https://doi.org/10.3354/meps219051, 2001.
Rembauville, M., Briggs, N., Ardyna, M., Uitz, J., Catala, P., Penkerc'h,
C., Poteau, A., Claustre, H., and Blain, S.: Plankton assemblage estimated
with BGC-Argo floats in the Southern Ocean: Implications for seasonal
successions and particle export, J. Geophys. Res.-Oceans, 122, 8278–8292,
https://doi.org/10.1002/2017JC013067, 2017.
Ren, H., Sigman, D. M., Thunell, R. C., and Prokopenko, M. G.: Nitrogen
isotopic composition of planktonic foraminifera from the modern ocean and
recent sediments, Limnol. Oceanogr., 57, 1011–1024,
https://doi.org/10.4319/lo.2012.57.4.1011, 2012.
Revilla, M., Alexander, J., and Glibert, P. M.: Urea analysis in coastal
waters: comparison of enzymatic and direct methods, Limnol. Oceanogr.-Meth., 3,
290–299, https://doi.org/10.4319/lom.2005.3.290, 2005.
Rintoul, S. R. and Trull, T. W.: Seasonal evolution of the mixed layer in
the Subantarctic Zone south of Australia, J. Geophys. Res.-Oceans, 106,
31447–31462, https://doi.org/10.1029/2000JC000329, 2001.
Sallée, J. B., Speer, K. G., and Rintoul, S. R.: Zonally asymmetric
response of the Southern Ocean mixed-layer depth to the Southern Annular
Mode, Nat. Geosci., 3, 273–279, https://doi.org/10.1038/ngeo812, 2010.
Sambrotto, R. N. and Mace, B. J.: Coupling of biological and physical
regimes across the Antarctic Polar Front as reflected by nitrogen production
and recycling, Deep-Sea Res. Pt. II, 47, 3339–3367,
https://doi.org/10.1016/S0967-0645(00)00071-0, 2000.
Santoro, A. E., Sakamoto, C. M., Smith, J. M., Plant, J. N., Gehman, A. L., Worden, A. Z., Johnson, K. S., Francis, C. A., and Casciotti, K. L.: Measurements of nitrite production in and around the primary nitrite maximum in the central California Current, Biogeosciences, 10, 7395–7410, https://doi.org/10.5194/bg-10-7395-2013, 2013.
Sarmiento, J. L. and Orr, J. C.: Three-dimensional simulations of the impact
of Southern Ocean nutrient depletion on atmospheric CO2 and ocean chemistry,
Limnol. Oceanogr., 36, 1928–1950, https://doi.org/10.4319/lo.1991.36.8.1928,
1991.
Sarmiento, J. L. and Toggweiler, J. R.: A new model for the role of the
oceans in determining atmospheric pCO2, Nature, 308, 621–624,
https://doi.org/10.1038/308621a0, 1984.
Sarmiento, J. L., Gruber, N., Brzezinski, M. A., and Dunne, J. P.:
High-latitude controls of thermocline nutrients and low latitude biological
productivity, Nature, 427, 56–60, https://doi.org/10.1038/nature02127,
2004.
Savoye, N., Dehairs, F., Elskens, M., Cardinal, D., Kopczyńska, E. E.,
Trull, T. W., Wright, S., Baeyens, W., and Griffiths, F. B.: Regional
variation of spring N-uptake and new production in the Southern Ocean,
Geophys. Res. Lett., 31, L03301, https://doi.org/10.1029/2003GL018946, 2004.
Schaafsma, F. L., Cherel, Y., Flores, H., Franeker, J. A., Lea, M. A.,
Raymond, B., and Putte, A. P.: Review: the energetic value of zooplankton
and nekton species of the Southern Ocean, Mar. Biol., 165, 1–35,
https://doi.org/10.1007/s00227-018-3386-z, 2018.
Sedwick, P. N., Bowie, A. R., and Trull, T. W.: Dissolved iron in the
Australian sector of the Southern Ocean (CLIVAR SR3 section): Meridional and
seasonal trends, Deep-Sea Res. Pt. I, 55, 911–925,
https://doi.org/10.1016/j.dsr.2008.03.011, 2008.
Semeneh, M., Dehairs, F., Elskens, M., Baumann, M. E. M., Kopczynska, E. E.,
Lancelot, C., and Goeyens, L.: Nitrogen uptake regime and phytoplankton
community structure in the Atlantic and Indian sectors of the Southern
Ocean, J. Mar. Syst., 17, 159–177,
https://doi.org/10.1016/S0924-7963(98)00036-0, 1998.
Serebrennikova, Y. M. and Fanning, K. A.: Nutrients in the Southern Ocean
GLOBEC region: Variations, water circulation, and cycling, Deep-Sea Res. Pt. II, 51, 1981–2002, https://doi.org/10.1016/j.dsr2.2004.07.023, 2004.
Shadwick, E. H., Trull, T. W., Tilbrook, B., Sutton, A. J., Schulz, E., and
Sabine, C. L.: Seasonality of biological and physical controls on surface
ocean CO2 from hourly observations at the Southern Ocean Time Series site
south of Australia, Global Biogeochem. Cy., 29, 223–238,
https://doi.org/10.1002/2014GB004906, 2015.
Shafiee, R. T., Snow, J. T., Zhang, Q., and Rickaby, R. E.: Iron
requirements and uptake strategies of the globally abundant marine
ammonia-oxidising archaeon, Nitrosopumilus maritimus SCM1, ISME J., 13,
2295–2305, https://doi.org/10.1038/s41396-019-0434-8, 2019.
Shiozaki, T., Fujiwara, A., Ijichi, M., Harada, N., Nishino, S., Nishi, S.,
Nagata, T., and Hamasaki, K.: Diazotroph community structure and the role of
nitrogen fixation in the nitrogen cycle in the Chukchi Sea (western Arctic
Ocean), Limnol. Oceanogr., 63, 2191–2205, https://doi.org/10.1002/lno.10933,
2018.
Sigman, D. M. and Boyle, E. A.: Glacial/interglacial variations in
atmospheric carbon dioxide, Nature, 407, 859–869,
https://doi.org/10.1038/35038000, 2000.
Sigman, D. M., Altabet, M. A., McCorkle, D. C., Francois, R., and Fischer,
G.: The δ 15N of nitrate in the southern ocean: Consumption of
nitrate in surface waters, Global Biogeochem. Cy., 13, 1149–1166,
https://doi.org/10.1029/1999GB900038, 1999.
Smart, S. M., Fawcett, S. E., Thomalla, S. J., Weigand, M. A., Reason, C. J.
C., and Sigman, D. M.: Isotopic evidence for nitrification in the Antarctic
winter mixed layer, Global Biogeochem. Cy., 29, 427–445,
https://doi.org/10.1002/2014GB005013, 2015.
Smart, S. M., Fawcett, S. E., Ren, H., Schiebel, R., Tompkins, E. M.,
Martínez-García, A., Stirnimann, L., Roychoudhury, A., Haug, G.
H., and Sigman, D. M.: The Nitrogen Isotopic Composition of Tissue and
Shell-Bound Organic Matter of Planktic Foraminifera in Southern Ocean
Surface Waters, Geochem. Geophy. Geosy., 21, e2019GC008440,
https://doi.org/10.1029/2019GC008440, 2020.
Smith, S.: Biogeochemical data – 2017 Winter Cruise Atlantic-Indian Southern Ocean, Zenodo [data set], https://doi.org/10.5281/zenodo.3884606, 2020.
Smith, J. M., Chavez, F. P., and Francis, C. A.: Ammonium Uptake by
Phytoplankton Regulates Nitrification in the Sunlit Ocean, PLoS ONE, 9,
108173, https://doi.org/10.1371/journal.pone.0108173, 2014.
Smith Jr., W. O. and Harrison, W. G.: New production in polar regions: the
role of environmental controls, Deep-Sea Res., 38, 1463–1479,
https://doi.org/10.1016/0198-0149(91)90085-T, 1991.
Smith Jr., W. O., Marra, J., Hiscock, M. R. and Barber, R. T.: The seasonal
cycle of phytoplankton biomass and primary productivity in the Ross Sea,
Antarctica, Deep-Sea Res. Pt. II, 47, 3119–3140,
https://doi.org/10.1016/S0967-0645(00)00061-8, 2000.
Smith Jr., W. O. and Lancelot, C.: Bottom-up versus top-down control in
phytoplankton of the Southern Ocean, Antarct. Sci., 16, 531,
https://doi.org/10.1017/S0954102004002305, 2004.
Soares, M. A., Bhaskar, P. V., Naik, R. K., Dessai, D., George, J., Tiwari,
M., and Anilkumar, N.: Latitudinal δ13C and δ15N variations
in particulate organic matter (POM) in surface waters from the Indian ocean
sector of Southern Ocean and the Tropical Indian Ocean in 2012, Deep-Sea Res. Pt. II, 118, 186–196, https://doi.org/10.1016/j.dsr2.2015.06.009, 2015.
Sokolov, S. and Rintoul, S. R.: On the relationship between fronts of the
Antarctic Circumpolar Current and surface chlorophyll concentrations in the
Southern Ocean, J. Geophys. Res.-Oceans, 112, C07030,
https://doi.org/10.1029/2006JC004072, 2007.
Sosik, H. M. and Olson, R. J.: Phytoplankton and iron limitation of
photosynthetic efficiency in the Southern Ocean during late summer, Deep-Sea Res. Pt. I, 49, 1195–1216, https://doi.org/10.1016/S0967-0637(02)00015-8,
2002.
Steinberg, D. K. and Saba, G. K.: Nitrogen consumption and metabolism in
marine zooplankton, in: Nitrogen in the marine environment, edited by:
Capone, D. G., Bronk, D. A., Mulholland, M. R., and Carpenter, E. J.,
Elsevier Inc, 1135–1196,
https://doi.org/10.1016/B978-0-12-372522-6.00026-8, 2008.
Strickland, J. D. H. and Parsons, T. R. (Eds.): A practical handbook of seawater analysis, 2nd edition, Fisheries Research Board of Canada, Bulletin 167, Ottawa, 1972.
Sunda, W. G. and Huntsman, S. A.: Interrelated influence of iron, light and
cell size on marine phytoplankton growth, Nature, 390, 389–392,
https://doi.org/10.1038/37093, 1997.
Tagliabue, A., Mtshali, T., Aumont, O., Bowie, A. R., Klunder, M. B., Roychoudhury, A. N., and Swart, S.: A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean, Biogeosciences, 9, 2333–2349, https://doi.org/10.5194/bg-9-2333-2012, 2012.
Tagliabue, A., Sallée, J. B., Bowie, A. R., Lévy, M., Swart, S., and
Boyd, P. W.: Surface-water iron supplies in the Southern Ocean sustained by
deep winter mixing, Nat. Geosci., 7, 314–320,
https://doi.org/10.1038/ngeo2101, 2014.
Takao, S., Hirawake, T., Wright, S. W., and Suzuki, K.: Variations of net primary productivity and phytoplankton community composition in the Indian sector of the Southern Ocean as estimated from ocean color remote sensing data, Biogeosciences, 9, 3875–3890, https://doi.org/10.5194/bg-9-3875-2012, 2012.
Tevlin, A. G. and Murphy, J. G.: Atmospheric Ammonia: Measurements,
Modeling, and Chemistry–Climate Interactions, in: Advances In Atmospheric
Chemistry-Volume 2: Organic Oxidation And Multiphase Chemistry, edited by:
Barker, J. R., Steiner, A. L., and Wallington, T. J., 2, 1,
https://doi.org/10.1142/9789813271838_ 0001, 2019.
Thomalla, S. J., Waldron, H. N., Lucas, M. I., Read, J. F., Ansorge, I. J., and Pakhomov, E.: Phytoplankton distribution and nitrogen dynamics in the southwest indian subtropical gyre and Southern Ocean waters, Ocean Sci., 7, 113–127, https://doi.org/10.5194/os-7-113-2011, 2011.
Timmermans, K. R., Van Leeuwe, M. A., De Jong, J. T. M., McKay, R. M. L.,
Nolting, R. F., Witte, H. J., Van Ooyen, J., Swagerman, M. J. W.,
Kloosterhuis, H., and De Baar, H. J.: Iron stress in the Pacific region of
the Southern Ocean: evidence from enrichment bioassays, Mar. Ecol. Prog. Ser.,
166, 27–41, https://doi.org/10.3354/meps166027, 1998.
Tréguer, P. and Jacques, G.: Review Dynamics of nutrients and
phytoplankton, and fluxes of carbon, nitrogen and silicon in the Antarctic
Ocean, in: Weddell Sea Ecology, edited by: Hempel, G., Springer, Berlin,
Heidelberg, 149–162, https://doi.org/10.1007/978-3-642-77595-6, 1992.
Treibergs, L. A., Fawcett, S. E., Lomas, M. W., and Sigman, D. M.: Nitrogen
isotopic response of prokaryotic and eukaryotic phytoplankton to nitrate
availability in Sargasso Sea surface waters, Limnol. Oceanogr., 59, 972–985,
https://doi.org/10.4319/lo.2014.59.3.0972, 2014.
Trull, T. W., Davies, D., and Casciotti, K.: Insights into nutrient
assimilation and export in naturally iron-fertilized waters of the Southern
Ocean from nitrogen, carbon and oxygen isotopes, Deep-Sea Res. Pt. II, 55,
820–840, https://doi.org/10.1016/j.dsr2.2007.12.035, 2008.
Tupas, L. and Koike, I.: Amino acid and ammonium utilization by
heterotrophic marine bacteria grown in enriched seawater, Limnol. Oceanogr.,
35, 1145–1155, https://doi.org/10.4319/lo.1990.35.5.1145, 1990.
Utermöhl, H.: Zur vervollkommnung der quantitativen
phytoplankton-methodik: mit 1 Tabelle und 15 abbildungen im Text und auf 1
Tafel, Internationale Vereinigung für theoretische und angewandte
Limnologie: Mitteilungen, 9, 1–38, 1958.
Vaulot, D., Courties, C., and Partensky, F.: A simple method to preserve
oceanic phytoplankton for flow cytometric analyses, Cytometry, 10, 629–635,
https://doi.org/10.1002/cyto.990100519, 1989.
Viljoen, J. J., Weir, I., Fietz, S., Cloete, R., Loock, J., Philibert, R.,
and Roychoudhury, A. N.: Links between the phytoplankton community
composition and trace metal distribution in summer surface waters of the
Atlantic southern ocean, Front. Mar. Sci., 6, 295,
https://doi.org/10.3389/fmars.2019.00295, 2019.
Volk, T. and Hoffert, M. I.: Ocean carbon pumps: Analysis of relative
strengths and efficiencies in ocean-driven atmospheric CO2 changes, in: The
carbon cycle and atmospheric CO2: natural variations Archean to present,
edited by: Sundquist, E., and Broecker, W., 32, 99–110,
https://doi.org/10.1029/GM032p0099, 1985.
Wadley, M. R., Jickells, T. D., and Heywood, K. J.: The role of iron sources
and transport for Southern Ocean productivity, Deep-Sea Res. Pt. I, 87,
82–94, https://doi.org/10.1016/j.dsr.2014.02.003, 2014.
Wan, X. S., Sheng, H. X., Dai, M., Zhang, Y., Shi, D., Trull, T. W., Zhu,
Y., Lomas, M. W., and Kao, S. J.: Ambient nitrate switches the ammonium
consumption pathway in the euphotic ocean, Nat. Commun., 9, 1–9,
https://doi.org/10.1038/s41467-018-03363-0, 2018.
Ward, B. B.: Light and substrate concentration relationships with marine
ammonium assimilation and oxidation rates, Mar. Chem., 16, 301–316,
https://doi.org/10.1016/0304-4203(85)90052-0, 1985.
Ward, B. B.: Temporal variability in nitrification rates and related
biogeochemical factors in Monterey Bay, Mar. Ecol. Prog. Ser., 292, 97–109,
https://doi.org/10.3354/meps29207, 2005.
Ward, B. B.: Measurement and distribution of nitrification rates in the oceans, Method Enzymol., 486, 307–323, https://doi.org/10.1016/B978-0-12-381294-0.00013-4, 2011.
Weber, L. H. and El-Sayed, S. Z.: Contributions of the net, nano-and
picoplankton to the phytoplankton standing crop and primary productivity in
the Southern Ocean, J. Plankton Res., 9, 973–994,
https://doi.org/10.1093/plankt/9.5.973, 1987.
Wei, T. and Simko, V.: R package “corrplot”: Visualization of a
Correlation Matrix v0.84, https://github.com/taiyun/corrplot, 2017.
Weir, I., Fawcett, S., Smith, S., Walker, D., Bornman, T., and Fietz, S.:
Winter biogenic silica and diatom distributions in the Indian sector of the
Southern Ocean, Deep-Sea Res. Pt. I, 166, 103421,
https://doi.org/10.1016/j.dsr.2020.103421, 2020.
Welschmeyer, N. A.: Fluorometric analysis of chlorophyll a in the presence
of chlorophyll b and pheopigments, Limnol. Oceanogr., 39, 1985–1992,
https://doi.org/10.4319/lo.1994.39.8.1985, 1994.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag
New York, ISBN 978-3-319-24277-4, 2016.
Wickham, H. and Seidel, D.: scales: scale functions for visualisation, R package version 1.1.1, https://CRAN.R-project.org/package=scales, 2020.
Wood, S.: Generalized Additive Models: An Introduction with R, 2nd edition, Chapman and Hall/CRC, ISBN 9781498728331, 2017.
Xu, G., Chen, L., Zhang, M., Zhang, Y., Wang, J., and Lin, Q.: Year-round
records of bulk aerosol composition over the Zhongshan Station, Coastal East
Antarctica, Air. Qual. Atmos. Hlth., 12, 271–288,
https://doi.org/10.1007/s11869-018-0642-9, 2019.
Yool, A., Martin, A. P., Fernández, C., and Clark, D. R.: The
significance of nitrification for oceanic new production, Nature, 447,
999–1002, https://doi.org/10.1038/nature05885, 2007.
Zakem, E. J., Al-Haj, A., Church, M. J., Van Dijken, G. L., Dutkiewicz, S.,
Foster, S. Q., Fulweiler, R. W., Mills, M. M., and Follows, M. J.:
Ecological control of nitrite in the upper ocean, Nat. Commun., 9, 1–13,
https://doi.org/10.1038/s41467-018-03553-w, 2018.
Zhou, J., Delille, B., Kaartokallio, H., Kattner, G., Kuosa, H., Tison, J.
L., Autio, R., Dieckmann, G. S., Evers, K. U., Jørgensen, L., and
Kennedy, H.: Physical and bacterial controls on inorganic nutrients and
dissolved organic carbon during a sea ice growth and decay experiment, Mar.
Chem., 166, 59–69, https://doi.org/10.1016/j.marchem.2014.09.013, 2014.
Short summary
Ammonium is a crucial yet poorly understood component of the Southern Ocean nitrogen cycle. We attribute our finding of consistently high ammonium concentrations in the winter mixed layer to limited ammonium consumption and sustained ammonium production, conditions under which the Southern Ocean becomes a source of carbon dioxide to the atmosphere. From similar data collected over an annual cycle, we propose a seasonal cycle for ammonium in shallow polar waters – a first for the Southern Ocean.
Ammonium is a crucial yet poorly understood component of the Southern Ocean nitrogen cycle. We...
Altmetrics
Final-revised paper
Preprint