Articles | Volume 20, issue 12
https://doi.org/10.5194/bg-20-2425-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-2425-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of deoxygenation and warming on global marine species in the 21st century
Anne L. Morée
CORRESPONDING AUTHOR
Climate and Environmental Physics, Physics Institute, University of
Bern, Bern, 3012, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern,
3012, Switzerland
Tayler M. Clarke
Institute for the Oceans and Fisheries, The University of British
Columbia, Vancouver, BC, V6T 1Z4, Canada
William W. L. Cheung
Institute for the Oceans and Fisheries, The University of British
Columbia, Vancouver, BC, V6T 1Z4, Canada
Thomas L. Frölicher
Climate and Environmental Physics, Physics Institute, University of
Bern, Bern, 3012, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern,
3012, Switzerland
Related authors
Anne L. Morée, Fabrice Lacroix, William W. L. Cheung, and Thomas L. Frölicher
Biogeosciences, 22, 1115–1133, https://doi.org/10.5194/bg-22-1115-2025, https://doi.org/10.5194/bg-22-1115-2025, 2025
Short summary
Short summary
Using novel Earth system model simulations and applying the Aerobic Growth Index, we show that only about half of the habitat loss for marine species is realized when temperature stabilization is initially reached. The maximum habitat loss happens over a century after peak warming in a temperature overshoot scenario peaking at 2 °C before stabilizing at 1.5 °C. We also emphasize that species adaptation may be key in mitigating the long-term impacts of temperature stabilization and overshoot.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Anne L. Morée, Jörg Schwinger, Ulysses S. Ninnemann, Aurich Jeltsch-Thömmes, Ingo Bethke, and Christoph Heinze
Clim. Past, 17, 753–774, https://doi.org/10.5194/cp-17-753-2021, https://doi.org/10.5194/cp-17-753-2021, 2021
Short summary
Short summary
This modeling study of the Last Glacial Maximum (LGM, ~ 21 000 years ago) ocean explores the biological and physical changes in the ocean needed to satisfy marine proxy records, with a focus on the carbon isotope 13C. We estimate that the LGM ocean may have been up to twice as efficient at sequestering carbon and nutrients at depth as compared to preindustrial times. Our work shows that both circulation and biogeochemical changes must have occurred between the LGM and preindustrial times.
Anne L. Morée and Jörg Schwinger
Earth Syst. Sci. Data, 12, 2971–2985, https://doi.org/10.5194/essd-12-2971-2020, https://doi.org/10.5194/essd-12-2971-2020, 2020
Short summary
Short summary
This dataset consists of eight variables needed in ocean modelling and is made to support modelers of the Last Glacial Maximum (LGM; 21 000 years ago) ocean. The LGM is a time of specific interest for climate researchers. The data are based on the results of state-of-the-art climate models and are the best available estimate of these variables for the LGM. The dataset shows clear spatial patterns but large uncertainties and is presented in a way that facilitates applications in any ocean model.
Linus Vogt, Casimir de Lavergne, Jean-Baptiste Sallée, Lester Kwiatkowski, Thomas L. Frölicher, and Jens Terhaar
EGUsphere, https://doi.org/10.21203/rs.3.rs-3982037/v2, https://doi.org/10.21203/rs.3.rs-3982037/v2, 2025
Short summary
Short summary
Ocean heat uptake (OHU) accounts for over 90% of the Earth's excess energy storage due to climate change, but future (OHU) projections strongly differ between climate models. Here, we reveal an observational constraint on future OHU using historical Antarctic sea ice extent observations. This emergent constraint is based on a coupling between sea ice, deep and surface ocean temperatures, and cloud feedback. It implies an upward correction of 2024–2100 global OHU projections by up to 14%.
Anne L. Morée, Fabrice Lacroix, William W. L. Cheung, and Thomas L. Frölicher
Biogeosciences, 22, 1115–1133, https://doi.org/10.5194/bg-22-1115-2025, https://doi.org/10.5194/bg-22-1115-2025, 2025
Short summary
Short summary
Using novel Earth system model simulations and applying the Aerobic Growth Index, we show that only about half of the habitat loss for marine species is realized when temperature stabilization is initially reached. The maximum habitat loss happens over a century after peak warming in a temperature overshoot scenario peaking at 2 °C before stabilizing at 1.5 °C. We also emphasize that species adaptation may be key in mitigating the long-term impacts of temperature stabilization and overshoot.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024, https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Timothée Bourgeois, Olivier Torres, Friederike Fröb, Aurich Jeltsch-Thömmes, Giang T. Tran, Jörg Schwinger, Thomas L. Frölicher, Jean Negrel, David Keller, Andreas Oschlies, Laurent Bopp, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2768, https://doi.org/10.5194/egusphere-2024-2768, 2024
Short summary
Short summary
Anthropogenic greenhouse gas emissions significantly impact ocean ecosystems through climate change and acidification, leading to either progressive or abrupt changes. This study maps the crossing of physical and ecological limits for various ocean impact metrics under three emission scenarios. Using Earth system models, we identify when these limits are exceeded, highlighting the urgent need for ambitious climate action to safeguard the world's oceans and ecosystems.
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024, https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Short summary
Phytoplankton play a crucial role in marine ecosystems. However, climate change's impact on phytoplankton biomass remains uncertain, particularly in the Southern Ocean. In this region, phytoplankton biomass within the water column is likely to remain stable in response to climate change, as supported by models. This stability arises from a shallower mixed layer, favoring phytoplankton growth but also increasing zooplankton grazing due to phytoplankton concentration near the surface.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Natacha Le Grix, Jakob Zscheischler, Keith B. Rodgers, Ryohei Yamaguchi, and Thomas L. Frölicher
Biogeosciences, 19, 5807–5835, https://doi.org/10.5194/bg-19-5807-2022, https://doi.org/10.5194/bg-19-5807-2022, 2022
Short summary
Short summary
Compound events threaten marine ecosystems. Here, we investigate the potentially harmful combination of marine heatwaves with low phytoplankton productivity. Using satellite-based observations, we show that these compound events are frequent in the low latitudes. We then investigate the drivers of these compound events using Earth system models. The models share similar drivers in the low latitudes but disagree in the high latitudes due to divergent factors limiting phytoplankton production.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Anne L. Morée, Jörg Schwinger, Ulysses S. Ninnemann, Aurich Jeltsch-Thömmes, Ingo Bethke, and Christoph Heinze
Clim. Past, 17, 753–774, https://doi.org/10.5194/cp-17-753-2021, https://doi.org/10.5194/cp-17-753-2021, 2021
Short summary
Short summary
This modeling study of the Last Glacial Maximum (LGM, ~ 21 000 years ago) ocean explores the biological and physical changes in the ocean needed to satisfy marine proxy records, with a focus on the carbon isotope 13C. We estimate that the LGM ocean may have been up to twice as efficient at sequestering carbon and nutrients at depth as compared to preindustrial times. Our work shows that both circulation and biogeochemical changes must have occurred between the LGM and preindustrial times.
Anne L. Morée and Jörg Schwinger
Earth Syst. Sci. Data, 12, 2971–2985, https://doi.org/10.5194/essd-12-2971-2020, https://doi.org/10.5194/essd-12-2971-2020, 2020
Short summary
Short summary
This dataset consists of eight variables needed in ocean modelling and is made to support modelers of the Last Glacial Maximum (LGM; 21 000 years ago) ocean. The LGM is a time of specific interest for climate researchers. The data are based on the results of state-of-the-art climate models and are the best available estimate of these variables for the LGM. The dataset shows clear spatial patterns but large uncertainties and is presented in a way that facilitates applications in any ocean model.
Cited articles
Andrews, O. D., Bindoff, N. L., Halloran, P. R., Ilyina, T., and Le Quéré, C.: Detecting an external influence on recent changes in oceanic oxygen using an optimal fingerprinting method, Biogeosciences, 10, 1799–1813, https://doi.org/10.5194/bg-10-1799-2013, 2013.
Baumann, H., Wallace, R. B., Tagliaferri, T., and Gobler, C. J.: Large
Natural pH, CO2 and O2 Fluctuations in a Temperate Tidal Salt Marsh on Diel,
Seasonal, and Interannual Time Scales, Estuar. Coast., 38, 220–231,
https://doi.org/10.1007/s12237-014-9800-y, 2015.
Benson, B. B. and Krause, D.: The concentration and isotopic fractionation
of oxygen dissolved in freshwater and seawater in equilibrium with the
atmosphere, Limnol. Oceanogr., 29, 620–632,
https://doi.org/10.4319/lo.1984.29.3.0620, 1984.
Bindoff, N. L., Cheung, W. W. L., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., Hilmi, N., Jiao, N., Karim, M. S., Levin, L., O'Donoghue, S., Purca Cuicapusa, S. R., Rinkevich, B., Suga, T., Tagliabue, A., and Williamson, P.: Changing Ocean, Marine Ecosystems, and Dependent Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate , edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 447–587. https://doi.org/10.1017/9781009157964.007, 2019.
Bittig, H., Körtzinger, A., Johnson, K., Claustre, H., Emerson, S.,
Fennel, K., Garcia, H., Gilbert, D., Gruber, N., Kang, D.-J., Naqvi, W.,
Prakash, S., Riser, S., Thierry, V., Tilbrook, B., Uchida, H., Ulloa, O.,
and Xing, X.: SCOR WG 142: Quality Control Procedures for Oxygen and Other
Biogeochemical Sensors on Floats and Gliders. Recommendations on the
conversion between oxygen quantities for Bio-Argo floats and other
autonomous sensor platforms, Ifremer, https://doi.org/10.13155/45915, 2018.
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013.
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols,
M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Ghattas, J., Lebas, N.,
Lurton, T., Mellul, L., Musat, I., Mignot, J., and Cheruy, F.: IPSL
IPSL-CM6A-LR model output prepared for CMIP6 CMIP piControl, Earth System
Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.5251, 2018a.
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols,
M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Ghattas, J., Lebas, N.,
Lurton, T., Mellul, L., Musat, I., Mignot, J., and Cheruy, F.: IPSL
IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical,
https://doi.org/10.22033/ESGF/CMIP6.5195, 2018b.
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols,
M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Dupont, E., and Lurton,
T.: IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP ssp585,
https://doi.org/10.22033/ESGF/CMIP6.5271, 2019a.
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols,
M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Dupont, E., and Lurton,
T.: IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP ssp126,
Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.5262, 2019b.
Boyd, P. W., Collins, S., Dupont, S., Fabricius, K., Gattuso, J.-P.,
Havenhand, J., Hutchins, D. A., Riebesell, U., Rintoul, M. S., Vichi, M.,
Biswas, H., Ciotti, A., Gao, K., Gehlen, M., Hurd, C. L., Kurihara, H.,
McGraw, C. M., Navarro, J. M., Nilsson, G. E., Passow, U., and Pörtner,
H.-O.: Experimental strategies to assess the biological ramifications of
multiple drivers of global ocean change – A review, Global Change Biol.,
24, 2239–2261, https://doi.org/10.1111/gcb.14102, 2018.
Boyer, T. P., Garcia, H. E., Locarnini, R. A., Zweng, M. M., Mishonov, A.
V., Reagan, J. R., Weathers, K. W., Baranova, O. K., Seidov, D., and
Smolyar, I. V.: World Ocean Atlas 2018 (oxygen, salinity and temperature),
[data set], https://accession.nodc.noaa.gov/NCEI-WOA18 (last access: 18 August 2021) 2018.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P.,
Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K.,
Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C.,
Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M.,
Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and
coastal waters, Science, 359, eaam7240, https://doi.org/10.1126/science.aam7240, 2018.
Bryndum-Buchholz, A., Tittensor, D. P., Blanchard, J. L., Cheung, W. W. L.,
Coll, M., Galbraith, E. D., Jennings, S., Maury, O., and Lotze, H. K.:
Twenty-first-century climate change impacts on marine animal biomass and
ecosystem structure across ocean basins, Global Change Biol., 25, 459–472,
https://doi.org/10.1111/gcb.14512, 2019.
Buchanan, P. J. and Tagliabue, A.: The Regional Importance of Oxygen Demand
and Supply for Historical Ocean Oxygen Trends, Geophys. Res. Lett.,
48, e2021GL094797, https://doi.org/10.1029/2021GL094797, 2021.
Cabré, A., Marinov, I., Bernardello, R., and Bianchi, D.: Oxygen minimum zones in the tropical Pacific across CMIP5 models: mean state differences and climate change trends, Biogeosciences, 12, 5429–5454, https://doi.org/10.5194/bg-12-5429-2015, 2015.
Casanueva, A., Herrera, S., Iturbide, M., Lange, S., Jury, M., Dosio, A.,
Maraun, D., and Gutiérrez, J. M.: Testing bias adjustment methods for
regional climate change applications under observational uncertainty and
resolution mismatch, Atmos. Sci. Lett., 21, e978,
https://doi.org/10.1002/asl.978, 2020.
Cheung, W. W., Lam, V. W., and Pauly, D.: Dynamic bioclimate envelope model to predict climate-induced changes in distribution of marine fishes and invertebrates. (Modelling present and climate-shifted distributions of marine fishes and invertebrates, Fisheries Centre Research Report, Issue, Fisheries Centre, University of British Columbia, ISSN 1198-6727, 2008.
Cheung, W. W. L., Reygondeau, G., and Frölicher, T. L.: Large benefits
to marine fisheries of meeting the 1.5 ∘C global warming target, Science, 354,
1591–1594, https://doi.org/10.1126/science.aag2331, 2016.
Cheung, W. W. L., Dunne, J., Sarmiento, J. L., and Pauly, D.: Integrating
ecophysiology and plankton dynamics into projected maximum fisheries catch
potential under climate change in the Northeast Atlantic, ICES J. Mar. Sci., 68, 1008–1018, https://doi.org/10.1093/icesjms/fsr012, 2011.
Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Watson, R.,
and Pauly, D.: Projecting global marine biodiversity impacts under climate
change scenarios, Fish Fish., 10, 235–251,
https://doi.org/10.1111/j.1467-2979.2008.00315.x, 2009.
Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Watson, R.,
Zeller, D., and Pauly, D.: Large-scale redistribution of maximum fisheries
catch potential in the global ocean under climate change, Global Change Biol., 16, 24–35, https://doi.org/10.1111/j.1365-2486.2009.01995.x, 2010.
Cheung, W. W. L., Frölicher, T. L., Lam, V. W. Y., Oyinlola, M. A.,
Reygondeau, G., Sumaila, U. R., Tai, T. C., Teh, L. C. L., and Wabnitz, C.
C. C.: Marine high temperature extremes amplify the impacts of climate
change on fish and fisheries, Sci. Adv., 7, eabh0895,
https://doi.org/10.1126/sciadv.abh0895, 2021.
Clarke, T. M., Wabnitz, C. C. C., Striegel, S., Frölicher, T. L.,
Reygondeau, G., and Cheung, W. W. L.: Aerobic Growth Index (AGI): an index
to understand the impacts of ocean warming and deoxygenation on global
marine fisheries resources, Prog. Oceanogr., 195, 102588,
https://doi.org/10.1016/j.pocean.2021.102588, 2021.
Close, C., Cheung, W. L., Hodgson, S., Lam, V., Watson, R., and Pauly, D.:
Distribution ranges of commercial fishes and invertebrates, edited by: Palomares, M. L. D., Stergiou, K. I., and Pauly, D., Fishes in Databases and Ecosystems, Fisheries Centre Research Reports, 14, 27–37, Fisheries Centre, University of British Columbia, ISSN 1198-6727, 2006.
Cocco, V., Joos, F., Steinacher, M., Frölicher, T. L., Bopp, L., Dunne, J., Gehlen, M., Heinze, C., Orr, J., Oschlies, A., Schneider, B., Segschneider, J., and Tjiputra, J.: Oxygen and indicators of stress for marine life in multi-model global warming projections, Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, 2013.
Collins, M., Truebano, M., Verberk, W. C. E. P., and Spicer, J. I.: Do
aquatic ectotherms perform better under hypoxia after warm acclimation?,
J. Exp. Biol., 224, jeb232512, https://doi.org/10.1242/jeb.232512, 2021.
Collins, S., Whittaker, H., and Thomas, M. K.: The need for unrealistic
experiments in Global Change Biologie, Curr. Opin. Microbiol., 68,
102151, https://doi.org/10.1016/j.mib.2022.102151, 2022.
Deser, C., Alexander, M. A., Xie, S.-P., and Phillips, A. S.: Sea Surface
Temperature Variability: Patterns and Mechanisms, Annu. Rev. Mar. Sci., 2, 115–143, https://doi.org/10.1146/annurev-marine-120408-151453, 2009.
Deutsch, C., Penn, J. L., and Seibel, B.: Metabolic trait diversity shapes
marine biogeography, Nature, 585, 557–562, https://doi.org/10.1038/s41586-020-2721-y, 2020.
Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O., and Huey, R. B.:
Climate change tightens a metabolic constraint on marine habitats, Science,
348, 1132, https://doi.org/10.1126/science.aaa1605, 2015.
Doney, S. C., Ruckelshaus, M., Emmett Duffy, J., Barry, J. P., Chan, F.,
English, C. A., Galindo, H. M., Grebmeier, J. M., Hollowed, A. B., Knowlton,
N., Polovina, J., Rabalais, N. N., Sydeman, W. J., and Talley, L. D.:
Climate Change Impacts on Marine Ecosystems, Annu. Rev. Mar.
Sci., 4, 11–37, https://doi.org/10.1146/annurev-marine-041911-111611, 2011.
Enns, T., Scholander, P. F., and Bradstreet, E. D.: Effect of Hydrostatic
Pressure on Gases Dissolved in Water, J. Phys. Chem., 69,
389–391, https://doi.org/10.1021/j100886a005, 1965.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fernandes, J. A., Cheung, W. W. L., Jennings, S., Butenschön, M., de
Mora, L., Frölicher, T. L., Barange, M., and Grant, A.: Modelling the
effects of climate change on the distribution and production of marine
fishes: accounting for trophic interactions in a dynamic bioclimate envelope
model, Global Change Biol., 19, 2596–2607,
https://doi.org/10.1111/gcb.12231, 2013.
Frölicher, T. L. and Laufkötter, C.: Emerging risks from marine heat
waves, Nat. Commun., 9, 650, https://doi.org/10.1038/s41467-018-03163-6, 2018.
Frölicher, T. L., Joos, F., Plattner, G. K., Steinacher, M., and Doney,
S. C.: Natural variability and anthropogenic trends in oceanic oxygen in a
coupled carbon cycle–climate model ensemble, Global Biogeochem. Cy.,
23, GB1003, https://doi.org/10.1029/2008GB003316, 2009.
Frölicher, T. L., Aschwanden, M. T., Gruber, N., Jaccard, S. L., Dunne,
J. P., and Paynter, D.: Contrasting Upper and Deep Ocean Oxygen Response to
Protracted Global Warming, Global Biogeochem. Cy., 34, e2020GB006601,
https://doi.org/10.1029/2020GB006601, 2020.
Garcia, H. E. and Gordon, L. I.: Oxygen solubility in seawater: Better
fitting equations, Limnol. Oceanogr., 37, 1307–1312,
https://doi.org/10.4319/lo.1992.37.6.1307, 1992.
Garcia, H. E., Weathers, K. W., Paver, C. R., Smolyar, I. V., Boyer, T. P.,
Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov,
D., and Reagan, J. R.: World Ocean Atlas 2018, in: Dissolved Oxygen,
Apparent Oxygen Utilization, and Dissolved Oxygen Saturation,
Mishonov Technical Ed., NOAA Atlas NESDIS 83, 38 pp., 2019.
García-Molinos, J., Halpern, Benjamin S., Schoeman, David S., Brown,
Christopher J., Kiessling, W., Moore, Pippa J., Pandolfi, John M.,
Poloczanska, E. S., Richardson, A. J., and Burrows, M. T.:
Climate velocity and the future global redistribution of marine
biodiversity, Nat. Clim. Change, 6, 83–88, https://doi.org/10.1038/nclimate2769, 2016.
Glueckauf, E.: The Composition of Atmospheric Air, in: Compendium of
Meteorology: Prepared under the Direction of the Committee on the Compendium
of Meteorology, edited by: Byers, H. R., Landsberg, H. E., Wexler, H.,
Haurwitz, B., Spilhaus, A. F., Willett, H. C., Houghton, H. G., and Malone,
T. F., American Meteorological Society, Boston, MA, 3–10,
https://doi.org/10.1007/978-1-940033-70-9_ 1, 1951.
Good, P., Sellar, A., Tang, Y., Rumbold, S., Ellis, R., Kelley, D., and
Kuhlbrodt, T.: MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP
ssp126, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6333,
2019a.
Good, P., Sellar, A., Tang, Y., Rumbold, S., Ellis, R., Kelley, D., and
Kuhlbrodt, T.: MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP
ssp585, https://doi.org/10.22033/ESGF/CMIP6.6405, 2019b.
Gotelli, N. J., Moyes, F., Antão, L. H., Blowes, S. A., Dornelas, M.,
McGill, B. J., Penny, A., Schipper, A. M., Shimadzu, H., Supp, S. R.,
Waldock, C. A., and Magurran, A. E.: Long-term changes in temperate marine
fish assemblages are driven by a small subset of species, Global Change Biol., 28, 46–53, https://doi.org/10.1111/gcb.15947, 2021.
Grégoire, M., Garçon, V., Garcia, H., Breitburg, D., Isensee, K.,
Oschlies, A., Telszewski, M., Barth, A., Bittig, H. C., Carstensen, J.,
Carval, T., Chai, F., Chavez, F., Conley, D., Coppola, L., Crowe, S.,
Currie, K., Dai, M., Deflandre, B., Dewitte, B., Diaz, R., Garcia-Robledo,
E., Gilbert, D., Giorgetti, A., Glud, R., Gutierrez, D., Hosoda, S., Ishii,
M., Jacinto, G., Langdon, C., Lauvset, S. K., Levin, L. A., Limburg, K. E.,
Mehrtens, H., Montes, I., Naqvi, W., Paulmier, A., Pfeil, B., Pitcher, G.,
Pouliquen, S., Rabalais, N., Rabouille, C., Recape, V., Roman, M., Rose, K.,
Rudnick, D., Rummer, J., Schmechtig, C., Schmidtko, S., Seibel, B., Slomp,
C., Sumalia, U. R., Tanhua, T., Thierry, V., Uchida, H., Wanninkhof, R., and
Yasuhara, M.: A Global Ocean Oxygen Database and Atlas for Assessing and
Predicting Deoxygenation and Ocean Health in the Open and Coastal Ocean,
Front. Mar. Sci., 8, https://doi.org/10.3389/fmars.2021.724913, 2021.
Gruber, N., Boyd, P. W., Frölicher, T. L., and Vogt, M.: Biogeochemical
extremes and compound events in the ocean, Nature, 600, 395-407,
10.1038/s41586-021-03981-7, 2021.
Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W., and
Zelinka, M.: Climate simulations: recognize the 'hot model' problem, Nature,
605, 26–29, https://doi.org/10.1038/d41586-022-01192-2, 2022.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896, 2021.
Ito, T., Minobe, S., Long, M. C., and Deutsch, C.: Upper ocean O2 trends:
1958–2015, Geophys. Res. Lett., 44, 4214–4223,
https://doi.org/10.1002/2017GL073613, 2017.
Jacox, M. G., Alexander, M. A., Bograd, S. J., and Scott, J. D.: Thermal
displacement by marine heatwaves, Nature, 584, 82–86,
https://doi.org/10.1038/s41586-020-2534-z, 2020.
John, J. G., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K.,
Vahlenkamp, H., Wilson, C., Zadeh, N. T., Dunne, J. P., Dussin, R.,
Horowitz, L. W., Krasting, J. P., Lin, P., Malyshev, S., Naik, V., Ploshay,
J., Shevliakova, E., Silvers, L., Stock, C., Winton, M., and Zeng, Y.:
NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP ssp126,
Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.8684, 2018a.
John, J. G., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K.,
Vahlenkamp, H., Wilson, C., Zadeh, N. T., Dunne, J. P., Dussin, R.,
Horowitz, L. W., Krasting, J. P., Lin, P., Malyshev, S., Naik, V., Ploshay,
J., Shevliakova, E., Silvers, L., Stock, C., Winton, M., and Zeng, Y.:
NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP ssp585,
https://doi.org/10.22033/ESGF/CMIP6.8706, 2018b.
Jungclaus, J., Bittner, M., Wieners, K.-H., Wachsmann, F., Schupfner, M.,
Legutke, S., Giorgetta, M., Reick, C., Gayler, V., Haak, H., de Vrese, P.,
Raddatz, T., Esch, M., Mauritsen, T., von Storch, J.-S., Behrens, J.,
Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S.,
Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh,
L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K.,
Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R.,
Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida,
U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-HR
model output prepared for CMIP6 CMIP piControl, https://doi.org/10.22033/ESGF/CMIP6.6674,
2019a.
Jungclaus, J., Bittner, M., Wieners, K.-H., Wachsmann, F., Schupfner, M.,
Legutke, S., Giorgetta, M., Reick, C., Gayler, V., Haak, H., de Vrese, P.,
Raddatz, T., Esch, M., Mauritsen, T., von Storch, J.-S., Behrens, J.,
Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S.,
Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh,
L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K.,
Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R.,
Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida,
U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-HR
model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.6594,
2019b.
Keeling, R. F., Körtzinger, A., and Gruber, N.: Ocean Deoxygenation in a
Warming World, Annu. Rev. Mar. Sci., 2, 199–229,
https://doi.org/10.1146/annurev.marine.010908.163855, 2010.
Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S.,
Radhakrishnan, A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis,
C., Menzel, R., Robinson, T., Underwood, S., Vahlenkamp, H., Dunne, K. A.,
Gauthier, P. P. G., Ginoux, P., Griffies, S. M., Hallberg, R., Harrison, M.,
Hurlin, W., Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J.,
Reichl, B. G., Schwarzkopf, D. M., Seman, C. J., Silvers, L., Wyman, B.,
Zeng, Y., Adcroft, A., Dunne, J. P., Dussin, R., Guo, H., He, J., Held, I.
M., Horowitz, L. W., Lin, P., Milly, P. C. D., Shevliakova, E., Stock, C.,
Winton, M., Wittenberg, A. T., Xie, Y., and Zhao, M.: NOAA-GFDL GFDL-ESM4
model output prepared for CMIP6 CMIP piControl, Earth System Grid Federation
[data set], https://doi.org/10.22033/ESGF/CMIP6.8669, 2018a.
Krasting, J. P., John, J. G., Blanton, C., McHugh, C., Nikonov, S.,
Radhakrishnan, A., Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis,
C., Menzel, R., Robinson, T., Underwood, S., Vahlenkamp, H., Dunne, K. A.,
Gauthier, P. P. G., Ginoux, P., Griffies, S. M., Hallberg, R., Harrison, M.,
Hurlin, W., Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J.,
Reichl, B. G., Schwarzkopf, D. M., Seman, C. J., Silvers, L., Wyman, B.,
Zeng, Y., Adcroft, A., Dunne, J. P., Dussin, R., Guo, H., He, J., Held, I.
M., Horowitz, L. W., Lin, P., Milly, P. C. D., Shevliakova, E., Stock, C.,
Winton, M., Wittenberg, A. T., Xie, Y., and Zhao, M.: NOAA-GFDL GFDL-ESM4
model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.8597,
2018b.
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020.
Le Grix, N., Zscheischler, J., Rodgers, K. B., Yamaguchi, R., and Frölicher, T. L.: Hotspots and drivers of compound marine heatwaves and low net primary production extremes, Biogeosciences, 19, 5807–5835, https://doi.org/10.5194/bg-19-5807-2022, 2022.
Levin, L. A. and Le Bris, N.: The deep ocean under climate change, Science,
350, 766–768, https://doi.org/10.1126/science.aad0126, 2015.
Liao, M.-L., Li, G.-Y., Wang, J., Marshall, D. J., Hui, T. Y., Ma, S.-Y.,
Zhang, Y.-M., Helmuth, B., and Dong, Y.-W.: Physiological determinants of
biogeography: The importance of metabolic depression to heat tolerance,
Global Change Biol., 27, 2561–2579, https://doi.org/10.1111/gcb.15578,
2021.
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M.
M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K. W., Paver, C. R.,
and Smolyar, I. V.: World Ocean Atlas 2018, Volume 1: Temperature, A.
Mishonov Technical Ed., NOAA Atlas NESDIS 81, 52 pp., 2019.
Long, M. C., Deutsch, C., and Ito, T.: Finding forced trends in oceanic
oxygen, Global Biogeochem. Cy., 30, 381–397,
https://doi.org/10.1002/2015GB005310, 2016.
Maraun, D.: Bias Correcting Climate Change Simulations – a Critical Review,
Current Climate Change Reports, 2, 211–220, https://doi.org/10.1007/s40641-016-0050-x, 2016.
McCormick, L. R. and Levin, L. A.: Physiological and ecological implications
of ocean deoxygenation for vision in marine organisms, Philosophical
Transactions of the Royal Society A: Mathematical, Phys. Eng. Sci., 375, 20160322, https://doi.org/10.1098/rsta.2016.0322, 2017.
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J.-F.,
Stouffer, R. J., Taylor, K. E., and Schlund, M.: Context for interpreting
equilibrium climate sensitivity and transient climate response from the
CMIP6 Earth system models, Sci. Adv., 6, eaba1981, https://doi.org/10.1126/sciadv.aba1981,
2020.
Meinshausen, M., Lewis, J., McGlade, C., Gütschow, J., Nicholls, Z.,
Burdon, R., Cozzi, L., and Hackmann, B.: Realization of Paris Agreement
pledges may limit warming just below 2 ∘C, Nature, 604, 304–309,
https://doi.org/10.1038/s41586-022-04553-z, 2022.
Morée, Cheung, W. L., Clarke, T. M., and Frölicher, T. L.:
2-Dimensional habitat files for 47 representative marine species
Zenodo [data set], https://doi.org/10.5281/zenodo.7936678, 2023.
Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P., Hogan, E.,
Killick, R. E., Dunn, R. J. H., Osborn, T. J., Jones, P. D., and Simpson, I.
R.: An Updated Assessment of Near-Surface Temperature Change From 1850: The
HadCRUT5 Data Set, J. Geophys. Res.-Atmos., 126,
e2019JD032361, https://doi.org/10.1029/2019JD032361, 2021.
Oschlies, A.: A committed fourfold increase in ocean oxygen loss, Nature
Communications, 12, 2307, https://doi.org/10.1038/s41467-021-22584-4, 2021.
Oschlies, A., Brandt, P., Stramma, L., and Schmidtko, S.: Drivers and
mechanisms of ocean deoxygenation, Nat. Geosci., 11, 467–473,
https://doi.org/10.1038/s41561-018-0152-2, 2018.
Oschlies, A., Duteil, O., Getzlaff, J., Koeve, W., Landolfi, A., and
Schmidtko, S.: Patterns of deoxygenation: sensitivity to natural and
anthropogenic drivers, Phys. Eng. Sci., 375, 20160325,
https://doi.org/10.1098/rsta.2016.0325, 2017.
Palumbi, S. R., Evans, T. G., Pespeni, M. H., and Somero, G. N.: Present and
future adaptation of marine species assemblages: DNA-based insights into
climate change from studies of physiology, genomics, and evolution,
Oceanography, 32, 82–93, https://doi.org/10.5670/oceanog.2019.314, 2019.
Pauly, D.: Gasping fish and panting squids: oxygen, temperature and the
growth of water-breathing animals, International Ecology Institute, ISSN 0932-2205, 2010.
Pauly, D. and Cheung, W. W. L.: Sound physiological knowledge and principles
in modeling shrinking of fishes under climate change, Global Change Biol.,
24, 15–26, https://doi.org/10.1111/gcb.13831, 2018.
Penn, J. L., Deutsch, C., Payne, J. L., and Sperling, E. A.:
Temperature-dependent hypoxia explains biogeography and severity of
end-Permian marine mass extinction, Science, 362, eaat1327,
https://doi.org/10.1126/science.aat1327, 2018.
Perry, A. L., Low, P. J., Ellis, J. R., and Reynolds, J. D.: Climate Change
and Distribution Shifts in Marine Fishes, Science, 308, 1912–1915,
https://doi.org/10.1126/science.1111322, 2005.
Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., and Levin, S. A.:
Marine Taxa Track Local Climate Velocities, Science, 341, 1239–1242,
https://doi.org/10.1126/science.1239352, 2013.
Pitcher, G. C., Aguirre-Velarde, A., Breitburg, D., Cardich, J., Carstensen,
J., Conley, D. J., Dewitte, B., Engel, A., Espinoza-Morriberón, D.,
Flores, G., Garçon, V., Graco, M., Grégoire, M., Gutiérrez, D.,
Hernandez-Ayon, J. M., Huang, H.-H. M., Isensee, K., Jacinto, M. E., Levin,
L., Lorenzo, A., Machu, E., Merma, L., Montes, I., Swa, N., Paulmier, A.,
Roman, M., Rose, K., Hood, R., Rabalais, N. N., Salvanes, A. G. V.,
Salvatteci, R., Sánchez, S., Sifeddine, A., Tall, A. W., Plas, A. K. v.
d., Yasuhara, M., Zhang, J., and Zhu, Z. Y.: System controls of coastal and
open ocean oxygen depletion, Prog. Oceanogr., 197, 102613,
https://doi.org/10.1016/j.pocean.2021.102613, 2021.
Poloczanska, E. S., Burrows, M. T., Brown, C. J., García Molinos, J.,
Halpern, B. S., Hoegh-Guldberg, O., Kappel, C. V., Moore, P. J., Richardson,
A. J., Schoeman, D. S., and Sydeman, W. J.: Responses of Marine Organisms to
Climate Change across Oceans, Front. Mar. Sci., 3,
https://doi.org/10.3389/fmars.2016.00062, 2016.
Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman,
D. S., Moore, P. J., Brander, K., Bruno, J. F., Buckley, L. B., Burrows, M.
T., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., O'Connor, M.
I., Pandolfi, J. M., Parmesan, C., Schwing, F., Thompson, S. A., and
Richardson, A. J.: Global imprint of climate change on marine life, Nat.
Clim. Change, 3, 919–925, https://doi.org/10.1038/nclimate1958, 2013.
Pörtner, H. O.: Oxygen- and capacity-limitation of thermal tolerance: a
matrix for integrating climate-related stressor effects in marine
ecosystems, J. Exp. Biol., 213, 881–893,
https://doi.org/10.1242/jeb.037523, 2010.
Pörtner, H. O. and Knust, R.: Climate Change Affects Marine Fishes
Through the Oxygen Limitation of Thermal Tolerance, Science, 315, 95–97,
https://doi.org/10.1126/science.1135471, 2007.
Pörtner, H. O. and Peck, M. A.: Temperature – Effects of Climate
Change, in: Encyclopedia of Fish Physiology, edited by: Farrell, A. P.,
Academic Press, San Diego, 1738–1745,
https://doi.org/10.1016/B978-0-12-374553-8.00197-0, 2011.
Sampaio, E., Santos, C., Rosa, I. C., Ferreira, V., Pörtner, H.-O.,
Duarte, C. M., Levin, L. A., and Rosa, R.: Impacts of hypoxic events surpass
those of future ocean warming and acidification, Nat. Ecol. Evol., 5, 311–321, https://doi.org/10.1038/s41559-020-01370-3, 2021.
Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton
University Press, https://doi.org/10.2307/j.ctt3fgxqx, 2006.
Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic
oxygen content during the past five decades, Nature, 542, 335–339,
https://doi.org/10.1038/nature21399, 2017.
Schupfner, M., Wieners, K.-H., Wachsmann, F., Steger, C., Bittner, M.,
Jungclaus, J., Früh, B., Pankatz, K., Giorgetta, M., Reick, C., Legutke,
S., Esch, M., Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Mauritsen,
T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger, T.,
Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S.,
Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K.,
Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters,
K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur,
R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: DKRZ
MPI-ESM1.2-HR model output prepared for CMIP6 ScenarioMIP ssp585,
https://doi.org/10.22033/ESGF/CMIP6.4403, 2019a.
Schupfner, M., Wieners, K.-H., Wachsmann, F., Steger, C., Bittner, M.,
Jungclaus, J., Früh, B., Pankatz, K., Giorgetta, M., Reick, C., Legutke,
S., Esch, M., Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Mauritsen,
T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger, T.,
Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S.,
Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K.,
Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D.,
Peters-von Gehlen, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S.,
Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A.,
and Roeckner, E.: DKRZ MPI-ESM1.2-HR model output prepared for CMIP6
ScenarioMIP ssp126, https://doi.org/10.22033/ESGF/CMIP6.4397, 2019b.
Séférian, R.: CNRM-CERFACS CNRM-ESM2-1 model output prepared for
CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.4068, 2018a.
Séférian, R.: CNRM-CERFACS CNRM-ESM2-1 model output prepared for
CMIP6 CMIP piControl, Earth System Grid Federation [data set],
https://doi.org/10.22033/ESGF/CMIP6.4165, 2018b.
Seibel, B. A.: Critical oxygen levels and metabolic suppression in oceanic
oxygen minimum zones, J. Exp. Biol., 214, 326–336,
doi:0.1242/jeb.049171, 2011.
Seibel, B. A. and Birk, M. A.: Unique thermal sensitivity imposes a
cold-water energetic barrier for vertical migrators, Nat. Clim. Change,
12, 1052–1058, https://doi.org/10.1038/s41558-022-01491-6, 2022.
Seibel, B. A., Andres, A., Birk, M. A., Burns, A. L., Shaw, C. T., Timpe, A.
W., and Welsh, C. J.: Oxygen supply capacity breathes new life into critical
oxygen partial pressure (Pcrit), J. Exp. Biol., 224,
jeb242210, https://doi.org/10.1242/jeb.242210, 2021.
Sharp, J. D., Fassbender, A. J., Carter, B. R., Johnson, G. C., Schultz, C., and Dunne, J. P.: GOBAI-O2: temporally and spatially resolved fields of ocean interior dissolved oxygen over nearly two decades, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2022-308, in review, 2022.
Stramma, L., Schmidtko, S., Bograd, S. J., Ono, T., Ross, T., Sasano, D., and Whitney, F. A.: Trends and decadal oscillations of oxygen and nutrients at 50 to 300 m depth in the equatorial and North Pacific, Biogeosciences, 17, 813–831, https://doi.org/10.5194/bg-17-813-2020, 2020.
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F.,
Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W.
G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim,
L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5
model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.3610,
2019a.
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F.,
Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W.
G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim,
L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5
model output prepared for CMIP6 ScenarioMIP ssp585,
https://doi.org/10.22033/ESGF/CMIP6.3696, 2019b.
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F.,
Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W.
G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim,
L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5
model output prepared for CMIP6 CMIP piControl, Earth System Grid Federation
[data set], https://doi.org/10.22033/ESGF/CMIP6.3673, 2019c.
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F.,
Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W.
G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim,
L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5
model output prepared for CMIP6 ScenarioMIP ssp126, Earth System Grid
Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.3683, 2019d.
Tai, T. C., Calosi, P., Gurney-Smith, H. J., and Cheung, W. W. L.: Modelling
ocean acidification effects with life stage-specific responses alters
spatiotemporal patterns of catch and revenues of American lobster, Homarus
americanus, Sci. Rep., 11, 23330, https://doi.org/10.1038/s41598-021-02253-8, 2021.
Tang, Y., Rumbold, S., Ellis, R., Kelley, D., Mulcahy, J., Sellar, A.,
Walton, J., and Jones, C.: MOHC UKESM1.0-LL model output prepared for CMIP6
CMIP piControl, Earth System Grid Federation [data set],
https://doi.org/10.22033/ESGF/CMIP6.6298, 2019a.
Tang, Y., Rumbold, S., Ellis, R., Kelley, D., Mulcahy, J., Sellar, A.,
Walton, J., and Jones, C.: MOHC UKESM1.0-LL model output prepared for CMIP6
CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.6113, 2019b.
Taylor, C. D.: The effect of pressure upon the solubility of oxygen in
water: Implications of the deviation from the ideal gas law upon
measurements of fluorescence quenching, Archives of Biochemistry and
Biophysics, 191, 375–384, https://doi.org/10.1016/0003-9861(78)90101-7,
1978.
Tittensor, D. P., Novaglio, C., Harrison, C. S., Heneghan, R. F., Barrier,
N., Bianchi, D., Bopp, L., Bryndum-Buchholz, A., Britten, G. L.,
Büchner, M., Cheung, W. W. L., Christensen, V., Coll, M., Dunne, J. P.,
Eddy, T. D., Everett, J. D., Fernandes-Salvador, J. A., Fulton, E. A.,
Galbraith, E. D., Gascuel, D., Guiet, J., John, J. G., Link, J. S., Lotze,
H. K., Maury, O., Ortega-Cisneros, K., Palacios-Abrantes, J., Petrik, C. M.,
du Pontavice, H., Rault, J., Richardson, A. J., Shannon, L., Shin, Y.-J.,
Steenbeek, J., Stock, C. A., and Blanchard, J. L.: Next-generation ensemble
projections reveal higher climate risks for marine ecosystems, Nat.
Clim. Change, 11, 973–981, https://doi.org/10.1038/s41558-021-01173-9, 2021.
Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J.,
Lehner, F., and Knutti, R.: Past warming trend constrains future warming in
CMIP6 models, Sci. Adv., 6, eaaz9549, https://doi.org/10.1126/sciadv.aaz9549,
2020.
Vaquer-Sunyer, R. and Duarte, C. M.: Thresholds of hypoxia for marine
biodiversity, P. Natl. Acad. Sci. USA, 105,
15452–15457, https://doi.org/10.1073/pnas.0803833105, 2008.
Verberk, W. C. E. P., Bilton, D. T., Calosi, P., and Spicer, J. I.: Oxygen
supply in aquatic ectotherms: Partial pressure and solubility together
explain biodiversity and size patterns, Ecology, 92, 1565–1572,
https://doi.org/10.1890/10-2369.1, 2011.
Voldoire, A.: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6
ScenarioMIP ssp126, Earth System Grid Federation [data set],
https://doi.org/10.22033/ESGF/CMIP6.4186, 2019a.
Voldoire, A.: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6
ScenarioMIP ssp585, Earth System Grid Federation [data set],
https://doi.org/10.22033/ESGF/CMIP6.4226, 2019b.
von Schuckmann, K., Cheng, L., Palmer, M. D., Hansen, J., Tassone, C., Aich, V., Adusumilli, S., Beltrami, H., Boyer, T., Cuesta-Valero, F. J., Desbruyères, D., Domingues, C., García-García, A., Gentine, P., Gilson, J., Gorfer, M., Haimberger, L., Ishii, M., Johnson, G. C., Killick, R., King, B. A., Kirchengast, G., Kolodziejczyk, N., Lyman, J., Marzeion, B., Mayer, M., Monier, M., Monselesan, D. P., Purkey, S., Roemmich, D., Schweiger, A., Seneviratne, S. I., Shepherd, A., Slater, D. A., Steiner, A. K., Straneo, F., Timmermans, M.-L., and Wijffels, S. E.: Heat stored in the Earth system: where does the energy go?, Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, 2020.
Weiss, R. F. and Price, B. A.: Nitrous oxide solubility in water and
seawater, Mar. Chem., 8, 347–359,
https://doi.org/10.1016/0304-4203(80)90024-9, 1980.
Whalen, M. A., Whippo, R. D. B., Stachowicz, J. J., York, P. H., Aiello, E.,
Alcoverro, T., Altieri, A. H., Benedetti-Cecchi, L., Bertolini, C., Bresch,
M., Bulleri, F., Carnell, P. E., Cimon, S., Connolly, R. M., Cusson, M.,
Diskin, M. S., D'Souza, E., Flores, A. A. V., Fodrie, F. J., Galloway, A. W.
E., Gaskins, L. C., Graham, O. J., Hanley, T. C., Henderson, C. J., Hereu,
C. M., Hessing-Lewis, M., Hovel, K. A., Hughes, B. B., Hughes, A. R.,
Hultgren, K. M., Jänes, H., Janiak, D. S., Johnston, L. N., Jorgensen,
P., Kelaher, B. P., Kruschel, C., Lanham, B. S., Lee, K.-S., Lefcheck, J.
S., Lozano-Álvarez, E., Macreadie, P. I., Monteith, Z. L., O'Connor, N.
E., Olds, A. D., O'Leary, J. K., Patrick, C. J., Pino, O., Poore, A. G. B.,
Rasheed, M. A., Raymond, W. W., Reiss, K., Rhoades, O. K., Robinson, M. T.,
Ross, P. G., Rossi, F., Schlacher, T. A., Seemann, J., Silliman, B. R.,
Smee, D. L., Thiel, M., Unsworth, R. K. F., van Tussenbroek, B. I.,
Vergés, A., Yeager, M. E., Yednock, B. K., Ziegler, S. L., and Duffy, J.
E.: Climate drives the geography of marine consumption by changing predator
communities, P. Natl. Acad. Sci. USA, 117,
28160–28166, https://doi.org/10.1073/pnas.2005255117, 2020.
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A.,
Garcia, H. E., Mishonov, A. V., Baranova, O. K., Weathers, K. W., Paver, C.
R., and Smolyar, I. V.: World Ocean Atlas 2018, Volume 2: Salinity, A.
Mishonov Technical Ed., NOAA Atlas NESDIS 82, 50 pp., 2019.
Co-editor-in-chief
Marine warming and deoxygenation are projected to intensify and drive a relative decrease in global habitat viability penetrating to all depths with warming dominating at the surface and deoxygenation becomes increasingly important with depth. In a 2°C scenario of global warming, epipelagic species' habitat losses are generally in the order of 0.1-0.5 million km3, while mesopelagic habitat losses are 0.01-0.15 million km3 and demersal losses are in the order of about 0.00025 million km3.
Marine warming and deoxygenation are projected to intensify and drive a relative decrease in...
Short summary
Ocean temperature and oxygen shape marine habitats together with species’ characteristics. We calculated the impacts of projected 21st-century warming and oxygen loss on the contemporary habitat volume of 47 marine species and described the drivers of these impacts. Most species lose less than 5 % of their habitat at 2 °C of global warming, but some species incur losses 2–3 times greater than that. We also calculate which species may be most vulnerable to climate change and why this is the case.
Ocean temperature and oxygen shape marine habitats together with species’ characteristics. We...
Altmetrics
Final-revised paper
Preprint