Articles | Volume 20, issue 17
https://doi.org/10.5194/bg-20-3637-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3637-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ideas and perspectives: Beyond model evaluation – combining experiments and models to advance terrestrial ecosystem science
Discipline of Botany, School of Natural Sciences, Trinity College
Dublin, Dublin, Ireland
Max Planck Institute for Biogeochemistry, Jena, Germany
Forest Research Group, INDEHESA, University of Extremadura,
Plasencia, Cáceres, Spain
Benjamin D. Stocker
Institute of Geography, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern,
Bern, Switzerland
Teresa E. Gimeno
CREAF, 08193 Bellaterra, Cerdanyola del Vallès, Catalonia, Spain
Richard Nair
Discipline of Botany, School of Natural Sciences, Trinity College
Dublin, Dublin, Ireland
Max Planck Institute for Biogeochemistry, Jena, Germany
Related authors
Tea Thum, Tuuli Miinalainen, Outi Seppälä, Holly Croft, Cheryl Rogers, Ralf Staebler, Silvia Caldararu, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2802, https://doi.org/10.5194/egusphere-2024-2802, 2024
Short summary
Short summary
Climate change has potential to influence the carbon sequestration potential of terrestrial ecosystems and here also nitrogen cycle is important. We used a terrestrial biosphere model QUINCY at mixed deciduous forest in Canada. We investigated the usefulness of using leaf area index and leaf chlorophyll content to improve the parameterization of the model. This work paves way for using spaceborn observations in the model parameterization, also including information on the nitrogen cycle.
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024, https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Short summary
Through an extensive global dataset of leaf nutrient resorption and a multifactorial analysis, we show that the majority of spatial variation in nutrient resorption may be driven by leaf habit and type, with thicker, longer-lived leaves having lower resorption efficiencies. Climate, soil fertility and soil-related factors emerge as strong drivers with an additional effect on its role. These results are essential for comprehending plant nutrient status, plant productivity and nutrient cycling.
Melanie A. Thurner, Silvia Caldararu, Jan Engel, Anja Rammig, and Sönke Zaehle
Biogeosciences, 21, 1391–1410, https://doi.org/10.5194/bg-21-1391-2024, https://doi.org/10.5194/bg-21-1391-2024, 2024
Short summary
Short summary
Due to their crucial role in terrestrial ecosystems, we implemented mycorrhizal fungi into the QUINCY terrestrial biosphere model. Fungi interact with mineral and organic soil to support plant N uptake and, thus, plant growth. Our results suggest that the effect of mycorrhizal interactions on simulated ecosystem dynamics is minor under constant environmental conditions but necessary to reproduce and understand observed patterns under changing conditions, such as rising atmospheric CO2.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin De Kauwe, Sam Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3084, https://doi.org/10.5194/egusphere-2023-3084, 2024
Short summary
Short summary
This paper evaluates land models – computer based models that simulate ecosystem dynamics, the land carbon, water and energy cycles and the role of land in the climate system. It uses machine learning / AI approaches to show that despite the complexity of land models, they do not perform nearly as well as they could, given the amount of information they are provided with about the prediction problem.
Richard Nair, Yunpeng Luo, Tarek El-Madany, Victor Rolo, Javier Pacheco-Labrador, Silvia Caldararu, Kendalynn A. Morris, Marion Schrumpf, Arnaud Carrara, Gerardo Moreno, Markus Reichstein, and Mirco Migliavacca
EGUsphere, https://doi.org/10.5194/egusphere-2023-2434, https://doi.org/10.5194/egusphere-2023-2434, 2023
Preprint archived
Short summary
Short summary
We studied a Mediterranean ecosystem to understand carbon uptake efficiency and its controls. These ecosystems face potential nitrogen-phosphorus imbalances due to pollution. Analysing six years of carbon data, we assessed controls at different timeframes. This is crucial for predicting such vulnerable regions. Our findings revealed N limitation on C uptake, not N:P imbalance, and strong influence of water availability. whether drought or wetness promoted net C uptake depended on timescale.
Lin Yu, Silvia Caldararu, Bernhard Ahrens, Thomas Wutzler, Marion Schrumpf, Julian Helfenstein, Chiara Pistocchi, and Sönke Zaehle
Biogeosciences, 20, 57–73, https://doi.org/10.5194/bg-20-57-2023, https://doi.org/10.5194/bg-20-57-2023, 2023
Short summary
Short summary
In this study, we addressed a key weakness in current ecosystem models regarding the phosphorus exchange in the soil and developed a new scheme to describe this process. We showed that the new scheme improved the model performance for plant productivity, soil organic carbon, and soil phosphorus content at five beech forest sites in Germany. We claim that this new model could be used as a better tool to study ecosystems under future climate change, particularly phosphorus-limited systems.
Tea Thum, Silvia Caldararu, Jan Engel, Melanie Kern, Marleen Pallandt, Reiner Schnur, Lin Yu, and Sönke Zaehle
Geosci. Model Dev., 12, 4781–4802, https://doi.org/10.5194/gmd-12-4781-2019, https://doi.org/10.5194/gmd-12-4781-2019, 2019
Short summary
Short summary
To predict the response of the vegetation to climate change, we need global models that describe the relevant processes taking place in the vegetation. Recently, we have obtained more in-depth understanding of vegetation processes and the role of nutrients in the biogeochemical cycles. We have developed a new global vegetation model that includes carbon, water, nitrogen, and phosphorus cycles. We show that the model is successful in evaluation against a wide range of observations.
Mingkai Jiang, Sönke Zaehle, Martin G. De Kauwe, Anthony P. Walker, Silvia Caldararu, David S. Ellsworth, and Belinda E. Medlyn
Geosci. Model Dev., 12, 2069–2089, https://doi.org/10.5194/gmd-12-2069-2019, https://doi.org/10.5194/gmd-12-2069-2019, 2019
Short summary
Short summary
Here we used a simple analytical framework developed by Comins and McMurtrie (1993) to investigate how different model assumptions affected plant responses to elevated CO2. This framework is useful in revealing both the consequences and the mechanisms through which different assumptions affect predictions. We therefore recommend the use of this framework to analyze the likely outcomes of new assumptions before introducing them to complex model structures.
Silvia Caldararu, Drew W. Purves, and Matthew J. Smith
Biogeosciences, 13, 925–941, https://doi.org/10.5194/bg-13-925-2016, https://doi.org/10.5194/bg-13-925-2016, 2016
Short summary
Short summary
The plant functional type (PFT) concept is widely used in global vegetation models but recent studies have attempted to replace this with a more biologically representative formulation by using plant traits. In this study we aim to quantify the performance of a data-constrained leaf phenology model that uses PFTs when compared to one that uses local traits. We show that the PFT model performs relatively poorly but we can identify a small number of traits that improve model performance.
S. Caldararu, D. W. Purves, and P. I. Palmer
Biogeosciences, 11, 763–778, https://doi.org/10.5194/bg-11-763-2014, https://doi.org/10.5194/bg-11-763-2014, 2014
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Preprint under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Laura Dénise Nadolski, Tarek Sebastian El Madany, Jacob Allen Nelson, Arnaud Carrara, Gerardo Moreno, Richard K. F. Nair, Yunpeng Luo, Anke Hildebrandt, Victor Rolo, Markus Reichstein, and Sung-Ching Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-3190, https://doi.org/10.5194/egusphere-2024-3190, 2024
Short summary
Short summary
Semi-arid ecosystems are crucial for Earth's carbon balance and are sensitive to changes in nitrogen (N) and phosphorus (P) levels. Their carbon dynamics are complex and not fully understood. We studied how long-term nutrient changes affect carbon exchange. In summer, N+P changed plant composition and productivity. In transitional seasons, carbon exchange was less weather-dependent with N. Adding N and N+P are increasing carbon exchange variability, driven by grass greenness.
Tea Thum, Tuuli Miinalainen, Outi Seppälä, Holly Croft, Cheryl Rogers, Ralf Staebler, Silvia Caldararu, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2802, https://doi.org/10.5194/egusphere-2024-2802, 2024
Short summary
Short summary
Climate change has potential to influence the carbon sequestration potential of terrestrial ecosystems and here also nitrogen cycle is important. We used a terrestrial biosphere model QUINCY at mixed deciduous forest in Canada. We investigated the usefulness of using leaf area index and leaf chlorophyll content to improve the parameterization of the model. This work paves way for using spaceborn observations in the model parameterization, also including information on the nitrogen cycle.
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024, https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Short summary
Through an extensive global dataset of leaf nutrient resorption and a multifactorial analysis, we show that the majority of spatial variation in nutrient resorption may be driven by leaf habit and type, with thicker, longer-lived leaves having lower resorption efficiencies. Climate, soil fertility and soil-related factors emerge as strong drivers with an additional effect on its role. These results are essential for comprehending plant nutrient status, plant productivity and nutrient cycling.
Melanie A. Thurner, Silvia Caldararu, Jan Engel, Anja Rammig, and Sönke Zaehle
Biogeosciences, 21, 1391–1410, https://doi.org/10.5194/bg-21-1391-2024, https://doi.org/10.5194/bg-21-1391-2024, 2024
Short summary
Short summary
Due to their crucial role in terrestrial ecosystems, we implemented mycorrhizal fungi into the QUINCY terrestrial biosphere model. Fungi interact with mineral and organic soil to support plant N uptake and, thus, plant growth. Our results suggest that the effect of mycorrhizal interactions on simulated ecosystem dynamics is minor under constant environmental conditions but necessary to reproduce and understand observed patterns under changing conditions, such as rising atmospheric CO2.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin De Kauwe, Sam Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3084, https://doi.org/10.5194/egusphere-2023-3084, 2024
Short summary
Short summary
This paper evaluates land models – computer based models that simulate ecosystem dynamics, the land carbon, water and energy cycles and the role of land in the climate system. It uses machine learning / AI approaches to show that despite the complexity of land models, they do not perform nearly as well as they could, given the amount of information they are provided with about the prediction problem.
Richard Nair, Yunpeng Luo, Tarek El-Madany, Victor Rolo, Javier Pacheco-Labrador, Silvia Caldararu, Kendalynn A. Morris, Marion Schrumpf, Arnaud Carrara, Gerardo Moreno, Markus Reichstein, and Mirco Migliavacca
EGUsphere, https://doi.org/10.5194/egusphere-2023-2434, https://doi.org/10.5194/egusphere-2023-2434, 2023
Preprint archived
Short summary
Short summary
We studied a Mediterranean ecosystem to understand carbon uptake efficiency and its controls. These ecosystems face potential nitrogen-phosphorus imbalances due to pollution. Analysing six years of carbon data, we assessed controls at different timeframes. This is crucial for predicting such vulnerable regions. Our findings revealed N limitation on C uptake, not N:P imbalance, and strong influence of water availability. whether drought or wetness promoted net C uptake depended on timescale.
Piersilvio De Bartolomeis, Alexandru Meterez, Zixin Shu, and Benjamin David Stocker
EGUsphere, https://doi.org/10.5194/egusphere-2023-1826, https://doi.org/10.5194/egusphere-2023-1826, 2023
Preprint withdrawn
Short summary
Short summary
Our research highlights the effectiveness of a recurrent neural network, LSTM, in predicting plant carbon absorption using weather and satellite data. LSTM outperforms other models, even for new locations, suggesting its broad application. Yet, challenges remain in predicting diverse ecosystems globally due to varying plant and climate factors. Our work enhances understanding of Earth's complex ecosystems using advanced models.
Lin Yu, Silvia Caldararu, Bernhard Ahrens, Thomas Wutzler, Marion Schrumpf, Julian Helfenstein, Chiara Pistocchi, and Sönke Zaehle
Biogeosciences, 20, 57–73, https://doi.org/10.5194/bg-20-57-2023, https://doi.org/10.5194/bg-20-57-2023, 2023
Short summary
Short summary
In this study, we addressed a key weakness in current ecosystem models regarding the phosphorus exchange in the soil and developed a new scheme to describe this process. We showed that the new scheme improved the model performance for plant productivity, soil organic carbon, and soil phosphorus content at five beech forest sites in Germany. We claim that this new model could be used as a better tool to study ecosystems under future climate change, particularly phosphorus-limited systems.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Javier de la Casa, Adrià Barbeta, Asun Rodríguez-Uña, Lisa Wingate, Jérôme Ogée, and Teresa E. Gimeno
Hydrol. Earth Syst. Sci., 26, 4125–4146, https://doi.org/10.5194/hess-26-4125-2022, https://doi.org/10.5194/hess-26-4125-2022, 2022
Short summary
Short summary
Recently, studies have been reporting mismatches in the water isotopic composition of plants and soils. In this work, we reviewed worldwide isotopic composition data of field and laboratory studies to see if the mismatch is generalised, and we found it to be true. This contradicts theoretical expectations and may underlie an non-described phenomenon that should be forward investigated and implemented in ecohydrological models to avoid erroneous estimations of water sources used by vegetation.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Teresa E. Gimeno, Belinda E. Medlyn, Dani Or, Jinyan Yang, and David S. Ellsworth
Hydrol. Earth Syst. Sci., 25, 447–471, https://doi.org/10.5194/hess-25-447-2021, https://doi.org/10.5194/hess-25-447-2021, 2021
Short summary
Short summary
Land surface model (LSM) is a critical tool to study land responses to droughts and heatwaves, but lacking comprehensive observations limited past model evaluations. Here we use a novel dataset at a water-limited site, evaluate a typical LSM with a range of competing model hypotheses widely used in LSMs and identify marked uncertainty due to the differing process assumptions. We show the extensive observations constrain model processes and allow better simulated land responses to these extremes.
Fortunat Joos, Renato Spahni, Benjamin D. Stocker, Sebastian Lienert, Jurek Müller, Hubertus Fischer, Jochen Schmitt, I. Colin Prentice, Bette Otto-Bliesner, and Zhengyu Liu
Biogeosciences, 17, 3511–3543, https://doi.org/10.5194/bg-17-3511-2020, https://doi.org/10.5194/bg-17-3511-2020, 2020
Short summary
Short summary
Results of the first globally resolved simulations of terrestrial carbon and nitrogen (N) cycling and N2O emissions over the past 21 000 years are compared with reconstructed N2O emissions. Modelled and reconstructed emissions increased strongly during past abrupt warming events. This evidence appears consistent with a dynamic response of biological N fixation to increasing N demand by ecosystems, thereby reducing N limitation of plant productivity and supporting a land sink for atmospheric CO2.
Benjamin D. Stocker, Han Wang, Nicholas G. Smith, Sandy P. Harrison, Trevor F. Keenan, David Sandoval, Tyler Davis, and I. Colin Prentice
Geosci. Model Dev., 13, 1545–1581, https://doi.org/10.5194/gmd-13-1545-2020, https://doi.org/10.5194/gmd-13-1545-2020, 2020
Short summary
Short summary
Estimating terrestrial photosynthesis relies on satellite data of vegetation cover and models simulating the efficiency by which light absorbed by vegetation is used for CO2 assimilation. This paper presents the P-model, a light use efficiency model derived from a carbon–water optimality principle, and evaluates its predictions of ecosystem-level photosynthesis against globally distributed observations. The model is implemented and openly accessible as an R package (rpmodel).
Sandy P. Harrison, Marie-José Gaillard, Benjamin D. Stocker, Marc Vander Linden, Kees Klein Goldewijk, Oliver Boles, Pascale Braconnot, Andria Dawson, Etienne Fluet-Chouinard, Jed O. Kaplan, Thomas Kastner, Francesco S. R. Pausata, Erick Robinson, Nicki J. Whitehouse, Marco Madella, and Kathleen D. Morrison
Geosci. Model Dev., 13, 805–824, https://doi.org/10.5194/gmd-13-805-2020, https://doi.org/10.5194/gmd-13-805-2020, 2020
Short summary
Short summary
The Past Global Changes LandCover6k initiative will use archaeological records to refine scenarios of land use and land cover change through the Holocene to reduce the uncertainties about the impacts of human-induced changes before widespread industrialization. We describe how archaeological data are used to map land use change and how the maps can be evaluated using independent palaeoenvironmental data. We propose simulations to test land use and land cover change impacts on past climates.
Jinyan Yang, Belinda E. Medlyn, Martin G. De Kauwe, Remko A. Duursma, Mingkai Jiang, Dushan Kumarathunge, Kristine Y. Crous, Teresa E. Gimeno, Agnieszka Wujeska-Klause, and David S. Ellsworth
Biogeosciences, 17, 265–279, https://doi.org/10.5194/bg-17-265-2020, https://doi.org/10.5194/bg-17-265-2020, 2020
Short summary
Short summary
This study addressed a major knowledge gap in the response of forest productivity to elevated CO2. We first quantified forest productivity of an evergreen forest under both ambient and elevated CO2, using a model constrained by in situ measurements. The simulation showed the canopy productivity response to elevated CO2 to be smaller than that at the leaf scale due to different limiting processes. This finding provides a key reference for the understanding of CO2 impacts on forest ecosystems.
Tea Thum, Silvia Caldararu, Jan Engel, Melanie Kern, Marleen Pallandt, Reiner Schnur, Lin Yu, and Sönke Zaehle
Geosci. Model Dev., 12, 4781–4802, https://doi.org/10.5194/gmd-12-4781-2019, https://doi.org/10.5194/gmd-12-4781-2019, 2019
Short summary
Short summary
To predict the response of the vegetation to climate change, we need global models that describe the relevant processes taking place in the vegetation. Recently, we have obtained more in-depth understanding of vegetation processes and the role of nutrients in the biogeochemical cycles. We have developed a new global vegetation model that includes carbon, water, nitrogen, and phosphorus cycles. We show that the model is successful in evaluation against a wide range of observations.
Hubertus Fischer, Jochen Schmitt, Michael Bock, Barbara Seth, Fortunat Joos, Renato Spahni, Sebastian Lienert, Gianna Battaglia, Benjamin D. Stocker, Adrian Schilt, and Edward J. Brook
Biogeosciences, 16, 3997–4021, https://doi.org/10.5194/bg-16-3997-2019, https://doi.org/10.5194/bg-16-3997-2019, 2019
Short summary
Short summary
N2O concentrations were subject to strong variations accompanying glacial–interglacial but also rapid climate changes over the last 21 kyr. The sources of these N2O changes can be identified by measuring the isotopic composition of N2O in ice cores and using the distinct isotopic composition of terrestrial and marine N2O. We show that both marine and terrestrial sources increased from the last glacial to the Holocene but that only terrestrial emissions responded quickly to rapid climate changes.
Mingkai Jiang, Sönke Zaehle, Martin G. De Kauwe, Anthony P. Walker, Silvia Caldararu, David S. Ellsworth, and Belinda E. Medlyn
Geosci. Model Dev., 12, 2069–2089, https://doi.org/10.5194/gmd-12-2069-2019, https://doi.org/10.5194/gmd-12-2069-2019, 2019
Short summary
Short summary
Here we used a simple analytical framework developed by Comins and McMurtrie (1993) to investigate how different model assumptions affected plant responses to elevated CO2. This framework is useful in revealing both the consequences and the mechanisms through which different assumptions affect predictions. We therefore recommend the use of this framework to analyze the likely outcomes of new assumptions before introducing them to complex model structures.
Richard K. F. Nair, Kendalynn A. Morris, Martin Hertel, Yunpeng Luo, Gerardo Moreno, Markus Reichstein, Marion Schrumpf, and Mirco Migliavacca
Biogeosciences, 16, 1883–1901, https://doi.org/10.5194/bg-16-1883-2019, https://doi.org/10.5194/bg-16-1883-2019, 2019
Short summary
Short summary
We investigated how nutrient availability affects seasonal timing of root growth and death in a Spanish savanna, adapted to a long summer drought. We found that nitrogen (N) additions led to more root biomass but number of roots was higher with N and phosphorus together. These effects were strongly affected by the time of year. In autumn root growth occurred after leaf production. This has implications for how we understand biomass production and carbon uptake in these systems.
Adrià Barbeta, Sam P. Jones, Laura Clavé, Lisa Wingate, Teresa E. Gimeno, Bastien Fréjaville, Steve Wohl, and Jérôme Ogée
Hydrol. Earth Syst. Sci., 23, 2129–2146, https://doi.org/10.5194/hess-23-2129-2019, https://doi.org/10.5194/hess-23-2129-2019, 2019
Short summary
Short summary
Plant water sources of a beech riparian forest were monitored using stable isotopes. Isotopic fractionation during root water uptake is usually neglected but may be more common than previously accepted. Xylem water was always more depleted in δ2H than all sources considered, suggesting isotopic discrimination during water uptake or within plant tissues. Thus, the identification and quantification of tree water sources was affected. Still, oxygen isotopes were a good tracer of plant source water.
Yilong Wang, Philippe Ciais, Daniel Goll, Yuanyuan Huang, Yiqi Luo, Ying-Ping Wang, A. Anthony Bloom, Grégoire Broquet, Jens Hartmann, Shushi Peng, Josep Penuelas, Shilong Piao, Jordi Sardans, Benjamin D. Stocker, Rong Wang, Sönke Zaehle, and Sophie Zechmeister-Boltenstern
Geosci. Model Dev., 11, 3903–3928, https://doi.org/10.5194/gmd-11-3903-2018, https://doi.org/10.5194/gmd-11-3903-2018, 2018
Short summary
Short summary
We present a new modeling framework called Global Observation-based Land-ecosystems Utilization Model of Carbon, Nitrogen and Phosphorus (GOLUM-CNP) that combines a data-constrained C-cycle analysis with data-driven estimates of N and P inputs and losses and with observed stoichiometric ratios. GOLUM-CNP provides a traceable tool, where a consistency between different datasets of global C, N, and P cycles has been achieved.
Adrià Barbeta, Sam P. Jones, Laura Clavé, Lisa Wingate, Teresa E. Gimeno, Bastien Fréjaville, Steve Wohl, and Jérôme Ogée
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-402, https://doi.org/10.5194/hess-2018-402, 2018
Revised manuscript not accepted
Short summary
Short summary
Plant-water sources of a beech riparian forest were monitored using stable isotopes. Isotopic fractionation during root water uptake is usually neglected but may be more common than previously accepted. Xylem water was always more depleted in δ2H than all sources considered, suggesting isotopic discrimination during water uptake or within plant tissues. Thus, the identification and quantification of tree water sources was affected. Still, oxygen isotopes were a good tracer of plant source water.
Mary E. Whelan, Sinikka T. Lennartz, Teresa E. Gimeno, Richard Wehr, Georg Wohlfahrt, Yuting Wang, Linda M. J. Kooijmans, Timothy W. Hilton, Sauveur Belviso, Philippe Peylin, Róisín Commane, Wu Sun, Huilin Chen, Le Kuai, Ivan Mammarella, Kadmiel Maseyk, Max Berkelhammer, King-Fai Li, Dan Yakir, Andrew Zumkehr, Yoko Katayama, Jérôme Ogée, Felix M. Spielmann, Florian Kitz, Bharat Rastogi, Jürgen Kesselmeier, Julia Marshall, Kukka-Maaria Erkkilä, Lisa Wingate, Laura K. Meredith, Wei He, Rüdiger Bunk, Thomas Launois, Timo Vesala, Johan A. Schmidt, Cédric G. Fichot, Ulli Seibt, Scott Saleska, Eric S. Saltzman, Stephen A. Montzka, Joseph A. Berry, and J. Elliott Campbell
Biogeosciences, 15, 3625–3657, https://doi.org/10.5194/bg-15-3625-2018, https://doi.org/10.5194/bg-15-3625-2018, 2018
Short summary
Short summary
Measurements of the trace gas carbonyl sulfide (OCS) are helpful in quantifying photosynthesis at previously unknowable temporal and spatial scales. While CO2 is both consumed and produced within ecosystems, OCS is mostly produced in the oceans or from specific industries, and destroyed in plant leaves in proportion to CO2. This review summarizes the advancements we have made in the understanding of OCS exchange and applications to vital ecosystem water and carbon cycle questions.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Julia Pongratz, Andrew C. Manning, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Robert B. Jackson, Thomas A. Boden, Pieter P. Tans, Oliver D. Andrews, Vivek K. Arora, Dorothee C. E. Bakker, Leticia Barbero, Meike Becker, Richard A. Betts, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Catherine E. Cosca, Jessica Cross, Kim Currie, Thomas Gasser, Ian Harris, Judith Hauck, Vanessa Haverd, Richard A. Houghton, Christopher W. Hunt, George Hurtt, Tatiana Ilyina, Atul K. Jain, Etsushi Kato, Markus Kautz, Ralph F. Keeling, Kees Klein Goldewijk, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Ivan Lima, Danica Lombardozzi, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Yukihiro Nojiri, X. Antonio Padin, Anna Peregon, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Janet Reimer, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Steven van Heuven, Nicolas Viovy, Nicolas Vuichard, Anthony P. Walker, Andrew J. Watson, Andrew J. Wiltshire, Sönke Zaehle, and Dan Zhu
Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, https://doi.org/10.5194/essd-10-405-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2017 describes data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. It is the 12th annual update and the 6th published in this journal.
Tyler W. Davis, I. Colin Prentice, Benjamin D. Stocker, Rebecca T. Thomas, Rhys J. Whitley, Han Wang, Bradley J. Evans, Angela V. Gallego-Sala, Martin T. Sykes, and Wolfgang Cramer
Geosci. Model Dev., 10, 689–708, https://doi.org/10.5194/gmd-10-689-2017, https://doi.org/10.5194/gmd-10-689-2017, 2017
Short summary
Short summary
This research presents a comprehensive description for calculating necessary, but sparsely observed, factors related to Earth's surface energy and water budgets relevant in, but not limited to, the study of ecosystems. We present the equations, including their derivations and assumptions, as well as example indicators relevant to plant-available moisture. The robustness of these relatively simple equations provides a tool to be used across broad fields of scientific research.
Corinne Le Quéré, Robbie M. Andrew, Josep G. Canadell, Stephen Sitch, Jan Ivar Korsbakken, Glen P. Peters, Andrew C. Manning, Thomas A. Boden, Pieter P. Tans, Richard A. Houghton, Ralph F. Keeling, Simone Alin, Oliver D. Andrews, Peter Anthoni, Leticia Barbero, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Kim Currie, Christine Delire, Scott C. Doney, Pierre Friedlingstein, Thanos Gkritzalis, Ian Harris, Judith Hauck, Vanessa Haverd, Mario Hoppema, Kees Klein Goldewijk, Atul K. Jain, Etsushi Kato, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Joe R. Melton, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Kevin O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Christian Rödenbeck, Joe Salisbury, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Adrienne J. Sutton, Taro Takahashi, Hanqin Tian, Bronte Tilbrook, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, https://doi.org/10.5194/essd-8-605-2016, 2016
Short summary
Short summary
The Global Carbon Budget 2016 is the 11th annual update of emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land, and ocean. This data synthesis brings together measurements, statistical information, and analyses of model results in order to provide an assessment of the global carbon budget and their uncertainties for years 1959 to 2015, with a projection for year 2016.
Silvia Caldararu, Drew W. Purves, and Matthew J. Smith
Biogeosciences, 13, 925–941, https://doi.org/10.5194/bg-13-925-2016, https://doi.org/10.5194/bg-13-925-2016, 2016
Short summary
Short summary
The plant functional type (PFT) concept is widely used in global vegetation models but recent studies have attempted to replace this with a more biologically representative formulation by using plant traits. In this study we aim to quantify the performance of a data-constrained leaf phenology model that uses PFTs when compared to one that uses local traits. We show that the PFT model performs relatively poorly but we can identify a small number of traits that improve model performance.
D. Fowler, C. E. Steadman, D. Stevenson, M. Coyle, R. M. Rees, U. M. Skiba, M. A. Sutton, J. N. Cape, A. J. Dore, M. Vieno, D. Simpson, S. Zaehle, B. D. Stocker, M. Rinaldi, M. C. Facchini, C. R. Flechard, E. Nemitz, M. Twigg, J. W. Erisman, K. Butterbach-Bahl, and J. N. Galloway
Atmos. Chem. Phys., 15, 13849–13893, https://doi.org/10.5194/acp-15-13849-2015, https://doi.org/10.5194/acp-15-13849-2015, 2015
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https://doi.org/10.5194/essd-7-349-2015, 2015
Short summary
Short summary
Accurate assessment of anthropogenic carbon dioxide emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to understand the global carbon cycle, support the development of climate policies, and project future climate change. We describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on a range of data and models and their interpretation by a broad scientific community.
B. D. Stocker and F. Joos
Earth Syst. Dynam., 6, 731–744, https://doi.org/10.5194/esd-6-731-2015, https://doi.org/10.5194/esd-6-731-2015, 2015
Short summary
Short summary
Estimates for land use change CO2 emissions (eLUC) rely on different approaches, implying conceptual differences of what eLUC represents. We use an Earth System Model and quantify differences between two commonly applied methods to be ~20% for historical eLUC but increasing under a future scenario. We decompose eLUC into component fluxes, quantify them, and discuss best practices for global carbon budget accountings and model-data intercomparisons relying on different methods to estimate eLUC.
A. Berchet, I. Pison, F. Chevallier, J.-D. Paris, P. Bousquet, J.-L. Bonne, M. Y. Arshinov, B. D. Belan, C. Cressot, D. K. Davydov, E. J. Dlugokencky, A. V. Fofonov, A. Galanin, J. Lavrič, T. Machida, R. Parker, M. Sasakawa, R. Spahni, B. D. Stocker, and J. Winderlich
Biogeosciences, 12, 5393–5414, https://doi.org/10.5194/bg-12-5393-2015, https://doi.org/10.5194/bg-12-5393-2015, 2015
T. J. Bohn, J. R. Melton, A. Ito, T. Kleinen, R. Spahni, B. D. Stocker, B. Zhang, X. Zhu, R. Schroeder, M. V. Glagolev, S. Maksyutov, V. Brovkin, G. Chen, S. N. Denisov, A. V. Eliseev, A. Gallego-Sala, K. C. McDonald, M.A. Rawlins, W. J. Riley, Z. M. Subin, H. Tian, Q. Zhuang, and J. O. Kaplan
Biogeosciences, 12, 3321–3349, https://doi.org/10.5194/bg-12-3321-2015, https://doi.org/10.5194/bg-12-3321-2015, 2015
Short summary
Short summary
We evaluated 21 forward models and 5 inversions over western Siberia in terms of CH4 emissions and simulated wetland areas and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite inundation products. In addition to assembling a definitive collection of methane emissions estimates for the region, we were able to identify the types of wetland maps and model features necessary for accurate simulations of high-latitude wetlands.
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
A. P. Ballantyne, R. Andres, R. Houghton, B. D. Stocker, R. Wanninkhof, W. Anderegg, L. A. Cooper, M. DeGrandpre, P. P. Tans, J. B. Miller, C. Alden, and J. W. C. White
Biogeosciences, 12, 2565–2584, https://doi.org/10.5194/bg-12-2565-2015, https://doi.org/10.5194/bg-12-2565-2015, 2015
B. D. Stocker, R. Spahni, and F. Joos
Geosci. Model Dev., 7, 3089–3110, https://doi.org/10.5194/gmd-7-3089-2014, https://doi.org/10.5194/gmd-7-3089-2014, 2014
Short summary
Short summary
Simulating the spatio-temporal dynamics of inundation is key to understanding the role of wetlands under past and future climate change. Here, we describe and assess the DYPTOP model that predicts the extent of inundation and the global spatial distribution of peatlands. DYPTOP makes use of high-resolution topography information and uses ecosystem water balance and peatland soil C balance criteria to simulate peatland spatial dynamics and carbon accumulation.
C. Le Quéré, G. P. Peters, R. J. Andres, R. M. Andrew, T. A. Boden, P. Ciais, P. Friedlingstein, R. A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D. C. E. Bakker, L. Bopp, J. G. Canadell, L. P. Chini, S. C. Doney, A. Harper, I. Harris, J. I. House, A. K. Jain, S. D. Jones, E. Kato, R. F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G.-H. Park, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B. D. Stocker, T. Takahashi, B. Tilbrook, S. van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, and S. Zaehle
Earth Syst. Sci. Data, 6, 235–263, https://doi.org/10.5194/essd-6-235-2014, https://doi.org/10.5194/essd-6-235-2014, 2014
S. Caldararu, D. W. Purves, and P. I. Palmer
Biogeosciences, 11, 763–778, https://doi.org/10.5194/bg-11-763-2014, https://doi.org/10.5194/bg-11-763-2014, 2014
R. Spahni, F. Joos, B. D. Stocker, M. Steinacher, and Z. C. Yu
Clim. Past, 9, 1287–1308, https://doi.org/10.5194/cp-9-1287-2013, https://doi.org/10.5194/cp-9-1287-2013, 2013
C. Le Quéré, R. J. Andres, T. Boden, T. Conway, R. A. Houghton, J. I. House, G. Marland, G. P. Peters, G. R. van der Werf, A. Ahlström, R. M. Andrew, L. Bopp, J. G. Canadell, P. Ciais, S. C. Doney, C. Enright, P. Friedlingstein, C. Huntingford, A. K. Jain, C. Jourdain, E. Kato, R. F. Keeling, K. Klein Goldewijk, S. Levis, P. Levy, M. Lomas, B. Poulter, M. R. Raupach, J. Schwinger, S. Sitch, B. D. Stocker, N. Viovy, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 5, 165–185, https://doi.org/10.5194/essd-5-165-2013, https://doi.org/10.5194/essd-5-165-2013, 2013
Related subject area
Biodiversity and Ecosystem Function: Terrestrial
Biomass yield potential, feedstock quality, and nutrient removal of perennial buffer strips under continuous zero fertilizer application
Leaf habit drives leaf nutrient resorption globally alongside nutrient availability and climate
Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Distinguishing mature and immature trees allows estimating forest carbon uptake from stand structure
Enhancing environmental models with a new downscaling method for global radiation in complex terrain
“Blooming” of litter-mixing effects: the role of flower and leaf litter interactions on decomposition in terrestrial and aquatic ecosystems
From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery
Plant functional traits modulate the effects of soil acidification on above- and belowground biomass
Regional effects and local climate jointly shape the global distribution of sexual systems in woody flowering plants
Ideas and perspectives: Sensing energy and matter fluxes in a biota-dominated Patagonian landscape through environmental seismology – introducing the Pumalín Critical Zone Observatory
Comparison of carbon and water fluxes and the drivers of ecosystem water use efficiency in a temperate rainforest and a peatland in southern South America
Kilometre-scale simulations over Fennoscandia reveal a large loss of tundra due to climate warming
Crowd-sourced trait data can be used to delimit global biomes
Microclimate mapping using novel radiative transfer modelling
On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results
Root distributions predict shrub–steppe responses to precipitation intensity
Thermophilisation of Afromontane forest stands demonstrated in an elevation gradient experiment
Soil smoldering in temperate forests: A neglected contributor to fire carbon emissions revealed by atmospheric mixing ratios
Above-treeline ecosystems facing drought: lessons from the 2022 European summer heat wave
Canopy gaps and associated losses of biomass – combining UAV imagery and field data in a central Amazon forest
Primary succession and its driving variables – a sphere-spanning approach applied in proglacial areas in the upper Martell Valley (Eastern Italian Alps)
Contemporary biodiversity pattern is affected by climate change at multiple temporal scales in steppes on the Mongolian Plateau
Quantifying vegetation indices using terrestrial laser scanning: methodological complexities and ecological insights from a Mediterranean forest
Revisiting and attributing the global controls over terrestrial ecosystem functions of climate and plant traits at FLUXNET sites via causal graphical models
Dynamics of short-term ecosystem carbon fluxes induced by precipitation events in a semiarid grassland
Throughfall exclusion and fertilization effects on tropical dry forest tree plantations, a large-scale experiment
Tectonic controls on the ecosystem of the Mara River basin, East Africa, from geomorphological and spectral index analysis
Spruce bark beetles (Ips typographus) cause up to 700 times higher bark BVOC emission rates compared to healthy Norway spruce (Picea abies)
Technical note: Novel estimates of the leaf relative uptake rate of carbonyl sulfide from optimality theory
Observed water and light limitation across global ecosystems
A question of scale: modeling biomass, gain and mortality distributions of a tropical forest
Seed traits and phylogeny explain plants' geographic distribution
Effect of the presence of plateau pikas on the ecosystem services of alpine meadows
Allometric equations and wood density parameters for estimating aboveground and woody debris biomass in Cajander larch (Larix cajanderi) forests of northeast Siberia
Strong influence of trees outside forest in regulating microclimate of intensively modified Afromontane landscapes
Excess radiation exacerbates drought stress impacts on canopy conductance along aridity gradients
Dispersal of bacteria and stimulation of permafrost decomposition by Collembola
Modeling the effects of alternative crop–livestock management scenarios on important ecosystem services for smallholder farming from a landscape perspective
Contrasting strategies of nutrient demand and use between savanna and forest ecosystems in a neotropical transition zone
Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing
Updated estimation of forest biomass carbon pools in China, 1977–2018
Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets
Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks
Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels
Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi
Main drivers of plant diversity patterns of rubber plantations in the Greater Mekong Subregion
Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing
Examining the role of environmental memory in the predictability of carbon and water fluxes across Australian ecosystems
Water uptake patterns of pea and barley responded to drought but not to cropping systems
Geodiversity and biodiversity on a volcanic island: the role of scattered phonolites for plant diversity and performance
Cheng-Hsien Lin, Colleen Zumpf, Chunhwa Jang, Thomas Voigt, Guanglong Tian, Olawale Oladeji, Albert Cox, Rehnuma Mehzabin, and DoKyoung Lee
Biogeosciences, 21, 4765–4784, https://doi.org/10.5194/bg-21-4765-2024, https://doi.org/10.5194/bg-21-4765-2024, 2024
Short summary
Short summary
Riparian areas are subject to environmental issues (nutrient leaching) associated with low productivity. Perennial grasses can improve ecosystem services from riparian zones while producing forage/bioenergy feedstock biomass as potential income for farmers. The forage-type buffer can be an ideal short-term candidate due to its great efficiency of nutrient scavenging; the bioenergy-type buffer showed better sustainability than the forage buffer and a continuous yield supply potential.
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024, https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Short summary
Through an extensive global dataset of leaf nutrient resorption and a multifactorial analysis, we show that the majority of spatial variation in nutrient resorption may be driven by leaf habit and type, with thicker, longer-lived leaves having lower resorption efficiencies. Climate, soil fertility and soil-related factors emerge as strong drivers with an additional effect on its role. These results are essential for comprehending plant nutrient status, plant productivity and nutrient cycling.
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024, https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Short summary
In the Arctic tundra, climate change is transforming the landscape, and this may impact wildlife. We focus on three nesting bird species and the islets they select as refuges from their main predator, the Arctic fox. A geomorphological process, ice-wedge polygon degradation, was found to play a key role in creating these refuges. This process is likely to affect predator–prey dynamics in the Arctic tundra, highlighting the connections between nature's physical and ecological systems.
Samuel M. Fischer, Xugao Wang, and Andreas Huth
Biogeosciences, 21, 3305–3319, https://doi.org/10.5194/bg-21-3305-2024, https://doi.org/10.5194/bg-21-3305-2024, 2024
Short summary
Short summary
Understanding the drivers of forest productivity is key for accurately assessing forests’ role in the global carbon cycle. Yet, despite significant research effort, it is not fully understood how the productivity of a forest can be deduced from its stand structure. We suggest tackling this problem by identifying the share and structure of immature trees within forests and show that this approach could significantly improve estimates of forests’ net productivity and carbon uptake.
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
EGUsphere, https://doi.org/10.5194/egusphere-2024-1800, https://doi.org/10.5194/egusphere-2024-1800, 2024
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem growth. Traditional large-scale data lack the precision needed for complex terrains, e.g. mountainous regions. This study introduces a new model to enhance radiation data resolution using elevation maps, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features. Tested on Mont Ventoux, this method significantly improves radiation estimates, benefiting forest growth and climate risk models.
Mery Ingrid Guimarães de Alencar, Rafael D. Guariento, Bertrand Guenet, Luciana S. Carneiro, Eduardo L. Voigt, and Adriano Caliman
Biogeosciences, 21, 3165–3182, https://doi.org/10.5194/bg-21-3165-2024, https://doi.org/10.5194/bg-21-3165-2024, 2024
Short summary
Short summary
Flowers are ephemeral organs for reproduction, and their litter is functionally different from leaf litter. Flowers can affect decomposition and interact with leaf litter, influencing decomposition non-additively. We show that mixing flower and leaf litter from the Tabebuia aurea tree creates reciprocal synergistic effects on decomposition in both terrestrial and aquatic environments. We highlight that flower litter input can generate biogeochemical hotspots in terrestrial ecosystems.
Salim Soltani, Olga Ferlian, Nico Eisenhauer, Hannes Feilhauer, and Teja Kattenborn
Biogeosciences, 21, 2909–2935, https://doi.org/10.5194/bg-21-2909-2024, https://doi.org/10.5194/bg-21-2909-2024, 2024
Short summary
Short summary
In this research, we developed a novel method using citizen science data as alternative training data for computer vision models to map plant species in unoccupied aerial vehicle (UAV) images. We use citizen science plant photographs to train models and apply them to UAV images. We tested our approach on UAV images of a test site with 10 different tree species, yielding accurate results. This research shows the potential of citizen science data to advance our ability to monitor plant species.
Xue Feng, Ruzhen Wang, Tianpeng Li, Jiangping Cai, Heyong Liu, Hui Li, and Yong Jiang
Biogeosciences, 21, 2641–2653, https://doi.org/10.5194/bg-21-2641-2024, https://doi.org/10.5194/bg-21-2641-2024, 2024
Short summary
Short summary
Plant functional traits have been considered as reflecting adaptations to environmental variations, indirectly affecting ecosystem productivity. How soil acidification affects above- and belowground biomass by altering leaf and root traits remains poorly understood. We found divergent trait responses driven by soil environmental conditions in two dominant species, resulting in a decrease in aboveground biomass and an increase in belowground biomass.
Minhua Zhang, Xiaoqing Hu, and Fangliang He
Biogeosciences, 21, 2133–2142, https://doi.org/10.5194/bg-21-2133-2024, https://doi.org/10.5194/bg-21-2133-2024, 2024
Short summary
Short summary
Plant sexual systems are important to understanding the evolution and maintenance of plant diversity. We quantified region effects on their proportions while incorporating local climate factors and evolutionary history. We found regional processes and climate effects both play important roles in shaping the geographic distribution of sexual systems, providing a baseline for predicting future changes in forest communities in the context of global change.
Christian H. Mohr, Michael Dietze, Violeta Tolorza, Erwin Gonzalez, Benjamin Sotomayor, Andres Iroume, Sten Gilfert, and Frieder Tautz
Biogeosciences, 21, 1583–1599, https://doi.org/10.5194/bg-21-1583-2024, https://doi.org/10.5194/bg-21-1583-2024, 2024
Short summary
Short summary
Coastal temperate rainforests, among Earth’s carbon richest biomes, are systematically underrepresented in the global network of critical zone observatories (CZOs). Introducing here a first CZO in the heart of the Patagonian rainforest, Chile, we investigate carbon sink functioning, biota-driven landscape evolution, fluxes of matter and energy, and disturbance regimes. We invite the community to join us in cross-disciplinary collaboration to advance science in this particular environment.
Jorge F. Perez-Quezada, David Trejo, Javier Lopatin, David Aguilera, Bruce Osborne, Mauricio Galleguillos, Luca Zattera, Juan L. Celis-Diez, and Juan J. Armesto
Biogeosciences, 21, 1371–1389, https://doi.org/10.5194/bg-21-1371-2024, https://doi.org/10.5194/bg-21-1371-2024, 2024
Short summary
Short summary
For 8 years we sampled a temperate rainforest and a peatland in Chile to estimate their efficiency to capture carbon per unit of water lost. The efficiency is more related to the water lost than to the carbon captured and is mainly driven by evaporation instead of transpiration. This is the first report from southern South America and highlights that ecosystems might behave differently in this area, likely explained by the high annual precipitation (~ 2100 mm) and light-limited conditions.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Simon Scheiter, Sophie Wolf, and Teja Kattenborn
EGUsphere, https://doi.org/10.5194/egusphere-2024-276, https://doi.org/10.5194/egusphere-2024-276, 2024
Short summary
Short summary
Biomes are widely used to map vegetation patterns at large spatial scale and to assess impacts of climate change. Yet, there is no consensus on a generally valid biome classification scheme. We used crowd-sourced species distribution data and trait data to assess if trait information is suitable to delimit biomes. Although the trait data was heterogeneous and showed large gaps with respect to the spatial distribution, we found that a trait-based biome classification is possible.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin De Kauwe, Sam Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3084, https://doi.org/10.5194/egusphere-2023-3084, 2024
Short summary
Short summary
This paper evaluates land models – computer based models that simulate ecosystem dynamics, the land carbon, water and energy cycles and the role of land in the climate system. It uses machine learning / AI approaches to show that despite the complexity of land models, they do not perform nearly as well as they could, given the amount of information they are provided with about the prediction problem.
Andrew Kulmatiski, Martin C. Holdrege, Cristina Chirvasă, and Karen H. Beard
Biogeosciences, 21, 131–143, https://doi.org/10.5194/bg-21-131-2024, https://doi.org/10.5194/bg-21-131-2024, 2024
Short summary
Short summary
Warmer air and larger precipitation events are changing the way water moves through the soil and into plants. Here we show that detailed descriptions of root distributions can predict plant growth responses to changing precipitation patterns. Shrubs and forbs increased growth, while grasses showed no response to increased precipitation intensity, and these responses were predicted by plant rooting distributions.
Bonaventure Ntirugulirwa, Etienne Zibera, Nkuba Epaphrodite, Aloysie Manishimwe, Donat Nsabimana, Johan Uddling, and Göran Wallin
Biogeosciences, 20, 5125–5149, https://doi.org/10.5194/bg-20-5125-2023, https://doi.org/10.5194/bg-20-5125-2023, 2023
Short summary
Short summary
Twenty tropical tree species native to Africa were planted along an elevation gradient (1100 m, 5.4 °C difference). We found that early-successional (ES) species, especially from lower elevations, grew faster at warmer sites, while several of the late-successional (LS) species, especially from higher elevations, did not respond or grew slower. Moreover, a warmer climate increased tree mortality in LS species, but not much in ES species.
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot
EGUsphere, https://doi.org/10.5194/egusphere-2023-2421, https://doi.org/10.5194/egusphere-2023-2421, 2023
Short summary
Short summary
2022 fire season had a huge impact on European temperate forest, with several large fires exhibiting prolonged soil combustion reported. We analyzed CO and CO2 concentration recorded at nearby atmospheric towers, revealing intense smoldering combustion. We refined a fire emission model to incorporate this process. We estimated 7.95 MteqCO2 fire emission, twice the global estimate. Fires contributed to 1.97 % of the country's annual carbon footprint, reducing forest carbon sink by 30 % this year.
Philippe Choler
Biogeosciences, 20, 4259–4272, https://doi.org/10.5194/bg-20-4259-2023, https://doi.org/10.5194/bg-20-4259-2023, 2023
Short summary
Short summary
The year 2022 was unique in that the summer heat wave and drought led to a widespread reduction in vegetation growth at high elevation in the European Alps. This impact was unprecedented in the southwestern, warm, and dry part of the Alps. Over the last 2 decades, water has become a co-dominant control of vegetation activity in areas that were, so far, primarily controlled by temperature, and the growth of mountain grasslands has become increasingly sensitive to moisture availability.
Adriana Simonetti, Raquel Fernandes Araujo, Carlos Henrique Souza Celes, Flávia Ranara da Silva e Silva, Joaquim dos Santos, Niro Higuchi, Susan Trumbore, and Daniel Magnabosco Marra
Biogeosciences, 20, 3651–3666, https://doi.org/10.5194/bg-20-3651-2023, https://doi.org/10.5194/bg-20-3651-2023, 2023
Short summary
Short summary
We combined 2 years of monthly drone-acquired RGB (red–green–blue) imagery with field surveys in a central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Biomass losses were partially controlled by gap area, with branch fall and snapping contributing the least and greatest relative values, respectively. Our study highlights the potential of drone images for monitoring canopy dynamics in dense tropical forests.
Katharina Ramskogler, Bettina Knoflach, Bernhard Elsner, Brigitta Erschbamer, Florian Haas, Tobias Heckmann, Florentin Hofmeister, Livia Piermattei, Camillo Ressl, Svenja Trautmann, Michael H. Wimmer, Clemens Geitner, Johann Stötter, and Erich Tasser
Biogeosciences, 20, 2919–2939, https://doi.org/10.5194/bg-20-2919-2023, https://doi.org/10.5194/bg-20-2919-2023, 2023
Short summary
Short summary
Primary succession in proglacial areas depends on complex driving forces. To concretise the complex effects and interaction processes, 39 known explanatory variables assigned to seven spheres were analysed via principal component analysis and generalised additive models. Key results show that in addition to time- and elevation-dependent factors, also disturbances alter vegetation development. The results are useful for debates on vegetation development in a warming climate.
Zijing Li, Zhiyong Li, Xuze Tong, Lei Dong, Ying Zheng, Jinghui Zhang, Bailing Miao, Lixin Wang, Liqing Zhao, Lu Wen, Guodong Han, Frank Yonghong Li, and Cunzhu Liang
Biogeosciences, 20, 2869–2882, https://doi.org/10.5194/bg-20-2869-2023, https://doi.org/10.5194/bg-20-2869-2023, 2023
Short summary
Short summary
We used random forest models and structural equation models to assess the relative importance of the present climate and paleoclimate as determinants of diversity and aboveground biomass. Results showed that paleoclimate changes and modern climate jointly determined contemporary biodiversity patterns, while community biomass was mainly affected by modern climate. These findings suggest that contemporary biodiversity patterns may be affected by processes at divergent temporal scales.
William Rupert Moore Flynn, Harry Jon Foord Owen, Stuart William David Grieve, and Emily Rebecca Lines
Biogeosciences, 20, 2769–2784, https://doi.org/10.5194/bg-20-2769-2023, https://doi.org/10.5194/bg-20-2769-2023, 2023
Short summary
Short summary
Quantifying vegetation indices is crucial for ecosystem monitoring and modelling. Terrestrial laser scanning (TLS) has potential to accurately measure vegetation indices, but multiple methods exist, with little consensus on best practice. We compare three methods and extract wood-to-plant ratio, a metric used to correct for wood in leaf indices. We show corrective metrics vary with tree structure and variation among methods, highlighting the value of TLS data and importance of rigorous testing.
Haiyang Shi, Geping Luo, Olaf Hellwich, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 20, 2727–2741, https://doi.org/10.5194/bg-20-2727-2023, https://doi.org/10.5194/bg-20-2727-2023, 2023
Short summary
Short summary
In studies on the relationship between ecosystem functions and climate and plant traits, previously used data-driven methods such as multiple regression and random forest may be inadequate for representing causality due to limitations such as covariance between variables. Based on FLUXNET site data, we used a causal graphical model to revisit the control of climate and vegetation traits over ecosystem functions.
Josué Delgado-Balbuena, Henry W. Loescher, Carlos A. Aguirre-Gutiérrez, Teresa Alfaro-Reyna, Luis F. Pineda-Martínez, Rodrigo Vargas, and Tulio Arredondo
Biogeosciences, 20, 2369–2385, https://doi.org/10.5194/bg-20-2369-2023, https://doi.org/10.5194/bg-20-2369-2023, 2023
Short summary
Short summary
In the semiarid grassland, an increase in soil moisture at shallow depths instantly enhances carbon release through respiration. In contrast, deeper soil water controls plant carbon uptake but with a delay of several days. Previous soil conditions, biological activity, and the size and timing of precipitation are factors that determine the amount of carbon released into the atmosphere. Thus, future changes in precipitation patterns could convert ecosystems from carbon sinks to carbon sources.
German Vargas Gutiérrez, Daniel Pérez-Aviles, Nanette Raczka, Damaris Pereira-Arias, Julián Tijerín-Triviño, L. David Pereira-Arias, David Medvigy, Bonnie G. Waring, Ember Morrisey, Edward Brzostek, and Jennifer S. Powers
Biogeosciences, 20, 2143–2160, https://doi.org/10.5194/bg-20-2143-2023, https://doi.org/10.5194/bg-20-2143-2023, 2023
Short summary
Short summary
To study whether nutrient availability controls tropical dry forest responses to reductions in soil moisture, we established the first troughfall exclusion experiment in a tropical dry forest plantation system crossed with a fertilization scheme. We found that the effects of fertilization on net primary productivity are larger than the effects of a ~15 % reduction in soil moisture, although in many cases we observed an interaction between drought and nutrient additions, suggesting colimitation.
Alina Lucia Ludat and Simon Kübler
Biogeosciences, 20, 1991–2012, https://doi.org/10.5194/bg-20-1991-2023, https://doi.org/10.5194/bg-20-1991-2023, 2023
Short summary
Short summary
Satellite-based analysis illustrates the impact of geological processes for the stability of the ecosystem in the Mara River basin (Kenya/Tanzania). Newly detected fault activity influences the course of river networks and modifies erosion–deposition patterns. Tectonic surface features and variations in rock chemistry lead to localized enhancement of clay and soil moisture values and seasonally stabilised vegetation growth patterns in this climatically vulnerable region.
Erica Jaakkola, Antje Gärtner, Anna Maria Jönsson, Karl Ljung, Per-Ola Olsson, and Thomas Holst
Biogeosciences, 20, 803–826, https://doi.org/10.5194/bg-20-803-2023, https://doi.org/10.5194/bg-20-803-2023, 2023
Short summary
Short summary
Increased spruce bark beetle outbreaks were recently seen in Sweden. When Norway spruce trees are attacked, they increase their production of VOCs, attempting to kill the beetles. We provide new insights into how the Norway spruce act when infested and found the emitted volatiles to increase up to 700 times and saw a change in compound blend. We estimate that the 2020 bark beetle outbreak in Sweden could have increased the total monoterpene emissions from the forest by more than 10 %.
Georg Wohlfahrt, Albin Hammerle, Felix M. Spielmann, Florian Kitz, and Chuixiang Yi
Biogeosciences, 20, 589–596, https://doi.org/10.5194/bg-20-589-2023, https://doi.org/10.5194/bg-20-589-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (COS), which is taken up by plant leaves in a process very similar to photosynthesis, is thought to be a promising proxy for the gross uptake of carbon dioxide by plants. Here we propose a new framework for estimating a key metric to that end, the so-called leaf relative uptake rate. The values we deduce by applying principles of plant optimality are considerably lower than published values and may help reduce the uncertainty of the global COS budget.
François Jonard, Andrew F. Feldman, Daniel J. Short Gianotti, and Dara Entekhabi
Biogeosciences, 19, 5575–5590, https://doi.org/10.5194/bg-19-5575-2022, https://doi.org/10.5194/bg-19-5575-2022, 2022
Short summary
Short summary
We investigate the spatial and temporal patterns of light and water limitation in plant function at the ecosystem scale. Using satellite observations, we characterize the nonlinear relationships between sun-induced chlorophyll fluorescence (SIF) and water and light availability. This study highlights that soil moisture limitations on SIF are found primarily in drier environments, while light limitations are found in intermediately wet regions.
Nikolai Knapp, Sabine Attinger, and Andreas Huth
Biogeosciences, 19, 4929–4944, https://doi.org/10.5194/bg-19-4929-2022, https://doi.org/10.5194/bg-19-4929-2022, 2022
Short summary
Short summary
The biomass of forests is determined by forest growth and mortality. These quantities can be estimated with different methods such as inventories, remote sensing and modeling. These methods are usually being applied at different spatial scales. The scales influence the obtained frequency distributions of biomass, growth and mortality. This study suggests how to transfer between scales, when using forest models of different complexity for a tropical forest.
Kai Chen, Kevin S. Burgess, Fangliang He, Xiang-Yun Yang, Lian-Ming Gao, and De-Zhu Li
Biogeosciences, 19, 4801–4810, https://doi.org/10.5194/bg-19-4801-2022, https://doi.org/10.5194/bg-19-4801-2022, 2022
Short summary
Short summary
Why does plants' distributional range size vary enormously? This study provides evidence that seed mass, intraspecific seed mass variation, seed dispersal mode and phylogeny contribute to explaining species distribution variation on a geographic scale. Our study clearly shows the importance of including seed life-history traits in modeling and predicting the impact of climate change on species distribution of seed plants.
Ying Ying Chen, Huan Yang, Gen Sheng Bao, Xiao Pan Pang, and Zheng Gang Guo
Biogeosciences, 19, 4521–4532, https://doi.org/10.5194/bg-19-4521-2022, https://doi.org/10.5194/bg-19-4521-2022, 2022
Short summary
Short summary
Investigating the effect of the presence of plateau pikas on ecosystem services of alpine meadows is helpful to understand the role of the presence of small mammalian herbivores in grasslands. The results of this study showed that the presence of plateau pikas led to higher biodiversity conservation, soil nitrogen and phosphorus maintenance, and carbon sequestration of alpine meadows, whereas it led to lower forage available to livestock and water conservation of alpine meadows.
Clement Jean Frédéric Delcourt and Sander Veraverbeke
Biogeosciences, 19, 4499–4520, https://doi.org/10.5194/bg-19-4499-2022, https://doi.org/10.5194/bg-19-4499-2022, 2022
Short summary
Short summary
This study provides new equations that can be used to estimate aboveground tree biomass in larch-dominated forests of northeast Siberia. Applying these equations to 53 forest stands in the Republic of Sakha (Russia) resulted in significantly larger biomass stocks than when using existing equations. The data presented in this work can help refine biomass estimates in Siberian boreal forests. This is essential to assess changes in boreal vegetation and carbon dynamics.
Iris Johanna Aalto, Eduardo Eiji Maeda, Janne Heiskanen, Eljas Kullervo Aalto, and Petri Kauko Emil Pellikka
Biogeosciences, 19, 4227–4247, https://doi.org/10.5194/bg-19-4227-2022, https://doi.org/10.5194/bg-19-4227-2022, 2022
Short summary
Short summary
Tree canopies are strong moderators of understory climatic conditions. In tropical areas, trees cool down the microclimates. Using remote sensing and field measurements we show how even intermediate canopy cover and agroforestry trees contributed to buffering the hottest temperatures in Kenya. The cooling effect was the greatest during hot days and in lowland areas, where the ambient temperatures were high. Adopting agroforestry practices in the area could assist in mitigating climate change.
Jing Wang and Xuefa Wen
Biogeosciences, 19, 4197–4208, https://doi.org/10.5194/bg-19-4197-2022, https://doi.org/10.5194/bg-19-4197-2022, 2022
Short summary
Short summary
Excess radiation and low temperatures exacerbate drought impacts on canopy conductance (Gs) among transects. The primary determinant of drought stress on Gs was soil moisture on the Loess Plateau (LP) and the Mongolian Plateau (MP), whereas it was the vapor pressure deficit on the Tibetan Plateau (TP). Radiation exhibited a negative effect on Gs via drought stress within transects, while temperature had negative effects on stomatal conductance on the TP but no effect on the LP and MP.
Sylvain Monteux, Janine Mariën, and Eveline J. Krab
Biogeosciences, 19, 4089–4105, https://doi.org/10.5194/bg-19-4089-2022, https://doi.org/10.5194/bg-19-4089-2022, 2022
Short summary
Short summary
Quantifying the feedback from the decomposition of thawing permafrost soils is crucial to establish adequate climate warming mitigation scenarios. Past efforts have focused on abiotic and to some extent microbial drivers of decomposition but not biotic drivers such as soil fauna. We added soil fauna (Collembola Folsomia candida) to permafrost, which introduced bacterial taxa without affecting bacterial communities as a whole but increased CO2 production (+12 %), presumably due to priming.
Mirjam Pfeiffer, Munir P. Hoffmann, Simon Scheiter, William Nelson, Johannes Isselstein, Kingsley Ayisi, Jude J. Odhiambo, and Reimund Rötter
Biogeosciences, 19, 3935–3958, https://doi.org/10.5194/bg-19-3935-2022, https://doi.org/10.5194/bg-19-3935-2022, 2022
Short summary
Short summary
Smallholder farmers face challenges due to poor land management and climate change. We linked the APSIM crop model and the aDGVM2 vegetation model to investigate integrated management options that enhance ecosystem functions and services. Sustainable intensification moderately increased yields. Crop residue grazing reduced feed gaps but not for dry-to-wet season transitions. Measures to improve soil water and nutrient status are recommended. Landscape-level ecosystem management is essential.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Emma Bousquet, Arnaud Mialon, Nemesio Rodriguez-Fernandez, Stéphane Mermoz, and Yann Kerr
Biogeosciences, 19, 3317–3336, https://doi.org/10.5194/bg-19-3317-2022, https://doi.org/10.5194/bg-19-3317-2022, 2022
Short summary
Short summary
Pre- and post-fire values of four climate variables and four vegetation variables were analysed at the global scale, in order to observe (i) the general fire likelihood factors and (ii) the vegetation recovery trends over various biomes. The main result of this study is that L-band vegetation optical depth (L-VOD) is the most impacted vegetation variable and takes the longest to recover over dense forests. L-VOD could then be useful for post-fire vegetation recovery studies.
Chen Yang, Yue Shi, Wenjuan Sun, Jiangling Zhu, Chengjun Ji, Yuhao Feng, Suhui Ma, Zhaodi Guo, and Jingyun Fang
Biogeosciences, 19, 2989–2999, https://doi.org/10.5194/bg-19-2989-2022, https://doi.org/10.5194/bg-19-2989-2022, 2022
Short summary
Short summary
Quantifying China's forest biomass C pool is important in understanding C cycling in forests. However, most of studies on forest biomass C pool were limited to the period of 2004–2008. Here, we used a biomass expansion factor method to estimate C pool from 1977 to 2018. The results suggest that afforestation practices, forest growth, and environmental changes were the main drivers of increased C sink. Thus, this study provided an essential basis for achieving China's C neutrality target.
Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese
Biogeosciences, 19, 2699–2727, https://doi.org/10.5194/bg-19-2699-2022, https://doi.org/10.5194/bg-19-2699-2022, 2022
Short summary
Short summary
Actual maps of grassland traits could improve local farm management and support environmental assessments. We developed, assessed, and applied models to estimate dry biomass and plant nitrogen (N) concentration in pre-Alpine grasslands with drone-based multispectral data and canopy height information. Our results indicate that machine learning algorithms are able to estimate both parameters but reach a better level of performance for biomass.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022, https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary
Short summary
Forest environments contain a wide variety of airborne biological particles (bioaerosols) important for plant and animal health and biosphere–atmosphere interactions. Using low-cost sensors and a free-air carbon dioxide enrichment (FACE) experiment, we monitor the impact of enhanced CO2 on airborne particles. No effect of the enhanced CO2 treatment on total particle concentrations was observed, but a potential suppression of high concentration bioaerosol events was detected under enhanced CO2.
Melanie S. Verlinden, Hamada AbdElgawad, Arne Ven, Lore T. Verryckt, Sebastian Wieneke, Ivan A. Janssens, and Sara Vicca
Biogeosciences, 19, 2353–2364, https://doi.org/10.5194/bg-19-2353-2022, https://doi.org/10.5194/bg-19-2353-2022, 2022
Short summary
Short summary
Zea mays grows in mesocosms with different soil nutrition levels. At low phosphorus (P) availability, leaf physiological activity initially decreased strongly. P stress decreased over the season. Arbuscular mycorrhizal fungi (AMF) symbiosis increased over the season. AMF symbiosis is most likely responsible for gradual reduction in P stress.
Guoyu Lan, Bangqian Chen, Chuan Yang, Rui Sun, Zhixiang Wu, and Xicai Zhang
Biogeosciences, 19, 1995–2005, https://doi.org/10.5194/bg-19-1995-2022, https://doi.org/10.5194/bg-19-1995-2022, 2022
Short summary
Short summary
Little is known about the impact of rubber plantations on diversity of the Great Mekong Subregion. In this study, we uncovered latitudinal gradients of plant diversity of rubber plantations. Exotic species with high dominance result in loss of plant diversity of rubber plantations. Not all exotic species would reduce plant diversity of rubber plantations. Much more effort should be made to balance agricultural production with conservation goals in this region.
Ulrike Hiltner, Andreas Huth, and Rico Fischer
Biogeosciences, 19, 1891–1911, https://doi.org/10.5194/bg-19-1891-2022, https://doi.org/10.5194/bg-19-1891-2022, 2022
Short summary
Short summary
Quantifying biomass loss rates due to stem mortality is important for estimating the role of tropical forests in the global carbon cycle. We analyse the consequences of long-term elevated stem mortality for tropical forest dynamics and biomass loss. Based on simulations, we developed a statistical model to estimate biomass loss rates of forests in different successional states from forest attributes. Assuming a doubling of tree mortality, biomass loss increased from 3.2 % yr-1 to 4.5 % yr-1.
Jon Cranko Page, Martin G. De Kauwe, Gab Abramowitz, Jamie Cleverly, Nina Hinko-Najera, Mark J. Hovenden, Yao Liu, Andy J. Pitman, and Kiona Ogle
Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022, https://doi.org/10.5194/bg-19-1913-2022, 2022
Short summary
Short summary
Although vegetation responds to climate at a wide range of timescales, models of the land carbon sink often ignore responses that do not occur instantly. In this study, we explore the timescales at which Australian ecosystems respond to climate. We identified that carbon and water fluxes can be modelled more accurately if we include environmental drivers from up to a year in the past. The importance of antecedent conditions is related to ecosystem aridity but is also influenced by other factors.
Qing Sun, Valentin H. Klaus, Raphaël Wittwer, Yujie Liu, Marcel G. A. van der Heijden, Anna K. Gilgen, and Nina Buchmann
Biogeosciences, 19, 1853–1869, https://doi.org/10.5194/bg-19-1853-2022, https://doi.org/10.5194/bg-19-1853-2022, 2022
Short summary
Short summary
Drought is one of the biggest challenges for future food production globally. During a simulated drought, pea and barley mainly relied on water from shallow soil depths, independent of different cropping systems.
David Kienle, Anna Walentowitz, Leyla Sungur, Alessandro Chiarucci, Severin D. H. Irl, Anke Jentsch, Ole R. Vetaas, Richard Field, and Carl Beierkuhnlein
Biogeosciences, 19, 1691–1703, https://doi.org/10.5194/bg-19-1691-2022, https://doi.org/10.5194/bg-19-1691-2022, 2022
Short summary
Short summary
Volcanic islands consist mainly of basaltic rocks. Additionally, there are often occurrences of small phonolite rocks differing in color and surface. On La Palma (Canary Islands), phonolites appear to be more suitable for plants than the omnipresent basalts. Therefore, we expected phonolites to be species-rich with larger plant individuals compared to the surrounding basaltic areas. Indeed, as expected, we found more species on phonolites and larger plant individuals in general.
Cited articles
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and
Avellano, A.: The Data Assimilation Research Testbed: A Community Facility,
Bull. Am. Meteorol. Soc., 90, 1283–1296,
https://doi.org/10.1175/2009BAMS2618.1, 2009.
Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V.,
Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P.,
Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T.,
Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J. P., Law,
R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T.,
Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T.,
and Ziehn, T.: Carbon–concentration and carbon–climate feedbacks in CMIP6
models and their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222,
https://doi.org/10.5194/bg-17-4173-2020, 2020.
Avolio, M. L., Koerner, S. E., La Pierre, K. J., Wilcox, K. R., Wilson, G.
W. T., Smith, M. D., and Collins, S. L.: Changes in plant community
composition, not diversity, during a decade of nitrogen and phosphorus
additions drive above-ground productivity in a tallgrass prairie, J. Ecol.,
102, 1649–1660, 2014.
Baer, T., Furrer, G., Zimmermann, S., and Schleppi, P.: Long-term additions of ammonium nitrate to montane forest ecosystems may cause limited soil acidification, even in presence of soil carbonate, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2023-38, in review, 2023.
Baldocchi, D. D.: How eddy covariance flux measurements have contributed to
our understanding of Global Change Biology, Glob. Change Biol., 26,
242–260, https://doi.org/10.1111/gcb.14807, 2020.
Bastos, A., O'Sullivan, M., and Ciais, P.: Sources of Uncertainty in
Regional and Global Terrestrial CO2 Exchange Estimates, Global Biogeochem. Cy., 34, e2019GB006393, https://doi.org/10.1029/2019GB006393, 2020.
Bonan, G. B., Hartman, M. D., Parton, W. J., and Wieder, W. R.: Evaluating
litter decomposition in earth system models with long-term litterbag
experiments: an example using the Community Land Model version 4 (CLM4),
Glob. Change Biol., 19, 957–974, https://doi.org/10.1111/gcb.12031, 2013.
Borer, E. T., Harpole, W. S., Adler, P. B., Lind, E. M., Orrock, J. L.,
Seabloom, E. W., and Smith, M. D.: Finding generality in ecology: a model
for globally distributed experiments, Method. Ecol. Evol., 5, 65–73,
https://doi.org/10.1111/2041-210x.12125, 2014.
Brown, T. B., Hultine, K. R., Steltzer, H., Denny, E. G., Denslow, M. W.,
Granados, J., Henderson, S., Moore, D., Nagai, S., SanClements, M.,
Sánchez-Azofeifa, A., Sonnentag, O., Tazik, D., and Richardson, A. D.:
Using phenocams to monitor our changing Earth: toward a global phenocam
network, Front. Ecol. Environ., 14, 84–93,
https://doi.org/10.1002/fee.1222, 2016.
Caldararu, S., Thum, T., Yu, L., and Zaehle, S.: Whole-plant optimality
predicts changes in leaf nitrogen under variable CO2 and nutrient
availability, New Phytol., 225, 2331–2346, 2020.
Caldararu, S., Thum, T., Yu, L., Kern, M., Nair, R., and Zaehle, S.:
Long-term ecosystem nitrogen limitation from foliar δ15N data and a
land surface model, Glob. Change Biol., 28, 493–508,
https://doi.org/10.1111/gcb.15933, 2022.
Cleland, E. E., Lind, E. M., DeCrappeo, N. M., DeLorenze, E., Wilkins, R.
A., Adler, P. B., Bakker, J. D., Brown, C. S., Davies, K. F., Esch, E.,
Firn, J., Gressard, S., Gruner, D. S., Hagenah, N., Stanley Harpole, W.,
Hautier, Y., Hobbie, S. E., Hofmockel, K. S., Kirkman, K., Knops, J., Kopp,
C. W., La Pierre, K. J., MacDougall, A., McCulley, R. L., Melbourne, B. A.,
Moore, J. L., Prober, S. M., Riggs, C., Risch, A. C., Schuetz, M., Stevens,
C., Wragg, P. D., Wright, J., Borer, E. T., and Seabloom, E. W.: Belowground
Biomass Response to Nutrient Enrichment Depends on Light Limitation Across
Globally Distributed Grasslands, Ecosystems 22, 1466–1477, https://doi.org/10.1007/s10021-019-00350-4,
2019.
Collier, N., Hoffman, F. M., Lawrence, D. M., Keppel-Aleks, G., Koven, C.
D., Riley, W. J., Mu, M., and Randerson, J. T.: The international land model
benchmarking (ILAMB) system: Design, theory, and implementation, J. Adv.
Model. Earth Syst., 10, 2731–2754, https://doi.org/10.1029/2018ms001354,
2018.
Cornut, I., Delpierre, N., Laclau, J.-P., Guillemot, J., Nouvellon, Y., Campoe, O., Stape, J. L., Fernanda Santos, V., and le Maire, G.: Potassium-limitation of forest productivity, part 1: A mechanistic model simulating the effects of potassium availability on canopy carbon and water fluxes in tropical eucalypt stands, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-883, 2022a.
Cornut, I., le Maire, G., Laclau, J.-P., Guillemot, J., Nouvellon, Y., and Delpierre, N.: Potassium-limitation of forest productivity, part 2: CASTANEA-MAESPA-K shows a reduction in photosynthesis rather than a stoichiometric limitation of tissue formation, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-884, 2022b.
Dalling, J. W., Winter, K., Andersen, K. M., and Turner, B. L.: Artefacts of
the pot environment on soil nutrient availability: implications for the
interpretation of ecological studies, Plant Ecol., 214, 329–338,
https://doi.org/10.1007/s11258-013-0172-3, 2013.
De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C.,
Wang, Y.-P., Luo, Y., Jain, A. K., El-Masri, B., Hickler, T., Wårlind,
D., Weng, E., Parton, W. J., Thornton, P. E., Wang, S., Prentice, I. C.,
Asao, S., Smith, B., McCarthy, H. R., Iversen, C. M., Hanson, P. J., Warren,
J. M., Oren, R., and Norby, R. J.: Where does the carbon go? A model-data
intercomparison of vegetation carbon allocation and turnover processes at
two temperate forest free-air CO2 enrichment sites, New Phytol., 203,
883–899, https://doi.org/10.1111/nph.12847, 2014.
De Kauwe, M. G., Zhou, S.-X., Medlyn, B. E., Pitman, A. J., Wang, Y.-P., Duursma, R. A., and Prentice, I. C.: Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe, Biogeosciences, 12, 7503–7518, https://doi.org/10.5194/bg-12-7503-2015, 2015.
De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet,
B., Harper, A. B., Hickler, T., Jain, A. K., Luo, Y., Lu, X., Luus, K.,
Parton, W. J., Shu, S., Wang, Y.-P., Werner, C., Xia, J., Pendall, E.,
Morgan, J. A., Ryan, E. M., Carrillo, Y., Dijkstra, F. A., Zelikova, T. J.,
and Norby, R. J.: Challenging terrestrial biosphere models with data from
the long-term multifactor Prairie Heating and CO2 Enrichment experiment,
Glob. Change Biol., 23, 3623–3645, https://doi.org/10.1111/gcb.13643, 2017.
Dijkstra, F. A., Blumenthal, D., Morgan, J. A., Pendall, E., Carrillo, Y.,
and Follett, R. F.: Contrasting effects of elevated CO2 and warming on
nitrogen cycling in a semiarid grassland, New Phytol., 187, 426–437,
https://doi.org/10.1111/j.1469-8137.2010.03293.x, 2010.
Eastman, B. A., Adams, M. B., Brzostek, E. R., Burnham, M. B., Carrara, J.
E., Kelly, C., McNeil, B. E., Walter, C. A., and Peterjohn, W. T.: Altered
plant carbon partitioning enhanced forest ecosystem carbon storage after 25
years of nitrogen additions, New Phytol., 230, 1435–1448,
https://doi.org/10.1111/nph.17256, 2021.
Eastman, B. A., Wieder, W. R., Hartman, M. D., Brzostek, E. R., and Peterjohn, W. T.: Can models adequately reflect how long-term nitrogen enrichment alters the forest soil carbon cycle?, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2023-36, in review, 2023.
El-Madany, T. S., Reichstein, M., Carrara, A., Martín, M. P., Moreno,
G., Gonzalez-Cascon, R., Peñuelas, J., Ellsworth, D. S.,
Burchard-Levine, V., Hammer, T. W., Knauer, J., Kolle, O., Luo, Y.,
Pacheco-Labrador, J., Nelson, J. A., Perez-Priego, O., Rolo, V., Wutzler,
T., and Migliavacca, M.: How nitrogen and phosphorus availability change
water use efficiency in a Mediterranean Savanna ecosystem, J. Geophys. Res.-Biogeo., 126, e2020JG006005, https://doi.org/10.1029/2020jg006005, 2021.
Exbrayat, J.-F., Bloom, A. A., Carvalhais, N., Fischer, R., Huth, A.,
MacBean, N., and Williams, M.: Understanding the Land Carbon Cycle with
Space Data: Current Status and Prospects, Surv. Geophys., 40, 735–755,
https://doi.org/10.1007/s10712-019-09506-2, 2019.
Fer, I., Gardella, A. K., Shiklomanov, A. N., Campbell, E. E., Cowdery, E.
M., De Kauwe, M. G., Desai, A., Duveneck, M. J., Fisher, J. B., Haynes, K.
D., Hoffman, F. M., Johnston, M. R., Kooper, R., LeBauer, D. S., Mantooth,
J., Parton, W. J., Poulter, B., Quaife, T., Raiho, A., Schaefer, K., Serbin,
S. P., Simkins, J., Wilcox, K. R., Viskari, T., and Dietze, M. C.: Beyond
ecosystem modeling: A roadmap to community cyberinfrastructure for
ecological data-model integration, Glob. Change Biol., 27, 13–26,
https://doi.org/10.1111/gcb.15409, 2021.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution
climate surfaces for global land areas, Int. J. Climatol, 37, 4302–4315, https://doi.org/10.1002/joc.5086,
2017.
Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., Knox, R. G., Koven, C., Holm, J., Rogers, B. M., Spessa, A., Lawrence, D., and Bonan, G.: Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED), Geosci. Model Dev., 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, 2015.
Fleischer, K., Rammig, A., De Kauwe, M. G., Walker, A. P., Domingues, T. F.,
Fuchslueger, L., Garcia, S., Goll, D. S., Grandis, A., Jiang, M., Haverd,
V., Hofhansl, F., Holm, J. A., Kruijt, B., Leung, F., Medlyn, B. E.,
Mercado, L. M., Norby, R. J., Pak, B., von Randow, C., Quesada, C. A.,
Schaap, K. J., Valverde-Barrantes, O. J., Wang, Y.-P., Yang, X., Zaehle, S.,
Zhu, Q., and Lapola, D. M.: Amazon forest response to CO2 fertilization
dependent on plant phosphorus acquisition, Nat. Geosci., 12, 736–741,
https://doi.org/10.1038/s41561-019-0404-9, 2019.
Wieder, W. R., Boehnert, J., Bonan, G. B., and Langseth, M.: Regridded Harmonized World Soil Database v1.2, ORNL DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1247, 2014.
Fox, A., Williams, M., Richardson, A. D., Cameron, D., Gove, J. H., Quaife,
T., Ricciuto, D., Reichstein, M., Tomelleri, E., Trudinger, C. M., and Wijk,
M. T. V.: The REFLEX project: Comparing different algorithms and
implementations for the inversion of a terrestrial ecosystem model against
eddy covariance data, Agr. Forest Meteorol., 149, 1597–1615,
https://doi.org/10.1016/j.agrformet.2009.05.002, 2009.
Fraser, L. H., Henry, H. A. L., Carlyle, C. N., White, S. R., Beierkuhnlein,
C., Cahill, J. F., Jr, Casper, B. B., Cleland, E., Collins, S. L., Dukes, J.
S., Knapp, A. K., Lind, E., Long, R., Luo, Y., Reich, P. B., Smith, M. D.,
Sternberg, M., and Turkington, R.: Coordinated distributed experiments: an
emerging tool for testing global hypotheses in ecology and environmental
science, Front. Ecol. Environ., 11, 147–155,
https://doi.org/10.1890/110279, 2013.
Gough, C. M., Bohrer, G., Hardiman, B. S., Nave, L. E., Vogel, C. S.,
Atkins, J. W., Bond-Lamberty, B., Fahey, R. T., Fotis, A. T., Grigri, M. S.,
Haber, L. T., Ju, Y., Kleinke, C. L., Mathes, K. C., Nadelhoffer, K. J.,
Stuart-Haëntjens, E., and Curtis, P. S.: Disturbance-accelerated
succession increases the production of a temperate forest, Ecol. Appl., 31,
e02417, https://doi.org/10.1002/eap.2417, 2021.
Hanson, P. J., Griffiths, N. A., Iversen, C. M., and Norby, R. J.: Rapid net carbon loss from a whole-ecosystem warmed Peatland, AGU Advances, 1, e2020AV000163, https://doi.org/10.1029/2020AV000163, 2020.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate dataset, Sci. Data,
7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Harrison, S. P., Cramer, W., Franklin, O., Prentice, I. C., Wang, H.,
Brännström, Å., de Boer, H., Dieckmann, U., Joshi, J., Keenan,
T. F., Lavergne, A., Manzoni, S., Mengoli, G., Morfopoulos, C.,
Peñuelas, J., Pietsch, S., Rebel, K. T., Ryu, Y., Smith, N. G., Stocker,
B. D., and Wright, I. J.: Eco-evolutionary optimality as a means to improve
vegetation and land-surface models, New Phytol., 231, 2125–2141,
https://doi.org/10.1111/nph.17558, 2021.
Heckmann, D., Schlüter, U., and Weber, A. P. M.: Machine Learning
Techniques for Predicting Crop Photosynthetic Capacity from Leaf Reflectance
Spectra, Mol. Plant, 10, 878–890,
https://doi.org/10.1016/j.molp.2017.04.009, 2017.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLoS One, 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017.
Holm, J. A., Medvigy, D. M., Smith, B., Dukes, J. S., Beier, C., Mishurov, M., Xu, X., Lichstein, J. W., Allen, C. D., Larsen, K. S., Luo, Y., Ficken, C., Pockman, W. T., Anderegg, W. R. L., and Rammig, A.: Exploring the impacts of unprecedented climate extremes on forest ecosystems: hypotheses to guide modeling and experimental studies, Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, 2023.
Hopple, A. M., Doro, K. O., Bailey, V. L., Bond-Lamberty, B., McDowell, N.,
Morris, K. A., Myers-Pigg, A., Pennington, S. C., Regier, P., Rich, R.,
Sengupta, A., Smith, R., Stegen, J., Ward, N. D., Woodard, S. C., and
Megonigal, J. P.: Attaining freshwater and estuarine-water soil saturation
in an ecosystem-scale coastal flooding experiment, Environ. Monit. Assess.,
195, 425, https://doi.org/10.1007/s10661-022-10807-0, 2023.
Huang, Y., Stacy, M., Jiang, J., Sundi, N., Ma, S., Saruta, V., Jung, C. G., Shi, Z., Xia, J., Hanson, P. J., Ricciuto, D., and Luo, Y.: Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models, Geosci. Model Dev., 12, 1119–1137, https://doi.org/10.5194/gmd-12-1119-2019, 2019.
Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C.,
Barton, C. V. M., Boer, M. M., Carrillo, Y., Castañeda-Gómez, L.,
Collins, L., Crous, K. Y., De Kauwe, M. G., Dos Santos, B. M., Emmerson, K.
M., Facey, S. L., Gherlenda, A. N., Gimeno, T. E., Hasegawa, S., Johnson, S.
N., Kännaste, A., Macdonald, C. A., Mahmud, K., Moore, B. D., Nazaries,
L., Neilson, E. H. J., Nielsen, U. N., Niinemets, Ü., Noh, N. J.,
Ochoa-Hueso, R., Pathare, V. S., Pendall, E., Pihlblad, J., Piñeiro, J.,
Powell, J. R., Power, S. A., Reich, P. B., Renchon, A. A., Riegler, M.,
Rinnan, R., Rymer, P. D., Salomón, R. L., Singh, B. K., Smith, B.,
Tjoelker, M. G., Walker, J. K. M., Wujeska-Klause, A., Yang, J., Zaehle, S.,
and Ellsworth, D. S.: The fate of carbon in a mature forest under carbon
dioxide enrichment, Nature, 580, 227–231,
https://doi.org/10.1038/s41586-020-2128-9, 2020.
Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G.,
Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N.,
Chevallier, F., Gans, F., Goll, D. S., Haverd, V., Köhler, P., Ichii,
K., Jain, A. K., Liu, J., Lombardozzi, D., Nabel, J. E. M. S., Nelson, J.
A., O'Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J.,
Rödenbeck, C., Sitch, S., Tramontana, G., Walker, A., Weber, U., and
Reichstein, M.: Scaling carbon fluxes from eddy covariance sites to globe:
synthesis and evaluation of the FLUXCOM approach, Biogeosciences, 17,
1343–1365, https://doi.org/10.5194/bg-17-1343-2020, 2020.
Karger, D. N., Schmatz, D. R., Dettling, G., and Zimmermann, N. E.:
High-resolution monthly precipitation and temperature time series from 2006
to 2100, Sci. Data, 7, 248, https://doi.org/10.1038/s41597-020-00587-y, 2020.
Keenan, T. F., Davidson, E. A., Munger, J. W., and Richardson, A. D.: Rate
my data: quantifying the value of ecological data for the development of
models of the terrestrial carbon cycle, Ecol. Appl., 23, 273–286,
https://doi.org/10.1890/12-0747.1, 2012.
Knapp, A. K., Avolio, M. L., Beier, C., Carroll, C. J. W., Collins, S. L.,
Dukes, J. S., Fraser, L. H., Griffin-Nolan, R. J., Hoover, D. L., Jentsch,
A., Loik, M. E., Phillips, R. P., Post, A. K., Sala, O. E., Slette, I. J.,
Yahdjian, L., and Smith, M. D.: Pushing precipitation to the extremes in
distributed experiments: recommendations for simulating wet and dry years,
Glob. Change Biol., 23, 1774–1782, https://doi.org/10.1111/gcb.13504, 2017.
Kreyling, J., Schweiger, A. H., Bahn, M., Ineson, P., Migliavacca, M.,
Morel-Journel, T., Christiansen, J. R., Schtickzelle, N., and Larsen, K. S.:
To replicate, or not to replicate – that is the question: how to tackle
nonlinear responses in ecological experiments, Ecol. Lett., 21, 1629–1638,
https://doi.org/10.1111/ele.13134, 2018.
Kulmatiski, A., Holdrege, M. C., Chirvasa, C., and Beard, K. H.: Root distributions predict shrub-steppe responses to precipitation intensity, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2023-13, in review, 2023.
Kuppel, S., Peylin, P., Chevallier, F., Bacour, C., Maignan, F., and Richardson, A. D.: Constraining a global ecosystem model with multi-site eddy-covariance data, Biogeosciences, 9, 3757–3776, https://doi.org/10.5194/bg-9-3757-2012, 2012.
Lapeyre, C. J., Cazard, N., Roy, P. T., Ricci, S., and Zaoui, F.:
Reconstruction of Hydraulic Data by Machine Learning, Advances in
Hydroinformatics, Springer Water. Springer, Singapore, 701–715,
https://doi.org/10.1007/978-981-15-5436-0_54, 2020.
Li, S., Waring, B. G., Powers, J. S., and Medvigy, D.: Tropical Dry Forest Response to Nutrient Fertilization: A Model Validation and Sensitivity Analysis, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2022-243, in review, 2022.
Liang, X., Zhang, T., Lu, X., Ellsworth, D. S., BassiriRad, H., You, C.,
Wang, D., He, P., Deng, Q., Liu, H., Mo, J., and Ye, Q.: Global response
patterns of plant photosynthesis to nitrogen addition: A meta-analysis,
Glob. Change Biol., 26, 3585–3600, https://doi.org/10.1111/gcb.15071, 2020.
Ma, S., Jiang, L., Wilson, R. M., Chanton, J. P., Bridgham, S., Niu, S., Iversen, C. M., Malhotra, A., Jiang, J., Lu, X., Huang, Y., Keller, J., Xu, X., Ricciuto, D. M., Hanson, P. J., and Luo, Y.: Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion, Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, 2022.
MacBean, N., Liddy, H., Quaife, T., Kolassa, J., and Fox, A.: Building a
Land Data Assimilation Community to Tackle Technical Challenges in
Quantifying and Reducing Uncertainty in Land Model Predictions, Bull. Am.
Meteorol. Soc., 103, E733–E740, https://doi.org/10.1175/BAMS-D-21-0228.1,
2022.
Magill, A. H., Aber, J. D., Currie, W. S., Nadelhoffer, K. J., Martin, M.
E., McDowell, W. H., Melillo, J. M., and Steudler, P.: Ecosystem response to
15 years of chronic nitrogen additions at the Harvard Forest LTER,
Massachusetts, USA, Forest Ecol. Manag., 196, 7–28,
https://doi.org/10.1016/j.foreco.2004.03.033, 2004.
Mark, C., Metzner, C., Lautscham, L., Strissel, P. L., Strick, R., and
Fabry, B.: Bayesian model selection for complex dynamic systems, Nat. Commun., 9, 1803,
https://doi.org/10.1038/s41467-018-04241-5, 2018.
McDowell, N. G., Fisher, R. A., Xu, C., Domec, J. C., Hölttä, T.,
Mackay, D. S., Sperry, J. S., Boutz, A., Dickman, L., Gehres, N., Limousin,
J. M., Macalady, A., Martínez-Vilalta, J., Mencuccini, M., Plaut, J.
A., Ogée, J., Pangle, R. E., Rasse, D. P., Ryan, M. G., Sevanto, S.,
Waring, R. H., Williams, A. P., Yepez, E. A., and Pockman, W. T.: Evaluating
theories of drought-induced vegetation mortality using a
multimodel-experiment framework, New Phytol., 200, 304–321,
https://doi.org/10.1111/nph.12465, 2013.
Medlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze, M. C.,
Hanson, P. J., Hickler, T., Jain, A. K., Luo, Y., Parton, W., Prentice, I.
C., Thornton, P. E., Wang, S., Wang, Y.-P., Weng, E., Iversen, C. M.,
McCarthy, H. R., Warren, J. M., Oren, R., and Norby, R. J.: Using ecosystem
experiments to improve vegetation models, Nat. Clim. Change, 5, 528–534,
https://doi.org/10.1038/nclimate2621, 2015.
Medlyn, B. E., De Kauwe, M. G., Zaehle, S., Walker, A. P., Duursma, R. A.,
Luus, K., Mishurov, M., Pak, B., Smith, B., Wang, Y.-P., Yang, X., Crous, K.
Y., Drake, J. E., Gimeno, T. E., Macdonald, C. A., Norby, R. J., Power, S.
A., Tjoelker, M. G., and Ellsworth, D. S.: Using models to guide field
experiments: a priori predictions for the CO2 response of a nutrient- and
water-limited native Eucalypt woodland, Glob. Change Biol., 22, 2834–2851,
https://doi.org/10.1111/gcb.13268, 2016.
Mendoza-Martinez, V., Collins, S. L., and McLaren, J. R.: Long-term fertilization increases soil but not plant or microbial N in a Chihuahuan Desert Grassland, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2023-41, in review, 2023.
Meyerholt, J. and Zaehle, S.: The role of stoichiometric flexibility in
modelling forest ecosystem responses to nitrogen fertilization, New Phytol.,
208, 1042–1055, https://doi.org/10.1111/nph.13547, 2015.
Nair, R., Strube, M., Hertel, M., Kolle, O., Rolo, V., and Migliavacca, M.:
High frequency root dynamics: sampling and interpretation using replicated
robotic minirhizotrons, J. Exp. Bot., 74, 769–786,
https://doi.org/10.1093/jxb/erac427, 2023.
Niu, G., Wang, Y., Wang, R., Ning, Q., Guan, H., Yang, J., Lu, X., Han, X.,
and Huang, J.: Intensity and duration of nitrogen addition jointly alter
soil nutrient availability in a temperate grassland, J. Geophys. Res.-Biogeo., 127, e2021JG006698, https://doi.org/10.1029/2021jg006698, 2022.
Norby, R. J., De Kauwe, M. G., Domingues, T. F., Duursma, R. A., Ellsworth,
D. S., Goll, D. S., Lapola, D. M., Luus, K. A., MacKenzie, A. R., Medlyn, B.
E., Pavlick, R., Rammig, A., Smith, B., Thomas, R., Thonicke, K., Walker, A.
P., Yang, X., and Zaehle, S.: Model-data synthesis for the next generation
of forest free-air CO2 enrichment (FACE) experiments, New Phytol., 209,
17–28, https://doi.org/10.1111/nph.13593, 2016.
Ntirugulirwa, B., Zibera, E., Epaphrodite, N., Manishimwe, A., Nsabimana, D., Uddling, J., and Wallin, G.: Contrasting growth and mortality responses of different species lead to shifts in tropical montane tree community composition in a warmer climate, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2023-42, in review, 2023.
Pacheco-Labrador, J., Migliavacca, M., Ma, X., Mahecha, M. D., Carvalhais,
N., Weber, U., Benavides, R., Bouriaud, O., Barnoaiea, I., Coomes, D. A.,
Bohn, F. J., Kraemer, G., Heiden, U., Huth, A., and Wirth, C.: Challenging
the link between functional and spectral diversity with radiative transfer
modeling and data, Remote Sens. Environ., 280, 113170,
https://doi.org/10.1016/j.rse.2022.113170, 2022.
Paquette, A., Hector, A., Castagneyrol, B., Vanhellemont, M., Koricheva, J.,
Scherer-Lorenzen, M., Verheyen, K., and TreeDivNet: A million and more trees
for science, Nat. Ecol. Evol., 2, 763–766,
https://doi.org/10.1038/s41559-018-0544-0, 2018.
Parton, W. J., Morgan, J. A., Wang, G., and Del Grosso, S.: Projected
ecosystem impact of the Prairie Heating and CO2 Enrichment experiment, New
Phytol., 174, 823–834, https://doi.org/10.1111/j.1469-8137.2007.02052.x,
2007.
Piao, S., Wang, X., Wang, K., Li, X., Bastos, A., Canadell, J. G., Ciais,
P., Friedlingstein, P., and Sitch, S.: Interannual variation of terrestrial
carbon cycle: Issues and perspectives, Glob. Change Biol., 26, 300–318,
https://doi.org/10.1111/gcb.14884, 2020.
Piepho, H.-P., Herndl, M., Pötsch, E. M., and Bahn, M.: Designing an
experiment with quantitative treatment factors to study the effects of
climate change, J. Agron. Crop Sci., 203, 584–592,
https://doi.org/10.1111/jac.12225, 2017.
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B.,
Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: producing soil information for
the globe with quantified spatial uncertainty, SOIL, 7, 217–240,
https://doi.org/10.5194/soil-7-217-2021, 2021.
Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., and Mommer,
L.: Biomass allocation to leaves, stems and roots: meta-analyses of
interspecific variation and environmental control, New Phytol., 193, 30–50,
https://doi.org/10.1111/j.1469-8137.2011.03952.x, 2012.
Powell, T. L., Galbraith, D. R., Christoffersen, B. O., Harper, A.,
Imbuzeiro, H. M. A., Rowland, L., Almeida, S., Brando, P. M., da Costa, A.
C. L., Costa, M. H., Levine, N. M., Malhi, Y., Saleska, S. R., Sotta, E.,
Williams, M., Meir, P., and Moorcroft, P. R.: Confronting model predictions
of carbon fluxes with measurements of Amazon forests subjected to
experimental drought, New Phytol., 200, 350–365, https://doi.org/10.1111/nph.12390, 2013.
Prentice, I. C., Colin Prentice, I., Bondeau, A., Cramer, W., Harrison, S.
P., Hickler, T., Lucht, W., Sitch, S., Smith, B., and Sykes, M. T.: Dynamic
Global Vegetation Modeling: Quantifying Terrestrial Ecosystem Responses to
Large-Scale Environmental Change, in: Terrestrial Ecosystems in a Changing
World, edited by: Canadell, J. G., Pataki, D. E., and Pitelka, L. F., Spinger,
175–192, https://doi.org/10.1007/978-3-540-32730-1_15, 2007.
Prentice, I. C., Dong, N., Gleason, S. M., Maire, V., and Wright, I. J.:
Balancing the costs of carbon gain and water transport: testing a new
theoretical framework for plant functional ecology, Ecol. Lett., 17, 82–91,
https://doi.org/10.1111/ele.12211, 2014.
Prentice, I. C., Liang, X., Medlyn, B. E., and Wang, Y.-P.: Reliable, robust
and realistic: the three R's of next-generation land-surface modelling,
Atmos. Chem. Phys., 15, 5987–6005,
https://doi.org/10.5194/acp-15-5987-2015, 2015.
Raoult, N., Edouard-Rambaut, L.-A., Vuichard, N., Bastrikov, V., Lansø, A. S., Guenet, B., and Peylin, P.: Using free air CO2 enrichment data to constrain land surface model projections of the terrestrial carbon cycle, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-360, 2023.
Reich, P. B., Hobbie, S. E., Lee, T. D., and Pastore, M. A.: Unexpected
reversal of C3 versus C4 grass response to elevated CO2 during a 20-year
field experiment, Science, 360, 317–320,
https://doi.org/10.1126/science.aas9313, 2018.
Sabot, M. E. B., De Kauwe, M. G., Pitman, A. J., Ellsworth, D. S., Medlyn,
B. E., Caldararu, S., Zaehle, S., Crous, K. Y., Gimeno, T. E.,
Wujeska-Klause, A., Mu, M., and Yang, J.: Predicting resilience through the
lens of competing adjustments to vegetation function, Plant Cell Environ.,
45, 2744–2761, https://doi.org/10.1111/pce.14376, 2022.
Seiler, C., Melton, J. R., Arora, V. K., Sitch, S., Friedlingstein, P.,
Anthoni, P., Goll, D., Jain, A. K., Joetzjer, E., Lienert, S., Lombardozzi,
D., Luyssaert, S., Nabel, J. E. M. S., Tian, H., Vuichard, N., Walker, A.
P., Yuan, W., and Zaehle, S.: Are Terrestrial Biosphere Models Fit for
Simulating the Global Land Carbon Sink?, J. Adv. Model.
Earth Syst., 14, e2021MS002946, https://doi.org/10.1029/2021MS002946,
2022.
Smith, N. G., Rodgers, V. L., Brzostek, E. R., Kulmatiski, A., Avolio, M.
L., Hoover, D. L., Koerner, S. E., Grant, K., Jentsch, A., Fatichi, S., and
Niyogi, D.: Toward a better integration of biological data from
precipitation manipulation experiments into Earth system models, Rev.
Geophys., 52, 412–434, https://doi.org/10.1002/2014RG000458, 2014.
Smith, W. K., Fox, A. M., MacBean, N., Moore, D. J. P., and Parazoo, N. C.:
Constraining estimates of terrestrial carbon uptake: new opportunities using
long-term satellite observations and data assimilation, New Phytol., 225,
105–112, https://doi.org/10.1111/nph.16055, 2020.
Stocker, B. D., Prentice, I. C., Cornell, S. E., Davies-Barnard, T., Finzi,
A. C., Franklin, O., Janssens, I., Larmola, T., Manzoni, S., Näsholm,
T., Raven, J. A., Rebel, K. T., Reed, S., Vicca, S., Wiltshire, A., and
Zaehle, S.: Terrestrial nitrogen cycling in Earth system models revisited,
New Phytol., 210, 1165–1168, https://doi.org/10.1111/nph.13997, 2016.
Tan, B., You, W., Tian, S., Xiao, T., Wang, M., Zheng, B., and Luo, L.: Soil
Nitrogen Content Detection Based on Near-Infrared Spectroscopy, Sensors,
22, 8013, https://doi.org/10.3390/s22208013, 2022.
Terrer, C., Phillips, R. P., Hungate, B. A., Rosende, J., Pett-Ridge, J.,
Craig, M. E., van Groenigen, K. J., Keenan, T. F., Sulman, B. N., Stocker,
B. D., Reich, P. B., Pellegrini, A. F. A., Pendall, E., Zhang, H., Evans, R.
D., Carrillo, Y., Fisher, J. B., Van Sundert, K., Vicca, S., and Jackson, R.
B.: A trade-off between plant and soil carbon storage under elevated CO2,
Nature, 591, 599–603, https://doi.org/10.1038/s41586-021-03306-8, 2021.
Thomas, R. Q., Zaehle, S., Templer, P. H., and Goodale, C. L.: Global
patterns of nitrogen limitation: confronting two global biogeochemical
models with observations, Glob. Change Biol., 19, 2986–2998,
https://doi.org/10.1111/gcb.12281, 2013.
Van Sundert, K., Van Sundert, K., Leuzinger, S.-F. Bader, M. K., Chang, S.
X., De Kauwe, M. G., Dukes, J. S., Adam Langley, J., Ma, Z., Mariën, B.,
Reynaert, S., Ru, J., Song, J., Stocker, B., Terrer, C., Thoresen, J.,
Vanuytrecht, E., Wan, S., Yue, K., and Vicca, S.: When things get MESI: The
Manipulation Experiments Synthesis Initiative – A coordinated effort to
synthesize terrestrial global change experiments, Glob. Change Biol., 29, 1922–1938,
https://doi.org/10.1111/gcb.16585, 2023.
Vargas Gutiérrez, G., Pérez-Aviles, D., Raczka, N., Pereira-Arias, D., Tijerín-Triviño, J., Pereira-Arias, L. D., Medvigy, D., Waring, B. G., Morrisey, E., Brzostek, E., and Powers, J. S.: Throughfall exclusion and fertilization effects on tropical dry forest tree plantations, a large-scale experiment, Biogeosciences, 20, 2143–2160, https://doi.org/10.5194/bg-20-2143-2023, 2023.
Walker, A. P., Hanson, P. J., De Kauwe, M. G., Medlyn, B. E., Zaehle, S.,
Asao, S., Dietze, M., Hickler, T., Huntingford, C., Iversen, C. M., Jain,
A., Lomas, M., Luo, Y., McCarthy, H., Parton, W. J., Prentice, I. C.,
Thornton, P. E., Wang, S., Wang, Y.-P., Warlind, D., Weng, E., Warren, J.
M., Woodward, F. I., Oren, R., and Norby, R. J.: Comprehensive ecosystem
model-data synthesis using multiple data sets at two temperate forest
free-air CO2 enrichment experiments: Model performance at ambient CO2
concentration : FACE MODEL-DATA SYNTHESIS, J. Geophys. Res.-Biogeo., 119,
937–964, https://doi.org/10.1002/2013JG002553, 2014.
Wang, B., Luke McCormack, M., Ricciuto, D. M., Yang, X., and Iversen, C. M.:
Embracing fine-root system complexity to improve the predictive
understanding of ecosystem functioning, bioRxiv, 2022.10.07.511037,
https://doi.org/10.1101/2022.10.07.511037, 2022.
Way, D. A. and Yamori, W.: Thermal acclimation of photosynthesis: on the
importance of adjusting our definitions and accounting for thermal
acclimation of respiration, Photosynth. Res., 119, 89–100,
https://doi.org/10.1007/s11120-013-9873-7, 2014.
Werner, C., Meredith, L. K., Ladd, S. N., Ingrisch, J., Kübert, A., van
Haren, J., Bahn, M., Bailey, K., Bamberger, I., Beyer, M., Blomdahl, D.,
Byron, J., Daber, E., Deleeuw, J., Dippold, M. A., Fudyma, J., Gil-Loaiza,
J., Honeker, L. K., Hu, J., Huang, J., Klüpfel, T., Krechmer, J.,
Kreuzwieser, J., Kühnhammer, K., Lehmann, M. M., Meeran, K., Misztal, P.
K., Ng, W.-R., Pfannerstill, E., Pugliese, G., Purser, G., Roscioli, J.,
Shi, L., Tfaily, M., and Williams, J.: Ecosystem fluxes during drought and
recovery in an experimental forest, Science, 374, 1514–1518,
https://doi.org/10.1126/science.abj6789, 2021.
Wieder, W. R., Lawrence, D. M., Fisher, R. A., Bonan, G. B., Cheng, S. J.,
Goodale, C. L., Grandy, A. S., Koven, C. D., Lombardozzi, D. L., Oleson, K.
W., and Thomas, R. Q.: Beyond Static Benchmarking: Using Experimental
Manipulations to Evaluate Land Model Assumptions, Global Biogeochem. Cy.,
33, 1289–1309, https://doi.org/10.1029/2018GB006141, 2019.
Wilcox, K. R., Collins, S. L., Knapp, A. K., Pockman, W., Shi, Z., Smith, M. D., and Luo, Y.: Assessing carbon storage capacity and saturation across six central US grasslands using data–model integration, Biogeosciences, 20, 2707–2725, https://doi.org/10.5194/bg-20-2707-2023, 2023.
Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A.
R., Ichii, K., Ni, W., Pang, Y., Rahman, A. F., Sun, G., Yuan, W., Zhang,
L., and Zhang, X.: Remote sensing of the terrestrial carbon cycle: A review
of advances over 50 years, Remote Sens. Environ., 233, 111383,
https://doi.org/10.1016/j.rse.2019.111383, 2019.
Xu, X. and Trugman, A. T.: Trait-Based Modeling of Terrestrial Ecosystems:
Advances and Challenges Under Global Change, Curr. Clim. Change Rep.,
7, 1–13, https://doi.org/10.1007/s40641-020-00168-6, 2021.
Yang, X., Tang, J., Mustard, J. F., Lee, J.-E., Rossini, M., Joiner, J.,
Munger, J. W., Kornfeld, A., and Richardson, A. D.: Solar-induced
chlorophyll fluorescence that correlates with canopy photosynthesis on
diurnal and seasonal scales in a temperate deciduous forest, Geophys. Res.
Lett., 42, 2977–2987, https://doi.org/10.1002/2015gl063201, 2015.
Zaehle, S., Friedlingstein, P., and Friend, A. D.: Terrestrial nitrogen
feedbacks may accelerate future climate change, Geophys. Res. Lett., 37, L01401,
https://doi.org/10.1029/2009gl041345, 2010.
Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze, M. C.,
Hickler, T., Luo, Y., Wang, Y.-P., El-Masri, B., Thornton, P., Jain, A.,
Wang, S., Warlind, D., Weng, E., Parton, W., Iversen, C. M., Gallet-Budynek,
A., McCarthy, H., Finzi, A., Hanson, P. J., Prentice, I. C., Oren, R., and
Norby, R. J.: Evaluation of 11 terrestrial carbon–nitrogen cycle models
against observations from two temperate Free-Air CO2 Enrichment studies, New
Phytol., 202, 803–822, https://doi.org/10.1111/nph.12697, 2014.
Zhao, P., Chi, J., Nilsson, M. B., Löfvenius, M. O., Högberg, P.,
Jocher, G., Lim, H., Mäkelä, A., Marshall, J., Ratcliffe, J., Tian,
X., Näsholm, T., Lundmark, T., Linder, S., and Peichl, M.: Long-term
nitrogen addition raises the annual carbon sink of a boreal forest to a new
steady-state, Agr. Forest Meteorol., 324, 109112,
https://doi.org/10.1016/j.agrformet.2022.109112, 2022.
Short summary
Ecosystem manipulative experiments are large experiments in real ecosystems. They include processes such as species interactions and weather that would be omitted in more controlled settings. They offer a high level of realism but are underused in combination with vegetation models used to predict the response of ecosystems to global change. We propose a workflow using models and ecosystem experiments together, taking advantage of the benefits of both tools for Earth system understanding.
Ecosystem manipulative experiments are large experiments in real ecosystems. They include...
Altmetrics
Final-revised paper
Preprint