Articles | Volume 20, issue 17
https://doi.org/10.5194/bg-20-3637-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3637-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ideas and perspectives: Beyond model evaluation – combining experiments and models to advance terrestrial ecosystem science
Discipline of Botany, School of Natural Sciences, Trinity College
Dublin, Dublin, Ireland
Max Planck Institute for Biogeochemistry, Jena, Germany
Forest Research Group, INDEHESA, University of Extremadura,
Plasencia, Cáceres, Spain
Benjamin D. Stocker
Institute of Geography, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern,
Bern, Switzerland
Teresa E. Gimeno
CREAF, 08193 Bellaterra, Cerdanyola del Vallès, Catalonia, Spain
Richard Nair
Discipline of Botany, School of Natural Sciences, Trinity College
Dublin, Dublin, Ireland
Max Planck Institute for Biogeochemistry, Jena, Germany
Related authors
Tuuli Miinalainen, Amanda Ojasalo, Holly Croft, Mika Aurela, Mikko Peltoniemi, Silvia Caldararu, Sönke Zaehle, and Tea Thum
EGUsphere, https://doi.org/10.5194/egusphere-2025-2987, https://doi.org/10.5194/egusphere-2025-2987, 2025
Short summary
Short summary
Estimating the future carbon budget requires an accurate understanding of the interlinkages between the land carbon and nitrogen cycles. We use a remote sensing leaf chlorophyll product to evaluate a terrestrial biosphere model, QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system). Our study showcases how the latest advancements in remote sensing-based vegetation monitoring can be harnessed for improving and evaluating process-based vegetation models.
Tea Thum, Tuuli Miinalainen, Outi Seppälä, Holly Croft, Cheryl Rogers, Ralf Staebler, Silvia Caldararu, and Sönke Zaehle
Biogeosciences, 22, 1781–1807, https://doi.org/10.5194/bg-22-1781-2025, https://doi.org/10.5194/bg-22-1781-2025, 2025
Short summary
Short summary
Climate change has the potential to influence the carbon sequestration potential of terrestrial ecosystems, and here the nitrogen cycle is also important. We used the terrestrial biosphere model QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system) in a mixed deciduous forest in Canada. We investigated the usefulness of using the leaf area index and leaf chlorophyll content to improve the parameterization of the model. This work paves the way for using spaceborne observations in model parameterizations, also including information on the nitrogen cycle.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024, https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Short summary
Through an extensive global dataset of leaf nutrient resorption and a multifactorial analysis, we show that the majority of spatial variation in nutrient resorption may be driven by leaf habit and type, with thicker, longer-lived leaves having lower resorption efficiencies. Climate, soil fertility and soil-related factors emerge as strong drivers with an additional effect on its role. These results are essential for comprehending plant nutrient status, plant productivity and nutrient cycling.
Melanie A. Thurner, Silvia Caldararu, Jan Engel, Anja Rammig, and Sönke Zaehle
Biogeosciences, 21, 1391–1410, https://doi.org/10.5194/bg-21-1391-2024, https://doi.org/10.5194/bg-21-1391-2024, 2024
Short summary
Short summary
Due to their crucial role in terrestrial ecosystems, we implemented mycorrhizal fungi into the QUINCY terrestrial biosphere model. Fungi interact with mineral and organic soil to support plant N uptake and, thus, plant growth. Our results suggest that the effect of mycorrhizal interactions on simulated ecosystem dynamics is minor under constant environmental conditions but necessary to reproduce and understand observed patterns under changing conditions, such as rising atmospheric CO2.
Richard Nair, Yunpeng Luo, Tarek El-Madany, Victor Rolo, Javier Pacheco-Labrador, Silvia Caldararu, Kendalynn A. Morris, Marion Schrumpf, Arnaud Carrara, Gerardo Moreno, Markus Reichstein, and Mirco Migliavacca
EGUsphere, https://doi.org/10.5194/egusphere-2023-2434, https://doi.org/10.5194/egusphere-2023-2434, 2023
Preprint archived
Short summary
Short summary
We studied a Mediterranean ecosystem to understand carbon uptake efficiency and its controls. These ecosystems face potential nitrogen-phosphorus imbalances due to pollution. Analysing six years of carbon data, we assessed controls at different timeframes. This is crucial for predicting such vulnerable regions. Our findings revealed N limitation on C uptake, not N:P imbalance, and strong influence of water availability. whether drought or wetness promoted net C uptake depended on timescale.
Lin Yu, Silvia Caldararu, Bernhard Ahrens, Thomas Wutzler, Marion Schrumpf, Julian Helfenstein, Chiara Pistocchi, and Sönke Zaehle
Biogeosciences, 20, 57–73, https://doi.org/10.5194/bg-20-57-2023, https://doi.org/10.5194/bg-20-57-2023, 2023
Short summary
Short summary
In this study, we addressed a key weakness in current ecosystem models regarding the phosphorus exchange in the soil and developed a new scheme to describe this process. We showed that the new scheme improved the model performance for plant productivity, soil organic carbon, and soil phosphorus content at five beech forest sites in Germany. We claim that this new model could be used as a better tool to study ecosystems under future climate change, particularly phosphorus-limited systems.
Tuuli Miinalainen, Amanda Ojasalo, Holly Croft, Mika Aurela, Mikko Peltoniemi, Silvia Caldararu, Sönke Zaehle, and Tea Thum
EGUsphere, https://doi.org/10.5194/egusphere-2025-2987, https://doi.org/10.5194/egusphere-2025-2987, 2025
Short summary
Short summary
Estimating the future carbon budget requires an accurate understanding of the interlinkages between the land carbon and nitrogen cycles. We use a remote sensing leaf chlorophyll product to evaluate a terrestrial biosphere model, QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system). Our study showcases how the latest advancements in remote sensing-based vegetation monitoring can be harnessed for improving and evaluating process-based vegetation models.
Laura Nadolski, Tarek S. El-Madany, Jacob Nelson, Arnaud Carrara, Gerardo Moreno, Richard Nair, Yunpeng Luo, Anke Hildebrandt, Victor Rolo, Markus Reichstein, and Sung-Ching Lee
Biogeosciences, 22, 2935–2958, https://doi.org/10.5194/bg-22-2935-2025, https://doi.org/10.5194/bg-22-2935-2025, 2025
Short summary
Short summary
Semi-arid ecosystems are crucial for Earth's carbon balance and are sensitive to changes in nitrogen (N) and phosphorus (P) levels. Their carbon dynamics are complex and not fully understood. We studied how long-term nutrient changes affect carbon exchange. In summer, the addition of N+P changed plant composition and productivity. In transitional seasons, carbon exchange was less weather-dependent with N. The addition of N and N+P increases carbon-exchange variability, driven by grass greenness.
Inne Vanderkelen, Marie-Estelle Demoury, Sean Swenson, David M. Lawrence, Benjamin D. Stocker, Myke Koopmans, and Édouard L. Davin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2637, https://doi.org/10.5194/egusphere-2025-2637, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Soil carbon sequestration supports climate mitigation and may enhance water availability. Using a global land model, we show that increased soil organic carbon improves water retention in the root zone and reduces runoff, particularly in dry, sandy regions. Although hydrological changes are modest, they are systematic and suggest co-benefits for vegetation productivity and ecosystem resilience in water-limited areas.
Samantha Biegel, Konrad Schindler, and Benjamin D. Stocker
EGUsphere, https://doi.org/10.5194/egusphere-2025-1617, https://doi.org/10.5194/egusphere-2025-1617, 2025
Short summary
Short summary
Our work addresses the predictability of carbon absorption by ecosystems across the globe, particularly in dry regions. We compare 3 different models, including a deep learning model that can learn from past environmental conditions, and show that this helps improve predictions. Still, challenges remain in dry areas due to varying vulnerabilities to drought. As drought conditions intensify globally, it's crucial to understand the varying impacts on ecosystem function.
Alejandro Carrascosa, Gerardo Moreno, M. Francesca Cotrufo, Cristina Frade, Sara Rodrigo, and Víctor Rolo
EGUsphere, https://doi.org/10.5194/egusphere-2025-1711, https://doi.org/10.5194/egusphere-2025-1711, 2025
Short summary
Short summary
Improved management practices such as rotational grazing, grazing exclusion, and legume enrichment can boost climate change mitigation and adaptation in grasslands. We studied the effects of these practices on soil organic carbon (SOC) stocks and fractions in semi-arid grasslands. Rotational grazing increased SOC, especially mineral-protected fraction, while exclusion reduced particulate organic carbon stocks. These outcomes were linked to changes in plant traits, soil microbes, and nutrients.
Tea Thum, Tuuli Miinalainen, Outi Seppälä, Holly Croft, Cheryl Rogers, Ralf Staebler, Silvia Caldararu, and Sönke Zaehle
Biogeosciences, 22, 1781–1807, https://doi.org/10.5194/bg-22-1781-2025, https://doi.org/10.5194/bg-22-1781-2025, 2025
Short summary
Short summary
Climate change has the potential to influence the carbon sequestration potential of terrestrial ecosystems, and here the nitrogen cycle is also important. We used the terrestrial biosphere model QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system) in a mixed deciduous forest in Canada. We investigated the usefulness of using the leaf area index and leaf chlorophyll content to improve the parameterization of the model. This work paves the way for using spaceborne observations in model parameterizations, also including information on the nitrogen cycle.
Josefa Arán Paredes, Koen Hufkens, Mayeul Marcadella, Fabian Bernhard, and Benjamin D. Stocker
EGUsphere, https://doi.org/10.1101/2023.11.24.568574, https://doi.org/10.1101/2023.11.24.568574, 2025
Short summary
Short summary
Mechanistic vegetation models serve to estimate terrestrial carbon fluxes and climate impacts on ecosystems across diverse conditions. Here we present the {rsofun} R package, providing an implementation of a model for site-scale ecosystem photosynthesis including functions for Bayesian model-data integration. The package {rsofun} lowers the bar of entry to ecosystem modelling and model-data integration and serves as an open-access resource for model development and dissemination.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024, https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Short summary
Through an extensive global dataset of leaf nutrient resorption and a multifactorial analysis, we show that the majority of spatial variation in nutrient resorption may be driven by leaf habit and type, with thicker, longer-lived leaves having lower resorption efficiencies. Climate, soil fertility and soil-related factors emerge as strong drivers with an additional effect on its role. These results are essential for comprehending plant nutrient status, plant productivity and nutrient cycling.
Melanie A. Thurner, Silvia Caldararu, Jan Engel, Anja Rammig, and Sönke Zaehle
Biogeosciences, 21, 1391–1410, https://doi.org/10.5194/bg-21-1391-2024, https://doi.org/10.5194/bg-21-1391-2024, 2024
Short summary
Short summary
Due to their crucial role in terrestrial ecosystems, we implemented mycorrhizal fungi into the QUINCY terrestrial biosphere model. Fungi interact with mineral and organic soil to support plant N uptake and, thus, plant growth. Our results suggest that the effect of mycorrhizal interactions on simulated ecosystem dynamics is minor under constant environmental conditions but necessary to reproduce and understand observed patterns under changing conditions, such as rising atmospheric CO2.
Richard Nair, Yunpeng Luo, Tarek El-Madany, Victor Rolo, Javier Pacheco-Labrador, Silvia Caldararu, Kendalynn A. Morris, Marion Schrumpf, Arnaud Carrara, Gerardo Moreno, Markus Reichstein, and Mirco Migliavacca
EGUsphere, https://doi.org/10.5194/egusphere-2023-2434, https://doi.org/10.5194/egusphere-2023-2434, 2023
Preprint archived
Short summary
Short summary
We studied a Mediterranean ecosystem to understand carbon uptake efficiency and its controls. These ecosystems face potential nitrogen-phosphorus imbalances due to pollution. Analysing six years of carbon data, we assessed controls at different timeframes. This is crucial for predicting such vulnerable regions. Our findings revealed N limitation on C uptake, not N:P imbalance, and strong influence of water availability. whether drought or wetness promoted net C uptake depended on timescale.
Piersilvio De Bartolomeis, Alexandru Meterez, Zixin Shu, and Benjamin David Stocker
EGUsphere, https://doi.org/10.5194/egusphere-2023-1826, https://doi.org/10.5194/egusphere-2023-1826, 2023
Preprint withdrawn
Short summary
Short summary
Our research highlights the effectiveness of a recurrent neural network, LSTM, in predicting plant carbon absorption using weather and satellite data. LSTM outperforms other models, even for new locations, suggesting its broad application. Yet, challenges remain in predicting diverse ecosystems globally due to varying plant and climate factors. Our work enhances understanding of Earth's complex ecosystems using advanced models.
Lin Yu, Silvia Caldararu, Bernhard Ahrens, Thomas Wutzler, Marion Schrumpf, Julian Helfenstein, Chiara Pistocchi, and Sönke Zaehle
Biogeosciences, 20, 57–73, https://doi.org/10.5194/bg-20-57-2023, https://doi.org/10.5194/bg-20-57-2023, 2023
Short summary
Short summary
In this study, we addressed a key weakness in current ecosystem models regarding the phosphorus exchange in the soil and developed a new scheme to describe this process. We showed that the new scheme improved the model performance for plant productivity, soil organic carbon, and soil phosphorus content at five beech forest sites in Germany. We claim that this new model could be used as a better tool to study ecosystems under future climate change, particularly phosphorus-limited systems.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Javier de la Casa, Adrià Barbeta, Asun Rodríguez-Uña, Lisa Wingate, Jérôme Ogée, and Teresa E. Gimeno
Hydrol. Earth Syst. Sci., 26, 4125–4146, https://doi.org/10.5194/hess-26-4125-2022, https://doi.org/10.5194/hess-26-4125-2022, 2022
Short summary
Short summary
Recently, studies have been reporting mismatches in the water isotopic composition of plants and soils. In this work, we reviewed worldwide isotopic composition data of field and laboratory studies to see if the mismatch is generalised, and we found it to be true. This contradicts theoretical expectations and may underlie an non-described phenomenon that should be forward investigated and implemented in ecohydrological models to avoid erroneous estimations of water sources used by vegetation.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Teresa E. Gimeno, Belinda E. Medlyn, Dani Or, Jinyan Yang, and David S. Ellsworth
Hydrol. Earth Syst. Sci., 25, 447–471, https://doi.org/10.5194/hess-25-447-2021, https://doi.org/10.5194/hess-25-447-2021, 2021
Short summary
Short summary
Land surface model (LSM) is a critical tool to study land responses to droughts and heatwaves, but lacking comprehensive observations limited past model evaluations. Here we use a novel dataset at a water-limited site, evaluate a typical LSM with a range of competing model hypotheses widely used in LSMs and identify marked uncertainty due to the differing process assumptions. We show the extensive observations constrain model processes and allow better simulated land responses to these extremes.
Cited articles
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and
Avellano, A.: The Data Assimilation Research Testbed: A Community Facility,
Bull. Am. Meteorol. Soc., 90, 1283–1296,
https://doi.org/10.1175/2009BAMS2618.1, 2009.
Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V.,
Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P.,
Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T.,
Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J. P., Law,
R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T.,
Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T.,
and Ziehn, T.: Carbon–concentration and carbon–climate feedbacks in CMIP6
models and their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222,
https://doi.org/10.5194/bg-17-4173-2020, 2020.
Avolio, M. L., Koerner, S. E., La Pierre, K. J., Wilcox, K. R., Wilson, G.
W. T., Smith, M. D., and Collins, S. L.: Changes in plant community
composition, not diversity, during a decade of nitrogen and phosphorus
additions drive above-ground productivity in a tallgrass prairie, J. Ecol.,
102, 1649–1660, 2014.
Baer, T., Furrer, G., Zimmermann, S., and Schleppi, P.: Long-term additions of ammonium nitrate to montane forest ecosystems may cause limited soil acidification, even in presence of soil carbonate, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2023-38, in review, 2023.
Baldocchi, D. D.: How eddy covariance flux measurements have contributed to
our understanding of Global Change Biology, Glob. Change Biol., 26,
242–260, https://doi.org/10.1111/gcb.14807, 2020.
Bastos, A., O'Sullivan, M., and Ciais, P.: Sources of Uncertainty in
Regional and Global Terrestrial CO2 Exchange Estimates, Global Biogeochem. Cy., 34, e2019GB006393, https://doi.org/10.1029/2019GB006393, 2020.
Bonan, G. B., Hartman, M. D., Parton, W. J., and Wieder, W. R.: Evaluating
litter decomposition in earth system models with long-term litterbag
experiments: an example using the Community Land Model version 4 (CLM4),
Glob. Change Biol., 19, 957–974, https://doi.org/10.1111/gcb.12031, 2013.
Borer, E. T., Harpole, W. S., Adler, P. B., Lind, E. M., Orrock, J. L.,
Seabloom, E. W., and Smith, M. D.: Finding generality in ecology: a model
for globally distributed experiments, Method. Ecol. Evol., 5, 65–73,
https://doi.org/10.1111/2041-210x.12125, 2014.
Brown, T. B., Hultine, K. R., Steltzer, H., Denny, E. G., Denslow, M. W.,
Granados, J., Henderson, S., Moore, D., Nagai, S., SanClements, M.,
Sánchez-Azofeifa, A., Sonnentag, O., Tazik, D., and Richardson, A. D.:
Using phenocams to monitor our changing Earth: toward a global phenocam
network, Front. Ecol. Environ., 14, 84–93,
https://doi.org/10.1002/fee.1222, 2016.
Caldararu, S., Thum, T., Yu, L., and Zaehle, S.: Whole-plant optimality
predicts changes in leaf nitrogen under variable CO2 and nutrient
availability, New Phytol., 225, 2331–2346, 2020.
Caldararu, S., Thum, T., Yu, L., Kern, M., Nair, R., and Zaehle, S.:
Long-term ecosystem nitrogen limitation from foliar δ15N data and a
land surface model, Glob. Change Biol., 28, 493–508,
https://doi.org/10.1111/gcb.15933, 2022.
Cleland, E. E., Lind, E. M., DeCrappeo, N. M., DeLorenze, E., Wilkins, R.
A., Adler, P. B., Bakker, J. D., Brown, C. S., Davies, K. F., Esch, E.,
Firn, J., Gressard, S., Gruner, D. S., Hagenah, N., Stanley Harpole, W.,
Hautier, Y., Hobbie, S. E., Hofmockel, K. S., Kirkman, K., Knops, J., Kopp,
C. W., La Pierre, K. J., MacDougall, A., McCulley, R. L., Melbourne, B. A.,
Moore, J. L., Prober, S. M., Riggs, C., Risch, A. C., Schuetz, M., Stevens,
C., Wragg, P. D., Wright, J., Borer, E. T., and Seabloom, E. W.: Belowground
Biomass Response to Nutrient Enrichment Depends on Light Limitation Across
Globally Distributed Grasslands, Ecosystems 22, 1466–1477, https://doi.org/10.1007/s10021-019-00350-4,
2019.
Collier, N., Hoffman, F. M., Lawrence, D. M., Keppel-Aleks, G., Koven, C.
D., Riley, W. J., Mu, M., and Randerson, J. T.: The international land model
benchmarking (ILAMB) system: Design, theory, and implementation, J. Adv.
Model. Earth Syst., 10, 2731–2754, https://doi.org/10.1029/2018ms001354,
2018.
Cornut, I., Delpierre, N., Laclau, J.-P., Guillemot, J., Nouvellon, Y., Campoe, O., Stape, J. L., Fernanda Santos, V., and le Maire, G.: Potassium-limitation of forest productivity, part 1: A mechanistic model simulating the effects of potassium availability on canopy carbon and water fluxes in tropical eucalypt stands, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-883, 2022a.
Cornut, I., le Maire, G., Laclau, J.-P., Guillemot, J., Nouvellon, Y., and Delpierre, N.: Potassium-limitation of forest productivity, part 2: CASTANEA-MAESPA-K shows a reduction in photosynthesis rather than a stoichiometric limitation of tissue formation, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-884, 2022b.
Dalling, J. W., Winter, K., Andersen, K. M., and Turner, B. L.: Artefacts of
the pot environment on soil nutrient availability: implications for the
interpretation of ecological studies, Plant Ecol., 214, 329–338,
https://doi.org/10.1007/s11258-013-0172-3, 2013.
De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C.,
Wang, Y.-P., Luo, Y., Jain, A. K., El-Masri, B., Hickler, T., Wårlind,
D., Weng, E., Parton, W. J., Thornton, P. E., Wang, S., Prentice, I. C.,
Asao, S., Smith, B., McCarthy, H. R., Iversen, C. M., Hanson, P. J., Warren,
J. M., Oren, R., and Norby, R. J.: Where does the carbon go? A model-data
intercomparison of vegetation carbon allocation and turnover processes at
two temperate forest free-air CO2 enrichment sites, New Phytol., 203,
883–899, https://doi.org/10.1111/nph.12847, 2014.
De Kauwe, M. G., Zhou, S.-X., Medlyn, B. E., Pitman, A. J., Wang, Y.-P., Duursma, R. A., and Prentice, I. C.: Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe, Biogeosciences, 12, 7503–7518, https://doi.org/10.5194/bg-12-7503-2015, 2015.
De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet,
B., Harper, A. B., Hickler, T., Jain, A. K., Luo, Y., Lu, X., Luus, K.,
Parton, W. J., Shu, S., Wang, Y.-P., Werner, C., Xia, J., Pendall, E.,
Morgan, J. A., Ryan, E. M., Carrillo, Y., Dijkstra, F. A., Zelikova, T. J.,
and Norby, R. J.: Challenging terrestrial biosphere models with data from
the long-term multifactor Prairie Heating and CO2 Enrichment experiment,
Glob. Change Biol., 23, 3623–3645, https://doi.org/10.1111/gcb.13643, 2017.
Dijkstra, F. A., Blumenthal, D., Morgan, J. A., Pendall, E., Carrillo, Y.,
and Follett, R. F.: Contrasting effects of elevated CO2 and warming on
nitrogen cycling in a semiarid grassland, New Phytol., 187, 426–437,
https://doi.org/10.1111/j.1469-8137.2010.03293.x, 2010.
Eastman, B. A., Adams, M. B., Brzostek, E. R., Burnham, M. B., Carrara, J.
E., Kelly, C., McNeil, B. E., Walter, C. A., and Peterjohn, W. T.: Altered
plant carbon partitioning enhanced forest ecosystem carbon storage after 25
years of nitrogen additions, New Phytol., 230, 1435–1448,
https://doi.org/10.1111/nph.17256, 2021.
Eastman, B. A., Wieder, W. R., Hartman, M. D., Brzostek, E. R., and Peterjohn, W. T.: Can models adequately reflect how long-term nitrogen enrichment alters the forest soil carbon cycle?, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2023-36, in review, 2023.
El-Madany, T. S., Reichstein, M., Carrara, A., Martín, M. P., Moreno,
G., Gonzalez-Cascon, R., Peñuelas, J., Ellsworth, D. S.,
Burchard-Levine, V., Hammer, T. W., Knauer, J., Kolle, O., Luo, Y.,
Pacheco-Labrador, J., Nelson, J. A., Perez-Priego, O., Rolo, V., Wutzler,
T., and Migliavacca, M.: How nitrogen and phosphorus availability change
water use efficiency in a Mediterranean Savanna ecosystem, J. Geophys. Res.-Biogeo., 126, e2020JG006005, https://doi.org/10.1029/2020jg006005, 2021.
Exbrayat, J.-F., Bloom, A. A., Carvalhais, N., Fischer, R., Huth, A.,
MacBean, N., and Williams, M.: Understanding the Land Carbon Cycle with
Space Data: Current Status and Prospects, Surv. Geophys., 40, 735–755,
https://doi.org/10.1007/s10712-019-09506-2, 2019.
Fer, I., Gardella, A. K., Shiklomanov, A. N., Campbell, E. E., Cowdery, E.
M., De Kauwe, M. G., Desai, A., Duveneck, M. J., Fisher, J. B., Haynes, K.
D., Hoffman, F. M., Johnston, M. R., Kooper, R., LeBauer, D. S., Mantooth,
J., Parton, W. J., Poulter, B., Quaife, T., Raiho, A., Schaefer, K., Serbin,
S. P., Simkins, J., Wilcox, K. R., Viskari, T., and Dietze, M. C.: Beyond
ecosystem modeling: A roadmap to community cyberinfrastructure for
ecological data-model integration, Glob. Change Biol., 27, 13–26,
https://doi.org/10.1111/gcb.15409, 2021.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution
climate surfaces for global land areas, Int. J. Climatol, 37, 4302–4315, https://doi.org/10.1002/joc.5086,
2017.
Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., Knox, R. G., Koven, C., Holm, J., Rogers, B. M., Spessa, A., Lawrence, D., and Bonan, G.: Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED), Geosci. Model Dev., 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, 2015.
Fleischer, K., Rammig, A., De Kauwe, M. G., Walker, A. P., Domingues, T. F.,
Fuchslueger, L., Garcia, S., Goll, D. S., Grandis, A., Jiang, M., Haverd,
V., Hofhansl, F., Holm, J. A., Kruijt, B., Leung, F., Medlyn, B. E.,
Mercado, L. M., Norby, R. J., Pak, B., von Randow, C., Quesada, C. A.,
Schaap, K. J., Valverde-Barrantes, O. J., Wang, Y.-P., Yang, X., Zaehle, S.,
Zhu, Q., and Lapola, D. M.: Amazon forest response to CO2 fertilization
dependent on plant phosphorus acquisition, Nat. Geosci., 12, 736–741,
https://doi.org/10.1038/s41561-019-0404-9, 2019.
Wieder, W. R., Boehnert, J., Bonan, G. B., and Langseth, M.: Regridded Harmonized World Soil Database v1.2, ORNL DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1247, 2014.
Fox, A., Williams, M., Richardson, A. D., Cameron, D., Gove, J. H., Quaife,
T., Ricciuto, D., Reichstein, M., Tomelleri, E., Trudinger, C. M., and Wijk,
M. T. V.: The REFLEX project: Comparing different algorithms and
implementations for the inversion of a terrestrial ecosystem model against
eddy covariance data, Agr. Forest Meteorol., 149, 1597–1615,
https://doi.org/10.1016/j.agrformet.2009.05.002, 2009.
Fraser, L. H., Henry, H. A. L., Carlyle, C. N., White, S. R., Beierkuhnlein,
C., Cahill, J. F., Jr, Casper, B. B., Cleland, E., Collins, S. L., Dukes, J.
S., Knapp, A. K., Lind, E., Long, R., Luo, Y., Reich, P. B., Smith, M. D.,
Sternberg, M., and Turkington, R.: Coordinated distributed experiments: an
emerging tool for testing global hypotheses in ecology and environmental
science, Front. Ecol. Environ., 11, 147–155,
https://doi.org/10.1890/110279, 2013.
Gough, C. M., Bohrer, G., Hardiman, B. S., Nave, L. E., Vogel, C. S.,
Atkins, J. W., Bond-Lamberty, B., Fahey, R. T., Fotis, A. T., Grigri, M. S.,
Haber, L. T., Ju, Y., Kleinke, C. L., Mathes, K. C., Nadelhoffer, K. J.,
Stuart-Haëntjens, E., and Curtis, P. S.: Disturbance-accelerated
succession increases the production of a temperate forest, Ecol. Appl., 31,
e02417, https://doi.org/10.1002/eap.2417, 2021.
Hanson, P. J., Griffiths, N. A., Iversen, C. M., and Norby, R. J.: Rapid net carbon loss from a whole-ecosystem warmed Peatland, AGU Advances, 1, e2020AV000163, https://doi.org/10.1029/2020AV000163, 2020.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate dataset, Sci. Data,
7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Harrison, S. P., Cramer, W., Franklin, O., Prentice, I. C., Wang, H.,
Brännström, Å., de Boer, H., Dieckmann, U., Joshi, J., Keenan,
T. F., Lavergne, A., Manzoni, S., Mengoli, G., Morfopoulos, C.,
Peñuelas, J., Pietsch, S., Rebel, K. T., Ryu, Y., Smith, N. G., Stocker,
B. D., and Wright, I. J.: Eco-evolutionary optimality as a means to improve
vegetation and land-surface models, New Phytol., 231, 2125–2141,
https://doi.org/10.1111/nph.17558, 2021.
Heckmann, D., Schlüter, U., and Weber, A. P. M.: Machine Learning
Techniques for Predicting Crop Photosynthetic Capacity from Leaf Reflectance
Spectra, Mol. Plant, 10, 878–890,
https://doi.org/10.1016/j.molp.2017.04.009, 2017.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLoS One, 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017.
Holm, J. A., Medvigy, D. M., Smith, B., Dukes, J. S., Beier, C., Mishurov, M., Xu, X., Lichstein, J. W., Allen, C. D., Larsen, K. S., Luo, Y., Ficken, C., Pockman, W. T., Anderegg, W. R. L., and Rammig, A.: Exploring the impacts of unprecedented climate extremes on forest ecosystems: hypotheses to guide modeling and experimental studies, Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, 2023.
Hopple, A. M., Doro, K. O., Bailey, V. L., Bond-Lamberty, B., McDowell, N.,
Morris, K. A., Myers-Pigg, A., Pennington, S. C., Regier, P., Rich, R.,
Sengupta, A., Smith, R., Stegen, J., Ward, N. D., Woodard, S. C., and
Megonigal, J. P.: Attaining freshwater and estuarine-water soil saturation
in an ecosystem-scale coastal flooding experiment, Environ. Monit. Assess.,
195, 425, https://doi.org/10.1007/s10661-022-10807-0, 2023.
Huang, Y., Stacy, M., Jiang, J., Sundi, N., Ma, S., Saruta, V., Jung, C. G., Shi, Z., Xia, J., Hanson, P. J., Ricciuto, D., and Luo, Y.: Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models, Geosci. Model Dev., 12, 1119–1137, https://doi.org/10.5194/gmd-12-1119-2019, 2019.
Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C.,
Barton, C. V. M., Boer, M. M., Carrillo, Y., Castañeda-Gómez, L.,
Collins, L., Crous, K. Y., De Kauwe, M. G., Dos Santos, B. M., Emmerson, K.
M., Facey, S. L., Gherlenda, A. N., Gimeno, T. E., Hasegawa, S., Johnson, S.
N., Kännaste, A., Macdonald, C. A., Mahmud, K., Moore, B. D., Nazaries,
L., Neilson, E. H. J., Nielsen, U. N., Niinemets, Ü., Noh, N. J.,
Ochoa-Hueso, R., Pathare, V. S., Pendall, E., Pihlblad, J., Piñeiro, J.,
Powell, J. R., Power, S. A., Reich, P. B., Renchon, A. A., Riegler, M.,
Rinnan, R., Rymer, P. D., Salomón, R. L., Singh, B. K., Smith, B.,
Tjoelker, M. G., Walker, J. K. M., Wujeska-Klause, A., Yang, J., Zaehle, S.,
and Ellsworth, D. S.: The fate of carbon in a mature forest under carbon
dioxide enrichment, Nature, 580, 227–231,
https://doi.org/10.1038/s41586-020-2128-9, 2020.
Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G.,
Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N.,
Chevallier, F., Gans, F., Goll, D. S., Haverd, V., Köhler, P., Ichii,
K., Jain, A. K., Liu, J., Lombardozzi, D., Nabel, J. E. M. S., Nelson, J.
A., O'Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J.,
Rödenbeck, C., Sitch, S., Tramontana, G., Walker, A., Weber, U., and
Reichstein, M.: Scaling carbon fluxes from eddy covariance sites to globe:
synthesis and evaluation of the FLUXCOM approach, Biogeosciences, 17,
1343–1365, https://doi.org/10.5194/bg-17-1343-2020, 2020.
Karger, D. N., Schmatz, D. R., Dettling, G., and Zimmermann, N. E.:
High-resolution monthly precipitation and temperature time series from 2006
to 2100, Sci. Data, 7, 248, https://doi.org/10.1038/s41597-020-00587-y, 2020.
Keenan, T. F., Davidson, E. A., Munger, J. W., and Richardson, A. D.: Rate
my data: quantifying the value of ecological data for the development of
models of the terrestrial carbon cycle, Ecol. Appl., 23, 273–286,
https://doi.org/10.1890/12-0747.1, 2012.
Knapp, A. K., Avolio, M. L., Beier, C., Carroll, C. J. W., Collins, S. L.,
Dukes, J. S., Fraser, L. H., Griffin-Nolan, R. J., Hoover, D. L., Jentsch,
A., Loik, M. E., Phillips, R. P., Post, A. K., Sala, O. E., Slette, I. J.,
Yahdjian, L., and Smith, M. D.: Pushing precipitation to the extremes in
distributed experiments: recommendations for simulating wet and dry years,
Glob. Change Biol., 23, 1774–1782, https://doi.org/10.1111/gcb.13504, 2017.
Kreyling, J., Schweiger, A. H., Bahn, M., Ineson, P., Migliavacca, M.,
Morel-Journel, T., Christiansen, J. R., Schtickzelle, N., and Larsen, K. S.:
To replicate, or not to replicate – that is the question: how to tackle
nonlinear responses in ecological experiments, Ecol. Lett., 21, 1629–1638,
https://doi.org/10.1111/ele.13134, 2018.
Kulmatiski, A., Holdrege, M. C., Chirvasa, C., and Beard, K. H.: Root distributions predict shrub-steppe responses to precipitation intensity, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2023-13, in review, 2023.
Kuppel, S., Peylin, P., Chevallier, F., Bacour, C., Maignan, F., and Richardson, A. D.: Constraining a global ecosystem model with multi-site eddy-covariance data, Biogeosciences, 9, 3757–3776, https://doi.org/10.5194/bg-9-3757-2012, 2012.
Lapeyre, C. J., Cazard, N., Roy, P. T., Ricci, S., and Zaoui, F.:
Reconstruction of Hydraulic Data by Machine Learning, Advances in
Hydroinformatics, Springer Water. Springer, Singapore, 701–715,
https://doi.org/10.1007/978-981-15-5436-0_54, 2020.
Li, S., Waring, B. G., Powers, J. S., and Medvigy, D.: Tropical Dry Forest Response to Nutrient Fertilization: A Model Validation and Sensitivity Analysis, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2022-243, in review, 2022.
Liang, X., Zhang, T., Lu, X., Ellsworth, D. S., BassiriRad, H., You, C.,
Wang, D., He, P., Deng, Q., Liu, H., Mo, J., and Ye, Q.: Global response
patterns of plant photosynthesis to nitrogen addition: A meta-analysis,
Glob. Change Biol., 26, 3585–3600, https://doi.org/10.1111/gcb.15071, 2020.
Ma, S., Jiang, L., Wilson, R. M., Chanton, J. P., Bridgham, S., Niu, S., Iversen, C. M., Malhotra, A., Jiang, J., Lu, X., Huang, Y., Keller, J., Xu, X., Ricciuto, D. M., Hanson, P. J., and Luo, Y.: Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion, Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, 2022.
MacBean, N., Liddy, H., Quaife, T., Kolassa, J., and Fox, A.: Building a
Land Data Assimilation Community to Tackle Technical Challenges in
Quantifying and Reducing Uncertainty in Land Model Predictions, Bull. Am.
Meteorol. Soc., 103, E733–E740, https://doi.org/10.1175/BAMS-D-21-0228.1,
2022.
Magill, A. H., Aber, J. D., Currie, W. S., Nadelhoffer, K. J., Martin, M.
E., McDowell, W. H., Melillo, J. M., and Steudler, P.: Ecosystem response to
15 years of chronic nitrogen additions at the Harvard Forest LTER,
Massachusetts, USA, Forest Ecol. Manag., 196, 7–28,
https://doi.org/10.1016/j.foreco.2004.03.033, 2004.
Mark, C., Metzner, C., Lautscham, L., Strissel, P. L., Strick, R., and
Fabry, B.: Bayesian model selection for complex dynamic systems, Nat. Commun., 9, 1803,
https://doi.org/10.1038/s41467-018-04241-5, 2018.
McDowell, N. G., Fisher, R. A., Xu, C., Domec, J. C., Hölttä, T.,
Mackay, D. S., Sperry, J. S., Boutz, A., Dickman, L., Gehres, N., Limousin,
J. M., Macalady, A., Martínez-Vilalta, J., Mencuccini, M., Plaut, J.
A., Ogée, J., Pangle, R. E., Rasse, D. P., Ryan, M. G., Sevanto, S.,
Waring, R. H., Williams, A. P., Yepez, E. A., and Pockman, W. T.: Evaluating
theories of drought-induced vegetation mortality using a
multimodel-experiment framework, New Phytol., 200, 304–321,
https://doi.org/10.1111/nph.12465, 2013.
Medlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze, M. C.,
Hanson, P. J., Hickler, T., Jain, A. K., Luo, Y., Parton, W., Prentice, I.
C., Thornton, P. E., Wang, S., Wang, Y.-P., Weng, E., Iversen, C. M.,
McCarthy, H. R., Warren, J. M., Oren, R., and Norby, R. J.: Using ecosystem
experiments to improve vegetation models, Nat. Clim. Change, 5, 528–534,
https://doi.org/10.1038/nclimate2621, 2015.
Medlyn, B. E., De Kauwe, M. G., Zaehle, S., Walker, A. P., Duursma, R. A.,
Luus, K., Mishurov, M., Pak, B., Smith, B., Wang, Y.-P., Yang, X., Crous, K.
Y., Drake, J. E., Gimeno, T. E., Macdonald, C. A., Norby, R. J., Power, S.
A., Tjoelker, M. G., and Ellsworth, D. S.: Using models to guide field
experiments: a priori predictions for the CO2 response of a nutrient- and
water-limited native Eucalypt woodland, Glob. Change Biol., 22, 2834–2851,
https://doi.org/10.1111/gcb.13268, 2016.
Mendoza-Martinez, V., Collins, S. L., and McLaren, J. R.: Long-term fertilization increases soil but not plant or microbial N in a Chihuahuan Desert Grassland, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2023-41, in review, 2023.
Meyerholt, J. and Zaehle, S.: The role of stoichiometric flexibility in
modelling forest ecosystem responses to nitrogen fertilization, New Phytol.,
208, 1042–1055, https://doi.org/10.1111/nph.13547, 2015.
Nair, R., Strube, M., Hertel, M., Kolle, O., Rolo, V., and Migliavacca, M.:
High frequency root dynamics: sampling and interpretation using replicated
robotic minirhizotrons, J. Exp. Bot., 74, 769–786,
https://doi.org/10.1093/jxb/erac427, 2023.
Niu, G., Wang, Y., Wang, R., Ning, Q., Guan, H., Yang, J., Lu, X., Han, X.,
and Huang, J.: Intensity and duration of nitrogen addition jointly alter
soil nutrient availability in a temperate grassland, J. Geophys. Res.-Biogeo., 127, e2021JG006698, https://doi.org/10.1029/2021jg006698, 2022.
Norby, R. J., De Kauwe, M. G., Domingues, T. F., Duursma, R. A., Ellsworth,
D. S., Goll, D. S., Lapola, D. M., Luus, K. A., MacKenzie, A. R., Medlyn, B.
E., Pavlick, R., Rammig, A., Smith, B., Thomas, R., Thonicke, K., Walker, A.
P., Yang, X., and Zaehle, S.: Model-data synthesis for the next generation
of forest free-air CO2 enrichment (FACE) experiments, New Phytol., 209,
17–28, https://doi.org/10.1111/nph.13593, 2016.
Ntirugulirwa, B., Zibera, E., Epaphrodite, N., Manishimwe, A., Nsabimana, D., Uddling, J., and Wallin, G.: Contrasting growth and mortality responses of different species lead to shifts in tropical montane tree community composition in a warmer climate, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2023-42, in review, 2023.
Pacheco-Labrador, J., Migliavacca, M., Ma, X., Mahecha, M. D., Carvalhais,
N., Weber, U., Benavides, R., Bouriaud, O., Barnoaiea, I., Coomes, D. A.,
Bohn, F. J., Kraemer, G., Heiden, U., Huth, A., and Wirth, C.: Challenging
the link between functional and spectral diversity with radiative transfer
modeling and data, Remote Sens. Environ., 280, 113170,
https://doi.org/10.1016/j.rse.2022.113170, 2022.
Paquette, A., Hector, A., Castagneyrol, B., Vanhellemont, M., Koricheva, J.,
Scherer-Lorenzen, M., Verheyen, K., and TreeDivNet: A million and more trees
for science, Nat. Ecol. Evol., 2, 763–766,
https://doi.org/10.1038/s41559-018-0544-0, 2018.
Parton, W. J., Morgan, J. A., Wang, G., and Del Grosso, S.: Projected
ecosystem impact of the Prairie Heating and CO2 Enrichment experiment, New
Phytol., 174, 823–834, https://doi.org/10.1111/j.1469-8137.2007.02052.x,
2007.
Piao, S., Wang, X., Wang, K., Li, X., Bastos, A., Canadell, J. G., Ciais,
P., Friedlingstein, P., and Sitch, S.: Interannual variation of terrestrial
carbon cycle: Issues and perspectives, Glob. Change Biol., 26, 300–318,
https://doi.org/10.1111/gcb.14884, 2020.
Piepho, H.-P., Herndl, M., Pötsch, E. M., and Bahn, M.: Designing an
experiment with quantitative treatment factors to study the effects of
climate change, J. Agron. Crop Sci., 203, 584–592,
https://doi.org/10.1111/jac.12225, 2017.
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B.,
Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: producing soil information for
the globe with quantified spatial uncertainty, SOIL, 7, 217–240,
https://doi.org/10.5194/soil-7-217-2021, 2021.
Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., and Mommer,
L.: Biomass allocation to leaves, stems and roots: meta-analyses of
interspecific variation and environmental control, New Phytol., 193, 30–50,
https://doi.org/10.1111/j.1469-8137.2011.03952.x, 2012.
Powell, T. L., Galbraith, D. R., Christoffersen, B. O., Harper, A.,
Imbuzeiro, H. M. A., Rowland, L., Almeida, S., Brando, P. M., da Costa, A.
C. L., Costa, M. H., Levine, N. M., Malhi, Y., Saleska, S. R., Sotta, E.,
Williams, M., Meir, P., and Moorcroft, P. R.: Confronting model predictions
of carbon fluxes with measurements of Amazon forests subjected to
experimental drought, New Phytol., 200, 350–365, https://doi.org/10.1111/nph.12390, 2013.
Prentice, I. C., Colin Prentice, I., Bondeau, A., Cramer, W., Harrison, S.
P., Hickler, T., Lucht, W., Sitch, S., Smith, B., and Sykes, M. T.: Dynamic
Global Vegetation Modeling: Quantifying Terrestrial Ecosystem Responses to
Large-Scale Environmental Change, in: Terrestrial Ecosystems in a Changing
World, edited by: Canadell, J. G., Pataki, D. E., and Pitelka, L. F., Spinger,
175–192, https://doi.org/10.1007/978-3-540-32730-1_15, 2007.
Prentice, I. C., Dong, N., Gleason, S. M., Maire, V., and Wright, I. J.:
Balancing the costs of carbon gain and water transport: testing a new
theoretical framework for plant functional ecology, Ecol. Lett., 17, 82–91,
https://doi.org/10.1111/ele.12211, 2014.
Prentice, I. C., Liang, X., Medlyn, B. E., and Wang, Y.-P.: Reliable, robust
and realistic: the three R's of next-generation land-surface modelling,
Atmos. Chem. Phys., 15, 5987–6005,
https://doi.org/10.5194/acp-15-5987-2015, 2015.
Raoult, N., Edouard-Rambaut, L.-A., Vuichard, N., Bastrikov, V., Lansø, A. S., Guenet, B., and Peylin, P.: Using free air CO2 enrichment data to constrain land surface model projections of the terrestrial carbon cycle, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-360, 2023.
Reich, P. B., Hobbie, S. E., Lee, T. D., and Pastore, M. A.: Unexpected
reversal of C3 versus C4 grass response to elevated CO2 during a 20-year
field experiment, Science, 360, 317–320,
https://doi.org/10.1126/science.aas9313, 2018.
Sabot, M. E. B., De Kauwe, M. G., Pitman, A. J., Ellsworth, D. S., Medlyn,
B. E., Caldararu, S., Zaehle, S., Crous, K. Y., Gimeno, T. E.,
Wujeska-Klause, A., Mu, M., and Yang, J.: Predicting resilience through the
lens of competing adjustments to vegetation function, Plant Cell Environ.,
45, 2744–2761, https://doi.org/10.1111/pce.14376, 2022.
Seiler, C., Melton, J. R., Arora, V. K., Sitch, S., Friedlingstein, P.,
Anthoni, P., Goll, D., Jain, A. K., Joetzjer, E., Lienert, S., Lombardozzi,
D., Luyssaert, S., Nabel, J. E. M. S., Tian, H., Vuichard, N., Walker, A.
P., Yuan, W., and Zaehle, S.: Are Terrestrial Biosphere Models Fit for
Simulating the Global Land Carbon Sink?, J. Adv. Model.
Earth Syst., 14, e2021MS002946, https://doi.org/10.1029/2021MS002946,
2022.
Smith, N. G., Rodgers, V. L., Brzostek, E. R., Kulmatiski, A., Avolio, M.
L., Hoover, D. L., Koerner, S. E., Grant, K., Jentsch, A., Fatichi, S., and
Niyogi, D.: Toward a better integration of biological data from
precipitation manipulation experiments into Earth system models, Rev.
Geophys., 52, 412–434, https://doi.org/10.1002/2014RG000458, 2014.
Smith, W. K., Fox, A. M., MacBean, N., Moore, D. J. P., and Parazoo, N. C.:
Constraining estimates of terrestrial carbon uptake: new opportunities using
long-term satellite observations and data assimilation, New Phytol., 225,
105–112, https://doi.org/10.1111/nph.16055, 2020.
Stocker, B. D., Prentice, I. C., Cornell, S. E., Davies-Barnard, T., Finzi,
A. C., Franklin, O., Janssens, I., Larmola, T., Manzoni, S., Näsholm,
T., Raven, J. A., Rebel, K. T., Reed, S., Vicca, S., Wiltshire, A., and
Zaehle, S.: Terrestrial nitrogen cycling in Earth system models revisited,
New Phytol., 210, 1165–1168, https://doi.org/10.1111/nph.13997, 2016.
Tan, B., You, W., Tian, S., Xiao, T., Wang, M., Zheng, B., and Luo, L.: Soil
Nitrogen Content Detection Based on Near-Infrared Spectroscopy, Sensors,
22, 8013, https://doi.org/10.3390/s22208013, 2022.
Terrer, C., Phillips, R. P., Hungate, B. A., Rosende, J., Pett-Ridge, J.,
Craig, M. E., van Groenigen, K. J., Keenan, T. F., Sulman, B. N., Stocker,
B. D., Reich, P. B., Pellegrini, A. F. A., Pendall, E., Zhang, H., Evans, R.
D., Carrillo, Y., Fisher, J. B., Van Sundert, K., Vicca, S., and Jackson, R.
B.: A trade-off between plant and soil carbon storage under elevated CO2,
Nature, 591, 599–603, https://doi.org/10.1038/s41586-021-03306-8, 2021.
Thomas, R. Q., Zaehle, S., Templer, P. H., and Goodale, C. L.: Global
patterns of nitrogen limitation: confronting two global biogeochemical
models with observations, Glob. Change Biol., 19, 2986–2998,
https://doi.org/10.1111/gcb.12281, 2013.
Van Sundert, K., Van Sundert, K., Leuzinger, S.-F. Bader, M. K., Chang, S.
X., De Kauwe, M. G., Dukes, J. S., Adam Langley, J., Ma, Z., Mariën, B.,
Reynaert, S., Ru, J., Song, J., Stocker, B., Terrer, C., Thoresen, J.,
Vanuytrecht, E., Wan, S., Yue, K., and Vicca, S.: When things get MESI: The
Manipulation Experiments Synthesis Initiative – A coordinated effort to
synthesize terrestrial global change experiments, Glob. Change Biol., 29, 1922–1938,
https://doi.org/10.1111/gcb.16585, 2023.
Vargas Gutiérrez, G., Pérez-Aviles, D., Raczka, N., Pereira-Arias, D., Tijerín-Triviño, J., Pereira-Arias, L. D., Medvigy, D., Waring, B. G., Morrisey, E., Brzostek, E., and Powers, J. S.: Throughfall exclusion and fertilization effects on tropical dry forest tree plantations, a large-scale experiment, Biogeosciences, 20, 2143–2160, https://doi.org/10.5194/bg-20-2143-2023, 2023.
Walker, A. P., Hanson, P. J., De Kauwe, M. G., Medlyn, B. E., Zaehle, S.,
Asao, S., Dietze, M., Hickler, T., Huntingford, C., Iversen, C. M., Jain,
A., Lomas, M., Luo, Y., McCarthy, H., Parton, W. J., Prentice, I. C.,
Thornton, P. E., Wang, S., Wang, Y.-P., Warlind, D., Weng, E., Warren, J.
M., Woodward, F. I., Oren, R., and Norby, R. J.: Comprehensive ecosystem
model-data synthesis using multiple data sets at two temperate forest
free-air CO2 enrichment experiments: Model performance at ambient CO2
concentration : FACE MODEL-DATA SYNTHESIS, J. Geophys. Res.-Biogeo., 119,
937–964, https://doi.org/10.1002/2013JG002553, 2014.
Wang, B., Luke McCormack, M., Ricciuto, D. M., Yang, X., and Iversen, C. M.:
Embracing fine-root system complexity to improve the predictive
understanding of ecosystem functioning, bioRxiv, 2022.10.07.511037,
https://doi.org/10.1101/2022.10.07.511037, 2022.
Way, D. A. and Yamori, W.: Thermal acclimation of photosynthesis: on the
importance of adjusting our definitions and accounting for thermal
acclimation of respiration, Photosynth. Res., 119, 89–100,
https://doi.org/10.1007/s11120-013-9873-7, 2014.
Werner, C., Meredith, L. K., Ladd, S. N., Ingrisch, J., Kübert, A., van
Haren, J., Bahn, M., Bailey, K., Bamberger, I., Beyer, M., Blomdahl, D.,
Byron, J., Daber, E., Deleeuw, J., Dippold, M. A., Fudyma, J., Gil-Loaiza,
J., Honeker, L. K., Hu, J., Huang, J., Klüpfel, T., Krechmer, J.,
Kreuzwieser, J., Kühnhammer, K., Lehmann, M. M., Meeran, K., Misztal, P.
K., Ng, W.-R., Pfannerstill, E., Pugliese, G., Purser, G., Roscioli, J.,
Shi, L., Tfaily, M., and Williams, J.: Ecosystem fluxes during drought and
recovery in an experimental forest, Science, 374, 1514–1518,
https://doi.org/10.1126/science.abj6789, 2021.
Wieder, W. R., Lawrence, D. M., Fisher, R. A., Bonan, G. B., Cheng, S. J.,
Goodale, C. L., Grandy, A. S., Koven, C. D., Lombardozzi, D. L., Oleson, K.
W., and Thomas, R. Q.: Beyond Static Benchmarking: Using Experimental
Manipulations to Evaluate Land Model Assumptions, Global Biogeochem. Cy.,
33, 1289–1309, https://doi.org/10.1029/2018GB006141, 2019.
Wilcox, K. R., Collins, S. L., Knapp, A. K., Pockman, W., Shi, Z., Smith, M. D., and Luo, Y.: Assessing carbon storage capacity and saturation across six central US grasslands using data–model integration, Biogeosciences, 20, 2707–2725, https://doi.org/10.5194/bg-20-2707-2023, 2023.
Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A.
R., Ichii, K., Ni, W., Pang, Y., Rahman, A. F., Sun, G., Yuan, W., Zhang,
L., and Zhang, X.: Remote sensing of the terrestrial carbon cycle: A review
of advances over 50 years, Remote Sens. Environ., 233, 111383,
https://doi.org/10.1016/j.rse.2019.111383, 2019.
Xu, X. and Trugman, A. T.: Trait-Based Modeling of Terrestrial Ecosystems:
Advances and Challenges Under Global Change, Curr. Clim. Change Rep.,
7, 1–13, https://doi.org/10.1007/s40641-020-00168-6, 2021.
Yang, X., Tang, J., Mustard, J. F., Lee, J.-E., Rossini, M., Joiner, J.,
Munger, J. W., Kornfeld, A., and Richardson, A. D.: Solar-induced
chlorophyll fluorescence that correlates with canopy photosynthesis on
diurnal and seasonal scales in a temperate deciduous forest, Geophys. Res.
Lett., 42, 2977–2987, https://doi.org/10.1002/2015gl063201, 2015.
Zaehle, S., Friedlingstein, P., and Friend, A. D.: Terrestrial nitrogen
feedbacks may accelerate future climate change, Geophys. Res. Lett., 37, L01401,
https://doi.org/10.1029/2009gl041345, 2010.
Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze, M. C.,
Hickler, T., Luo, Y., Wang, Y.-P., El-Masri, B., Thornton, P., Jain, A.,
Wang, S., Warlind, D., Weng, E., Parton, W., Iversen, C. M., Gallet-Budynek,
A., McCarthy, H., Finzi, A., Hanson, P. J., Prentice, I. C., Oren, R., and
Norby, R. J.: Evaluation of 11 terrestrial carbon–nitrogen cycle models
against observations from two temperate Free-Air CO2 Enrichment studies, New
Phytol., 202, 803–822, https://doi.org/10.1111/nph.12697, 2014.
Zhao, P., Chi, J., Nilsson, M. B., Löfvenius, M. O., Högberg, P.,
Jocher, G., Lim, H., Mäkelä, A., Marshall, J., Ratcliffe, J., Tian,
X., Näsholm, T., Lundmark, T., Linder, S., and Peichl, M.: Long-term
nitrogen addition raises the annual carbon sink of a boreal forest to a new
steady-state, Agr. Forest Meteorol., 324, 109112,
https://doi.org/10.1016/j.agrformet.2022.109112, 2022.
Short summary
Ecosystem manipulative experiments are large experiments in real ecosystems. They include processes such as species interactions and weather that would be omitted in more controlled settings. They offer a high level of realism but are underused in combination with vegetation models used to predict the response of ecosystems to global change. We propose a workflow using models and ecosystem experiments together, taking advantage of the benefits of both tools for Earth system understanding.
Ecosystem manipulative experiments are large experiments in real ecosystems. They include...
Altmetrics
Final-revised paper
Preprint