Articles | Volume 20, issue 1
https://doi.org/10.5194/bg-20-75-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-75-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconciling different approaches to quantifying land surface temperature impacts of afforestation using satellite observations
Huanhuan Wang
College of Natural Resources and Environment, Northwest A&F
University, Yangling, Shaanxi 712100, P.R. China
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess
Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
College of Forestry, Northwest A&F University, Yangling, Shaanxi
712100, P.R. China
Sebastiaan Luyssaert
Department of Ecological Sciences, Faculty of Sciences, Vrije
Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
Related authors
No articles found.
Lei Zhu, Philippe Ciais, Yitong Yao, Daniel Goll, Sebastiaan Luyssaert, Isabel Martínez Cano, Arthur Fendrich, Laurent Li, Hui Yang, Sassan Saatchi, and Wei Li
Geosci. Model Dev., 18, 4915–4933, https://doi.org/10.5194/gmd-18-4915-2025, https://doi.org/10.5194/gmd-18-4915-2025, 2025
Short summary
Short summary
This study enhances the accuracy of modeling the carbon dynamics of the Amazon rainforest by optimizing key model parameters based on satellite data. Using spatially varying parameters for tree mortality and photosynthesis, we improved predictions of biomass, productivity, and tree mortality. Our findings highlight the critical role of wood density and water availability in forest processes, offering insights to use in refining global carbon cycle models.
Espoir Koudjo Gaglo, Emeline Chaste, Sebastiaan Luyssaert, Olivier Roupsard, Christophe Jourdan, Sidy Sow, Nadeige Vandewalle, Frédéric Do, Daouda Ngom, and Aude Valade
EGUsphere, https://doi.org/10.5194/egusphere-2025-1102, https://doi.org/10.5194/egusphere-2025-1102, 2025
Short summary
Short summary
Agroforestry in the Sahel help store carbon and support food production, but land surface models struggle to capture their dynamics. We adapted the ORCHIDEE model to simulate Faidherbia albida, a tree that taps deep groundwater. This work highlights the need to integrate deep water uptake in land surface models for groundwater-dependent ecosystems, as it could enhance predictions, helping to sustain agroforestry in a changing climate.
Nikolina Mileva, Julia Pongratz, Vivek K. Arora, Akihiko Ito, Sebastiaan Luyssaert, Sonali S. McDermid, Paul A. Miller, Daniele Peano, Roland Séférian, Yanwu Zhang, and Wolfgang Buermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-979, https://doi.org/10.5194/egusphere-2025-979, 2025
Short summary
Short summary
Despite forests being so important for mitigating climate change, there are still uncertainties about how much the changes in forest cover contribute to the cooling/warming of the climate. Climate models and real-world observations often disagree about the magnitude and even the direction of these changes. We constrain climate models scenarios of widespread deforestation with satellite and in-situ data and show that models still have difficulties representing the movement of heat and water.
Fan Yang, Guanpeng Dong, Xiaoyu Meng, Richard A. Houghton, Yang Gao, Fanneng He, Meijiao Li, Wenjin Li, Zhihao Liu, Xudong Zhai, Pengfei Wu, Hongjuan Zhang, Qinqin Mao, Yuanzhi Yao, and Chao Yue
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-36, https://doi.org/10.5194/essd-2025-36, 2025
Preprint under review for ESSD
Short summary
Short summary
We used a millennial dataset of land-use change in China, combined with comprehensive soil and vegetation carbon density datasets, to quantify China’s annual carbon emissions resulting from land-use change between 1000 and 2019 using a bookkeeping model. The annual carbon emission flux provides a robust historical baseline for assessing terrestrial ecosystem carbon budgets at national and provincial scales, both in the present and future.
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew J. McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
Geosci. Model Dev., 17, 8023–8047, https://doi.org/10.5194/gmd-17-8023-2024, https://doi.org/10.5194/gmd-17-8023-2024, 2024
Short summary
Short summary
This research looks at how climate change influences forests, and particularly how altered wind and insect activities could make forests emit instead of absorb carbon. We have updated a land surface model called ORCHIDEE to better examine the effect of bark beetles on forest health. Our findings suggest that sudden events, such as insect outbreaks, can dramatically affect carbon storage, offering crucial insights into tackling climate change.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data, 15, 3819–3852, https://doi.org/10.5194/essd-15-3819-2023, https://doi.org/10.5194/essd-15-3819-2023, 2023
Short summary
Short summary
This paper introduces the new high-resolution land use and land cover change dataset LUCAS LUC for Europe (version 1.1), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Yi-Ying Chen and Sebastiaan Luyssaert
Biogeosciences, 20, 349–363, https://doi.org/10.5194/bg-20-349-2023, https://doi.org/10.5194/bg-20-349-2023, 2023
Short summary
Short summary
Tropical cyclones are typically assumed to be associated with ecosystem damage. This study challenges this assumption and suggests that instead of reducing leaf area, cyclones in East Asia may increase leaf area by alleviating water stress.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Yitong Yao, Emilie Joetzjer, Philippe Ciais, Nicolas Viovy, Fabio Cresto Aleina, Jerome Chave, Lawren Sack, Megan Bartlett, Patrick Meir, Rosie Fisher, and Sebastiaan Luyssaert
Geosci. Model Dev., 15, 7809–7833, https://doi.org/10.5194/gmd-15-7809-2022, https://doi.org/10.5194/gmd-15-7809-2022, 2022
Short summary
Short summary
To facilitate more mechanistic modeling of drought effects on forest dynamics, our study implements a hydraulic module to simulate the vertical water flow, change in water storage and percentage loss of stem conductance (PLC). With the relationship between PLC and tree mortality, our model can successfully reproduce the large biomass drop observed under throughfall exclusion. Our hydraulic module provides promising avenues benefiting the prediction for mortality under future drought events.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Guillaume Marie, B. Sebastiaan Luyssaert, Cecile Dardel, Thuy Le Toan, Alexandre Bouvet, Stéphane Mermoz, Ludovic Villard, Vladislav Bastrikov, and Philippe Peylin
Geosci. Model Dev., 15, 2599–2617, https://doi.org/10.5194/gmd-15-2599-2022, https://doi.org/10.5194/gmd-15-2599-2022, 2022
Short summary
Short summary
Most Earth system models make use of vegetation maps to initialize a simulation at global scale. Satellite-based biomass map estimates for Africa were used to estimate cover fractions for the 15 land cover classes. This study successfully demonstrates that satellite-based biomass maps can be used to better constrain vegetation maps. Applying this approach at the global scale would increase confidence in assessments of present-day biomass stocks.
Jinshi Jian, Xuan Du, Juying Jiao, Xiaohua Ren, Karl Auerswald, Ryan Stewart, Zeli Tan, Jianlin Zhao, Daniel L. Evans, Guangju Zhao, Nufang Fang, Wenyi Sun, Chao Yue, and Ben Bond-Lamberty
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-87, https://doi.org/10.5194/essd-2022-87, 2022
Manuscript not accepted for further review
Short summary
Short summary
Field soil loss and sediment yield due to surface runoff observations were compiled into a database named AWESOME: Archive for Water Erosion and Sediment Outflow MEasurements. Annual soil erosion data from 1985 geographic sites and 75 countries have been compiled into AWESOME. This database aims to be an open framework for the scientific community to share field-based annual soil erosion measurements, enabling better understanding of the spatial and temporal variability of annual soil erosion.
Jina Jeong, Jonathan Barichivich, Philippe Peylin, Vanessa Haverd, Matthew Joseph McGrath, Nicolas Vuichard, Michael Neil Evans, Flurin Babst, and Sebastiaan Luyssaert
Geosci. Model Dev., 14, 5891–5913, https://doi.org/10.5194/gmd-14-5891-2021, https://doi.org/10.5194/gmd-14-5891-2021, 2021
Short summary
Short summary
We have proposed and evaluated the use of four benchmarks that leverage tree-ring width observations to provide more nuanced verification targets for land-surface models (LSMs), which currently lack a long-term benchmark for forest ecosystem functioning. Using relatively unbiased European biomass network datasets, we identify the extent to which presumed biases in the much larger International Tree-Ring Data Bank might degrade the validation of LSMs.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-252, https://doi.org/10.5194/essd-2021-252, 2021
Manuscript not accepted for further review
Short summary
Short summary
This paper introduces the new high-resolution land-use land-cover change dataset LUCAS LUC historical and future land use and land cover change dataset (Version 1.0), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Thomas Janssen, Ype van der Velde, Florian Hofhansl, Sebastiaan Luyssaert, Kim Naudts, Bart Driessen, Katrin Fleischer, and Han Dolman
Biogeosciences, 18, 4445–4472, https://doi.org/10.5194/bg-18-4445-2021, https://doi.org/10.5194/bg-18-4445-2021, 2021
Short summary
Short summary
Satellite images show that the Amazon forest has greened up during past droughts. Measurements of tree stem growth and leaf litterfall upscaled using machine-learning algorithms show that leaf flushing at the onset of a drought results in canopy rejuvenation and green-up during drought while simultaneously trees excessively shed older leaves and tree stem growth declines. Canopy green-up during drought therefore does not necessarily point to enhanced tree growth and improved forest health.
Yidi Xu, Philippe Ciais, Le Yu, Wei Li, Xiuzhi Chen, Haicheng Zhang, Chao Yue, Kasturi Kanniah, Arthur P. Cracknell, and Peng Gong
Geosci. Model Dev., 14, 4573–4592, https://doi.org/10.5194/gmd-14-4573-2021, https://doi.org/10.5194/gmd-14-4573-2021, 2021
Short summary
Short summary
In this study, we implemented the specific morphology, phenology and harvest process of oil palm in the global land surface model ORCHIDEE-MICT. The improved model generally reproduces the same leaf area index, biomass density and life cycle fruit yield as observations. This explicit representation of oil palm in a global land surface model offers a useful tool for understanding the ecological processes of oil palm growth and assessing the environmental impacts of oil palm plantations.
Jonathan Barichivich, Philippe Peylin, Thomas Launois, Valerie Daux, Camille Risi, Jina Jeong, and Sebastiaan Luyssaert
Biogeosciences, 18, 3781–3803, https://doi.org/10.5194/bg-18-3781-2021, https://doi.org/10.5194/bg-18-3781-2021, 2021
Short summary
Short summary
The width and the chemical signals of tree rings have the potential to test and improve the physiological responses simulated by global land surface models, which are at the core of future climate projections. Here, we demonstrate the novel use of tree-ring width and carbon and oxygen stable isotopes to evaluate the representation of tree growth and physiology in a global land surface model at temporal scales beyond experimentation and direct observation.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
Wei Min Hao, Matthew C. Reeves, L. Scott Baggett, Yves Balkanski, Philippe Ciais, Bryce L. Nordgren, Alexander Petkov, Rachel E. Corley, Florent Mouillot, Shawn P. Urbanski, and Chao Yue
Biogeosciences, 18, 2559–2572, https://doi.org/10.5194/bg-18-2559-2021, https://doi.org/10.5194/bg-18-2559-2021, 2021
Short summary
Short summary
We examined the trends in the spatial and temporal distribution of the area burned in northern Eurasia from 2002 to 2016. The annual area burned in this region declined by 53 % during the 15-year period under analysis. Grassland fires in Kazakhstan dominated the fire activity, comprising 47 % of the area burned but accounting for 84 % of the decline. A wetter climate and the increase in grazing livestock in Kazakhstan are the major factors contributing to the decline in the area burned.
Cited articles
Alkama, R. and Cescatti, A.: Biophysical climate impacts of recent changes
in global forest cover, Science, 351, 600–604,
https://doi.org/10.1126/science.aac8083, 2016.
Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the
climate benefits of forests, Science, 320, 1444–1449,
https://doi.org/10.1126/science.1155121, 2008.
Bryan, B. A., Gao, L., Ye, Y., Sun, X., Connor, J. D., Crossman, N. D.,
Stafford-Smith, M., Wu, J., He, C., Yu, D., Liu, Z., Li, A., Huang, Q., Ren,
H., Deng, X., Zheng, H., Niu, J., Han, G., and Hou, X.: China's response to
a national land-system sustainability emergency, Nature, 559, 193–204,
https://doi.org/10.1038/s41586-018-0280-2, 2018.
Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs,
R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu,
Z., Nemani, R. R., and Myneni, R. B.: China and India lead in greening of
the world through land-use management, Nature Sustainability, 2, 122–129,
https://doi.org/10.1038/s41893-019-0220-7, 2019.
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G.,
Peng, S., and Lu, M.: Global land cover mapping at 30 m resolution: A
POK-based operational approach, ISPRS J. Photogramm., 103, 7–27, https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015.
Chen, L. and Dirmeyer, P. A.: Adapting observationally based metrics of
biogeophysical feedbacks from land cover/land use change to climate
modeling, Environ. Res. Lett., 11, 034002,
https://doi.org/10.1088/1748-9326/11/3/034002, 2016.
Chen, H., Zeng, Z., Wu, J., Peng, L., Lakshmi, V., Yang, H., and Liu, J.:
Large Uncertainty on Forest Area Change in the Early 21st Century among
Widely Used Global Land Cover Datasets, Remote Sensing, 12, 3502,
https://doi.org/10.3390/rs12213502, 2020.
Duveiller, G., Hooker, J., and Cescatti, A.: The mark of vegetation change
on Earth's surface energy balance, Nat. Commun., 9, 679,
https://doi.org/10.1038/s41467-017-02810-8, 2018.
Duveiller, G., Caporaso, L., Abad-Viñas, R., Perugini, L., Grassi, G.,
Arneth, A., and Cescatti, A.: Local biophysical effects of land use and land
cover change: towards an assessment tool for policy makers, Land Use Policy,
91, 104382, https://doi.org/10.1016/j.landusepol.2019.104382, 2020.
Fang, J., Guo, Z., Hu, H., Kato, T., Muraoka, H., and Son, Y.: Forest
biomass carbon sinks in East Asia, with special reference to the relative
contributions of forest expansion and forest growth, Glob. Change Biol.,
20, 2019–2030, https://doi.org/10.1111/gcb.12512, 2014.
Ge, J., Guo, W., Pitman, A. J., De Kauwe, M. G., Chen, X., and Fu, C.: The
Nonradiative Effect Dominates Local Surface Temperature Change Caused by
Afforestation in China, J. Climate, 32, 4445–4471,
https://doi.org/10.1175/JCLI-D-18-0772.1, 2019.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A.,
Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., and Loveland, T. R.:
High-resolution global maps of 21st-century forest cover change, Science,
342, 850–853, https://doi.org/10.1126/science.1244693, 2013 (data available at: http://earthenginepartners.appspot.com/science-2013-global-forest, last access: 4 January 2023).
Huang, L., Zhai, J., Liu, J., and Sun, C.: The moderating or amplifying
biophysical effects of afforestation on CO2-induced cooling depend on the
local background climate regimes in China, Agr. Forest
Meteorol., 260–261, 193–203,
https://doi.org/10.1016/j.agrformet.2018.05.020, 2018.
Jia, G., Shevliakova, E., Artaxo, P., De-Docoudré, N., Houghton, R., House, J., Kitajima, K., Lennard, C., Popp, A., Sirin, A., Sukumar, R., Verchot, L., and Sporre, M.: Land–Climate interactions, in: Special Report on Climate Change and Land: An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., IPCC, 133–206. https://www.ipcc.ch/srccl/chapter/chapter-2/ (last access: 4 January 2023), 2019.
Juang, J.-Y., Katul, G., Siqueira, M., Stoy, P., and Novick, K.: Separating
the effects of albedo from eco-physiological changes on surface temperature
along a successional chronosequence in the southeastern United States,
Geophys. Res. Lett., 34, L21408, https://doi.org/10.1029/2007GL031296, 2007.
Jun, C., Ban, Y., and Li, S.: Open access to Earth land-cover map, Nature, 514, 434, https://doi.org/10.1038/514434c, 2014 (data available at: http://www.globallandcover.com/defaults_en.html?src=/Scripts/map/defaults/En/download_en.html&head=download&26type=data, last access: 4 January 2023).
Kato, S., Rose, F. G., Rutan, D. A., Thorsen, T. J., Loeb, N. G., Doelling,
D. R., Huang, X., Smith, W. L., Su, W., and Ham, S.-H.: Surface Irradiances
of Edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy
Balanced and Filled (EBAF) Data Product, J. Climate, 31, 4501–4527,
https://doi.org/10.1175/JCLI-D-17-0523.1, 2018.
Lee, S. and Lee, D. K.: What is the proper way to apply the multiple
comparison test?, Korean J. Anesthesiol., 71, 353–360,
https://doi.org/10.4097/kja.d.18.00242, 2018.
Lee, X., Goulden, M. L., Hollinger, D. Y., Barr, A., Black, T. A., Bohrer,
G., Bracho, R., Drake, B., Goldstein, A., Gu, L., Katul, G., Kolb, T., Law,
B. E., Margolis, H., Meyers, T., Monson, R., Munger, W., Oren, R., Paw U, K.
T., Richardson, A. D., Schmid, H. P., Staebler, R., Wofsy, S., and Zhao, L.:
Observed increase in local cooling effect of deforestation at higher
latitudes, Nature, 479, 384–387, https://doi.org/10.1038/nature10588, 2011.
Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E., and Li, S.: Local
cooling and warming effects of forests based on satellite observations,
Nat. Commun., 6, 6603, https://doi.org/10.1038/ncomms7603, 2015.
Li, Y., Zhao, M., Mildrexler, D. J., Motesharrei, S., Mu, Q., Kalnay, E.,
Zhao, F., Li, S., and Wang, K.: Potential and Actual impacts of
deforestation and afforestation on land surface temperature, J. Geophys.
Res.-Atmos., 121, 14372–14386, https://doi.org/10.1002/2016JD024969,
2016a.
Li, Y., De Noblet-Ducoudré, N., Davin, E. L., Motesharrei, S., Zeng, N., Li, S., and Kalnay, E.: The role of spatial scale and background climate in the latitudinal temperature response to deforestation, Earth Syst. Dynam., 7, 167–181, https://doi.org/10.5194/esd-7-167-2016, 2016b.
Li, Y., Piao, S., Chen, A., Ciais, P., and Li, L. Z. X.: Local and
teleconnected temperature effects of afforestation and vegetation greening
in China, Natl. Sci. Rev., 7, 897–912,
https://doi.org/10.1093/nsr/nwz132, 2020.
Liang, W., Fu, B., Wang, S., Zhang, W., Jin, Z., Feng, X., Yan, J., Liu, Y.,
and Zhou, S.: Quantification of the ecosystem carrying capacity on China's
Loess Plateau, Ecol. Indic., 101, 192–202,
https://doi.org/10.1016/j.ecolind.2019.01.020, 2019.
Liu, Y. and She, G: China's forest resource dynamics based on allometric scaling relationship between forest area and total stocking volume, Afr. J. Agric. Res., 7, 4971–4978, https://doi.org/10.5897/AJAR12.216, 2012.
Liu, Z., Ballantyne, A. P., and Cooper, L. A.: Increases in Land Surface
Temperature in Response to Fire in Siberian Boreal Forests and Their
Attribution to Biophysical Processes, Geophys. Res. Lett., 45,
6485–6494, https://doi.org/10.1029/2018GL078283, 2018.
Mátyás, C., Sun, G., and Zhang, Y.: Afforestation and forests at the dryland edges:
lessons learned and future outlooks, in: Dryland East Asia: Land dynamics amid
social and climate change, edited by: Chen, J., Wan, S., Henebry, G., Qi, J.,
Gutman, G., Sun, G., Kappas, M., HEP & Gruyter, 245–264,
https://doi.org/10.13140/RG.2.1.4325.4487, 2013.
NASA JPL: NASA Shuttle Radar Topography Mission Global 1 arc second, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 (last access: 23 December 2021), 2013.
NASA/LARC/SD/ASDC: CERES Energy Balanced and Filled (EBAF) TOA and Surface Monthly means data in netCDF Edition 4.1, NASA Langley Atmospheric Science Data Center DAAC [data set], https://doi.org/10.5067/TERRA-AQUA/CERES/EBAF_L3B.004.1 (last access: 23 December 2021), 2019.
Oleson, K., Lawrence, D., Bonan, G., Drewniak, B., Huang, M., Koven, C.,
Levis, S., Li, F., Riley, W., Subin, Z., Swenson, S., Thornton, P.,
Bozbiyik, A., Fisher, R., Heald, C., Kluzek, E., Lamarque, J.-F., Lawrence,
P., Leung, L., and Yang, Z.-L.: Technical description of version 4.5 of the
Community Land Model (CLM), Report NCAR/TN-503+STR, https://doi.org/10.5065/D6RR1W7M, 2013.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A.,
Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P.,
Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A.,
Sitch, S., and Hayes, D.: A Large and Persistent Carbon Sink in the World's
Forests, Science, 333, 988–993, https://doi.org/10.1126/science.1201609,
2011.
Peng, S.-S., Piao, S., Zeng, Z., Ciais, P., Zhou, L., Li, L. Z. X., Myneni,
R. B., Yin, Y., and Zeng, H.: Afforestation in China cools local land
surface temperature, P. Natl. Acad. Sci. USA, 111,
2915–2919, https://doi.org/10.1073/pnas.1315126111, 2014.
Pongratz, J., Schwingshackl, C., Bultan, S., Obermeier, W., Havermann, F.,
and Guo, S.: Land Use Effects on Climate: Current State, Recent Progress,
and Emerging Topics, Current Climate Change Reports, 7, 99–120,
https://doi.org/10.1007/s40641-021-00178-y, 2021.
Pitman, A. J., de Noblet-Ducoudré, N., Cruz, F. T., Davin, E. L., Bonan,
G. B., Brovkin, V., Claussen, M., Delire, C., Ganzeveld, L., and Gayler, V.:
Uncertainties in climate responses to past land cover change: First results
from the LUCID intercomparison study, Geophys. Res. Lett., 36, L14814,
https://doi.org/10.1029/2009GL039076, 2009.
Pitman, A. J., Avila, F. B., Abramowitz, G., Wang, Y. P., Phipps, S. J., and
de Noblet-Ducoudré, N.: Importance of background climate in determining
impact of land-cover change on regional climate, Nat. Clim. Change, 1,
472–475, https://doi.org/10.1038/nclimate1294, 2011.
Qi, Y. and Wu, T.: The politics of climate change in China, WIRES Clim. Change, 4, 301–313,
https://doi.org/10.1002/wcc.221, 2013.
Running, S., Mu, Q., and Zhao, M.: MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD16A2.006 (last access: 23 December 2021), 2017.
Schaaf, C. and Wang, Z.: MCD43A3 MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global – 500m V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MCD43A3.006 (last access: 3 January 2023), 2015.
Shen, W., Li, M., Huang, C., He, T., Tao, X., and Wei, A.: Local land
surface temperature change induced by afforestation based on satellite
observations in Guangdong plantation forests in China, Agr.
Forest Meteorol., 276–277, 107641,
https://doi.org/10.1016/j.agrformet.2019.107641, 2019.
Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P., and Friedl, M. A.: Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product, Remote Sens. Environ., 222, 183–194, https://doi.org/10.1016/j.rse.2018.12.013, 2019.
Swann, A. L., Fung, I. Y., and Chiang, J. C.: Mid-latitude afforestation
shifts general circulation and tropical precipitation, P.
Natl. Acad. Sci. USA, 109, 712–716,
https://doi.org/10.1073/pnas.1116706108, 2012.
UC Berkeley: Spring 2008 – Stat C141/Bioeng C141 – Statistics for Bioinformatics, https://www.stat.berkeley.edu/users/mgoldman/Section0402.pdf (last access: 23 December
2021), 2008.
Wan, Z., Hook, S., and Hulley, G.: MOD11C3 MODIS/Terra Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD11C3.006 (last access: 23 December 2021), 2015.
Wan, Z., Hook, S., and Hulley, G.: MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V061, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD11A2.061 (last access: 23 December 2021), 2021.
Winckler, J., Reick, C. H., Bright, R. M., and Pongratz, J.: Importance of
Surface Roughness for the Local Biogeophysical Effects of Deforestation, J.
Geophys. Res.-Atmos., 124, 8605–8618, https://doi.org/10.1029/2018JD030127,
2019a.
Winckler, J., Lejeune, Q., Reick, C. H., and Pongratz, J.: Nonlocal Effects
Dominate the Global Mean Surface Temperature Response to the Biogeophysical
Effects of Deforestation, Geophys. Res. Lett., 46, 745–755,
https://doi.org/10.1029/2018GL080211, 2019b.
Windisch, M. G., Davin, E. L., and Seneviratne, S. I.: Prioritizing
forestation based on biogeochemical and local biogeophysical impacts, Nat.
Clim. Change, 11, 867–871, https://doi.org/10.1038/s41558-021-01161-z,
2021.
Zeng, Z., Wang, D., Yang, L., Wu, J., Ziegler, A. D., Liu, M., Ciais, P.,
Searchinger, T. D., Yang, Z.-L., Chen, D., Chen, A., Li, L. Z. X., Piao, S.,
Taylor, D., Cai, X., Pan, M., Peng, L., Lin, P., Gower, D., Feng, Y., Zheng,
C., Guan, K., Lian, X., Wang, T., Wang, L., Jeong, S.-J., Wei, Z.,
Sheffield, J., Caylor, K., and Wood, E. F.: Deforestation-induced warming
over tropical mountain regions regulated by elevation, Nat. Geosci.,
14, 23–29, https://doi.org/10.1038/s41561-020-00666-0, 2021.
Zhang, L., Marron, J. S., Shen, H., and Zhu, Z.: Singular Value
Decomposition and Its Visualization, J. Comput. Graph.
Stat., 16, 833–854, https://doi.org/10.1198/106186007X256080, 2007.
Zhang, Y., Chen, Y., Li, J., and Chen, X.: A Simple Method for Converting
1-km Resolution Daily Clear-Sky LST into Real LST, Remote Sens., 12, 1641,
https://doi.org/10.3390/rs12101641, 2020.
Zhang, Z., Zhang, F., Wang, L., Lin, A., and Zhao, L.: Biophysical climate
impact of forests with different age classes in mid- and high-latitude North
America, Forest Ecol. Manag., 494, 119327,
https://doi.org/10.1016/j.foreco.2021.119327, 2021.
Zhao, K. and Jackson, R. B.: Biophysical forcings of land-use changes from
potential forestry activities in North America, Ecol. Monogr., 84,
329–353, https://doi.org/10.1890/12-1705.1, 2014.
Short summary
This study provided a synthesis of three influential methods to quantify afforestation impact on surface temperature. Results showed that actual effect following afforestation was highly dependent on afforestation fraction. When full afforestation is assumed, the actual effect approaches the potential effect. We provided evidence the afforestation faction is a key factor in reconciling different methods and emphasized that it should be considered for surface cooling impacts in policy evaluation.
This study provided a synthesis of three influential methods to quantify afforestation impact on...
Altmetrics
Final-revised paper
Preprint