Articles | Volume 21, issue 1
https://doi.org/10.5194/bg-21-145-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-145-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A step towards measuring connectivity in the deep sea: elemental fingerprints of mollusk larval shells discriminate hydrothermal vent sites
Sorbonne Université, CNRS, Adaptation et Diversité en Milieu Marin, AD2M, Station Biologique de Roscoff, 29680, Roscoff, France
Christophe Pecheyran
Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Avenue de l'Université, BP 576 64012, Pau CEDEX, France
Fanny Claverie
Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Avenue de l'Université, BP 576 64012, Pau CEDEX, France
Cécile Cathalot
Geo-Ocean, Univ. Brest, CNRS, IFREMER, UMR6539, 29280, Plouzané, France
Marjolaine Matabos
IFREMER REM-EEP, Technopôle Brest Plouzané, 29280, Plouzané, France
Yoan Germain
Geo-Ocean, Univ. Brest, CNRS, IFREMER, UMR6539, 29280, Plouzané, France
Olivier Rouxel
Geo-Ocean, Univ. Brest, CNRS, IFREMER, UMR6539, 29280, Plouzané, France
Didier Jollivet
Sorbonne Université, CNRS, Adaptation et Diversité en Milieu Marin, AD2M, Station Biologique de Roscoff, 29680, Roscoff, France
Thomas Broquet
Sorbonne Université, CNRS, Adaptation et Diversité en Milieu Marin, AD2M, Station Biologique de Roscoff, 29680, Roscoff, France
Thierry Comtet
Sorbonne Université, CNRS, Adaptation et Diversité en Milieu Marin, AD2M, Station Biologique de Roscoff, 29680, Roscoff, France
Related authors
No articles found.
Guilhem Hoareau, Fanny Claverie, Christophe Pecheyran, Gaëlle Barbotin, Michael Perk, Nicolas E. Beaudoin, Brice Lacroix, and E. Troy Rasbury
Geochronology, 7, 387–407, https://doi.org/10.5194/gchron-7-387-2025, https://doi.org/10.5194/gchron-7-387-2025, 2025
Short summary
Short summary
We present an approach to dating of carbonates using isotopic maps. The maps are divided into squares called virtual spots. For each virtual spot, statistical values (mean, uncertainty) are used to determine the age. The user can modify the size and location of the virtual spots and select those that give the most robust age. This approach, applied to high-spatial-resolution images, makes it possible for the first time to obtain satisfactory ages on maps as small as 100 µm x 100 µm.
Pedro J. Soto Vega, Gustavo X. Andrade-Miranda, Gilson A. O. P. da Costa, Panagiotis Papadakis, Marjolaine Matabos, Thibault Napoleon, Ayoub Karine, and Henrique Fagundes Gasparoto
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 387–395, https://doi.org/10.5194/isprs-annals-X-3-2024-387-2024, https://doi.org/10.5194/isprs-annals-X-3-2024-387-2024, 2024
Loïc Martin, Julius Nouet, Arnaud Dapoigny, Gaëlle Barbotin, Fanny Claverie, Edwige Pons-Branchu, Jocelyn Barbarand, Christophe Pécheyran, Norbert Mercier, Fanny Derym, Bernard Gély, and Hélène Valladas
Geochronology, 6, 247–263, https://doi.org/10.5194/gchron-6-247-2024, https://doi.org/10.5194/gchron-6-247-2024, 2024
Short summary
Short summary
Carbonate wall deposits of Trou du Renard cave (France) were dated using a multimethod approach: U–Th dating by bulk dissolution of samples and inductively coupled plasma mass spectrometry (ICP-MS), U–Th dating by laser ablation ICP-MS imaging, and radiocarbon dating. The samples were studied to ensure that they give reliable ages. Ages ranging from 187.9 ± 5.3 ka and 1.4 ± 0.1 ka were found. This approach should make it possible to establish more robust chronologies of archaeological caves.
Valentin Siebert, Brivaëla Moriceau, Lukas Fröhlich, Bernd R. Schöne, Erwan Amice, Beatriz Beker, Kevin Bihannic, Isabelle Bihannic, Gaspard Delebecq, Jérémy Devesa, Morgane Gallinari, Yoan Germain, Émilie Grossteffan, Klaus Peter Jochum, Thierry Le Bec, Manon Le Goff, Céline Liorzou, Aude Leynaert, Claudie Marec, Marc Picheral, Peggy Rimmelin-Maury, Marie-Laure Rouget, Matthieu Waeles, and Julien Thébault
Earth Syst. Sci. Data, 15, 3263–3281, https://doi.org/10.5194/essd-15-3263-2023, https://doi.org/10.5194/essd-15-3263-2023, 2023
Short summary
Short summary
This article presents an overview of the results of biological, chemical and physical parameters measured at high temporal resolution (sampling once and twice per week) during environmental monitoring that took place in 2021 in the Bay of Brest. We strongly believe that this dataset could be very useful for other scientists performing sclerochronological investigations, studying biogeochemical cycles or conducting various ecological research projects.
Olivier Lacombe, Nicolas E. Beaudoin, Guilhem Hoareau, Aurélie Labeur, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 12, 2145–2157, https://doi.org/10.5194/se-12-2145-2021, https://doi.org/10.5194/se-12-2145-2021, 2021
Short summary
Short summary
This paper aims to illustrate how the timing and duration of contractional deformation associated with folding in orogenic forelands can be constrained by the dating of brittle mesostructures observed in folded strata. The study combines new and already published absolute ages of fractures to provide, for the first time, an educated discussion about the factors controlling the duration of the sequence of deformation encompassing layer-parallel shortening, fold growth, and late fold tightening.
Paul J. Tréguer, Jill N. Sutton, Mark Brzezinski, Matthew A. Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, Jon Hawkings, Aude Leynaert, Su Mei Liu, Natalia Llopis Monferrer, María López-Acosta, Manuel Maldonado, Shaily Rahman, Lihua Ran, and Olivier Rouxel
Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, https://doi.org/10.5194/bg-18-1269-2021, 2021
Short summary
Short summary
Silicon is the second most abundant element of the Earth's crust. In this review, we show that silicon inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. These changes are significant, modifying factors such as the geochemical residence time of silicon, which is now about 8000 years and 2 times faster than previously assumed. We also update the total biogenic silica pelagic production and provide an estimate for sponge production.
Guilhem Hoareau, Fanny Claverie, Christophe Pecheyran, Christian Paroissin, Pierre-Alexandre Grignard, Geoffrey Motte, Olivier Chailan, and Jean-Pierre Girard
Geochronology, 3, 67–87, https://doi.org/10.5194/gchron-3-67-2021, https://doi.org/10.5194/gchron-3-67-2021, 2021
Short summary
Short summary
A new methodology for the micron-scale uranium–lead dating of carbonate minerals is proposed. It is based on the extraction of ages directly from pixel images (< 1 mm2) obtained by laser ablation coupled to a mass spectrometer. The ages are calculated with a robust linear regression through the pixel values. This methodology is compared to existing approaches.
Nicolas E. Beaudoin, Aurélie Labeur, Olivier Lacombe, Daniel Koehn, Andrea Billi, Guilhem Hoareau, Adrian Boyce, Cédric M. John, Marta Marchegiano, Nick M. Roberts, Ian L. Millar, Fanny Claverie, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 11, 1617–1641, https://doi.org/10.5194/se-11-1617-2020, https://doi.org/10.5194/se-11-1617-2020, 2020
Short summary
Short summary
This paper reports a multiproxy approach to reconstruct the depth, timing, and extent of the past fluid flow during the formation of a fold-and-thrust belt in the Northern Apennines, Italy. The unique combination of paleopiezometry and absolute dating returns the absolute timing of the sequence of deformation. Combined with burial models, this leads to predict the expected temperatures for fluid, highlighting a limited hydrothermal fluid flow we relate to the large-scale subsurface geometry.
Cited articles
Abreu, I. A. and Cabelli, D. E.: Superoxide dismutases – a review of the metal-associated mechanistic variations, BBA-Proteins Proteom., 1804, 263–274, https://doi.org/10.1016/j.bbapap.2009.11.005, 2010.
Adams, D., Arellano, S., and Govenar, B.: Larval Dispersal: Vent Life in the Water Column, Oceanography, 25, 256–268, https://doi.org/10.5670/oceanog.2012.24, 2012.
Amante, C. and Eakins, B. W.: ETOPO1 Global Relief Model converted to PanMap layer format, https://doi.org/10.1594/PANGAEA.769615, 2009.
Amon, D. J., Gollner, S., Morato, T., Smith, C. R., Chen, C., Christiansen, S., Currie, B., Drazen, J. C., Fukushima, T., Gianni, M., Gjerde, K. M., Gooday, A. J., Grillo, G. G., Haeckel, M., Joyini, T., Ju, S.-J., Levin, L. A., Metaxas, A., Mianowicz, K., Molodtsova, T. N., Narberhaus, I., Orcutt, B. N., Swaddling, A., Tuhumwire, J., Palacio, P. U., Walker, M., Weaver, P., Xu, X.-W., Mulalap, C. Y., Edwards, P. E. T., and Pickens, C.: Assessment of scientific gaps related to the effective environmental management of deep-seabed mining, Mar. Policy, 138, 105006, https://doi.org/10.1016/j.marpol.2022.105006, 2022.
Baco, A. R., Etter, R. J., Ribeiro, P. A., Heyden, S., Beerli, P., and Kinlan, B. P.: A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design, Mol. Ecol., 25, 3276–3298, https://doi.org/10.1111/mec.13689, 2016.
Beck, L. A.: Two new neritacean limpets (Gastropoda: Prosobranchia: Neritacea: Phenacolepadidae) from active hydrothermal vents at Hydrothermal Field 1 “Wienerwald” in the Manus Back-Arc Basin (Bismarck Sea, Papua-New Guinea), Annalen des Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie, 93, 259–275, 1992.
Becker, B. J., Fodrie, F. J., McMillan, P. A., and Levin, L. A.: Spatial and temporal variation in trace elemental fingerprints of mytilid mussel shells: A precursor to invertebrate larval tracking, Limnol. Oceanogr., 50, 48–61, https://doi.org/10.4319/lo.2005.50.1.0048, 2005.
Becker, B. J., Levin, L. A., Fodrie, F. J., and McMillan, P. A.: Complex larval connectivity patterns among marine invertebrate populations, P. Natl. Acad. Sci. USA, 104, 3267–3272, https://doi.org/10.1073/pnas.0611651104, 2007.
Binns, R. A. and Scott, S. D.: Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea, Econ. Geol., 88, 2226–2236, https://doi.org/10.2113/gsecongeo.88.8.2226, 1993.
Boschen, R. E., Rowden, A. A., Clark, M. R., and Gardner, J. P. A.: Mining of deep-sea seafloor massive sulfides: A review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies, Ocean Coast. Manage., 84, 54–67, https://doi.org/10.1016/j.ocecoaman.2013.07.005, 2013.
Bouchet, P. and Warén, A.: Ifremeria nautilei, nouveau gastéropode d'évents hydrothermaux, probablement associé à des bactéries symbiotiques, C.R. Acad. Sci., 312, 495–501, 1991.
Bouchoucha, M., Pécheyran, C., Gonzalez, J. L., Lenfant, P., and Darnaude, A. M.: Otolith fingerprints as natural tags to identify juvenile fish life in ports, Estuar. Coast. Shelf S., 212, 210–218, https://doi.org/10.1016/j.ecss.2018.07.008, 2018.
Boulart, C., Rouxel, O., Scalabrin, C., Le Meur, P., Pelleter, E., Poitrimol, C., Thiébaut, E., Matabos, M., Castel, J., Tran Lu Y, A., Michel, L. N., Cathalot, C., Chéron, S., Boissier, A., Germain, Y., Guyader, V., Arnaud-Haond, S., Bonhomme, F., Broquet, T., Cueff-Gauchard, V., Le Layec, V., L'Haridon, S., Mary, J., Le Port, A.-S., Tasiemski, A., Kuama, D. C., Hourdez, S., and Jollivet, D.: Active hydrothermal vents in the Woodlark Basin may act as dispersing centres for hydrothermal fauna, Commun. Earth Environ., 3, 64, https://doi.org/10.1038/s43247-022-00387-9, 2022.
Bounket, B., Tabouret, H., Gibert, P., Bareille, G., Pecheyran, C., Carrel, G., Argillier, C., and Morat, F.: Spawning areas and migration patterns in the early life history of Squalius cephalus (Linnaeus, 1758): Use of otolith microchemistry for conservation and sustainable management, Aquat. Conserv., 31, 2772–2787, https://doi.org/10.1002/aqc.3682, 2021.
Breusing, C., Biastoch, A., Drews, A., Metaxas, A., Jollivet, D., Vrijenhoek, R. C., Bayer, T., Melzner, F., Sayavedra, L., Petersen, J. M., Dubilier, N., Schilhabel, M. B., Rosenstiel, P., and Reusch, T. B. H.: Biophysical and Population Genetic Models Predict the Presence of “Phantom” Stepping Stones Connecting Mid-Atlantic Ridge Vent Ecosystems, Curr. Biol., 26, 2257–2267, https://doi.org/10.1016/j.cub.2016.06.062, 2016.
Breusing, C., Johnson, S. B., Mitarai, S., Beinart, R. A., and Tunnicliffe, V.: Differential patterns of connectivity in Western Pacific hydrothermal vent metapopulations: A comparison of biophysical and genetic models, Evol. Appl., 16, 22–35, https://doi.org/10.1111/eva.13326, 2023.
Carson, H. S.: Population connectivity of the Olympia oyster in southern California, Limnol. Oceanogr., 55, 134–148, https://doi.org/10.4319/lo.2010.55.1.0134, 2010.
Charlou, J. L., Donval, J. P., Douville, E., Jean-Baptiste, P., Radford-Knoery, J., Fouquet, Y., Dapoigny, A., and Stievenard, M.: Compared geochemical signatures and the evolution of Menez Gwen ( N) and Lucky Strike ( N) hydrothermal fluids, south of the Azores Triple Junction on the Mid-Atlantic Ridge, Chem. Geol., 171, 49–75, https://doi.org/10.1016/S0009-2541(00)00244-8, 2000.
Chen, W. W. and Deo, R. S.: Power Transformations to Induce Normality and their Applications, J. Roy. Stat. Soc. B, 66, 117–130, https://doi.org/10.1111/j.1467-9868.2004.00435.x, 2004.
Collins, P. C., Kennedy, R., and Dover, C. L. V.: A biological survey method applied to seafloor massive sulphides (SMS) with contagiously distributed hydrothermal-vent fauna, Mar. Ecol.-Prog. Ser., 452, 89–107, https://doi.org/10.3354/meps09646, 2012.
Combes, M., Vaz, S., Grehan, A., Morato, T., Arnaud-Haond, S., Dominguez-Carrió, C., Fox, A., González-Irusta, J. M., Johnson, D., Callery, O., Davies, A., Fauconnet, L., Kenchington, E., Orejas, C., Roberts, J. M., Taranto, G., and Menot, L.: Systematic Conservation Planning at an Ocean Basin Scale: Identifying a Viable Network of Deep-Sea Protected Areas in the North Atlantic and the Mediterranean, Frontiers in Marine Science, 8, 611358, https://doi.org/10.3389/fmars.2021.611358, 2021.
Comtet, T., Jollivet, D., Khripounoff, A., Segonzac, M., and Dixon, D. R.: Molecular and morphological identification of settlement-stage vent mussel larvae, Bathymodiolus azoricus (Bivalvia: Mytilidae), preserved in situ at active vent fields on the Mid-Atlantic Ridge, Limnol. Oceanogr, 45, 1655–1661, https://doi.org/10.4319/lo.2000.45.7.1655, 2000.
Cotte, L., Waeles, M., Pernet-Coudrier, B., Sarradin, P.-M., Cathalot, C., and Riso, R. D.: A comparison of in situ vs. ex situ filtration methods on the assessment of dissolved and particulate metals at hydrothermal vents, Deep-Sea Res. Pt. I, 105, 186–194, https://doi.org/10.1016/j.dsr.2015.09.005, 2015.
Cunha, M., Génio, L., Pradillon, F., Henry, M. C., Beaulieu, S., Birch, J., Campuzano, F., Carretón, M., Leo, F. D., Gula, J., Laming, S., Lindsay, D., Matos, F., Metaxas, A., Meyer-Kaiser, K., Mills, S., Queiroga, H., Rodrigues, C., Sarrazin, J., Watanabe, H., Young, R., and Young, C.: Foresight Workshop on Advances in Ocean Biological Observations: a sustained system for deep-ocean meroplankton, Research Ideas and Outcomes, 6, e54284, https://doi.org/10.3897/rio.6.e54284, 2020.
Danovaro, R., Aguzzi, J., Fanelli, E., Billett, D., Gjerde, K., Jamieson, A., Ramirez-Llodra, E., Smith, C. R., Snelgrove, P. V. R., Thomsen, L., and Dover, C. L. V.: An ecosystem-based deep-ocean strategy, Science, 355, 452–454, https://doi.org/10.1126/science.aah7178, 2017.
Danovaro, R., Fanelli, E., Aguzzi, J., Billett, D., Carugati, L., Corinaldesi, C., Dell'Anno, A., Gjerde, K., Jamieson, A. J., Kark, S., McClain, C., Levin, L., Levin, N., Ramirez-Llodra, E., Ruhl, H., Smith, C. R., Snelgrove, P. V. R., Thomsen, L., Van Dover, C. L., and Yasuhara, M.: Ecological variables for developing a global deep-ocean monitoring and conservation strategy, Nat. Ecol. Evol., 4, 181–192, https://doi.org/10.1038/s41559-019-1091-z, 2020.
DePaolo, D. J.: Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions, Geochim. Cosmochim. Ac., 75, 1039–1056, https://doi.org/10.1016/j.gca.2010.11.020, 2011.
Dixon, S. J. and Brereton, R. G.: Comparison of performance of five common classifiers represented as boundary methods: Euclidean Distance to Centroids, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Learning Vector Quantization and Support Vector Machines, as dependent on data structure, Chemometr. Intell. Lab., 95, 1–17, https://doi.org/10.1016/j.chemolab.2008.07.010, 2009.
Dunn, D. C., Van Dover, C. L., Etter, R. J., Smith, C. R., Levin, L. A., Morato, T., Colaço, A., Dale, A. C., Gebruk, A. V., Gjerde, K. M., Halpin, P. N., Howell, K. L., Johnson, D., Perez, J. A. A., Ribeiro, M. C., Stuckas, H., Weaver, P., and SEMPIA Workshop Participants: A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining, Sci. Adv., 4, eaar4313, https://doi.org/10.1126/sciadv.aar4313, 2018.
Fodrie, F. J., Becker, B. J., Levin, L. A., Gruenthal, K., and McMillan, P. A.: Connectivity clues from short-term variability in settlement and geochemical tags of mytilid mussels, J. Sea Res., 65, 141–150, https://doi.org/10.1016/j.seares.2010.09.001, 2011.
Fouquet, Y., Stackelberg, U. V., Charlou, J. L., Donval, J. P., Erzinger, J., Foucher, J. P., Herzig, P., Mühe, R., Soakai, S., Wiedicke, M., and Whitechurch, H.: Hydrothermal activity and metallogenesis in the Lau back-arc basin, Nature, 349, 778–781, https://doi.org/10.1038/349778a0, 1991.
Gagnaire, P., Broquet, T., Aurelle, D., Viard, F., Souissi, A., Bonhomme, F., Arnaud-Haond, S., and Bierne, N.: Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era, Evol. Appl., 8, 769–786, https://doi.org/10.1111/eva.12288, 2015.
Gollner, S., Kaiser, S., Menzel, L., Jones, D. O. B., Brown, A., Mestre, N. C., van Oevelen, D., Menot, L., Colaço, A., Canals, M., Cuvelier, D., Durden, J. M., Gebruk, A., Egho, G. A., Haeckel, M., Marcon, Y., Mevenkamp, L., Morato, T., Pham, C. K., Purser, A., Sanchez-Vidal, A., Vanreusel, A., Vink, A., and Martinez Arbizu, P.: Resilience of benthic deep-sea fauna to mining activities, Mar. Environ. Res., 129, 76–101, https://doi.org/10.1016/j.marenvres.2017.04.010, 2017.
Gomes, I., Peteiro, L., Albuquerque, R., Nolasco, R., Dubert, J., Swearer, S., and Queiroga, H.: Wandering mussels: using natural tags to identify connectivity patterns among Marine Protected Areas, Mar. Ecol. Prog. Ser., 552, 159–176, https://doi.org/10.3354/meps11753, 2016.
Hannington, M., Herzig, P., Scott, S., Thompson, G., and Rona, P.: Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridges, Mar. Geol., 101, 217–248, https://doi.org/10.1016/0025-3227(91)90073-D, 1991.
Hannington, M., Jamieson, J., Monecke, T., Petersen, S., and Beaulieu, S.: The abundance of seafloor massive sulfide deposits, Geology, 39, 1155–1158, https://doi.org/10.1130/G32468.1, 2011.
Hannington, M. D., Jonasson, I. R., Herzig, P. M., and Petersen, S.: Physical and Chemical Processes of Seafloor Mineralization at Mid-Ocean Ridges, in: Geophysical Monograph Series, edited by: Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., and Thomson, R. E., American Geophysical Union, Washington, D. C., 115–157, https://doi.org/10.1029/GM091p0115, 2013.
Hoagland, P., Beaulieu, S., Tivey, M. A., Eggert, R. G., German, C., Glowka, L., and Lin, J.: Deep-sea mining of seafloor massive sulfides, Mar. Policy, 34, 728–732, https://doi.org/10.1016/j.marpol.2009.12.001, 2010.
Honig, A., Etter, R., Pepperman, K., Morello, S., and Hannigan, R.: Site and age discrimination using trace element fingerprints in the blue mussel, Mytilus edulis, J. Exp. Mar. Biol. Ecol., 522, 151249, https://doi.org/10.1016/j.jembe.2019.151249, 2020.
Hourdez, S. and Jollivet, D.: CHUBACARC cruise, L'Atalante R/V, French Oceanographic Cruises, https://doi.org/10.17600/18001111, 2019.
Humphris, S. E., Herzig, P. M., Miller, D. J., Alt, J. C., Becker, K., Brown, D., Brügmann, G., Chiba, H., Fouquet, Y., Gemmell, J. B., Guerin, G., Hannington, M. D., Holm, N. G., Honnorez, J. J., Iturrino, G. J., Knott, R., Ludwig, R., Nakamura, K., Petersen, S., Reysenbach, A.-L., Rona, P. A., Smith, S., Sturz, A. A., Tivey, M. K., and Zhao, X.: The internal structure of an active sea-floor massive sulphide deposit, Nature, 377, 713–716, https://doi.org/10.1038/377713a0, 1995.
International Seabed Authority: Environmental management plan for the Clarion-Clipperton Zone, ISBA/17/LTC/7, https://www.isa.org.jm/documents/isba-17-ltc-7/ (last access: January 2024), 2011.
International Seabed Authority: Report of ISA workshop on the design of “Impact Reference Zones” and “Preservation Reference Zones” in deep-sea mining contract areas, ISA Technical Study No. 21, https://www.isa.org.jm/publications/technical-study-21-
report-of-isa-workshop-on-the-design-of-impact-reference-
zones-and-preservation-reference-zones-in-deep-sea-mining-contract-areas/ (last access: January 2024), 2019.
Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., and Hofmann, A. W.: GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards, Geostand. Geoanal. Res., 29, 333–338, https://doi.org/10.1111/j.1751-908X.2005.tb00904.x, 2005.
Konn, C., Donval, J. P., Guyader, V., Germain, Y., Alix, A.-S., Roussel, E., and Rouxel, O.: Extending the dataset of fluid geochemistry of the Menez Gwen, Lucky Strike, Rainbow, TAG and Snake Pit hydrothermal vent fields: Investigation of temporal stability and organic contribution, Deep-Sea Res. Pt. I, 179, 103630, https://doi.org/10.1016/j.dsr.2021.103630, 2022.
Kroll, I., Poray, A., Puckett, B., Eggleston, D., and Fodrie, F.: Environmental effects on elemental signatures in eastern oyster Crassostrea virginica shells: using geochemical tagging to assess population connectivity, Mar. Ecol.-Prog. Ser., 543, 173–186, https://doi.org/10.3354/meps11549, 2016.
Le Bris, N., Sarradin, P.-M., and Caprais, J.-C.: Contrasted sulphide chemistries in the environment of 13∘ N EPR vent fauna, Deep-Sea Res. Pt. I, 50, 737–747, https://doi.org/10.1016/S0967-0637(03)00051-7, 2003.
Levin, L. A.: A review of methods for labeling and tracking marine invertebrate larvae, Ophelia, 32, 115–144, https://doi.org/10.1080/00785236.1990.10422028, 1990.
Levin, L. A.: Recent progress in understanding larval dispersal: new directions and digressions, Integr. Comp. Biol., 46, 282–297, https://doi.org/10.1093/icb/icj024, 2006.
Levin, L. A., Huggett, D., Myers, P., Bridges, T., and Weaver, J.: Rare earth tagging methods for the study of larval dispersal by marine invertebrates, Limnol. Oceanogr., 38, 346–360, https://doi.org/10.4319/lo.1993.38.2.0346, 1993.
Levin, L. A., Baco, A. R., Bowden, D. A., Colaco, A., Cordes, E. E., Cunha, M. R., Demopoulos, A. W. J., Gobin, J., Grupe, B. M., Le, J., Metaxas, A., Netburn, A. N., Rouse, G. W., Thurber, A. R., Tunnicliffe, V., Van Dover, C. L., Vanreusel, A., and Watling, L.: Hydrothermal Vents and Methane Seeps: Rethinking the Sphere of Influence, Front. Mar. Sci., 3, 72, https://doi.org/10.3389/fmars.2016.00072, 2016.
Levin, L. A., Wei, C.-L., Dunn, D. C., Amon, D. J., Ashford, O. S., Cheung, W. W. L., Colaço, A., Dominguez-Carrió, C., Escobar, E. G., Harden-Davies, H. R., Drazen, J. C., Ismail, K., Jones, D. O. B., Johnson, D. E., Le, J. T., Lejzerowicz, F., Mitarai, S., Morato, T., Mulsow, S., Snelgrove, P. V. R., Sweetman, A. K., and Yasuhara, M.: Climate change considerations are fundamental to management of deep-sea resource extraction, Glob. Change Biol., 26, 4664–4678, https://doi.org/10.1111/gcb.15223, 2020.
Littlewood, J. L., Shaw, S., Peacock, C. L., Bots, P., Trivedi, D., and Burke, I. T.: Mechanism of Enhanced Strontium Uptake into Calcite via an Amorphous Calcium Carbonate Crystallization Pathway, Cryst. Growth Des., 17, 1214–1223, https://doi.org/10.1021/acs.cgd.6b01599, 2017.
Maeda-Martínez, A. N.: Osmotic and ionic concentration of the egg capsule fluid of Crepidula fornicata in relation to embryonic development, Mar. Biol., 154, 643–648, https://doi.org/10.1007/s00227-008-0957-4, 2008.
McVeigh, D. M., Eggleston, D. B., Todd, A. C., Young, C. M., and He, R.: The influence of larval migration and dispersal depth on potential larval trajectories of a deep-sea bivalve, Deep-Sea Res. Pt. I, 127, 57–64, https://doi.org/10.1016/j.dsr.2017.08.002, 2017.
Mercier, L., Darnaude, A. M., Bruguier, O., Vasconcelos, R. P., Cabral, H. N., Costa, M. J., Lara, M., Jones, D. L., and Mouillot, D.: Selecting statistical models and variable combinations for optimal classification using otolith microchemistry, Ecol. Appl., 21, 1352–1364, https://doi.org/10.1890/09-1887.1, 2011.
Miller, K. A., Thompson, K. F., Johnston, P., and Santillo, D.: An Overview of Seabed Mining Including the Current State of Development, Environmental Impacts, and Knowledge Gaps, Front. Mar. Sci., 4, 418, https://doi.org/10.3389/fmars.2017.00418, 2018.
Mitarai, S., Watanabe, H., Nakajima, Y., Shchepetkin, A. F., and McWilliams, J. C.: Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean, P. Natl. Acad. Sci. USA, 113, 2976–2981, https://doi.org/10.1073/pnas.1518395113, 2016.
Mouchi, V., Godbillot, C., Forest, V., Ulianov, A., Lartaud, F., de Rafélis, M., Emmanuel, L., and Verrecchia, E. P.: Rare earth elements in oyster shells: provenance discrimination and potential vital effects, Biogeosciences, 17, 2205–2217, https://doi.org/10.5194/bg-17-2205-2020, 2020.
Mouchi, V., Broquet, T., and Comtet, T.: Preparation of mollusc larval shells for individual geochemical analysis v2, Protocols.io, https://doi.org/10.17504/protocols.io.bp2l61jwkvqe/v2, 2023a.
Mouchi, V., Pecheyran, C., Claverie, F., Cathalot, C., Matabos, M., Germain, Y., Rouxel, O., Jollivet, D., Broquet, T., and Comtet, T.: Elemental data from individual larval shells, Zenodo [data set], https://doi.org/10.5281/zenodo.7828333, 2023b.
Mullineaux, L., Mills, S., Sweetman, A., Beaudreau, A., Metaxas, A., and Hunt, H.: Vertical, lateral and temporal structure in larval distributions at hydrothermal vents, Mar. Ecol.-Prog. Ser., 293, 1–16, https://doi.org/10.3354/meps293001, 2005.
Mullineaux, L. S., Adams, D. K., Mills, S. W., and Beaulieu, S. E.: Larvae from afar colonize deep-sea hydrothermal vents after a catastrophic eruption, P. Natl. Acad. Sci. USA, 107, 7829–7834, https://doi.org/10.1073/pnas.0913187107, 2010.
Mullineaux, L. S., Metaxas, A., Beaulieu, S. E., Bright, M., Gollner, S., Grupe, B. M., Herrera, S., Kellner, J. B., Levin, L. A., Mitarai, S., Neubert, M. G., Thurnherr, A. M., Tunnicliffe, V., Watanabe, H. K., and Won, Y.-J.: Exploring the Ecology of Deep-Sea Hydrothermal Vents in a Metacommunity Framework, Front. Mar. Sci., 5, 49, https://doi.org/10.3389/fmars.2018.00049, 2018.
O'Leary, B. C., Allen, H. L., Yates, K. L., Page, R. W., Tudhope, A. W., McClean, C., Rogers, A. D., Hawkins, J. P., and Roberts, C. M.: 30x30: A blueprint for ocean protection, Umweltstiftung Greenpeace, https://www.greenpeace.org/30x30 (last access: January 2024), 2019.
Pante, E. and Simon-Bouhet, B.: marmap: A Package for Importing, Plotting and Analyzing Bathymetric and Topographic Data in R, PLOS ONE, 8, e73051, https://doi.org/10.1371/journal.pone.0073051, 2013.
Petersen, S., Krätschell, A., Augustin, N., Jamieson, J., Hein, J. R., and Hannington, M. D.: News from the seabed – Geological characteristics and resource potential of deep-sea mineral resources, Mar. Policy, 70, 175–187, https://doi.org/10.1016/j.marpol.2016.03.012, 2016.
Plouviez, S., LaBella, A. L., Weisrock, D. W., von Meijenfeldt, F. A. B., Ball, B., Neigel, J. E., and Van Dover, C. L.: Amplicon sequencing of 42 nuclear loci supports directional gene flow between South Pacific populations of a hydrothermal vent limpet, Ecol. Evol., 9, 6568–6580, https://doi.org/10.1002/ece3.5235, 2019.
Podowski, E., Ma, S., Luther, G., Wardrop, D., and Fisher, C.: Biotic and abiotic factors affecting distributions of megafauna in diffuse flow on andesite and basalt along the Eastern Lau Spreading Center, Tonga, Mar. Ecol. Prog. Ser., 418, 25–45, https://doi.org/10.3354/meps08797, 2010.
Podowski, E. L., Moore, T. S., Zelnio, K. A., Luther, G. W., and Fisher, C. R.: Distribution of diffuse flow megafauna in two sites on the Eastern Lau Spreading Center, Tonga, Deep-Sea Res. Pt. I, 56, 2041–2056, https://doi.org/10.1016/j.dsr.2009.07.002, 2009.
Poitrimol, C.: Distribution et partitionnement de la biodiversité hydrothermale dans un système discontinu de dorsales : le cas des bassins arrière-arc de l'ouest Pacifique, These de doctorat, Sorbonne université, HAL repository ID: tel-03900421, 2022.
Poitrimol, C., Thiébaut, É., Daguin-Thiébaut, C., Le Port, A.-S., Ballenghien, M., Tran Lu Y, A., Jollivet, D., Hourdez, S., and Matabos, M.: Contrasted phylogeographic patterns of hydrothermal vent gastropods along South West Pacific: Woodlark Basin, a possible contact zone and/or stepping-stone, PLoS ONE, 17, e0275638, https://doi.org/10.1371/journal.pone.0275638, 2022.
Poitrimol, C., Matabos, M., Veuillot, A., Ramière, A., Comtet, T., Boulart, C., Cathalot, C., and Thiébaut, É.: Reproductive biology and population structure of three hydrothermal gastropods (Lepetodrilus schrolli, L. fijiensis and Shinkailepas tollmanni) from the South West Pacific back-arc basins, Mar. Biol., 171, 31, https://doi.org/10.1007/s00227-023-04348-4, 2024.
Radziejewska, T., Błażewicz, M., Włodarska-Kowalczuk, M., Jóźwiak, P., Pabis, K., and Węsławski, J. M.: Benthic biology in the Polish exploration contract area of the Mid-Atlantic Ridge: The knowns and the unknowns. A review, Front. Mar. Sci., 9, 898828, https://doi.org/10.3389/fmars.2022.898828, 2022.
Ramesh, K., Hu, M. Y., Thomsen, J., Bleich, M., and Melzner, F.: Mussel larvae modify calcifying fluid carbonate chemistry to promote calcification, Nat. Commun., 8, 1709, https://doi.org/10.1038/s41467-017-01806-8, 2017.
Rouxel, O., Toner, B., Germain, Y., and Glazer, B.: Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount, Geochim. Cosmochim. Ac., 220, 449–482, https://doi.org/10.1016/j.gca.2017.09.050, 2018.
Sasaki, T., Warén, A., Kano, Y., Okutani, T., and Fujikura, K.: Gastropods from Recent Hot Vents and Cold Seeps: Systematics, Diversity and Life Strategies, in: The Vent and Seep Biota: Aspects from Microbes to Ecosystems, edited by: Kiel, S., Springer Netherlands, Dordrecht, 169–254, https://doi.org/10.1007/978-90-481-9572-5_7, 2010.
Simmonds, S., Kinlan, B., White, C., Paradis, G., Warner, R., and Zacherl, D.: Geospatial statistics strengthen the ability of natural geochemical tags to estimate range-wide population connectivity in marine species, Mar. Ecol. Prog. Ser., 508, 33–51, https://doi.org/10.3354/meps10871, 2014.
Smith, C. R., Tunnicliffe, V., Colaço, A., Drazen, J. C., Gollner, S., Levin, L. A., Mestre, N. C., Metaxas, A., Molodtsova, T. N., Morato, T., Sweetman, A. K., Washburn, T., and Amon, D. J.: Deep-Sea Misconceptions Cause Underestimation of Seabed-Mining Impacts, Trends Ecol. Evol., 35, 853–857, https://doi.org/10.1016/j.tree.2020.07.002, 2020.
Strasser, C. A., Mullineaux, L. S., and Thorrold, S. R.: Temperature and salinity effects on elemental uptake in the shells of larval and juvenile softshell clams Mya arenaria, Mar. Ecol. Prog. Ser., 370, 155–169, https://doi.org/10.3354/meps07658, 2008a.
Strasser, C. A., Mullineaux, L. S., and Walther, B. D.: Growth rate and age effects on Mya arenaria shell chemistry: Implications for biogeochemical studies, J. Exp. Mar. Biol. Ecol., 355, 153–163, https://doi.org/10.1016/j.jembe.2007.12.022, 2008b.
Suh, Y. J., Kim, M.-S., Lee, W.-K., Yoon, H., Moon, I., Jung, J., and Ju, S.-J.: Niche partitioning of hydrothermal vent fauna in the North Fiji Basin, Southwest Pacific inferred from stable isotopes, Mar. Biol., 169, 149, https://doi.org/10.1007/s00227-022-04129-5, 2022.
Suzuki, K., Yoshida, K., Watanabe, H., and Yamamoto, H.: Mapping the resilience of chemosynthetic communities in hydrothermal vent fields, Sci. Rep.-UK, 8, 9364, https://doi.org/10.1038/s41598-018-27596-7, 2018.
Thorrold, S., Zacherl, D., and Levin, L.: Population Connectivity and Larval Dispersal Using Geochemical Signatures in Calcified Structures, Oceanography, 20, 80–89, https://doi.org/10.5670/oceanog.2007.31, 2007.
Toffolo, L., Nimis, P., Tret'yakov, G. A., Melekestseva, I. Y., and Beltenev, V. E.: Seafloor massive sulfides from mid-ocean ridges: Exploring the causes of their geochemical variability with multivariate analysis, Earth-Sci. Rev., 201, 102958, https://doi.org/10.1016/j.earscirev.2019.102958, 2020.
Tran Lu Y, A.: La phylogéographie comparée d'espèces hydrothermales du Pacifique Ouest à l'heure de la génomique des populations, These de doctorat, Université de Montpellier, https://ged.biu-montpellier.fr/florabium/jsp/nnt.jsp?nnt=2022UMONG017 (last access: January 2024), 2022.
Tran Lu Y, A., Ruault, S., Daguin-Thiébaut, C., Castel, J., Bierne, N., Broquet, T., Wincker, P., Perdereau, A., Arnaud-Haond, S., Gagnaire, P., Jollivet, D., Hourdez, S., and Bonhomme, F.: Subtle limits to connectivity revealed by outlier loci within two divergent metapopulations of the deep-sea hydrothermal gastropod Ifremeria nautilei, Mol. Ecol., 31, 2796–2813, https://doi.org/10.1111/mec.16430, 2022.
Ulrich, R. N., Guillermic, M., Campbell, J., Hakim, A., Han, R., Singh, S., Stewart, J. D., Román-Palacios, C., Carroll, H. M., De Corte, I., Gilmore, R. E., Doss, W., Tripati, A., Ries, J. B., and Eagle, R. A.: Patterns of Element Incorporation in Calcium Carbonate Biominerals Recapitulate Phylogeny for a Diverse Range of Marine Calcifiers, Front. Earth Sci., 9, 641760, https://doi.org/10.3389/feart.2021.641760, 2021.
Van Audenhaege, L., Fariñas-Bermejo, A., Schultz, T., and Lee Van Dover, C.: An environmental baseline for food webs at deep-sea hydrothermal vents in Manus Basin (Papua New Guinea), Deep-Sea Res. Pt. I, 148, 88–99, https://doi.org/10.1016/j.dsr.2019.04.018, 2019.
Van Audenhaege, L., Matabos, M., Brind'Amour, A., Drugmand, J., Laës-Huon, A., Sarradin, P.-M., and Sarrazin, J.: Long-term monitoring reveals unprecedented stability of a vent mussel assemblage on the Mid-Atlantic Ridge, Prog. Oceanogr., 204, 102791, https://doi.org/10.1016/j.pocean.2022.102791, 2022.
Van Dover, C. L.: Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: A review, Mar. Environ. Res., 102, 59–72, https://doi.org/10.1016/j.marenvres.2014.03.008, 2014.
Vest, K. E., Hashemi, H. F., and Cobine, P. A.: The Copper Metallome in Eukaryotic Cells, in: Metallomics and the Cell, vol. 12, edited by: Banci, L., Springer Netherlands, Dordrecht, 451–478, https://doi.org/10.1007/978-94-007-5561-1_13, 2013.
Vic, C., Gula, J., Roullet, G., and Pradillon, F.: Dispersion of deep-sea hydrothermal vent effluents and larvae by submesoscale and tidal currents, Deep-Sea Res. Pt. I, 133, 1–18, https://doi.org/10.1016/j.dsr.2018.01.001, 2018.
Watson, E. B.: A conceptual model for near-surface kinetic controls on the trace-element and stable isotope composition of abiogenic calcite crystals, Geochim. Cosmochim. Ac., 68, 1473–1488, https://doi.org/10.1016/j.gca.2003.10.003, 2004.
Weiner, S. and Dove, P. M.: An Overview of Biomineralization Processes and the Problem of the Vital Effect, Rev. Mineral. Geochem., 54, 1–29, https://doi.org/10.2113/0540001, 2003.
Weiss, I. M., Tuross, N., Addadi, L., and Weiner, S.: Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite, J. Exp. Zool., 293, 478–491, https://doi.org/10.1002/jez.90004, 2002.
White, J. and Ruttenberg, B.: Discriminant function analysis in marine ecology: some oversights and their solutions, Mar. Ecol. Prog. Ser., 329, 301–305, https://doi.org/10.3354/meps329301, 2007.
Yahagi, T., Thaler, A. D., Van Dover, C. L., and Kano, Y.: Population connectivity of the hydrothermal-vent limpet Shinkailepas tollmanni in the Southwest Pacific (Gastropoda: Neritimorpha: Phenacolepadidae), PLoS ONE, 15, e0239784, https://doi.org/10.1371/journal.pone.0239784, 2020.
Yearsley, J. M., Salmanidou, D. M., Carlsson, J., Burns, D., and Van Dover, C. L.: Biophysical models of persistent connectivity and barriers on the northern Mid-Atlantic Ridge, Deep-Sea Res. Pt. II, 180, 104819, https://doi.org/10.1016/j.dsr2.2020.104819, 2020.
Zacherl, D., Manríquez, P., Paradis, G., Day, R., Castilla, J., Warner, R., Lea, D., and Gaines, S.: Trace elemental fingerprinting of gastropod statoliths to study larval dispersal trajectories, Mar. Ecol.-Prog. Ser., 248, 297–303, https://doi.org/10.3354/meps248297, 2003.
Short summary
The impact of deep-sea mining will depend critically on the ability of larval dispersal of hydrothermal mollusks to connect and replenish natural populations. However, assessing connectivity is extremely challenging, especially in the deep sea. Here, we investigate the potential of using the chemical composition of larval shells to discriminate larval origins between multiple hydrothermal sites in the southwest Pacific. Our results confirm that this method can be applied with high accuracy.
The impact of deep-sea mining will depend critically on the ability of larval dispersal of...
Altmetrics
Final-revised paper
Preprint