Articles | Volume 21, issue 18
https://doi.org/10.5194/bg-21-4169-2024
https://doi.org/10.5194/bg-21-4169-2024
Research article
 | 
26 Sep 2024
Research article |  | 26 Sep 2024

Leaf habit drives leaf nutrient resorption globally alongside nutrient availability and climate

Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle

Related authors

Modelling root exudation and plant-microbe interactions under CO2 fertilization in a mature forest
Kristian Schufft, Katrin Fleischer, Anja Rammig, Lin Yu, Mingkai Jiang, Belinda E. Medlyn, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2025-4286,https://doi.org/10.5194/egusphere-2025-4286, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
HYD-RESPONSES: daily hydro-meteorological catchment-level time series to analyse HYDrological drought dynamics in RESPONSE to (cumulative) water deficits in Swiss catchments
Christoph von Matt, Benjamin Stocker, and Olivia Martius
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-383,https://doi.org/10.5194/essd-2025-383, 2025
Preprint under review for ESSD
Short summary
Modelling sun-induced chlorophyll fluorescence (SIF) in evergreen conifer forests with a terrestrial biosphere model
Tea Thum, Javier Pacheco-Labrador, Mika Aurela, Alan Barr, Marika Honkanen, Bruce Johnson, Hannakaisa Lindqvist, Troy Magney, Mirco Migliavacca, Zoe Amie Pierrat, Tristan Quaife, Jochen Stutz, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2025-4432,https://doi.org/10.5194/egusphere-2025-4432, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Increasing Diurnal and Seasonal Amplitude of Atmospheric Methane Mole Fraction in Central Siberia between 2010–2021
Dieu Anh Tran, Jordi Vilà-Guerau de Arellano, Ingrid T. Luijkx, Christoph Gerbig, Michał Gałkowski, Santiago Botía, Kim Faassen, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2025-2351,https://doi.org/10.5194/egusphere-2025-2351, 2025
Short summary
Importance of plant functional type, dynamic vegetation, and fire interactions for process-based modeling of gross carbon uptake across the drylands of western North America
Rubaya Pervin, Scott Robeson, Mallory Barnes, Stephen Sitch, Anthony Walker, Ben Poulter, Fabienne Maignan, Qing Sun, Thomas Colligan, Sönke Zaehle, Kashif Mahmud, Peter Anthoni, Almut Arneth, Vivek Arora, Vladislav Bastrikov, Liam Bogucki, Bertrand Decharme, Christine Delire, Stefanie Falk, Akihiko Ito, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Michael O’Sullivan, Wenping Yuan, and Natasha MacBean
EGUsphere, https://doi.org/10.5194/egusphere-2025-2841,https://doi.org/10.5194/egusphere-2025-2841, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary

Cited articles

Aerts, R.: Nutrient Resorption from Senescing Leaves of Perennials: Are there General Patterns?, J. Ecol., 84, 597–608, https://doi.org/10.2307/2261481, 1996. 
Aerts, R. and Chapin, F. S.: The Mineral Nutrition of Wild Plants Revisited: A Re-evaluation of Processes and Patterns, Vol. 30, edited by: Fitter, A. H. and Raffaelli, D. G., Academic Press, 1–67, Advances in Ecological Research, https://doi.org/10.1016/S0065-2504(08)60016-1, 1999. 
Arora, V. K., Seiler, C., Wang, L., and Kou-Giesbrecht, S.: Towards an ensemble-based evaluation of land surface models in light of uncertain forcings and observations, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-641, 2022. 
Augusto, L., Achat, D. L., Jonard, M., Vidal, D., and Ringeval, B.: Soil parent material-A major driver of plant nutrient limitations in terrestrial ecosystems, Glob. Change Biol., 23, 3808–3824, 2017. 
Bartoń, K.: MuMIn: multi-model inference, R package version 1.47.5, CRAN (The Comprehensive R Archive Network), https://cran.r-project.org/package=MuMIn (lasta access: 17 January 2024), 2023. 
Download
Short summary
Through an extensive global dataset of leaf nutrient resorption and a multifactorial analysis, we show that the majority of spatial variation in nutrient resorption may be driven by leaf habit and type, with thicker, longer-lived leaves having lower resorption efficiencies. Climate, soil fertility and soil-related factors emerge as strong drivers with an additional effect on its role. These results are essential for comprehending plant nutrient status, plant productivity and nutrient cycling.
Share
Altmetrics
Final-revised paper
Preprint