Articles | Volume 21, issue 3
https://doi.org/10.5194/bg-21-843-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-843-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enhanced net CO2 exchange of a semideciduous forest in the southern Amazon due to diffuse radiation from biomass burning
Simone Rodrigues
Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal do Pará, Belém-PA, Brazil
Glauber Cirino
Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal do Pará, Belém-PA, Brazil
Instituto de Geociências, Faculdade de Meteorologia, Universidade Federal do Pará, Belém-PA, Brazil
Programa de Pós-Graduação em Gestão de Risco e Desastre na Amazônia, Universidade Federal do Pará, Belém-PA, Brazil
Demerval Moreira
Faculdade de Ciências, Universidade Estadual Paulista, Bauru-SP, Brazil
Andrea Pozzer
Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
Rafael Palácios
Instituto de Geociências, Faculdade de Meteorologia, Universidade Federal do Pará, Belém-PA, Brazil
Programa de Pós-Graduação em Gestão de Risco e Desastre na Amazônia, Universidade Federal do Pará, Belém-PA, Brazil
Sung-Ching Lee
Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
Breno Imbiriba
Instituto de Geociências, Faculdade de Meteorologia, Universidade Federal do Pará, Belém-PA, Brazil
José Nogueira
Instituto de Física (IF), Universidade Federal de Mato Grosso (UFMT), Mato Grosso-MT, Brazil
deceased
Maria Isabel Vitorino
Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal do Pará, Belém-PA, Brazil
Instituto de Geociências, Faculdade de Meteorologia, Universidade Federal do Pará, Belém-PA, Brazil
George Vourlitis
CORRESPONDING AUTHOR
Department of Biological Sciences, California State University, San Marcos, CA, USA
Related authors
No articles found.
Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost
Atmos. Chem. Phys., 25, 243–262, https://doi.org/10.5194/acp-25-243-2025, https://doi.org/10.5194/acp-25-243-2025, 2025
Short summary
Short summary
This study examines how land cover changes influence biogenic volatile organic compound (BVOC) emissions and atmospheric states. Using a coupled chemistry–climate–vegetation model, we compare present-day land cover (deforested for crops and grazing) with natural vegetation and an extreme reforestation scenario. We find that vegetation changes significantly impact global BVOC emissions and organic aerosols but have a relatively small effect on total aerosols, clouds, and radiative effects.
Raphael Dreger, Timo Kirfel, Andrea Pozzer, Simon Rosanka, Rolf Sander, and Domenico Taraborrelli
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-166, https://doi.org/10.5194/gmd-2024-166, 2025
Preprint under review for GMD
Short summary
Short summary
Model simulations are essentials for understanding the interactions between atmospheric composition and weather. However, models including chemistry are very slow. Hence, any computation speedup of such models is important for advancing the understanding of interactions within the Earth System. In this study we analysed and optimized the time stepping for chemistry calculations. Our results show that atmospheric chemistry models could be run notably faster without any loss in the accuracy.
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
Atmos. Meas. Tech., 17, 6485–6516, https://doi.org/10.5194/amt-17-6485-2024, https://doi.org/10.5194/amt-17-6485-2024, 2024
Short summary
Short summary
This paper presents a new machine learning model that allows us to compute NO2 concentration profiles from satellite observations. A neural network was trained on synthetic data from the regional chemistry and transport model WRF-Chem. This is the first model of its kind. We present a thorough model validation study, covering various seasons and regions of the world.
Laura Dénise Nadolski, Tarek Sebastian El Madany, Jacob Allen Nelson, Arnaud Carrara, Gerardo Moreno, Richard K. F. Nair, Yunpeng Luo, Anke Hildebrandt, Victor Rolo, Markus Reichstein, and Sung-Ching Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-3190, https://doi.org/10.5194/egusphere-2024-3190, 2024
Short summary
Short summary
Semi-arid ecosystems are crucial for Earth's carbon balance and are sensitive to changes in nitrogen (N) and phosphorus (P) levels. Their carbon dynamics are complex and not fully understood. We studied how long-term nutrient changes affect carbon exchange. In summer, N+P changed plant composition and productivity. In transitional seasons, carbon exchange was less weather-dependent with N. Adding N and N+P are increasing carbon exchange variability, driven by grass greenness.
Steven Turnock, Dimitris Akritidis, Larry Horowitz, Mariano Mertens, Andrea Pozzer, Carly Reddington, Hantao Wang, Putian Zhou, and Fiona O'Connor
EGUsphere, https://doi.org/10.5194/egusphere-2024-2732, https://doi.org/10.5194/egusphere-2024-2732, 2024
Short summary
Short summary
We assess the drivers behind changes in peak season surface zone concentrations and risk to human health between 1850 and 2014. Substantial increases in surface ozone have occurred over this period resulting in a significant increase in the risk to human health, mainly driven by increases in anthropogenic NOx emissions and global CH4 concentrations. Fixing anthropogenic NOx emissions at 1850 values in the near present-day period can eliminate the risk to human health.
Matthias Kohl, Christoph Brühl, Jennifer Schallock, Holger Tost, Patrick Jöckel, Adrian Jost, Steffen Beirle, Michael Höpfner, and Andrea Pozzer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2200, https://doi.org/10.5194/egusphere-2024-2200, 2024
Short summary
Short summary
SO2 from explosive volcanic eruptions reaching the stratosphere can oxidize and form sulfate aerosols, potentially persisting for several years and influencing climate and the ozone layer. We developed a new submodel for Explosive Volcanic ERuptions (EVER) that seamlessly includes stratospheric volcanic SO2 emissions in global numerical simulations based on a novel standard historical model setup. Sensitivity studies on the Nabro eruption in 2011 evaluate different emission methods.
Sung-Ching Lee, Hojin Lee, and Tin Satriawan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2466, https://doi.org/10.5194/egusphere-2024-2466, 2024
Preprint archived
Short summary
Short summary
This paper reviews ecosystem-atmosphere interaction research in Asia, from the views of early career researchers. It discusses the AsiaFlux network's efforts on this topic and summarizes recent key research findings, emphasizing the importance of long-term observations and stakeholder engagement. Despite challenges like data sharing and standardized data processing, we are motivated by new research directions. The paper calls for continued collaboration to enhance our understanding.
Pantelis Georgiades, Matthias Kohl, Mihalis A. Nicolaou, Theodoros Christoudias, Andrea Pozzer, Constantine Dovrolis, and Jos Lelieveld
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-314, https://doi.org/10.5194/essd-2024-314, 2024
Manuscript not accepted for further review
Short summary
Short summary
This study maps global ultrafine particle (UFP) concentrations, pollutants known to affect health, using machine learning. By combining environmental and urban data, we predicted UFP levels at a fine 1 km resolution, highlighting areas of high exposure. Our results provide data for public health policies aimed at reducing air pollution impacts. This research bridges data gaps, offering a valuable tool for understanding and mitigating the health effects of UFP exposure.
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024, https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Short summary
The study evaluates the land surface and vegetation model JSBACHv4 as a replacement for the simplified submodel SURFACE in EMAC. JSBACH mitigates earlier problems of soil dryness, which are critical for vegetation modelling. When analysed using different datasets, the coupled model shows strong correlations of key variables, such as land surface temperature, surface albedo and radiation flux. The versatility of the model increases significantly, while the overall performance does not degrade.
Hector Navarro-Barboza, Jordi Rovira, Vincenzo Obiso, Andrea Pozzer, Marta Via, Andres Alastuey, Xavier Querol, Noemi Perez, Marjan Savadkoohi, Gang Chen, Jesus Yus-Díez, Matic Ivancic, Martin Rigler, Konstantinos Eleftheriadis, Stergios Vratolis, Olga Zografou, Maria Gini, Benjamin Chazeau, Nicolas Marchand, Andre Prevot, Kaspar Dallenbach, Mikael Ehn, Krista Luoma, Tuukka Petäjä, Anna Tobler, Jaroslaw Necki, Minna Aurela, Hilkka Timonen, Jarkko Niemi, Olivier Favez, Jean-Eudes Petit, Jean-Philippe Putaud, Christoph Hueglin, Nicolas Pascal, Aurelien Chauvigné, Sebastien Conil, Marco Pandolfi, and Oriol Jorba
EGUsphere, https://doi.org/10.5194/egusphere-2024-2086, https://doi.org/10.5194/egusphere-2024-2086, 2024
Short summary
Short summary
Brown carbon (BrC) absorbs UV and visible light, affecting climate. Our study investigates BrC's imaginary refractive index (k ) using data from 12 European sites. Residential emissions are a major OA source in winter, while secondary organic aerosols (SOA) dominate in summer. We derived source-specific k values, enhancing model accuracy. This research improves understanding of BrC's climate role, emphasizing the need for source-specific constraints in atmospheric models.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Imran A. Girach, Narendra Ojha, Prabha R. Nair, Kandula V. Subrahmanyam, Neelakantan Koushik, Mohammed M. Nazeer, Nadimpally Kiran Kumar, Surendran Nair Suresh Babu, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 24, 1979–1995, https://doi.org/10.5194/acp-24-1979-2024, https://doi.org/10.5194/acp-24-1979-2024, 2024
Short summary
Short summary
We investigate surface ozone variability in East Antarctica based on measurements and EMAC global model simulations during austral summer. Nearly half of the surface ozone is found to be of stratospheric origin. The east coast of Antarctica acts as a stronger sink of ozone than surrounding regions. Photochemical loss of ozone is counterbalanced by downward transport of ozone. The study highlights the intertwined role of chemistry and dynamics in governing ozone variations over East Antarctica.
Leon Kuhn, Steffen Beirle, Vinod Kumar, Sergey Osipov, Andrea Pozzer, Tim Bösch, Rajesh Kumar, and Thomas Wagner
Atmos. Chem. Phys., 24, 185–217, https://doi.org/10.5194/acp-24-185-2024, https://doi.org/10.5194/acp-24-185-2024, 2024
Short summary
Short summary
NO₂ is an important air pollutant. It was observed that the WRF-Chem model shows significant deviations in NO₂ abundance when compared to measurements. We use a 1-month simulation over central Europe to show that these deviations can be mostly resolved by reparameterization of the vertical mixing routine. In order to validate our results, they are compared to in situ, satellite, and MAX-DOAS measurements.
Meghna Soni, Rolf Sander, Lokesh K. Sahu, Domenico Taraborrelli, Pengfei Liu, Ankit Patel, Imran A. Girach, Andrea Pozzer, Sachin S. Gunthe, and Narendra Ojha
Atmos. Chem. Phys., 23, 15165–15180, https://doi.org/10.5194/acp-23-15165-2023, https://doi.org/10.5194/acp-23-15165-2023, 2023
Short summary
Short summary
The study presents the implementation of comprehensive multiphase chlorine chemistry in the box model CAABA/MECCA. Simulations for contrasting urban environments of Asia and Europe highlight the significant impacts of chlorine on atmospheric oxidation capacity and composition. Chemical processes governing the production and loss of chlorine-containing species has been discussed. The updated chemical mechanism will be useful to interpret field measurements and for future air quality studies.
Ryan Vella, Andrea Pozzer, Matthew Forrest, Jos Lelieveld, Thomas Hickler, and Holger Tost
Biogeosciences, 20, 4391–4412, https://doi.org/10.5194/bg-20-4391-2023, https://doi.org/10.5194/bg-20-4391-2023, 2023
Short summary
Short summary
We investigated the effect of the El Niño–Southern Oscillation (ENSO) on biogenic volatile organic compound (BVOC) emissions from plants. ENSO events can cause a significant increase in these emissions, which have a long-term impact on the Earth's atmosphere. Persistent ENSO conditions can cause long-term changes in vegetation, resulting in even higher BVOC emissions. We link ENSO-induced emission anomalies with driving atmospheric and vegetational variables.
Susanna Strada, Andrea Pozzer, Graziano Giuliani, Erika Coppola, Fabien Solmon, Xiaoyan Jiang, Alex Guenther, Efstratios Bourtsoukidis, Dominique Serça, Jonathan Williams, and Filippo Giorgi
Atmos. Chem. Phys., 23, 13301–13327, https://doi.org/10.5194/acp-23-13301-2023, https://doi.org/10.5194/acp-23-13301-2023, 2023
Short summary
Short summary
Water deficit modifies emissions of isoprene, an aromatic compound released by plants that influences the production of an air pollutant such as ozone. Numerical modelling shows that, during the warmest and driest summers, isoprene decreases between −20 and −60 % over the Euro-Mediterranean region, while near-surface ozone only diminishes by a few percent. Decreases in isoprene emissions not only happen under dry conditions, but also could occur after prolonged or repeated water deficits.
Matthias Kohl, Jos Lelieveld, Sourangsu Chowdhury, Sebastian Ehrhart, Disha Sharma, Yafang Cheng, Sachchida Nand Tripathi, Mathew Sebastian, Govindan Pandithurai, Hongli Wang, and Andrea Pozzer
Atmos. Chem. Phys., 23, 13191–13215, https://doi.org/10.5194/acp-23-13191-2023, https://doi.org/10.5194/acp-23-13191-2023, 2023
Short summary
Short summary
Knowledge on atmospheric ultrafine particles (UFPs) with a diameter smaller than 100 nm is crucial for public health and the hydrological cycle. We present a new global dataset of UFP concentrations at the Earth's surface derived with a comprehensive chemistry–climate model and evaluated with ground-based observations. The evaluation results are combined with high-resolution primary emissions to downscale UFP concentrations to an unprecedented horizontal resolution of 0.1° × 0.1°.
Clara M. Nussbaumer, Horst Fischer, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 23, 12651–12669, https://doi.org/10.5194/acp-23-12651-2023, https://doi.org/10.5194/acp-23-12651-2023, 2023
Short summary
Short summary
Ozone is a greenhouse gas and contributes to the earth’s radiative energy budget and therefore to global warming. This effect is the largest in the upper troposphere. In this study, we investigate the processes controlling ozone formation and the sensitivity to its precursors in the upper tropical troposphere based on model simulations by the ECHAM5/MESSy2 Atmospheric Chemistry (EMAC) model. We find that NO𝑥 emissions from lightning most importantly affect ozone chemistry at these altitudes.
Zaneta Hamryszczak, Dirk Dienhart, Bettina Brendel, Roland Rohloff, Daniel Marno, Monica Martinez, Hartwig Harder, Andrea Pozzer, Birger Bohn, Martin Zöger, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 23, 5929–5943, https://doi.org/10.5194/acp-23-5929-2023, https://doi.org/10.5194/acp-23-5929-2023, 2023
Short summary
Short summary
Hydrogen peroxide is a key contributor to the oxidative chemistry of the atmosphere through its link to the most prominent oxidants controlling its self-cleansing capacity, HOx. During the CAFE-Africa campaign, H2O2 was measured over the Atlantic Ocean and western Africa in August/September 2018. The study gives an overview of the distribution of H2O2 in the upper tropical troposphere and investigates the impact of convective processes in the Intertropical Convergence Zone on the budget of H2O2.
Mohamed Abdelkader, Georgiy Stenchikov, Andrea Pozzer, Holger Tost, and Jos Lelieveld
Atmos. Chem. Phys., 23, 471–500, https://doi.org/10.5194/acp-23-471-2023, https://doi.org/10.5194/acp-23-471-2023, 2023
Short summary
Short summary
We study the effect of injected volcanic ash, water vapor, and SO2 on the development of the volcanic cloud and the stratospheric aerosol optical depth (AOD). Both are sensitive to the initial injection height and to the aging of the volcanic ash shaped by heterogeneous chemistry coupled with the ozone cycle. The paper explains the large differences in AOD for different injection scenarios, which could improve the estimate of the radiative forcing of volcanic eruptions.
Dirk Dienhart, Bettina Brendel, John N. Crowley, Philipp G. Eger, Hartwig Harder, Monica Martinez, Andrea Pozzer, Roland Rohloff, Jan Schuladen, Sebastian Tauer, David Walter, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 23, 119–142, https://doi.org/10.5194/acp-23-119-2023, https://doi.org/10.5194/acp-23-119-2023, 2023
Short summary
Short summary
Formaldehyde and hydroperoxide measurements were performed in the marine boundary layer around the Arabian Peninsula and highlight the Suez Canal and Arabian (Persian) Gulf as a hotspot of photochemical air pollution. A comparison with the EMAC model shows that the formaldehyde results match within a factor of 2, while hydrogen peroxide was overestimated by more than a factor of 5, which revealed enhanced HOx (OH+HO2) radicals in the simulation and an underestimation of dry deposition velocites.
Mengze Li, Andrea Pozzer, Jos Lelieveld, and Jonathan Williams
Earth Syst. Sci. Data, 14, 4351–4364, https://doi.org/10.5194/essd-14-4351-2022, https://doi.org/10.5194/essd-14-4351-2022, 2022
Short summary
Short summary
We present a northern hemispheric airborne measurement dataset of atmospheric ethane, propane and methane and temporal trends for the time period 2006–2016 in the upper troposphere and lower stratosphere. The growth rates of ethane, methane, and propane in the upper troposphere are -2.24, 0.33, and -0.78 % yr-1, respectively, and in the lower stratosphere they are -3.27, 0.26, and -4.91 % yr-1, respectively, in 2006–2016.
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022, https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissions are located in the upper troposphere around aircraft cruise altitude, while the largest absolute changes are present at the surface.
Zaneta T. Hamryszczak, Andrea Pozzer, Florian Obersteiner, Birger Bohn, Benedikt Steil, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 22, 9483–9497, https://doi.org/10.5194/acp-22-9483-2022, https://doi.org/10.5194/acp-22-9483-2022, 2022
Short summary
Short summary
Hydrogen peroxide plays a pivotal role in the chemistry of the atmosphere. Together with organic hydroperoxides, it forms a reservoir for peroxy radicals, which are known to be the key contributors to the self-cleaning processes of the atmosphere. Hydroperoxides were measured over Europe during the BLUESKY campaign in May–June 2020. The paper gives an overview of the distribution of the species in the troposphere and investigates the impact of wet scavenging and deposition on the budget of H2O2.
Ovid O. Krüger, Bruna A. Holanda, Sourangsu Chowdhury, Andrea Pozzer, David Walter, Christopher Pöhlker, Maria Dolores Andrés Hernández, John P. Burrows, Christiane Voigt, Jos Lelieveld, Johannes Quaas, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 22, 8683–8699, https://doi.org/10.5194/acp-22-8683-2022, https://doi.org/10.5194/acp-22-8683-2022, 2022
Short summary
Short summary
The abrupt reduction in human activities during the first COVID-19 lockdown created unprecedented atmospheric conditions. We took the opportunity to quantify changes in black carbon (BC) as a major anthropogenic air pollutant. Therefore, we measured BC on board a research aircraft over Europe during the lockdown and compared the results to measurements from 2017. With model simulations we account for different weather conditions and find a lockdown-related decrease in BC of 41 %.
Dimitris Akritidis, Andrea Pozzer, Johannes Flemming, Antje Inness, Philippe Nédélec, and Prodromos Zanis
Atmos. Chem. Phys., 22, 6275–6289, https://doi.org/10.5194/acp-22-6275-2022, https://doi.org/10.5194/acp-22-6275-2022, 2022
Short summary
Short summary
We perform a process-oriented evaluation of Copernicus Atmosphere Monitoring Service (CAMS) reanalysis (CAMSRA) O3 over Europe using WOUDC (World Ozone and Ultraviolet Radiation Data Centre) ozonesondes and IAGOS (In-service Aircraft for a Global Observing System) aircraft measurements. Chemical data assimilation assists CAMSRA to reproduce the observed O3 increases in the troposphere during the examined folding events, but it mostly results in O3 overestimation in the upper troposphere.
Clara M. Nussbaumer, Andrea Pozzer, Ivan Tadic, Lenard Röder, Florian Obersteiner, Hartwig Harder, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 22, 6151–6165, https://doi.org/10.5194/acp-22-6151-2022, https://doi.org/10.5194/acp-22-6151-2022, 2022
Short summary
Short summary
The European COVID-19 lockdowns have significantly reduced the emission of primary pollutants such as NOx, which impacts the tropospheric photochemical processes and the abundance of O3. In this study, we present how the lockdowns have affected tropospheric trace gases and ozone production based on in situ observations and modeling simulations. We additionally show that the chemical regime shifted from a transition point to a NOx limitation in the upper troposphere.
Wenyu Sun, Matias Berasategui, Andrea Pozzer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 22, 4969–4984, https://doi.org/10.5194/acp-22-4969-2022, https://doi.org/10.5194/acp-22-4969-2022, 2022
Short summary
Short summary
The reaction between OH and SO2 is a termolecular process that in the atmosphere results in the formation of H2SO4 and thus aerosols. We present the first temperature- and pressure-dependent measurements of the rate coefficients in N2. This is also the first study to examine the effects of water vapour on the kinetics of this reaction. Our results indicate the rate coefficient is larger than that recommended by evaluation panels, with deviations of up to 30 % in some parts of the atmosphere.
Andrea Pozzer, Simon F. Reifenberg, Vinod Kumar, Bruno Franco, Matthias Kohl, Domenico Taraborrelli, Sergey Gromov, Sebastian Ehrhart, Patrick Jöckel, Rolf Sander, Veronica Fall, Simon Rosanka, Vlassis Karydis, Dimitris Akritidis, Tamara Emmerichs, Monica Crippa, Diego Guizzardi, Johannes W. Kaiser, Lieven Clarisse, Astrid Kiendler-Scharr, Holger Tost, and Alexandra Tsimpidi
Geosci. Model Dev., 15, 2673–2710, https://doi.org/10.5194/gmd-15-2673-2022, https://doi.org/10.5194/gmd-15-2673-2022, 2022
Short summary
Short summary
A newly developed setup of the chemistry general circulation model EMAC (ECHAM5/MESSy for Atmospheric Chemistry) is evaluated here. A comprehensive organic degradation mechanism is used and coupled with a volatility base model.
The results show that the model reproduces most of the tracers and aerosols satisfactorily but shows discrepancies for oxygenated organic gases. It is also shown that this model configuration can be used for further research in atmospheric chemistry.
Sung-Ching Lee, Sara H. Knox, Ian McKendry, and T. Andrew Black
Atmos. Chem. Phys., 22, 2333–2349, https://doi.org/10.5194/acp-22-2333-2022, https://doi.org/10.5194/acp-22-2333-2022, 2022
Short summary
Short summary
Wildfire smoke alters land–atmosphere exchange. Here, measurements in a forest and a wetland during four smoke episodes over four summers showed that impacts on radiation and heat budget were the greatest when smoke arrived in late summer. Both sites sequestered more CO2 under smoky days, partly due to diffuse light, but emitted CO2 when smoke was dense. This kind of field study is important for validating predictions of smoke–productivity feedbacks and has climate change implications.
Guangjie Zheng, Hang Su, Siwen Wang, Andrea Pozzer, and Yafang Cheng
Atmos. Chem. Phys., 22, 47–63, https://doi.org/10.5194/acp-22-47-2022, https://doi.org/10.5194/acp-22-47-2022, 2022
Short summary
Short summary
The recently proposed multiphase buffer theory provides a framework to reconstruct long-term trends and spatial variations in aerosol pH, while non-ideality is a major limitation for its broad applications. Here we proposed a parameterization method to estimate the impact of non-ideality and validated it against long-term observations and global simulations. With this method, the multiphase buffer theory can reproduce well aerosol pH variations estimated by comprehensive thermodynamic models.
Vlassis A. Karydis, Alexandra P. Tsimpidi, Andrea Pozzer, and Jos Lelieveld
Atmos. Chem. Phys., 21, 14983–15001, https://doi.org/10.5194/acp-21-14983-2021, https://doi.org/10.5194/acp-21-14983-2021, 2021
Short summary
Short summary
Aerosol particle pH is well-buffered by alkaline compounds, notably NH3 and crustal elements. NH3 is found to supply remarkable buffering capacity on a global scale, from the polluted continents to the remote oceans. Potential future changes in agricultural NH3 must be accompanied by strong reductions of SO2 and NOx to avoid particles becoming highly acidic, with implications for human health (aerosol toxicity), ecosystems (acid deposition), clouds, and climate (aerosol hygroscopicity).
Andrea Pozzer
Geosci. Commun., 4, 453–460, https://doi.org/10.5194/gc-4-453-2021, https://doi.org/10.5194/gc-4-453-2021, 2021
Short summary
Short summary
In this paper we investigate the numbers of pages, references and references per page in open-access EGU journals. We showed that, while the number of references and number of pages have been constantly increasing in the period 2010–2020, the number of references per page did not change in the same period. Furthermore, all the journals showed a similar number of references per page, i.e. ~ 3.8 references per page.
Philipp G. Eger, Luc Vereecken, Rolf Sander, Jan Schuladen, Nicolas Sobanski, Horst Fischer, Einar Karu, Jonathan Williams, Ville Vakkari, Tuukka Petäjä, Jos Lelieveld, Andrea Pozzer, and John N. Crowley
Atmos. Chem. Phys., 21, 14333–14349, https://doi.org/10.5194/acp-21-14333-2021, https://doi.org/10.5194/acp-21-14333-2021, 2021
Short summary
Short summary
We determine the impact of pyruvic acid photolysis on the formation of acetaldehyde and peroxy radicals during summer and autumn in the Finnish boreal forest using a data-constrained box model. Our results are dependent on the chosen scenario in which the overall quantum yield and the photolysis products are varied. We highlight that pyruvic acid photolysis can be an important contributor to acetaldehyde and peroxy radical formation in remote, forested regions.
Vinod Kumar, Julia Remmers, Steffen Beirle, Joachim Fallmann, Astrid Kerkweg, Jos Lelieveld, Mariano Mertens, Andrea Pozzer, Benedikt Steil, Marc Barra, Holger Tost, and Thomas Wagner
Atmos. Meas. Tech., 14, 5241–5269, https://doi.org/10.5194/amt-14-5241-2021, https://doi.org/10.5194/amt-14-5241-2021, 2021
Short summary
Short summary
We present high-resolution regional atmospheric chemistry model simulations focused around Germany. We highlight the importance of spatial resolution of the model itself as well as the input emissions inventory and short-scale temporal variability of emissions for simulations. We propose a consistent approach for evaluating the simulated vertical distribution of NO2 using MAX-DOAS measurements while also considering its spatial sensitivity volume and change in sensitivity within this volume.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Simon Rosanka, Bruno Franco, Lieven Clarisse, Pierre-François Coheur, Andrea Pozzer, Andreas Wahner, and Domenico Taraborrelli
Atmos. Chem. Phys., 21, 11257–11288, https://doi.org/10.5194/acp-21-11257-2021, https://doi.org/10.5194/acp-21-11257-2021, 2021
Short summary
Short summary
The strong El Niño in 2015 led to a particular dry season in Indonesia and favoured severe peatland fires. The smouldering conditions of these fires and the high carbon content of peat resulted in high volatile organic compound (VOC) emissions. By using a comprehensive atmospheric model, we show that these emissions have a significant impact on the tropospheric composition and oxidation capacity. These emissions are transported into to the lower stratosphere, resulting in a depletion of ozone.
Tamara Emmerichs, Bruno Franco, Catherine Wespes, Vinod Kumar, Andrea Pozzer, Simon Rosanka, and Domenico Taraborrelli
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-584, https://doi.org/10.5194/acp-2021-584, 2021
Revised manuscript not accepted
Short summary
Short summary
Near-surface ozone is a harmful air pollutant and it is strongly affected by radical reactions and surface-atmosphere exchanges which in turn are modulated, directly and indirectly, by weather. Understanding the impact of weather on ozone, and air quality, is thus important also in view of weather extremes. The inclusion of additional ozone-weather links in the global model yields a 2-fold reduction of the ozone bias towards satellite observations.
Ivan Tadic, Clara M. Nussbaumer, Birger Bohn, Hartwig Harder, Daniel Marno, Monica Martinez, Florian Obersteiner, Uwe Parchatka, Andrea Pozzer, Roland Rohloff, Martin Zöger, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 21, 8195–8211, https://doi.org/10.5194/acp-21-8195-2021, https://doi.org/10.5194/acp-21-8195-2021, 2021
Short summary
Short summary
Although mechanisms of tropospheric ozone (O3) formation are well understood, studies reporting on ozone formation derived from field measurements are challenging and remain sparse in number. We use airborne measurements to quantify nitric oxide (NO) and O3 distributions in the upper troposphere over the Atlantic Ocean and western Africa and compare our measurements to model simulations. Our results show that NO and ozone formation are greatest over the tropical areas of western Africa.
Janaína P. Nascimento, Megan M. Bela, Bruno B. Meller, Alessandro L. Banducci, Luciana V. Rizzo, Angel Liduvino Vara-Vela, Henrique M. J. Barbosa, Helber Gomes, Sameh A. A. Rafee, Marco A. Franco, Samara Carbone, Glauber G. Cirino, Rodrigo A. F. Souza, Stuart A. McKeen, and Paulo Artaxo
Atmos. Chem. Phys., 21, 6755–6779, https://doi.org/10.5194/acp-21-6755-2021, https://doi.org/10.5194/acp-21-6755-2021, 2021
Jaydeep Singh, Narendra Singh, Narendra Ojha, Amit Sharma, Andrea Pozzer, Nadimpally Kiran Kumar, Kunjukrishnapillai Rajeev, Sachin S. Gunthe, and V. Rao Kotamarthi
Geosci. Model Dev., 14, 1427–1443, https://doi.org/10.5194/gmd-14-1427-2021, https://doi.org/10.5194/gmd-14-1427-2021, 2021
Short summary
Short summary
Atmospheric models often have limitations in simulating the geographically complex and climatically important central Himalayan region. In this direction, we have performed regional modeling at high resolutions to improve the simulation of meteorology and dynamics through a better representation of the topography. The study has implications for further model applications to investigate the effects of anthropogenic pressure over the Himalaya.
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021, https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Short summary
Water vapor is the dominant greenhouse gas in the atmosphere, and El Niño is the dominant mode of variability in the ocean–atmosphere system. The connection between El Niño and water vapor above ~ 17 km is unclear, with single-model studies reaching a range of conclusions. This study examines this connection in 12 different models. While there are substantial differences among the models, all models appear to capture the fundamental physical processes correctly.
Domenico Taraborrelli, David Cabrera-Perez, Sara Bacer, Sergey Gromov, Jos Lelieveld, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 21, 2615–2636, https://doi.org/10.5194/acp-21-2615-2021, https://doi.org/10.5194/acp-21-2615-2021, 2021
Short summary
Short summary
Atmospheric pollutants from anthropogenic activities and biomass burning are usually regarded as ozone precursors. Monocyclic aromatics are no exception. Calculations with a comprehensive atmospheric model are consistent with this view but only for air masses close to pollution source regions. However, the same model predicts that aromatics, when transported to remote areas, may effectively destroy ozone. This loss of tropospheric ozone rivals the one attributed to bromine.
Sara Bacer, Sylvia C. Sullivan, Odran Sourdeval, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 21, 1485–1505, https://doi.org/10.5194/acp-21-1485-2021, https://doi.org/10.5194/acp-21-1485-2021, 2021
Short summary
Short summary
We investigate the relative importance of the rates of both microphysical processes and unphysical correction terms that act as sources or sinks of ice crystals in cold clouds. By means of numerical simulations performed with a global chemistry–climate model, we assess the relevance of these rates at global and regional scales. This estimation is of fundamental importance to assign priority to the development of microphysics parameterizations and compare model output with observations.
Bettina Hottmann, Sascha Hafermann, Laura Tomsche, Daniel Marno, Monica Martinez, Hartwig Harder, Andrea Pozzer, Marco Neumaier, Andreas Zahn, Birger Bohn, Greta Stratmann, Helmut Ziereis, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 20, 12655–12673, https://doi.org/10.5194/acp-20-12655-2020, https://doi.org/10.5194/acp-20-12655-2020, 2020
Short summary
Short summary
During OMO we observed enhanced mixing ratios of hydroperoxides (ROOH) in the Asian monsoon anticyclone (AMA) relative to the background. The observed mixing ratios are higher than steady-state calculations and EMAC simulations, especially in the AMA, indicating atmospheric transport of ROOH. Uncertainties in the scavenging efficiencies likely cause deviations from EMAC. Longitudinal gradients indicate a pool of ROOH towards the center of the AMA associated with upwind convection over India.
Kouji Adachi, Naga Oshima, Zhaoheng Gong, Suzane de Sá, Adam P. Bateman, Scot T. Martin, Joel F. de Brito, Paulo Artaxo, Glauber G. Cirino, Arthur J. Sedlacek III, and Peter R. Buseck
Atmos. Chem. Phys., 20, 11923–11939, https://doi.org/10.5194/acp-20-11923-2020, https://doi.org/10.5194/acp-20-11923-2020, 2020
Short summary
Short summary
Occurrences, size distributions, and number fractions of individual aerosol particles from the Amazon basin during the GoAmazon2014/5 campaign were analyzed using transmission electron microscopy. Aerosol particles from natural sources (e.g., mineral dust, primary biological aerosols, and sea salts) during the wet season originated from the Amazon forest and long-range transports (the Saharan desert and the Atlantic Ocean). They commonly mix at an individual particle scale during transport.
Nijing Wang, Achim Edtbauer, Christof Stönner, Andrea Pozzer, Efstratios Bourtsoukidis, Lisa Ernle, Dirk Dienhart, Bettina Hottmann, Horst Fischer, Jan Schuladen, John N. Crowley, Jean-Daniel Paris, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 20, 10807–10829, https://doi.org/10.5194/acp-20-10807-2020, https://doi.org/10.5194/acp-20-10807-2020, 2020
Short summary
Short summary
Carbonyl compounds were measured on a ship travelling around the Arabian Peninsula in summer 2017, crossing both highly polluted and extremely clean regions of the marine boundary layer. We investigated the sources and sinks of carbonyls. The results from a global model showed a significant model underestimation for acetaldehyde, a molecule that can influence regional air chemistry. By adding a diurnal oceanic source, the model estimation was highly improved.
Ivan Tadic, John N. Crowley, Dirk Dienhart, Philipp Eger, Hartwig Harder, Bettina Hottmann, Monica Martinez, Uwe Parchatka, Jean-Daniel Paris, Andrea Pozzer, Roland Rohloff, Jan Schuladen, Justin Shenolikar, Sebastian Tauer, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 20, 6769–6787, https://doi.org/10.5194/acp-20-6769-2020, https://doi.org/10.5194/acp-20-6769-2020, 2020
Short summary
Short summary
We present shipborne observations of NO, NO2, O3, HCHO, OH, HO2, H2O and the actinic flux obtained in the marine boundary layer (MBL) around the Arabian Peninsula during the summer 2017 AQABA ship campaign. NOx (NO+NO2) and O3 observations clearly showed anthropogenic influence in the MBL around the Arabian Peninsula. The observations were also used to calculate net O3 production in the MBL around the Arabian Peninsula, which was greatest over the northern Red Sea, Oman Gulf and Arabian Gulf.
Peter H. Zimmermann, Carl A. M. Brenninkmeijer, Andrea Pozzer, Patrick Jöckel, Franziska Winterstein, Andreas Zahn, Sander Houweling, and Jos Lelieveld
Atmos. Chem. Phys., 20, 5787–5809, https://doi.org/10.5194/acp-20-5787-2020, https://doi.org/10.5194/acp-20-5787-2020, 2020
Short summary
Short summary
The atmospheric abundance of the greenhouse gas methane is determined by interacting emission sources and sinks in a dynamic global environment. In this study, its global budget from 1997 to 2016 is simulated with a general circulation model using emission estimates of 11 source categories. The model results are evaluated against 17 ground station and 320 intercontinental flight observation series. Deviations are used to re-scale the emission quantities with the aim of matching observations.
Renato Kerches Braghiere, Marcia Akemi Yamasoe, Nilton Manuel Évora do Rosário, Humberto Ribeiro da Rocha, José de Souza Nogueira, and Alessandro Carioca de Araújo
Atmos. Chem. Phys., 20, 3439–3458, https://doi.org/10.5194/acp-20-3439-2020, https://doi.org/10.5194/acp-20-3439-2020, 2020
Short summary
Short summary
We evaluate how the interaction of smoke with sun light impacts the exchange of energy and mass between vegetation and the atmosphere using a machine learning technique. We found an effect of the smoke on CO2, energy, and water fluxes, linking the effects of smoke with temperature, humidity, and winds. CO2 exchange increased by up to 55 % in the presence of smoke. A decrease of 12 % was observed for a site with simpler vegetation. Energy fluxes were negatively impacted for all study sites.
Damien Amedro, Matias Berasategui, Arne J. C. Bunkan, Andrea Pozzer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 3091–3105, https://doi.org/10.5194/acp-20-3091-2020, https://doi.org/10.5194/acp-20-3091-2020, 2020
Short summary
Short summary
Our laboratory experiments show that the rate coefficient for the termolecular reaction between OH and NO2 is enhanced in the presence of water vapour. Using a chemistry transport model we show that our new parameterization of the temperature, pressure, and bath-gas dependence of this reaction has a significant impact on, for example, NOx and the HNO2 / NO2 ratio when compared to present recommendations.
Julie M. Nicely, Bryan N. Duncan, Thomas F. Hanisco, Glenn M. Wolfe, Ross J. Salawitch, Makoto Deushi, Amund S. Haslerud, Patrick Jöckel, Béatrice Josse, Douglas E. Kinnison, Andrew Klekociuk, Michael E. Manyin, Virginie Marécal, Olaf Morgenstern, Lee T. Murray, Gunnar Myhre, Luke D. Oman, Giovanni Pitari, Andrea Pozzer, Ilaria Quaglia, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Kane Stone, Susan Strahan, Simone Tilmes, Holger Tost, Daniel M. Westervelt, and Guang Zeng
Atmos. Chem. Phys., 20, 1341–1361, https://doi.org/10.5194/acp-20-1341-2020, https://doi.org/10.5194/acp-20-1341-2020, 2020
Short summary
Short summary
Differences in methane lifetime among global models are large and poorly understood. We use a neural network method and simulations from the Chemistry Climate Model Initiative to quantify the factors influencing methane lifetime spread among models and variations over time. UV photolysis, tropospheric ozone, and nitrogen oxides drive large model differences, while the same factors plus specific humidity contribute to a decreasing trend in methane lifetime between 1980 and 2015.
Ying Chen, Yafang Cheng, Nan Ma, Chao Wei, Liang Ran, Ralf Wolke, Johannes Größ, Qiaoqiao Wang, Andrea Pozzer, Hugo A. C. Denier van der Gon, Gerald Spindler, Jos Lelieveld, Ina Tegen, Hang Su, and Alfred Wiedensohler
Atmos. Chem. Phys., 20, 771–786, https://doi.org/10.5194/acp-20-771-2020, https://doi.org/10.5194/acp-20-771-2020, 2020
Short summary
Short summary
Particulate nitrate is one of the most important climate cooling agents. Our results show that interaction with sea-salt aerosol can shift nitrate to larger sized particles (redistribution effect), weakening its direct cooling effect. The modelling results indicate strong redistribution over coastal and offshore regions worldwide as well as continental Europe. Improving the consideration of the redistribution effect in global models fosters a better understanding of climate change.
Dimitris Akritidis, Andrea Pozzer, and Prodromos Zanis
Atmos. Chem. Phys., 19, 14387–14401, https://doi.org/10.5194/acp-19-14387-2019, https://doi.org/10.5194/acp-19-14387-2019, 2019
Short summary
Short summary
We investigate the impact of future climate change under the RCP6.0 scenario on tropopause folds and tropospheric ozone, using a transient EMAC simulation and a tropopause fold detection algorithm. A strengthening of ozone stratosphere-to-troposphere transport (STT) is projected for the future, resulting in an increase in upper- and middle-tropospheric ozone. The maxima of future ozone STT increases are mainly projected for regions where tropopause folds are expected to occur more frequently.
Horst Fischer, Raoul Axinte, Heiko Bozem, John N. Crowley, Cheryl Ernest, Stefan Gilge, Sascha Hafermann, Hartwig Harder, Korbinian Hens, Ruud H. H. Janssen, Rainer Königstedt, Dagmar Kubistin, Chinmay Mallik, Monica Martinez, Anna Novelli, Uwe Parchatka, Christian Plass-Dülmer, Andrea Pozzer, Eric Regelin, Andreas Reiffs, Torsten Schmidt, Jan Schuladen, and Jos Lelieveld
Atmos. Chem. Phys., 19, 11953–11968, https://doi.org/10.5194/acp-19-11953-2019, https://doi.org/10.5194/acp-19-11953-2019, 2019
Short summary
Short summary
We use in situ observations of H2O2 to study the interplay between photochemistry, transport and deposition processes. The data were obtained during five ground-based field campaigns across Europe. A budget calculation indicates that the photochemical production rate was much larger than photochemical loss and that dry deposition is the dominant loss process. To reproduce the change in H2O2 mixing ratios after sunrise, a variable contribution of entrainment from the residual layer is required.
Jianzhong Ma, Christoph Brühl, Qianshan He, Benedikt Steil, Vlassis A. Karydis, Klaus Klingmüller, Holger Tost, Bin Chen, Yufang Jin, Ningwei Liu, Xiangde Xu, Peng Yan, Xiuji Zhou, Kamal Abdelrahman, Andrea Pozzer, and Jos Lelieveld
Atmos. Chem. Phys., 19, 11587–11612, https://doi.org/10.5194/acp-19-11587-2019, https://doi.org/10.5194/acp-19-11587-2019, 2019
Short summary
Short summary
We find a pronounced maximum in aerosol extinction in the upper troposphere and lower stratosphere over the Tibetan Plateau during the Asian summer monsoon, caused mainly by mineral dust emitted from the northern Tibetan Plateau and slope area, lofted to and accumulating within the anticyclonic circulation. Mineral dust, water-soluble compounds, such as nitrate and sulfate, and associated liquid water dominate aerosol extinction around the tropopause within the Asian summer monsoon anticyclone.
Ohad Harari, Chaim I. Garfinkel, Shlomi Ziskin Ziv, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, Fiona M. O'Connor, and Sean Davis
Atmos. Chem. Phys., 19, 9253–9268, https://doi.org/10.5194/acp-19-9253-2019, https://doi.org/10.5194/acp-19-9253-2019, 2019
Short summary
Short summary
Ozone depletion in the Antarctic has been shown to influence surface conditions, but the effects of ozone depletion in the Arctic on surface climate are unclear. We show that Arctic ozone does influence surface climate in both polar regions and tropical regions, though the proximate cause of these surface impacts is not yet clear.
Efstratios Bourtsoukidis, Lisa Ernle, John N. Crowley, Jos Lelieveld, Jean-Daniel Paris, Andrea Pozzer, David Walter, and Jonathan Williams
Atmos. Chem. Phys., 19, 7209–7232, https://doi.org/10.5194/acp-19-7209-2019, https://doi.org/10.5194/acp-19-7209-2019, 2019
Short summary
Short summary
We report on results that demonstrate the utility of non-methane hydrocarbons as source/sink identification tracers while providing their mixing ratios around the Arabian Peninsula. By introducing novel data-analysis approaches, we establish a new method for separating associated and non-associated (with liquids) gases. We formulate a relationship between hydrocarbon oxidative pairs that can be used to evaluate the relative abundance of the hydroxyl and chlorine radicals in the troposphere.
Vincent Huijnen, Andrea Pozzer, Joaquim Arteta, Guy Brasseur, Idir Bouarar, Simon Chabrillat, Yves Christophe, Thierno Doumbia, Johannes Flemming, Jonathan Guth, Béatrice Josse, Vlassis A. Karydis, Virginie Marécal, and Sophie Pelletier
Geosci. Model Dev., 12, 1725–1752, https://doi.org/10.5194/gmd-12-1725-2019, https://doi.org/10.5194/gmd-12-1725-2019, 2019
Short summary
Short summary
We report on an evaluation of tropospheric ozone and its precursor gases in three atmospheric chemistry versions as implemented in ECMWF’s Integrated Forecasting System (IFS), referred to as IFS(CB05BASCOE), IFS(MOZART) and IFS(MOCAGE). This configuration of having various chemistry versions within IFS provides a quantification of uncertainties in CAMS trace gas products that are induced by chemistry modelling.
Meryem Tanarhte, Sara Bacer, Susannah M. Burrows, J. Alex Huffman, Kyle M. Pierce, Andrea Pozzer, Roland Sarda-Estève, Nicole J. Savage, and Jos Lelieveld
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-251, https://doi.org/10.5194/acp-2019-251, 2019
Publication in ACP not foreseen
Short summary
Short summary
Bioaerosols have been an important topic in atmospheric science in the last two decades. This paper compares different emission parametrizations used in fungal spores modeling and compare their results to two sets of new observational datasets. It emphasises their uncertainties in order to improve their modeling in the future. This comparison is addressed primarily to the scientific community (publishing in ACP) interested in this type of modeling and the related experimental work in this field.
Rolf Sander, Andreas Baumgaertner, David Cabrera-Perez, Franziska Frank, Sergey Gromov, Jens-Uwe Grooß, Hartwig Harder, Vincent Huijnen, Patrick Jöckel, Vlassis A. Karydis, Kyle E. Niemeyer, Andrea Pozzer, Hella Riede, Martin G. Schultz, Domenico Taraborrelli, and Sebastian Tauer
Geosci. Model Dev., 12, 1365–1385, https://doi.org/10.5194/gmd-12-1365-2019, https://doi.org/10.5194/gmd-12-1365-2019, 2019
Short summary
Short summary
We present the atmospheric chemistry box model CAABA/MECCA which
now includes a number of new features: skeletal mechanism
reduction, the MOM chemical mechanism for volatile organic
compounds, an option to include reactions from the Master
Chemical Mechanism (MCM) and other chemical mechanisms, updated
isotope tagging, improved and new photolysis modules, and the new
feature of coexisting multiple chemistry mechanisms.
CAABA/MECCA is a community model published under the GPL.
Laura Tomsche, Andrea Pozzer, Narendra Ojha, Uwe Parchatka, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 19, 1915–1939, https://doi.org/10.5194/acp-19-1915-2019, https://doi.org/10.5194/acp-19-1915-2019, 2019
Short summary
Short summary
The Asian monsoon anticyclone (AMA) is an annual phenomenon in the northern hemispheric upper troposphere (UT) and lower stratosphere. We performed in situ measurements of carbon monoxide (CO) and methane (CH4) in the monsoon outflow region and in background air in the UT (Mediterranean, Arabian Peninsula, Arabian Sea) using airborne optical absorption spectroscopy during the Oxidation Mechanism Observations mission (summer 2015). The trace gases increased within the AMA, particularly CH4.
Ian G. McKendry, Andreas Christen, Sung-Ching Lee, Madison Ferrara, Kevin B. Strawbridge, Norman O'Neill, and Andrew Black
Atmos. Chem. Phys., 19, 835–846, https://doi.org/10.5194/acp-19-835-2019, https://doi.org/10.5194/acp-19-835-2019, 2019
Short summary
Short summary
Wildfire smoke in July 2015 had a significant impact on air quality, radiation, and energy budgets across British Columbia. With lighter smoke, a wetland and forested site showed enhanced photosynthetic activity (taking in carbon dioxide). However, with dense smoke the forested site became a strong source. These results suggest that smoke during the growing season potentially plays an important role in the carbon budget, and this effect will likely increase as climate changes.
Yingying Yan, David Cabrera-Perez, Jintai Lin, Andrea Pozzer, Lu Hu, Dylan B. Millet, William C. Porter, and Jos Lelieveld
Geosci. Model Dev., 12, 111–130, https://doi.org/10.5194/gmd-12-111-2019, https://doi.org/10.5194/gmd-12-111-2019, 2019
Short summary
Short summary
The GEOS-Chem model has been updated with the SAPRC-11 aromatics chemical mechanism to evaluate global and regional effects of aromatics on tropospheric oxidation capacity. Our results reveal relatively slight changes in ozone, hydroxyl radical, and nitrogen oxides on a global mean basis (1–4 %), although remarkable regional differences (5–20 %) exist near the source regions. Improved representation of aromatics is important to simulate the tropospheric oxidation.
Sebastian Ehrhart, Eimear M. Dunne, Hanna E. Manninen, Tuomo Nieminen, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 11, 4987–5001, https://doi.org/10.5194/gmd-11-4987-2018, https://doi.org/10.5194/gmd-11-4987-2018, 2018
Sara Bacer, Sylvia C. Sullivan, Vlassis A. Karydis, Donifan Barahona, Martina Krämer, Athanasios Nenes, Holger Tost, Alexandra P. Tsimpidi, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 11, 4021–4041, https://doi.org/10.5194/gmd-11-4021-2018, https://doi.org/10.5194/gmd-11-4021-2018, 2018
Short summary
Short summary
The complexity of ice nucleation mechanisms and aerosol--ice interactions makes their representation still challenging in atmospheric models. We have implemented a comprehensive ice crystal formation parameterization in the global chemistry-climate model EMAC to improve the representation of ice crystal number concentrations. The newly implemented parameterization takes into account processes which were previously neglected by the standard version of the model.
Suzane S. de Sá, Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Gabriel Isaacman-VanWertz, Lindsay D. Yee, Joel Brito, Samara Carbone, Igor O. Ribeiro, Glauber G. Cirino, Yingjun Liu, Ryan Thalman, Arthur Sedlacek, Aaron Funk, Courtney Schumacher, John E. Shilling, Johannes Schneider, Paulo Artaxo, Allen H. Goldstein, Rodrigo A. F. Souza, Jian Wang, Karena A. McKinney, Henrique Barbosa, M. Lizabeth Alexander, Jose L. Jimenez, and Scot T. Martin
Atmos. Chem. Phys., 18, 12185–12206, https://doi.org/10.5194/acp-18-12185-2018, https://doi.org/10.5194/acp-18-12185-2018, 2018
Short summary
Short summary
This study aimed at understanding and quantifying the changes in mass concentration and composition of submicron airborne particulate matter (PM) in Amazonia due to urban pollution. Downwind of Manaus, PM concentrations increased by up to 200 % under polluted compared with background conditions. The observed changes included contributions from both primary and secondary processes. The differences in organic PM composition suggested a shift in the pathways of secondary production with pollution.
Alexandra P. Tsimpidi, Vlassis A. Karydis, Andrea Pozzer, Spyros N. Pandis, and Jos Lelieveld
Geosci. Model Dev., 11, 3369–3389, https://doi.org/10.5194/gmd-11-3369-2018, https://doi.org/10.5194/gmd-11-3369-2018, 2018
Short summary
Short summary
A new module, ORACLE 2-D, that calculates the concentrations of surrogate organic species in two-dimensional space defined by volatility and oxygen-to-carbon ratio has been developed and evaluated. ORACLE 2-D uses a simple photochemical aging scheme that efficiently simulates the net effects of fragmentation and functionalization. ORACLE 2-D can be used to compute the ability of organic particles to act as cloud condensation nuclei and serves as a tool to quantify their climatic impact.
Maarten Krol, Marco de Bruine, Lars Killaars, Huug Ouwersloot, Andrea Pozzer, Yi Yin, Frederic Chevallier, Philippe Bousquet, Prabir Patra, Dmitry Belikov, Shamil Maksyutov, Sandip Dhomse, Wuhu Feng, and Martyn P. Chipperfield
Geosci. Model Dev., 11, 3109–3130, https://doi.org/10.5194/gmd-11-3109-2018, https://doi.org/10.5194/gmd-11-3109-2018, 2018
Short summary
Short summary
The TransCom inter-comparison project regularly carries out studies to quantify errors in simulated atmospheric transport. This paper presents the first results of an age of air (AoA) inter-comparison of six global transport models. Following a protocol, six models simulated five tracers from which atmospheric transport times can easily be deduced. Results highlight that inter-model differences associated with atmospheric transport are still large and require further analysis.
Chinmay Mallik, Laura Tomsche, Efstratios Bourtsoukidis, John N. Crowley, Bettina Derstroff, Horst Fischer, Sascha Hafermann, Imke Hüser, Umar Javed, Stephan Keßel, Jos Lelieveld, Monica Martinez, Hannah Meusel, Anna Novelli, Gavin J. Phillips, Andrea Pozzer, Andreas Reiffs, Rolf Sander, Domenico Taraborrelli, Carina Sauvage, Jan Schuladen, Hang Su, Jonathan Williams, and Hartwig Harder
Atmos. Chem. Phys., 18, 10825–10847, https://doi.org/10.5194/acp-18-10825-2018, https://doi.org/10.5194/acp-18-10825-2018, 2018
Short summary
Short summary
OH and HO2 control the transformation of air pollutants and O3 formation. Their implication for air quality over the climatically sensitive Mediterranean region was studied during a field campaign in Cyprus. Production of OH, HO2, and recycled OH was lower in aged marine air masses. Box model simulations of OH and HO2 agreed with measurements except at high terpene concentrations when model RO2 due to terpenes caused large HO2 loss. Autoxidation schemes for RO2 improved the agreement.
Eliane G. Alves, Julio Tóta, Andrew Turnipseed, Alex B. Guenther, José Oscar W. Vega Bustillos, Raoni A. Santana, Glauber G. Cirino, Julia V. Tavares, Aline P. Lopes, Bruce W. Nelson, Rodrigo A. de Souza, Dasa Gu, Trissevgeni Stavrakou, David K. Adams, Jin Wu, Scott Saleska, and Antonio O. Manzi
Biogeosciences, 15, 4019–4032, https://doi.org/10.5194/bg-15-4019-2018, https://doi.org/10.5194/bg-15-4019-2018, 2018
Short summary
Short summary
This study shows that leaf quantity and leaf age have an important effect on seasonal changes in isoprene emissions and that these could play an even more important role in regulating ecosystem isoprene fluxes than light and temperature at seasonal timescales in tropical forests. These results bring novelty and new insight for future research because in the past leaf phenology was not considered as an important factor that controls biological processes in the tropics.
Meryem Tanarhte, Sara Bacer, Susannah M. Burrows, J. Alex Huffman, Kyle M. Pierce, Andrea Pozzer, Roland Sarda-Estève, Nicole J. Savage, and Jos Lelieveld
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-361, https://doi.org/10.5194/acp-2018-361, 2018
Revised manuscript not accepted
Yingying Yan, Andrea Pozzer, Narendra Ojha, Jintai Lin, and Jos Lelieveld
Atmos. Chem. Phys., 18, 5589–5605, https://doi.org/10.5194/acp-18-5589-2018, https://doi.org/10.5194/acp-18-5589-2018, 2018
Short summary
Short summary
Surface-based measurements from the EMEP network and EMAC model simulations are used to estimate the European surface ozone changes over 1995–2014. It shows a significantly decreasing trend in the 95th percentile ozone concentrations, while increasing in the 5th percentile ozone. Sensitivity simulations and statistical analysis show that a decrease in European anthropogenic emissions had contrasting effects on surface ozone trends between the 95th and 5th percentile levels.
Klaus Klingmüller, Swen Metzger, Mohamed Abdelkader, Vlassis A. Karydis, Georgiy L. Stenchikov, Andrea Pozzer, and Jos Lelieveld
Geosci. Model Dev., 11, 989–1008, https://doi.org/10.5194/gmd-11-989-2018, https://doi.org/10.5194/gmd-11-989-2018, 2018
Short summary
Short summary
More than 1 billion tons of mineral dust particles are raised into the atmosphere every year, which has a significant impact on climate, society and ecosystems. The location, time and amount of dust emissions depend on surface and wind conditions. In the atmospheric chemistry–climate model EMAC, we have updated the relevant surface data and equations. Our validation shows that the updates substantially improve the agreement of model results and observations.
Katrin Dulitz, Damien Amedro, Terry J. Dillon, Andrea Pozzer, and John N. Crowley
Atmos. Chem. Phys., 18, 2381–2394, https://doi.org/10.5194/acp-18-2381-2018, https://doi.org/10.5194/acp-18-2381-2018, 2018
Short summary
Short summary
The reaction between the OH radical and HNO3 represents an important route for the release of NOx (NO and NO2) from HNO3, the most important NOx reservoir in many parts of the atmosphere. In our laboratory study, we have generated an extensive, high-quality set of rate coefficients for this reaction at different temperatures and pressures and used these to derive a new parameterisation of the rate coefficient for atmospheric modelling.
Amit Sharma, Narendra Ojha, Andrea Pozzer, Kathleen A. Mar, Gufran Beig, Jos Lelieveld, and Sachin S. Gunthe
Atmos. Chem. Phys., 17, 14393–14413, https://doi.org/10.5194/acp-17-14393-2017, https://doi.org/10.5194/acp-17-14393-2017, 2017
Short summary
Short summary
We evaluate the numerical simulations of surface ozone during pre-monsoon season against a network of stations including clean, rural and polluted urban environments in the south Asian region. Significant effects of the employed emission inventory and chemical mechanism on the simulated ozone are found during the noon hours of intense photochemistry. The presented evaluation on the diurnal timescale would have implications for assessing ozone buildup and impacts on human health and crop yields.
Huisheng Bian, Mian Chin, Didier A. Hauglustaine, Michael Schulz, Gunnar Myhre, Susanne E. Bauer, Marianne T. Lund, Vlassis A. Karydis, Tom L. Kucsera, Xiaohua Pan, Andrea Pozzer, Ragnhild B. Skeie, Stephen D. Steenrod, Kengo Sudo, Kostas Tsigaridis, Alexandra P. Tsimpidi, and Svetlana G. Tsyro
Atmos. Chem. Phys., 17, 12911–12940, https://doi.org/10.5194/acp-17-12911-2017, https://doi.org/10.5194/acp-17-12911-2017, 2017
Short summary
Short summary
Atmospheric nitrate contributes notably to total aerosol mass in the present day and is likely to be more important over the next century, with a projected decline in SO2 and NOx emissions and increase in NH3 emissions. This paper investigates atmospheric nitrate using multiple global models and measurements. The study is part of the AeroCom phase III activity. The study is the first attempt to look at global atmospheric nitrate simulation at physical and chemical process levels.
Andrea Pozzer, Alexandra P. Tsimpidi, Vlassis A. Karydis, Alexander de Meij, and Jos Lelieveld
Atmos. Chem. Phys., 17, 12813–12826, https://doi.org/10.5194/acp-17-12813-2017, https://doi.org/10.5194/acp-17-12813-2017, 2017
Short summary
Short summary
This study shows that agricultural emissions are important for air quality and their reduction can effectively reduce the concentration of fine particles and their associated premature mortality. Therefore, emission control policies, especially in North America and Europe, should also involve strong ammonia emission decreases to optimally reduce fine-particle concentration.
David Cabrera-Perez, Domenico Taraborrelli, Jos Lelieveld, Thorsten Hoffmann, and Andrea Pozzer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-928, https://doi.org/10.5194/acp-2017-928, 2017
Revised manuscript not accepted
Short summary
Short summary
Aromatic compounds are present in rural and urban atmospheres. The aim of this work is to disentangle the impacts of these compounds in different important atmospheric chemical species with the help of a numerical model. Aromatics have low impact OH, NOx and Ozone concentrations in the global scale (below 4 %). The impact however is larger in the regional scale (up to 10 %). The largest impact is in glyoxal and NO3 concentrations, with changes up to 10 % globally and 40 % regionally.
Heiko Bozem, Andrea Pozzer, Hartwig Harder, Monica Martinez, Jonathan Williams, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 17, 11835–11848, https://doi.org/10.5194/acp-17-11835-2017, https://doi.org/10.5194/acp-17-11835-2017, 2017
Short summary
Short summary
We present a case study of deep convection over Germany in July 2007 within the framework of the HOOVER II project. Airborne in situ measurements within the in- and outflow regions of an isolated thunderstorm provide a unique data set to study the influence of deep convection on the transport efficiency of soluble and insoluble trace gases. Despite their high solubility HCHO and H2O2 show enhanced concentrations in the outflow presumably due to degassing from cloud droplets during freezing.
Stephan Keßel, David Cabrera-Perez, Abraham Horowitz, Patrick R. Veres, Rolf Sander, Domenico Taraborrelli, Maria Tucceri, John N. Crowley, Andrea Pozzer, Christof Stönner, Luc Vereecken, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 17, 8789–8804, https://doi.org/10.5194/acp-17-8789-2017, https://doi.org/10.5194/acp-17-8789-2017, 2017
Short summary
Short summary
In this study we identify an often overlooked stable oxide of carbon, namely carbon suboxide (C3O2), in ambient air. We have made C3O2 and in the laboratory determined its absorption cross section data and the rate of reaction with two important atmospheric oxidants, OH and O3. By incorporating known sources and sinks in a global model we have generated a first global picture of the distribution of this species in the atmosphere.
Narendra Ojha, Andrea Pozzer, Dimitris Akritidis, and Jos Lelieveld
Atmos. Chem. Phys., 17, 6743–6757, https://doi.org/10.5194/acp-17-6743-2017, https://doi.org/10.5194/acp-17-6743-2017, 2017
Short summary
Short summary
We investigate the processes, frequency of occurrence and seasonality, and effects of strongly enhanced ozone layers in the middle–upper troposphere (SOPs) over the Himalayas using a global model (EMAC). Rapid transport of stratospheric air masses is found as a key underlying process. Model predicts more frequent SOP events during the pre-monsoon. SOPs are found to significantly enhance the tropospheric ozone column over the Himalayas.
Sung-Ching Lee, Andreas Christen, Andrew T. Black, Mark S. Johnson, Rachhpal S. Jassal, Rick Ketler, Zoran Nesic, and Markus Merkens
Biogeosciences, 14, 2799–2814, https://doi.org/10.5194/bg-14-2799-2017, https://doi.org/10.5194/bg-14-2799-2017, 2017
Short summary
Short summary
Burns Bog in Vancouver is the largest peatland on North America's west coast. It is undergoing rewetting as a restoration management after peat harvesting. Rewetting of disturbed areas facilitates their ecological recovery but has an immediate impact on carbon dioxide and methane exchange. On the floating flux tower, we quantified annual carbon dioxide and methane exchange to inform future management. Our results suggested that the study area was a net carbon sink after 7-year rewetting.
Vlassis A. Karydis, Alexandra P. Tsimpidi, Sara Bacer, Andrea Pozzer, Athanasios Nenes, and Jos Lelieveld
Atmos. Chem. Phys., 17, 5601–5621, https://doi.org/10.5194/acp-17-5601-2017, https://doi.org/10.5194/acp-17-5601-2017, 2017
Short summary
Short summary
The importance of mineral dust for cloud droplet formation is studied by considering the adsorption activation of insoluble dust particles and the thermodynamic interactions between mineral cations and inorganic anions. This study demonstrates that a comprehensive treatment of the CCN activity of mineral dust and its chemical and thermodynamic interactions with inorganic species by chemistry climate models is important to realistically account for aerosol–chemistry–cloud–climate interaction.
Mohamed Abdelkader, Swen Metzger, Benedikt Steil, Klaus Klingmüller, Holger Tost, Andrea Pozzer, Georgiy Stenchikov, Leonard Barrie, and Jos Lelieveld
Atmos. Chem. Phys., 17, 3799–3821, https://doi.org/10.5194/acp-17-3799-2017, https://doi.org/10.5194/acp-17-3799-2017, 2017
Short summary
Short summary
We present a modeling study on the impacts of the key processes (dust emission flux, convection and dust aging parameterizations) that control the transatlantic dust transport using an advanced version of the EMAC atmospheric chemistry general circulation model. We define the
direct effect of dust agingas an increase in the AOD as a result of hygroscopic growth. We define the
indirect effectas a reduction in the dust AOD due to the higher removal of the aged dust particles.
Adam P. Bateman, Zhaoheng Gong, Tristan H. Harder, Suzane S. de Sá, Bingbing Wang, Paulo Castillo, Swarup China, Yingjun Liu, Rachel E. O'Brien, Brett B. Palm, Hung-Wei Shiu, Glauber G. Cirino, Ryan Thalman, Kouji Adachi, M. Lizabeth Alexander, Paulo Artaxo, Allan K. Bertram, Peter R. Buseck, Mary K. Gilles, Jose L. Jimenez, Alexander Laskin, Antonio O. Manzi, Arthur Sedlacek, Rodrigo A. F. Souza, Jian Wang, Rahul Zaveri, and Scot T. Martin
Atmos. Chem. Phys., 17, 1759–1773, https://doi.org/10.5194/acp-17-1759-2017, https://doi.org/10.5194/acp-17-1759-2017, 2017
Short summary
Short summary
The occurrence of nonliquid and liquid physical states of submicron atmospheric particulate matter (PM) downwind of an urban region in central Amazonia was investigated. Air masses representing background conditions, urban pollution, and regional- and continental-scale biomass were measured. Anthropogenic influences contributed to the presence of nonliquid PM in the atmospheric particle population, while liquid PM dominated during periods of biogenic influence.
Sinikka T. Lennartz, Christa A. Marandino, Marc von Hobe, Pau Cortes, Birgit Quack, Rafel Simo, Dennis Booge, Andrea Pozzer, Tobias Steinhoff, Damian L. Arevalo-Martinez, Corinna Kloss, Astrid Bracher, Rüdiger Röttgers, Elliot Atlas, and Kirstin Krüger
Atmos. Chem. Phys., 17, 385–402, https://doi.org/10.5194/acp-17-385-2017, https://doi.org/10.5194/acp-17-385-2017, 2017
Short summary
Short summary
We present new sea surface and marine boundary layer measurements of carbonyl sulfide, the most abundant sulfur gas in the atmosphere, and calculate an oceanic emission estimate. Our results imply that oceanic emissions are very unlikely to account for the missing source in the atmospheric budget that is currently discussed for OCS.
Imran A. Girach, Narendra Ojha, Prabha R. Nair, Andrea Pozzer, Yogesh K. Tiwari, K. Ravi Kumar, and Jos Lelieveld
Atmos. Chem. Phys., 17, 257–275, https://doi.org/10.5194/acp-17-257-2017, https://doi.org/10.5194/acp-17-257-2017, 2017
Short summary
Short summary
This study presents first ship-borne measurements of trace gases over the Bay of Bengal during summer monsoon. The observed variations in trace gases are shown to be due to dynamics/transport and en route photochemistry. Analysis of meteorological and chemical fields shows that significantly lower ozone during rainfall is associated with the downdrafts. A regional model reproduces the observed variations and revealed the rapid transport of ozone across the Bay of Bengal during an event.
Sara Bacer, Theodoros Christoudias, and Andrea Pozzer
Atmos. Chem. Phys., 16, 15581–15592, https://doi.org/10.5194/acp-16-15581-2016, https://doi.org/10.5194/acp-16-15581-2016, 2016
Short summary
Short summary
We investigate the influence of the North Atlantic Oscillation on atmospheric pollutant transport in the 21st century under a global climate-change scenario, using a coupled atmosphere–chemistry–ocean general circulation model. We find that, at the end of the century, the south-western Mediterranean and northern Africa will see higher pollutant concentrations during positive NAO phases with respect to the past, while a wider part of north Europe will see lower pollutant concentrations.
Dimitris Akritidis, Andrea Pozzer, Prodromos Zanis, Evangelos Tyrlis, Bojan Škerlak, Michael Sprenger, and Jos Lelieveld
Atmos. Chem. Phys., 16, 14025–14039, https://doi.org/10.5194/acp-16-14025-2016, https://doi.org/10.5194/acp-16-14025-2016, 2016
Short summary
Short summary
We investigate the contribution of tropopause folds in the summertime tropospheric ozone pool over the eastern Mediterranean and the Middle East. For this purpose we use the EMAC atmospheric chemistry–climate model and a fold identification algorithm. A clear increase of ozone is found in the middle troposphere due to fold activity. The interannual variability of near-surface ozone over the eastern Mediterranean is related to that of both tropopause folds and ozone in the free troposphere.
Kathleen A. Mar, Narendra Ojha, Andrea Pozzer, and Tim M. Butler
Geosci. Model Dev., 9, 3699–3728, https://doi.org/10.5194/gmd-9-3699-2016, https://doi.org/10.5194/gmd-9-3699-2016, 2016
Short summary
Short summary
Ground-level ozone is an air pollutant with adverse effects on human and ecosystem health and is also a climate forcer with a significant warming effect. This paper presents the setup and evaluation of a model for ozone air quality over Europe. Within the model evaluation, we compare the use of two commonly used photochemical schemes, and we conclude that uncertainties in the representation of chemistry are important to consider when using air quality models for policy applications.
Jos Lelieveld, Sergey Gromov, Andrea Pozzer, and Domenico Taraborrelli
Atmos. Chem. Phys., 16, 12477–12493, https://doi.org/10.5194/acp-16-12477-2016, https://doi.org/10.5194/acp-16-12477-2016, 2016
Short summary
Short summary
The self-cleaning capacity of the atmosphere is controlled by hydroxyl (OH) radicals in the troposphere. There are primary and secondary OH sources, the former through the photodissociation of ozone, the latter through OH recycling. We used a global model, showing that secondary sources are larger than assumed previously, which buffers OH. Complementary OH formation mechanisms in pristine and polluted environments, connected through transport of ozone, can maintain stable global OH levels.
Narendra Singh, Raman Solanki, Narendra Ojha, Ruud H. H. Janssen, Andrea Pozzer, and Surendra K. Dhaka
Atmos. Chem. Phys., 16, 10559–10572, https://doi.org/10.5194/acp-16-10559-2016, https://doi.org/10.5194/acp-16-10559-2016, 2016
Short summary
Short summary
Our study presents measurements and model simulations of boundary layer evolution over a mountain peak in the central Himalayas. The observations were made as a part of the Ganges Valley Aerosol Experiment. The implications of biases in model simulated boundary layer towards simulations of trace species is investigated.
Steffen Beirle, Christoph Hörmann, Patrick Jöckel, Song Liu, Marloes Penning de Vries, Andrea Pozzer, Holger Sihler, Pieter Valks, and Thomas Wagner
Atmos. Meas. Tech., 9, 2753–2779, https://doi.org/10.5194/amt-9-2753-2016, https://doi.org/10.5194/amt-9-2753-2016, 2016
David Cabrera-Perez, Domenico Taraborrelli, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 16, 6931–6947, https://doi.org/10.5194/acp-16-6931-2016, https://doi.org/10.5194/acp-16-6931-2016, 2016
Short summary
Short summary
The global atmospheric budget and distribution of monocyclic aromatic compounds is estimated, using an atmospheric chemistry general circulation model. Simulation results are evaluated with observations with the goal of understanding emission, production and removal of these compounds. Anthropogenic and biomass burning are the main sources of aromatic compounds to the atmosphere. The main sink is photochemical decomposition and in lesser importance dry deposition.
Klaus Klingmüller, Andrea Pozzer, Swen Metzger, Georgiy L. Stenchikov, and Jos Lelieveld
Atmos. Chem. Phys., 16, 5063–5073, https://doi.org/10.5194/acp-16-5063-2016, https://doi.org/10.5194/acp-16-5063-2016, 2016
Short summary
Short summary
During the last decade, the Middle East experienced the strongest increase in atmospheric aerosol concentrations worldwide. Based on satellite observations, the present study corroborates this trend and reveals correlations with soil moisture and precipitation in and surrounding the Fertile Crescent. This suggests that the increasing drought conditions in this region have enhanced dust emissions, a tendency which is expected to be intensified by climate change.
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
Short summary
With an advanced numerical global chemistry climate model (CCM) we performed several detailed
combined hind-cast and projection simulations of the period 1950 to 2100 to assess the
past, present, and potential future dynamical and chemical state of the Earth atmosphere.
The manuscript documents the model and the various applied model set-ups and provides
a first evaluation of the simulation results from a global perspective as a quality check of the data.
Narendra Ojha, Andrea Pozzer, Armin Rauthe-Schöch, Angela K. Baker, Jongmin Yoon, Carl A. M. Brenninkmeijer, and Jos Lelieveld
Atmos. Chem. Phys., 16, 3013–3032, https://doi.org/10.5194/acp-16-3013-2016, https://doi.org/10.5194/acp-16-3013-2016, 2016
Short summary
Short summary
We compare simulations of ozone and carbon monoxide using a regional chemistry transport model (WRF-Chem) with aircraft observations from CARIBIC program over India during monsoon period. Sensitivity simulations are conducted to assess the influences of regional emissions and long-range transport.
V. A. Karydis, A. P. Tsimpidi, A. Pozzer, M. Astitha, and J. Lelieveld
Atmos. Chem. Phys., 16, 1491–1509, https://doi.org/10.5194/acp-16-1491-2016, https://doi.org/10.5194/acp-16-1491-2016, 2016
Short summary
Short summary
We provide an assessment of the chemical composition and global aerosol load of aerosol nitrate and determine the effect of mineral dust on its formation due to thermodynamical interactions. For this purpose we used an explicit geographical representation of the emitted soil particle size distribution and chemical composition. We conclude mineral dust aerosol chemistry is important for nitrate aerosol formation and significantly affects its global distribution, especially in the coarse mode.
S. Bacer, T. Christoudias, and A. Pozzer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-33049-2015, https://doi.org/10.5194/acpd-15-33049-2015, 2015
Preprint withdrawn
Short summary
Short summary
We investigate the temporal variability of the North Atlantic Oscillation (NAO) pattern and its relation to the atmospheric dispersion of pollutants in the near past and in the future.
We use a global climate circulation model in order to analyze the NAO signal and its correlation with pollutant concentrations. We find that the NAO is influenced by natural climate variability and that the NAO Indices may be used as indicators of (future) pollutant transport over Europe.
H. G. Ouwersloot, A. Pozzer, B. Steil, H. Tost, and J. Lelieveld
Geosci. Model Dev., 8, 2435–2445, https://doi.org/10.5194/gmd-8-2435-2015, https://doi.org/10.5194/gmd-8-2435-2015, 2015
H. Fischer, A. Pozzer, T. Schmitt, P. Jöckel, T. Klippel, D. Taraborrelli, and J. Lelieveld
Atmos. Chem. Phys., 15, 6971–6980, https://doi.org/10.5194/acp-15-6971-2015, https://doi.org/10.5194/acp-15-6971-2015, 2015
S. Zheng, A. Pozzer, C. X. Cao, and J. Lelieveld
Atmos. Chem. Phys., 15, 5715–5725, https://doi.org/10.5194/acp-15-5715-2015, https://doi.org/10.5194/acp-15-5715-2015, 2015
Short summary
Short summary
The present study uses aerosol optical depth as proxy to estimate 12 years of PM2.5 data for the Beijing central area and calculate the yearly premature mortality by different diseases attributable to PM2.5. The estimated average total mortality due to PM2.5 is about 5100 individuals/year for the period 2001--2012 in the Beijing central area, and the per capita mortality for all ages due to PM2.5 is around 15 per 10,000 person-years for the period 2010--2012.
A. Pozzer, A. de Meij, J. Yoon, H. Tost, A. K. Georgoulias, and M. Astitha
Atmos. Chem. Phys., 15, 5521–5535, https://doi.org/10.5194/acp-15-5521-2015, https://doi.org/10.5194/acp-15-5521-2015, 2015
Short summary
Short summary
Thanks to numerical simulations and satellite observations, it is shown that aerosol optical depth (AOD) trends (2000--2010 period) over the US and Europe are due to emission decrease, while over the Sahara Desert and the Middle East they are due to meteorological changes. Over Southeast Asia, both meteorology and emission changes are important for the AOD trends.
It is shown that soluble components strongly influence AOD, as their contribution is enhanced by the aerosol water content.
R. H. H. Janssen and A. Pozzer
Geosci. Model Dev., 8, 453–471, https://doi.org/10.5194/gmd-8-453-2015, https://doi.org/10.5194/gmd-8-453-2015, 2015
A. P. Tsimpidi, V. A. Karydis, A. Pozzer, S. N. Pandis, and J. Lelieveld
Geosci. Model Dev., 7, 3153–3172, https://doi.org/10.5194/gmd-7-3153-2014, https://doi.org/10.5194/gmd-7-3153-2014, 2014
Short summary
Short summary
A computationally efficient module for the description of OA composition and evolution in the atmosphere has been developed. This module subdivides OA into several compounds based on their source of origin and volatility, allowing the quantification of POA vs. SOA as well as biogenic vs. anthropogenic contributions to OA concentrations. Such fundamental information can shed light on long-term changes in OA abundance, and hence project the effects of OA on future air quality and climate.
R. Sander, P. Jöckel, O. Kirner, A. T. Kunert, J. Landgraf, and A. Pozzer
Geosci. Model Dev., 7, 2653–2662, https://doi.org/10.5194/gmd-7-2653-2014, https://doi.org/10.5194/gmd-7-2653-2014, 2014
J. Yoon and A. Pozzer
Atmos. Chem. Phys., 14, 10465–10482, https://doi.org/10.5194/acp-14-10465-2014, https://doi.org/10.5194/acp-14-10465-2014, 2014
G. G. Cirino, R. A. F. Souza, D. K. Adams, and P. Artaxo
Atmos. Chem. Phys., 14, 6523–6543, https://doi.org/10.5194/acp-14-6523-2014, https://doi.org/10.5194/acp-14-6523-2014, 2014
H. M. J. Barbosa, B. Barja, T. Pauliquevis, D. A. Gouveia, P. Artaxo, G. G. Cirino, R. M. N. Santos, and A. B. Oliveira
Atmos. Meas. Tech., 7, 1745–1762, https://doi.org/10.5194/amt-7-1745-2014, https://doi.org/10.5194/amt-7-1745-2014, 2014
C. Liu, S. Beirle, T. Butler, P. Hoor, C. Frankenberg, P. Jöckel, M. Penning de Vries, U. Platt, A. Pozzer, M. G. Lawrence, J. Lelieveld, H. Tost, and T. Wagner
Atmos. Chem. Phys., 14, 1717–1732, https://doi.org/10.5194/acp-14-1717-2014, https://doi.org/10.5194/acp-14-1717-2014, 2014
Y. F. Elshorbany, P. J. Crutzen, B. Steil, A. Pozzer, H. Tost, and J. Lelieveld
Atmos. Chem. Phys., 14, 1167–1184, https://doi.org/10.5194/acp-14-1167-2014, https://doi.org/10.5194/acp-14-1167-2014, 2014
D. Giannadaki, A. Pozzer, and J. Lelieveld
Atmos. Chem. Phys., 14, 957–968, https://doi.org/10.5194/acp-14-957-2014, https://doi.org/10.5194/acp-14-957-2014, 2014
P. Zanis, P. Hadjinicolaou, A. Pozzer, E. Tyrlis, S. Dafka, N. Mihalopoulos, and J. Lelieveld
Atmos. Chem. Phys., 14, 115–132, https://doi.org/10.5194/acp-14-115-2014, https://doi.org/10.5194/acp-14-115-2014, 2014
J. Yoon, A. Pozzer, P. Hoor, D. Y. Chang, S. Beirle, T. Wagner, S. Schloegl, J. Lelieveld, and H. M. Worden
Atmos. Chem. Phys., 13, 11307–11316, https://doi.org/10.5194/acp-13-11307-2013, https://doi.org/10.5194/acp-13-11307-2013, 2013
J. Lelieveld, C. Barlas, D. Giannadaki, and A. Pozzer
Atmos. Chem. Phys., 13, 7023–7037, https://doi.org/10.5194/acp-13-7023-2013, https://doi.org/10.5194/acp-13-7023-2013, 2013
A. Tangborn, L. L. Strow, B. Imbiriba, L. Ott, and S. Pawson
Atmos. Chem. Phys., 13, 4487–4500, https://doi.org/10.5194/acp-13-4487-2013, https://doi.org/10.5194/acp-13-4487-2013, 2013
L. V. Rizzo, P. Artaxo, T. Müller, A. Wiedensohler, M. Paixão, G. G. Cirino, A. Arana, E. Swietlicki, P. Roldin, E. O. Fors, K. T. Wiedemann, L. S. M. Leal, and M. Kulmala
Atmos. Chem. Phys., 13, 2391–2413, https://doi.org/10.5194/acp-13-2391-2013, https://doi.org/10.5194/acp-13-2391-2013, 2013
Related subject area
Biogeochemistry: Air - Land Exchange
Aggregation of ice-nucleating macromolecules from Betula pendula pollen determines ice nucleation efficiency
Evaluating adsorption isotherm models for determining the partitioning of ammonium between soil and soil pore water in environmental soil samples
Similar freezing spectra of particles in plant canopies and in the air at a high-altitude site
Anticorrelation of net uptake of atmospheric CO2 by the world ocean and terrestrial biosphere in current carbon cycle models
Impact of meteorological conditions on the biogenic volatile organic compound (BVOC) emission rate from eastern Mediterranean vegetation under drought
Monitoring cropland daily carbon dioxide exchange at field scales with Sentinel-2 satellite imagery
Compound soil and atmospheric drought (CSAD) events and CO2 fluxes of a mixed deciduous forest: the occurrence, impact, and temporal contribution of main drivers
The influence of plant water stress on vegetation–atmosphere exchanges: implications for ozone modelling
An elucidatory model of oxygen’s partial pressure inside substomatal cavities
High interspecific variability in ice nucleation activity suggests pollen ice nucleators are incidental
Using automated machine learning for the upscaling of gross primary productivity
Interpretability of negative latent heat fluxes from eddy covariance measurements in dry conditions
Forest-floor respiration, N2O fluxes, and CH4 fluxes in a subalpine spruce forest: drivers and annual budgets
Constraining 2010–2020 Amazonian carbon flux estimates with satellite solar-induced fluorescence (SIF)
Observational relationships between ammonia, carbon dioxide and water vapor under a wide range of meteorological and turbulent conditions: RITA-2021 campaign
Environmental controls of winter soil carbon dioxide fluxes in boreal and tundra environments
Origin of secondary fatty alcohols in atmospheric aerosols in a cool–temperate forest based on their mass size distributions
Sap flow and leaf gas exchange response to a drought and heatwave in urban green spaces in a Nordic city
Changes in biogenic volatile organic compound emissions in response to the El Niño–Southern Oscillation
Rethinking the deployment of static chambers for CO2 flux measurement in dry desert soils
Lichen species across Alaska produce highly active and stable ice nucleators
A differentiable, physics-informed ecosystem modeling and learning framework for large-scale inverse problems: demonstration with photosynthesis simulations
Snow–vegetation–atmosphere interactions in alpine tundra
Synergy between TROPOMI sun-induced chlorophyll fluorescence and MODIS spectral reflectance for understanding the dynamics of gross primary productivity at Integrated Carbon Observatory System (ICOS) ecosystem flux sites
Atmospheric deposition of reactive nitrogen to a deciduous forest in the southern Appalachian Mountains
Tropical cyclones facilitate recovery of forest leaf area from dry spells in East Asia
Minor contributions of daytime monoterpenes are major contributors to atmospheric reactivity
Using atmospheric observations to quantify annual biogenic carbon dioxide fluxes on the Alaska North Slope
Forest–atmosphere exchange of reactive nitrogen in a remote region – Part II: Modeling annual budgets
Growth and actual leaf temperature modulate CO2 responsiveness of monoterpene emissions from holm oak in opposite ways
Multi-year observations reveal a larger than expected autumn respiration signal across northeast Eurasia
Reviews and syntheses: VOC emissions from soil cover in boreal and temperate natural ecosystems of the Northern Hemisphere
Internal tree cycling and atmospheric archiving of mercury: examination with concentration and stable isotope analyses
Contrasting drought legacy effects on gross primary productivity in a mixed versus pure beech forest
CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard
Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators
Variability and uncertainty in flux-site-scale net ecosystem exchange simulations based on machine learning and remote sensing: a systematic evaluation
Update of a biogeochemical model with process-based algorithms to predict ammonia volatilization from fertilized cultivated uplands and rice paddy fields
Massive warming-induced carbon loss from subalpine grassland soils in an altitudinal transplantation experiment
Climatic variation drives loss and restructuring of carbon and nitrogen in boreal forest wildfire
Gaps in network infrastructure limit our understanding of biogenic methane emissions for the United States
Changes of the aerodynamic characteristics of a flux site after an extensive windthrow
Carbon sequestration potential of street tree plantings in Helsinki
Technical note: Incorporating expert domain knowledge into causal structure discovery workflows
Sensitivity of biomass burning emissions estimates to land surface information
A convolutional neural network for spatial downscaling of satellite-based solar-induced chlorophyll fluorescence (SIFnet)
Influence of plant ecophysiology on ozone dry deposition: comparing between multiplicative and photosynthesis-based dry deposition schemes and their responses to rising CO2 level
Modeling the interinfluence of fertilizer-induced NH3 emission, nitrogen deposition, and aerosol radiative effects using modified CESM2
Physiological and climate controls on foliar mercury uptake by European tree species
Radiation, soil water content, and temperature effects on carbon cycling in an alpine swamp meadow of the northeastern Qinghai–Tibetan Plateau
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe
Biogeosciences, 22, 103–115, https://doi.org/10.5194/bg-22-103-2025, https://doi.org/10.5194/bg-22-103-2025, 2025
Short summary
Short summary
Betula pendula is a widespread birch tree species containing ice nucleation agents that can trigger the freezing of cloud droplets and thereby alter the evolution of clouds. Our study identifies three distinct ice-nucleating macromolecule (INM) aggregates of varying size that can nucleate ice at temperatures up to –5.4°C. Our findings suggest that these vegetation-derived particles may influence atmospheric processes, weather, and climate more strongly than previously thought.
Matthew G. Davis, Kevin Yan, and Jennifer G. Murphy
Biogeosciences, 21, 5381–5392, https://doi.org/10.5194/bg-21-5381-2024, https://doi.org/10.5194/bg-21-5381-2024, 2024
Short summary
Short summary
Ammonia applied as fertilizer can volatilize into the atmosphere. This can threaten vulnerable ecosystems and human health. We investigated the partitioning of ammonia between an immobile adsorbed phase and mobile aqueous phase using several adsorption models. Using the Temkin model we determined that previous approaches to this issue may overestimate the quantity available for exchange by a factor of 5–20, suggesting that ammonia emissions from soil may be overestimated.
Annika Einbock and Franz Conen
Biogeosciences, 21, 5219–5231, https://doi.org/10.5194/bg-21-5219-2024, https://doi.org/10.5194/bg-21-5219-2024, 2024
Short summary
Short summary
A small fraction of particles found at great heights in the atmosphere can freeze cloud droplets at temperatures of ≥ −10 °C and thus influence cloud properties. We provide a novel type of evidence that plant canopies are a major source of such biological ice-nucleating particles in the air above the Alps, potentially affecting mixed-phase cloud development.
Stephen E. Schwartz
Biogeosciences, 21, 5045–5057, https://doi.org/10.5194/bg-21-5045-2024, https://doi.org/10.5194/bg-21-5045-2024, 2024
Short summary
Short summary
Anticorrelation in uptake of atmospheric CO2 following pulse emission or abrupt cessation of emissions is examined in two key model intercomparison studies. In both studies net transfer coefficients from the atmosphere to the world ocean and the terrestrial biosphere are anticorrelated across models, reducing inter-model diversity in decrease of atmospheric CO2 following the perturbation, increasing uncertainties of global warming potentials and consequences of prospective emission reductions.
Qian Li, Gil Lerner, Einat Bar, Efraim Lewinsohn, and Eran Tas
Biogeosciences, 21, 4133–4147, https://doi.org/10.5194/bg-21-4133-2024, https://doi.org/10.5194/bg-21-4133-2024, 2024
Short summary
Short summary
Our research indicates that instantaneous changes in meteorological parameters better reflect drought-induced changes in the emission rates of biogenic volatile organic compounds (BVOCs) from natural vegetation than their absolute values. However, following a small amount of irrigation, this trend became more moderate or reversed, accompanied by a dramatic increase in BVOC emission rates. These findings advance our understanding of BVOC emissions under climate change.
Pia Gottschalk, Aram Kalhori, Zhan Li, Christian Wille, and Torsten Sachs
Biogeosciences, 21, 3593–3616, https://doi.org/10.5194/bg-21-3593-2024, https://doi.org/10.5194/bg-21-3593-2024, 2024
Short summary
Short summary
To improve the accuracy of spatial carbon exchange estimates, we evaluated simple linear models for net ecosystem exchange (NEE) and gross primary productivity (GPP) and how they can be used to upscale the CO2 exchange of agricultural fields. The models are solely driven by Sentinel-2-derived vegetation indices (VIs). Evaluations show that different VIs have variable power to estimate NEE and GPP of crops in different years. The overall performance is as good as results from complex crop models.
Liliana Scapucci, Ankit Shekhar, Sergio Aranda-Barranco, Anastasiia Bolshakova, Lukas Hörtnagl, Mana Gharun, and Nina Buchmann
Biogeosciences, 21, 3571–3592, https://doi.org/10.5194/bg-21-3571-2024, https://doi.org/10.5194/bg-21-3571-2024, 2024
Short summary
Short summary
Forests face increased exposure to “compound soil and atmospheric drought” (CSAD) events due to global warming. We examined the impacts and drivers of CO2 fluxes during CSAD events at multiple layers of a deciduous forest over 18 years. Results showed reduced net ecosystem productivity and forest-floor respiration during CSAD events, mainly driven by soil and atmospheric drought. This unpredictability in forest CO2 fluxes jeopardises reforestation projects aimed at mitigating CO2 emissions.
Tamara Emmerichs, Yen-Sen Lu, and Domenico Taraborrelli
Biogeosciences, 21, 3251–3269, https://doi.org/10.5194/bg-21-3251-2024, https://doi.org/10.5194/bg-21-3251-2024, 2024
Short summary
Short summary
We assess the representation of the plant response to surface water in a global atmospheric chemistry model. This sensitivity is crucial for the return of precipitation back into the atmosphere and thus significantly impacts the representation of weather as well as air quality. The newly implemented response function reduces this process and has a better comparison with satellite observations. This yields a higher intensity of unusual warm periods and higher production of air pollutants.
Andrew S. Kowalski
EGUsphere, https://doi.org/10.5194/egusphere-2024-1966, https://doi.org/10.5194/egusphere-2024-1966, 2024
Short summary
Short summary
The laws of physics show that leaf oxygen is not photosynthetically enriched, but extremely dilute due to the overwhelming effects of humidification. This challenges the prevailing diffusion-only paradigm regarding leaf gas exchanges, requiring non-diffusive transport. Such transport also explains why fluxes of carbon dioxide and water vapour become decoupled at very high temperatures, as has been observed but not explained by plant physiologists.
Nina L. H. Kinney, Charles A. Hepburn, Matthew I. Gibson, Daniel Ballesteros, and Thomas F. Whale
Biogeosciences, 21, 3201–3214, https://doi.org/10.5194/bg-21-3201-2024, https://doi.org/10.5194/bg-21-3201-2024, 2024
Short summary
Short summary
Molecules released from plant pollen induce the formation of ice from supercooled water at temperatures warm enough to suggest an underlying function for this activity. In this study we show that ice nucleators are ubiquitous in pollen. We suggest the molecules responsible fulfil some unrelated biological function and nucleate ice incidentally. The ubiquity of ice-nucleating molecules in pollen and particularly active examples reveal a greater potential for pollen to impact weather and climate.
Max Gaber, Yanghui Kang, Guy Schurgers, and Trevor Keenan
Biogeosciences, 21, 2447–2472, https://doi.org/10.5194/bg-21-2447-2024, https://doi.org/10.5194/bg-21-2447-2024, 2024
Short summary
Short summary
Gross primary productivity (GPP) describes the photosynthetic carbon assimilation, which plays a vital role in the carbon cycle. We can measure GPP locally, but producing larger and continuous estimates is challenging. Here, we present an approach to extrapolate GPP to a global scale using satellite imagery and automated machine learning. We benchmark different models and predictor variables and achieve an estimate that can capture 75 % of the variation in GPP.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Luana Krebs, Susanne Burri, Iris Feigenwinter, Mana Gharun, Philip Meier, and Nina Buchmann
Biogeosciences, 21, 2005–2028, https://doi.org/10.5194/bg-21-2005-2024, https://doi.org/10.5194/bg-21-2005-2024, 2024
Short summary
Short summary
This study explores year-round forest-floor greenhouse gas (GHG) fluxes in a Swiss spruce forest. Soil temperature and snow depth affected forest-floor respiration, while CH4 uptake was linked to snow cover. Negligible N2O fluxes were observed. In 2022, a warm year, CO2 emissions notably increased. The study suggests rising forest-floor GHG emissions due to climate change, impacting carbon sink behavior. Thus, for future forest management, continuous year-round GHG flux measurements are crucial.
Archana Dayalu, Marikate Mountain, Bharat Rastogi, John B. Miller, and Luciana Gatti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1082, https://doi.org/10.5194/egusphere-2024-1082, 2024
Short summary
Short summary
The Amazon is facing unprecedented disturbance. Determining trends in Amazonia’s carbon balance and its sensitivity to disturbance requires reliable vegetation models that adequately capture how its ecosystems exchange carbon with the atmosphere. Our work presents novel estimates of vegetation carbon exchange with the atmosphere across the Amazon, estimated using ground- and satellite-based ecosystem measurements. Our model agrees with independent aircraft observations from discrete locations.
Ruben B. Schulte, Jordi Vilà-Guerau de Arellano, Susanna Rutledge-Jonker, Shelley van der Graaf, Jun Zhang, and Margreet C. van Zanten
Biogeosciences, 21, 557–574, https://doi.org/10.5194/bg-21-557-2024, https://doi.org/10.5194/bg-21-557-2024, 2024
Short summary
Short summary
We analyzed measurements with the aim of finding relations between the surface atmosphere exchange of NH3 and the CO2 uptake and transpiration by vegetation. We found a high correlation of daytime NH3 emissions with both latent heat flux and photosynthetically active radiation. Very few simultaneous measurements of NH3, CO2 fluxes and meteorological variables exist at sub-diurnal timescales. This study paves the way to finding more robust relations between the NH3 exchange flux and CO2 uptake.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Carolina Voigt, Nick Rutter, Paul Mann, Jean-Daniel Sylvain, and Alexandre Roy
Biogeosciences, 20, 5087–5108, https://doi.org/10.5194/bg-20-5087-2023, https://doi.org/10.5194/bg-20-5087-2023, 2023
Short summary
Short summary
We present an analysis of soil CO2 emissions in boreal and tundra regions during the non-growing season. We show that when the soil is completely frozen, soil temperature is the main control on CO2 emissions. When the soil is around the freezing point, with a mix of liquid water and ice, the liquid water content is the main control on CO2 emissions. This study highlights that the vegetation–snow–soil interactions must be considered to understand soil CO2 emissions during the non-growing season.
Yuhao Cui, Eri Tachibana, Kimitaka Kawamura, and Yuzo Miyazaki
Biogeosciences, 20, 4969–4980, https://doi.org/10.5194/bg-20-4969-2023, https://doi.org/10.5194/bg-20-4969-2023, 2023
Short summary
Short summary
Fatty alcohols (FAs) are major components of surface lipids in plant leaves and serve as surface-active aerosols. Our study on the aerosol size distributions in a forest suggests that secondary FAs (SFAs) originated from plant waxes and that leaf senescence status is likely an important factor controlling the size distribution of SFAs. This study provides new insights into the sources of primary biological aerosol particles (PBAPs) and their effects on the aerosol ice nucleation activity.
Joyson Ahongshangbam, Liisa Kulmala, Jesse Soininen, Yasmin Frühauf, Esko Karvinen, Yann Salmon, Anna Lintunen, Anni Karvonen, and Leena Järvi
Biogeosciences, 20, 4455–4475, https://doi.org/10.5194/bg-20-4455-2023, https://doi.org/10.5194/bg-20-4455-2023, 2023
Short summary
Short summary
Urban vegetation is important for removing urban CO2 emissions and cooling. We studied the response of urban trees' functions (photosynthesis and transpiration) to a heatwave and drought at four urban green areas in the city of Helsinki. We found that tree water use was increased during heatwave and drought periods, but there was no change in the photosynthesis rates. The heat and drought conditions were severe at the local scale but were not excessive enough to restrict urban trees' functions.
Ryan Vella, Andrea Pozzer, Matthew Forrest, Jos Lelieveld, Thomas Hickler, and Holger Tost
Biogeosciences, 20, 4391–4412, https://doi.org/10.5194/bg-20-4391-2023, https://doi.org/10.5194/bg-20-4391-2023, 2023
Short summary
Short summary
We investigated the effect of the El Niño–Southern Oscillation (ENSO) on biogenic volatile organic compound (BVOC) emissions from plants. ENSO events can cause a significant increase in these emissions, which have a long-term impact on the Earth's atmosphere. Persistent ENSO conditions can cause long-term changes in vegetation, resulting in even higher BVOC emissions. We link ENSO-induced emission anomalies with driving atmospheric and vegetational variables.
Nadav Bekin and Nurit Agam
Biogeosciences, 20, 3791–3802, https://doi.org/10.5194/bg-20-3791-2023, https://doi.org/10.5194/bg-20-3791-2023, 2023
Short summary
Short summary
The mechanisms of soil CO2 flux in dry desert soils are not fully understood. Yet studies conducted in desert ecosystems rarely discuss potential errors related to using the commonly used flux chambers in dry and bare soils. In our study, the conventional deployment practice of the chambers underestimated the instantaneous CO2 flux by up to 50 % and the total daily CO2 uptake by 35 %. This suggests that desert soils are a larger carbon sink than previously reported.
Rosemary J. Eufemio, Ingrid de Almeida Ribeiro, Todd L. Sformo, Gary A. Laursen, Valeria Molinero, Janine Fröhlich-Nowoisky, Mischa Bonn, and Konrad Meister
Biogeosciences, 20, 2805–2812, https://doi.org/10.5194/bg-20-2805-2023, https://doi.org/10.5194/bg-20-2805-2023, 2023
Short summary
Short summary
Lichens, the dominant vegetation in the Arctic, contain ice nucleators (INs) that enable freezing close to 0°C. Yet the abundance, diversity, and function of lichen INs is unknown. Our screening of lichens across Alaska reveal that most species have potent INs. We find that lichens contain two IN populations which retain activity under environmentally relevant conditions. The ubiquity and stability of lichen INs suggest that they may have considerable impacts on local atmospheric patterns.
Doaa Aboelyazeed, Chonggang Xu, Forrest M. Hoffman, Jiangtao Liu, Alex W. Jones, Chris Rackauckas, Kathryn Lawson, and Chaopeng Shen
Biogeosciences, 20, 2671–2692, https://doi.org/10.5194/bg-20-2671-2023, https://doi.org/10.5194/bg-20-2671-2023, 2023
Short summary
Short summary
Photosynthesis is critical for life and has been affected by the changing climate. Many parameters come into play while modeling, but traditional calibration approaches face many issues. Our framework trains coupled neural networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates.
Norbert Pirk, Kristoffer Aalstad, Yeliz A. Yilmaz, Astrid Vatne, Andrea L. Popp, Peter Horvath, Anders Bryn, Ane Victoria Vollsnes, Sebastian Westermann, Terje Koren Berntsen, Frode Stordal, and Lena Merete Tallaksen
Biogeosciences, 20, 2031–2047, https://doi.org/10.5194/bg-20-2031-2023, https://doi.org/10.5194/bg-20-2031-2023, 2023
Short summary
Short summary
We measured the land–atmosphere exchange of CO2 and water vapor in alpine Norway over 3 years. The extremely snow-rich conditions in 2020 reduced the total annual evapotranspiration to 50 % and reduced the growing-season carbon assimilation to turn the ecosystem from a moderate annual carbon sink to an even stronger source. Our analysis suggests that snow cover anomalies are driving the most consequential short-term responses in this ecosystem’s functioning.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, and Kamel Soudani
Biogeosciences, 20, 1473–1490, https://doi.org/10.5194/bg-20-1473-2023, https://doi.org/10.5194/bg-20-1473-2023, 2023
Short summary
Short summary
This study focuses on the relationship between sun-induced chlorophyll fluorescence (SIF) and ecosystem gross primary productivity (GPP) across the ICOS European flux tower network. It shows that SIF, coupled with reflectance observations, explains over 80 % of the GPP variability across diverse ecosystems but fails to bring new information compared to reflectance alone at coarse spatial scales (~5 km). These findings have applications in agriculture and ecophysiological studies.
John T. Walker, Xi Chen, Zhiyong Wu, Donna Schwede, Ryan Daly, Aleksandra Djurkovic, A. Christopher Oishi, Eric Edgerton, Jesse Bash, Jennifer Knoepp, Melissa Puchalski, John Iiames, and Chelcy F. Miniat
Biogeosciences, 20, 971–995, https://doi.org/10.5194/bg-20-971-2023, https://doi.org/10.5194/bg-20-971-2023, 2023
Short summary
Short summary
Better estimates of atmospheric nitrogen (N) deposition are needed to accurately assess ecosystem risk and impacts from deposition of nutrients and acidity. Using measurements and modeling, we estimate total N deposition of 6.7 kg N ha−1 yr−1 at a forest site in the southern Appalachian Mountains, a region sensitive to atmospheric deposition. Reductions in deposition of reduced forms of N (ammonia and ammonium) will be needed to meet the lowest estimates of N critical loads for the region.
Yi-Ying Chen and Sebastiaan Luyssaert
Biogeosciences, 20, 349–363, https://doi.org/10.5194/bg-20-349-2023, https://doi.org/10.5194/bg-20-349-2023, 2023
Short summary
Short summary
Tropical cyclones are typically assumed to be associated with ecosystem damage. This study challenges this assumption and suggests that instead of reducing leaf area, cyclones in East Asia may increase leaf area by alleviating water stress.
Deborah F. McGlynn, Graham Frazier, Laura E. R. Barry, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Biogeosciences, 20, 45–55, https://doi.org/10.5194/bg-20-45-2023, https://doi.org/10.5194/bg-20-45-2023, 2023
Short summary
Short summary
Using a custom-made gas chromatography flame ionization detector, 2 years of speciated hourly biogenic volatile organic compound data were collected in a forest in central Virginia. We identify diurnal and seasonal variability in the data, which is shown to impact atmospheric oxidant budgets. A comparison with emission models identified discrepancies with implications for model outcomes. We suggest increased monitoring of speciated biogenic volatile organic compounds to improve modeled results.
Luke D. Schiferl, Jennifer D. Watts, Erik J. L. Larson, Kyle A. Arndt, Sébastien C. Biraud, Eugénie S. Euskirchen, Jordan P. Goodrich, John M. Henderson, Aram Kalhori, Kathryn McKain, Marikate E. Mountain, J. William Munger, Walter C. Oechel, Colm Sweeney, Yonghong Yi, Donatella Zona, and Róisín Commane
Biogeosciences, 19, 5953–5972, https://doi.org/10.5194/bg-19-5953-2022, https://doi.org/10.5194/bg-19-5953-2022, 2022
Short summary
Short summary
As the Arctic rapidly warms, vast stores of thawing permafrost could release carbon dioxide (CO2) into the atmosphere. We combined observations of atmospheric CO2 concentrations from aircraft and a tower with observed CO2 fluxes from tundra ecosystems and found that the Alaskan North Slope in not a consistent source nor sink of CO2. Our study shows the importance of using both site-level and atmospheric measurements to constrain regional net CO2 fluxes and improve biogenic processes in models.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, Richard Kranenburg, and Christian Brümmer
Biogeosciences, 19, 5287–5311, https://doi.org/10.5194/bg-19-5287-2022, https://doi.org/10.5194/bg-19-5287-2022, 2022
Short summary
Short summary
For the first time, we compared four methods for estimating the annual dry deposition of total reactive nitrogen into a low-polluted forest ecosystem. In our analysis, we used 2.5 years of flux measurements, an in situ modeling approach, a large-scale chemical transport model (CTM), and canopy budget models. Annual nitrogen dry deposition budgets ranged between 4.3 and 6.7 kg N ha−1 a−1, depending on the applied method.
Michael Staudt, Juliane Daussy, Joseph Ingabire, and Nafissa Dehimeche
Biogeosciences, 19, 4945–4963, https://doi.org/10.5194/bg-19-4945-2022, https://doi.org/10.5194/bg-19-4945-2022, 2022
Short summary
Short summary
We studied the short- and long-term effects of CO2 as a function of temperature on monoterpene emissions from holm oak. Similarly to isoprene, emissions decreased non-linearly with increasing CO2, with no differences among compounds and chemotypes. The CO2 response was modulated by actual leaf and growth temperature but not by growth CO2. Estimates of annual monoterpene release under double CO2 suggest that CO2 inhibition does not offset the increase in emissions due to expected warming.
Brendan Byrne, Junjie Liu, Yonghong Yi, Abhishek Chatterjee, Sourish Basu, Rui Cheng, Russell Doughty, Frédéric Chevallier, Kevin W. Bowman, Nicholas C. Parazoo, David Crisp, Xing Li, Jingfeng Xiao, Stephen Sitch, Bertrand Guenet, Feng Deng, Matthew S. Johnson, Sajeev Philip, Patrick C. McGuire, and Charles E. Miller
Biogeosciences, 19, 4779–4799, https://doi.org/10.5194/bg-19-4779-2022, https://doi.org/10.5194/bg-19-4779-2022, 2022
Short summary
Short summary
Plants draw CO2 from the atmosphere during the growing season, while respiration releases CO2 to the atmosphere throughout the year, driving seasonal variations in atmospheric CO2 that can be observed by satellites, such as the Orbiting Carbon Observatory 2 (OCO-2). Using OCO-2 XCO2 data and space-based constraints on plant growth, we show that permafrost-rich northeast Eurasia has a strong seasonal release of CO2 during the autumn, hinting at an unexpectedly large respiration signal from soils.
Valery A. Isidorov and Andrej A. Zaitsev
Biogeosciences, 19, 4715–4746, https://doi.org/10.5194/bg-19-4715-2022, https://doi.org/10.5194/bg-19-4715-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds (VOCs) play a critical role in earth-system processes: they are
main playersin the formation of tropospheric O3 and secondary aerosols, which have a significant impact on climate, human health and crops. A complex mixture of VOCs, formed as a result of physicochemical and biological processes, is released into the atmosphere from the forest floor. This review presents data on the composition of VOCs and contribution of various processes to their emissions.
David S. McLagan, Harald Biester, Tomas Navrátil, Stephan M. Kraemer, and Lorenz Schwab
Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022, https://doi.org/10.5194/bg-19-4415-2022, 2022
Short summary
Short summary
Spruce and larch trees are effective archiving species for historical atmospheric mercury using growth rings of bole wood. Mercury stable isotope analysis proved an effective tool to characterise industrial mercury signals and assess mercury uptake pathways (leaf uptake for both wood and bark) and mercury cycling within the trees. These data detail important information for understanding the mercury biogeochemical cycle particularly in forest systems.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Anders Lindroth, Norbert Pirk, Ingibjörg S. Jónsdóttir, Christian Stiegler, Leif Klemedtsson, and Mats B. Nilsson
Biogeosciences, 19, 3921–3934, https://doi.org/10.5194/bg-19-3921-2022, https://doi.org/10.5194/bg-19-3921-2022, 2022
Short summary
Short summary
We measured the fluxes of carbon dioxide and methane between a moist moss tundra and the atmosphere on Svalbard in order to better understand how such ecosystems are affecting the climate and vice versa. We found that the system was a small sink of carbon dioxide and a small source of methane. These fluxes are small in comparison with other tundra ecosystems in the high Arctic. Analysis of temperature sensitivity showed that respiration was more sensitive than photosynthesis above about 6 ℃.
Phillip Papastefanou, Christian S. Zang, Zlatan Angelov, Aline Anderson de Castro, Juan Carlos Jimenez, Luiz Felipe Campos De Rezende, Romina C. Ruscica, Boris Sakschewski, Anna A. Sörensson, Kirsten Thonicke, Carolina Vera, Nicolas Viovy, Celso Von Randow, and Anja Rammig
Biogeosciences, 19, 3843–3861, https://doi.org/10.5194/bg-19-3843-2022, https://doi.org/10.5194/bg-19-3843-2022, 2022
Short summary
Short summary
The Amazon rainforest has been hit by multiple severe drought events. In this study, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon. Using nine different precipitation datasets and three drought indicators we find large differences in drought stress across the Amazon region. We conclude that future studies should use multiple rainfall datasets and drought indicators when estimating the impact of drought stress in the Amazon region.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 19, 3739–3756, https://doi.org/10.5194/bg-19-3739-2022, https://doi.org/10.5194/bg-19-3739-2022, 2022
Short summary
Short summary
A number of studies have been conducted by using machine learning approaches to simulate carbon fluxes. We performed a meta-analysis of these net ecosystem exchange (NEE) simulations. Random forests and support vector machines performed better than other algorithms. Models with larger timescales had a lower accuracy. For different plant functional types (PFTs), there were significant differences in the predictors used and their effects on model accuracy.
Siqi Li, Wei Zhang, Xunhua Zheng, Yong Li, Shenghui Han, Rui Wang, Kai Wang, Zhisheng Yao, Chunyan Liu, and Chong Zhang
Biogeosciences, 19, 3001–3019, https://doi.org/10.5194/bg-19-3001-2022, https://doi.org/10.5194/bg-19-3001-2022, 2022
Short summary
Short summary
The CNMM–DNDC model was modified to simulate ammonia volatilization (AV) from croplands. AV from cultivated uplands followed the first-order kinetics, which was jointly regulated by the factors of soil properties and meteorological conditions. AV simulation from rice paddy fields was improved by incorporating Jayaweera–Mikkelsen mechanisms. The modified model performed well in simulating the observed cumulative AV measured from 63 fertilization events in China.
Matthias Volk, Matthias Suter, Anne-Lena Wahl, and Seraina Bassin
Biogeosciences, 19, 2921–2937, https://doi.org/10.5194/bg-19-2921-2022, https://doi.org/10.5194/bg-19-2921-2022, 2022
Short summary
Short summary
Because soils are an important sink for greenhouse gasses, we subjected sub-alpine grassland to a six-level climate change treatment.
Two independent methods showed that at warming > 1.5 °C the grassland ecosystem lost ca. 14 % or ca. 1 kg C m−2 in 5 years.
This shrinking of the terrestrial C sink implies a substantial positive feedback to the atmospheric greenhouse effect.
It is likely that this dramatic C loss is a transient effect before a new, climate-adjusted steady state is reached.
Johan A. Eckdahl, Jeppe A. Kristensen, and Daniel B. Metcalfe
Biogeosciences, 19, 2487–2506, https://doi.org/10.5194/bg-19-2487-2022, https://doi.org/10.5194/bg-19-2487-2022, 2022
Short summary
Short summary
This study found climate to be a driving force for increasing per area emissions of greenhouse gases and removal of important nutrients from high-latitude forests due to wildfire. It used detailed direct measurements over a large area to uncover patterns and mechanisms of restructuring of forest carbon and nitrogen pools that are extrapolatable to larger regions. It also takes a step forward in filling gaps in global knowledge of northern forest response to climate-change-strengthened wildfires.
Sparkle L. Malone, Youmi Oh, Kyle A. Arndt, George Burba, Roisin Commane, Alexandra R. Contosta, Jordan P. Goodrich, Henry W. Loescher, Gregory Starr, and Ruth K. Varner
Biogeosciences, 19, 2507–2522, https://doi.org/10.5194/bg-19-2507-2022, https://doi.org/10.5194/bg-19-2507-2022, 2022
Short summary
Short summary
To understand the CH4 flux potential of natural ecosystems and agricultural lands in the United States of America, a multi-scale CH4 observation network focused on CH4 flux rates, processes, and scaling methods is required. This can be achieved with a network of ground-based observations that are distributed based on climatic regions and land cover.
Bruna R. F. Oliveira, Jan J. Keizer, and Thomas Foken
Biogeosciences, 19, 2235–2243, https://doi.org/10.5194/bg-19-2235-2022, https://doi.org/10.5194/bg-19-2235-2022, 2022
Short summary
Short summary
This study analyzes the impacts of this windthrow on the aerodynamic characteristics of zero-plane displacement and roughness length and, ultimately, their implications for the turbulent fluxes. The turbulent fluxes were only affected to a minor degree by the windthrow, but the footprint area of the flux tower changed markedly so that the target area of the measurements had to be redetermined.
Minttu Havu, Liisa Kulmala, Pasi Kolari, Timo Vesala, Anu Riikonen, and Leena Järvi
Biogeosciences, 19, 2121–2143, https://doi.org/10.5194/bg-19-2121-2022, https://doi.org/10.5194/bg-19-2121-2022, 2022
Short summary
Short summary
The carbon sequestration potential of two street tree species and the soil beneath them was quantified with the urban land surface model SUEWS and the soil carbon model Yasso. The street tree plantings turned into a modest sink of carbon from the atmosphere after 14 years. Overall, the results indicate the importance of soil in urban carbon sequestration estimations, as soil respiration exceeded the carbon uptake in the early phase, due to the high initial carbon loss from the soil.
Jarmo Mäkelä, Laila Melkas, Ivan Mammarella, Tuomo Nieminen, Suyog Chandramouli, Rafael Savvides, and Kai Puolamäki
Biogeosciences, 19, 2095–2099, https://doi.org/10.5194/bg-19-2095-2022, https://doi.org/10.5194/bg-19-2095-2022, 2022
Short summary
Short summary
Causal structure discovery algorithms have been making headway into Earth system sciences, and they can be used to increase our understanding on biosphere–atmosphere interactions. In this paper we present a procedure on how to utilize prior knowledge of the domain experts together with these algorithms in order to find more robust causal structure models. We also demonstrate how to avoid pitfalls such as over-fitting and concept drift during this process.
Makoto Saito, Tomohiro Shiraishi, Ryuichi Hirata, Yosuke Niwa, Kazuyuki Saito, Martin Steinbacher, Doug Worthy, and Tsuneo Matsunaga
Biogeosciences, 19, 2059–2078, https://doi.org/10.5194/bg-19-2059-2022, https://doi.org/10.5194/bg-19-2059-2022, 2022
Short summary
Short summary
This study tested combinations of two sources of AGB data and two sources of LCC data and used the same burned area satellite data to estimate BB CO emissions. Our analysis showed large discrepancies in annual mean CO emissions and explicit differences in the simulated CO concentrations among the BB emissions estimates. This study has confirmed that BB emissions estimates are sensitive to the land surface information on which they are based.
Johannes Gensheimer, Alexander J. Turner, Philipp Köhler, Christian Frankenberg, and Jia Chen
Biogeosciences, 19, 1777–1793, https://doi.org/10.5194/bg-19-1777-2022, https://doi.org/10.5194/bg-19-1777-2022, 2022
Short summary
Short summary
We develop a convolutional neural network, named SIFnet, that increases the spatial resolution of SIF from TROPOMI by a factor of 10 to a spatial resolution of 0.005°. SIFnet utilizes coarse SIF observations, together with a broad range of high-resolution auxiliary data. The insights gained from interpretable machine learning techniques allow us to make quantitative claims about the relationships between SIF and other common parameters related to photosynthesis.
Shihan Sun, Amos P. K. Tai, David H. Y. Yung, Anthony Y. H. Wong, Jason A. Ducker, and Christopher D. Holmes
Biogeosciences, 19, 1753–1776, https://doi.org/10.5194/bg-19-1753-2022, https://doi.org/10.5194/bg-19-1753-2022, 2022
Short summary
Short summary
We developed and used a terrestrial biosphere model to compare and evaluate widely used empirical dry deposition schemes with different stomatal approaches and found that using photosynthesis-based stomatal approaches can reduce biases in modeled dry deposition velocities in current chemical transport models. Our study shows systematic errors in current dry deposition schemes and the importance of representing plant ecophysiological processes in models under a changing climate.
Ka Ming Fung, Maria Val Martin, and Amos P. K. Tai
Biogeosciences, 19, 1635–1655, https://doi.org/10.5194/bg-19-1635-2022, https://doi.org/10.5194/bg-19-1635-2022, 2022
Short summary
Short summary
Fertilizer-induced ammonia detrimentally affects the environment by not only directly damaging ecosystems but also indirectly altering climate and soil fertility. To quantify these secondary impacts, we enabled CESM to simulate ammonia emission, chemical evolution, and deposition as a continuous cycle. If synthetic fertilizer use is to soar by 30 % from today's level, we showed that the counteracting impacts will increase the global ammonia emission by 3.3 Tg N per year.
Lena Wohlgemuth, Pasi Rautio, Bernd Ahrends, Alexander Russ, Lars Vesterdal, Peter Waldner, Volkmar Timmermann, Nadine Eickenscheidt, Alfred Fürst, Martin Greve, Peter Roskams, Anne Thimonier, Manuel Nicolas, Anna Kowalska, Morten Ingerslev, Päivi Merilä, Sue Benham, Carmen Iacoban, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 19, 1335–1353, https://doi.org/10.5194/bg-19-1335-2022, https://doi.org/10.5194/bg-19-1335-2022, 2022
Short summary
Short summary
Gaseous mercury is present in the atmosphere all over the globe. During the growing season, plants take up mercury from the air in a similar way as CO2. We investigated which factors impact this vegetational mercury uptake by analyzing a large dataset of leaf mercury uptake rates of trees in Europe. As a result, we conclude that mercury uptake is foremost controlled by tree-intrinsic traits like physiological activity but also by climatic factors like dry conditions in the air and in soils.
Junqi Wei, Xiaoyan Li, Lei Liu, Torben Røjle Christensen, Zhiyun Jiang, Yujun Ma, Xiuchen Wu, Hongyun Yao, and Efrén López-Blanco
Biogeosciences, 19, 861–875, https://doi.org/10.5194/bg-19-861-2022, https://doi.org/10.5194/bg-19-861-2022, 2022
Short summary
Short summary
Although water availability has been linked to the response of ecosystem carbon (C) sink–source to climate warming, the mechanisms by which C uptake responds to soil moisture remain unclear. We explored how soil water and other environmental drivers modulate net C uptake in an alpine swamp meadow. Results reveal that nearly saturated soil conditions during warm seasons can help to maintain lower ecosystem respiration and therefore enhance the C sequestration capacity in this alpine swamp meadow.
Cited articles
Adachi, K., Oshima, N., Gong, Z., de Sá, S., Bateman, A. P., Martin, S. T., de Brito, J. F., Artaxo, P., Cirino, G. G., Sedlacek III, A. J., and Buseck, P. R.: Mixing states of Amazon basin aerosol particles transported over long distances using transmission electron microscopy, Atmos. Chem. Phys., 20, 11923–11939, https://doi.org/10.5194/acp-20-11923-2020, 2020. a
Alencar, A. A. C., Arruda, V. L. S., Silva, W. V. d., Conciani, D. E., Costa, D. P., Crusco, N., Duverger, S. G., Ferreira, N. C., Franca-Rocha, W., Hasenack, H., Martenexen, L. F. M., Piontekowski, V. J., Ribeiro, N. V., Rosa, E. R., Rosa, M. R., dos Santos, S. M. B., Shimbo, J. Z., and Vélez-Martin, E.: Long-Term Landsat-Based Monthly Burned Area Dataset for the Brazilian Biomes Using Deep Learning, Remote Sens., 14, 2510, https://doi.org/10.3390/rs14112510, 2022. a, b
Alencar, A., Nepstad, D., MacGrath, D., and Moutinho, P.: Desmatamento na Amazônia: Indo além da emergência crônica, Tech. Rep., Belém, IPAM, https://livroaberto.ufpa.br/jspui/handle/prefix/859 (last access: 8 July 2023), 2004. a
Altaratz, O., Koren, I., and Reisin, T.: Humidity impact on the aerosol effect in warm cumulus clouds, Geophys. Res. Lett., 35, 1–5, https://doi.org/10.1029/2008GL034178, 2008. a
Anderegg, W. R., Trugman, A. T., Badgley, G., Konings, A. G., and Shaw, J.: Divergent forest sensitivity to repeated extreme droughts, Nat. Clim. Change, 10, 1091–1095, https://doi.org/10.1038/s41558-020-00919-1, 2020. a
Aragão, L. E., Anderson, L. O., Fonseca, M. G., Rosan, T. M., Vedovato, L. B., Wagner, F. H., Silva, C. V., Silva Junior, C. H., Arai, E., Aguiar, A. P., Barlow, J., Berenguer, E., Deeter, M. N., Domingues, L. G., Gatti, L., Gloor, M., Malhi, Y., Marengo, J. A., Miller, J. B., Phillips, O. L., and Saatchi, S.: 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions, Nat. Commun., 9, 1–12, https://doi.org/10.1038/s41467-017-02771-y, 2018. a
Araújo, A. C., Dolman, A. J., Waterloo, M. J., Gash, J. H., Kruijt, B., Zanchi, F. B., de Lange, J. M., Stoevelaar, R., Manzi, A. O., Nobre, A. D., Lootens, R. N., and Backer, J.: The spatial variability of CO2 storage and the interpretation of eddy covariance fluxes in central Amazonia, Agr. Forest Meteorol., 150, 226–237, https://doi.org/10.1016/j.agrformet.2009.11.005, 2010. a, b, c, d
Artaxo, P., Rizzo, L. V., Brito, J. F., Barbosa, H. M., Arana, A., Sena, E. T., Cirino, G. G., Bastos, W., Martin, S. T., and Andreae, M. O.: Atmospheric aerosols in Amazonia and land use change: From natural biogenic to biomass burning conditions, Faraday Discuss., 165, 203–235, https://doi.org/10.1039/c3fd00052d, 2013. a
Artaxo, P., Hansson, H.-C., Andreae, M. O., Bäck, J., Alves, E. G., Barbosa, H. M. J., Bender, F., Bourtsoukidis, E., Carbone, S., Chi, J., Decesari, S., Després, V. R., Ditas, F., Ezhova, E., Fuzzi, S., Hasselquist, N. J., Heintzenberg, J., Holanda, B. A., Guenther, A., Hakola, H., Heikkinen, L., Kerminen, V.-M., Kontkanen, J., Krejci, R., Kulmala, M., Lavric, J. V., de Leeuw, G., Lehtipalo, K., Machado, L. A. T., McFiggans, G., Franco, M. A. M., Meller, B. B., Morais, F. G., Mohr, C., Morgan, W., Nilsson, M. B., Peichl, M., Petäjä, T., Praß, M., Pöhlker, C., Pöhlker, M. L., Pöschl, U., Von Randow, C., Riipinen, I., Rinne, J., Rizzo, L. V., Rosenfeld, D., Silva Dias, M. A. F., Sogacheva, L., Stier, P., Swietlicki, E., Sörgel, M., Tunved, P., Virkkula, A., Wang, J., Weber, B., Yáñez-Serrano, A. M., Zieger, P., Mikhailov, E., Smith, J. N., and Kesselmeier, J.: Tropical and Boreal Forest – Atmosphere Interactions: A Review, Tellus B, 74, 24–163, https://doi.org/10.16993/tellusb.34, 2022. a, b, c, d
Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and Laitat, E.: Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes, Agr. Forest Meteorol., 108, 293–315, https://doi.org/10.1016/S0168-1923(01)00244-1, 2001. a
Aubinet, M., Vesala, T., and Papale, D.: Eddy covariance: a practical guide to measurement and data analysis, Springer, Springer Atmospheric Sciences Serie, https://doi.org/10.1007/978-94-007-2351-1, 2012. a
Avitabile, V., Herold, M., Heuvelink, G. B., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N., Berry, N. J., Boeckx, P., de Jong, B. H., Devries, B., Girardin, C. A., Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R., Malhi, Y., Morel, A., Mitchard, E. T., Nagy, L., Qie, L., Quinones, M. J., Ryan, C. M., Ferry, S. J., Sunderland, T., Laurin, G. V., Gatti, R. C., Valentini, R., Verbeeck, H., Wijaya, A., and Willcock, S.: An integrated pan-tropical biomass map using multiple reference datasets, Glob. Change Biol., 22, 1406–1420, https://doi.org/10.1111/gcb.13139, 2016. a
Balch, J. K., Brando, P. M., Nepstad, D. C., Coe, M. T., Silvério, D., Massad, T. J., Davidson, E. A., Lefebvre, P., Oliveira-Santos, C., Rocha, W., Cury, R. T., Parsons, A., and Carvalho, K. S.: The Susceptibility of Southeastern Amazon Forests to Fire: Insights from a Large-Scale Burn Experiment, BioScience, 65, 893–905, https://doi.org/10.1093/biosci/biv106, 2015. a
Barbosa, F. R. G. M., Duarte, V. N., Staduto, J. A. R., and Kreter, A. C.: Land‐Use Dynamics for Agricultural and Livestock in Central‐West Brazil and its Reflects on the Agricultural Frontier Expansion, Clean. Circul. Bioeconom., 4, 100033, https://doi.org/10.1016/j.clcb.2022.100033, 2023. a
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., and Papale, D.: Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate, Science, 329, 834–838, https://doi.org/10.1126/science.1184984, 2010. a
Bian, H., Lee, E., Koster, R. D., Barahona, D., Chin, M., Colarco, P. R., Darmenov, A., Mahanama, S., Manyin, M., Norris, P., Shilling, J., Yu, H., and Zeng, F.: The response of the Amazon ecosystem to the photosynthetically active radiation fields: integrating impacts of biomass burning aerosol and clouds in the NASA GEOS Earth system model, Atmos. Chem. Phys., 21, 14177–14197, https://doi.org/10.5194/acp-21-14177-2021, 2021. a, b, c, d, e
Bird, R. E. and Hulstrom, R. L.: Simplified clear sky model for direct and diffuse insolation on horizontal surfaces, Solar Energy Research Inst. (SERI), Golden, CO, USA, https://doi.org/10.2172/6510849, 1981. a
Booth, B. B., Jones, C. D., Collins, M., Totterdell, I. J., Cox, P. M., Sitch, S., Huntingford, C., Betts, R. A., Harris, G. R., and Lloyd, J.: High sensitivity of future global warming to land carbon cycle processes, Environ. Res. Lett., 7, 024002, https://doi.org/10.1088/1748-9326/7/2/024002, 2012. a, b
Brando, P. M., Balch, J. K., Nepstad, D. C., Morton, D. C., Putz, F. E., Coe, M. T., Silvério, D., Macedo, M. N., Davidson, E. A., Nóbrega, C. C., Alencar, A., and Soares-Filho, B. S.: Abrupt increases in Amazonian tree mortality due to drought-fire interactions, P. Natl. Acad. Sci. USA, 111, 6347–6352, https://doi.org/10.1073/pnas.1305499111, 2014. a
Brando, P. M., Silvério, D., Maracahipes-Santos, L., Oliveira-Santos, C., Levick, S. R., Coe, M. T., Migliavacca, M., Balch, J. K., Macedo, M. N., Nepstad, D. C., Maracahipes, L., Davidson, E., Asner, G., Kolle, O., and Trumbore, S.: Prolonged tropical forest degradation due to compounding disturbances: Implications for CO2 and H2O fluxes, Glob. Change Biol., 25, 2855–2868, https://doi.org/10.1111/gcb.14659, 2019. a
Brienen, R. J., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., Lewis, S. L., Vásquez Martinez, R., Alexiades, M., Álvarez Dávila, E., Alvarez-Loayza, P., Andrade, A., Aragaõ, L. E., Araujo-Murakami, A., Arets, E. J., Arroyo, L., Aymard C., G. A., Bánki, O. S., Baraloto, C., Barroso, J., Bonal, D., Boot, R. G., Camargo, J. L., Castilho, C. V., Chama, V., Chao, K. J., Chave, J., Comiskey, J. A., Cornejo Valverde, F., Da Costa, L., De Oliveira, E. A., Di Fiore, A., Erwin, T. L., Fauset, S., Forsthofer, M., Galbraith, D. R., Grahame, E. S., Groot, N., Hérault, B., Higuchi, N., Honorio Coronado, E. N., Keeling, H., Killeen, T. J., Laurance, W. F., Laurance, S., Licona, J., Magnussen, W. E., Marimon, B. S., Marimon-Junior, B. H., Mendoza, C., Neill, D. A., Nogueira, E. M., Núñez, P., Pallqui Camacho, N. C., Parada, A., Pardo-Molina, G., Peacock, J., Penã-Claros, M., Pickavance, G. C., Pitman, N. C., Poorter, L., Prieto, A., Quesada, C. A., Ramírez, F., Ramírez-Angulo, H., Restrepo, Z., Roopsind, A., Rudas, A., Salomaõ, R. P., Schwarz, M., Silva, N., Silva-Espejo, J. E., Silveira, M., Stropp, J., Talbot, J., Ter Steege, H., Teran-Aguilar, J., Terborgh, J., Thomas-Caesar, R., Toledo, M., Torello-Raventos, M., Umetsu, R. K., Van Der Heijden, G. M., Van Der Hout, P., Guimarães Vieira, I. C., Vieira, S. A., Vilanova, E., Vos, V. A., and Zagt, R. J.: Long-term decline of the Amazon carbon sink, Nature, 519, 344–348, https://doi.org/10.1038/nature14283, 2015. a, b
Burba, G.: Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates, LI-COR Biosciences, ISBN 978-0-61576827-4, https://doi.org/10.13140/RG.2.1.4247.8561, 2013. a
Caioni, C., Silvério, D. V., Macedo, M. N., Coe, M. T., and Brando, P. M.: Droughts amplify differences between the energy balance components of Amazon forests and croplands, Remote Sens., 12, 525, https://doi.org/10.3390/rs12030525, 2020. a
Carswell, F. E., Costa, A. L., Palheta, M., Malhi, Y., Meir, P., Costa, J. d. P. R., Ruivo, M. d. L., Leal, L. d. S. M., Costa, J. M. N., Clement, R. J., and Grace, J.: Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest, J. Geophys. Res.-Atmos., 107, LBA 43-1–LBA 43-16, https://doi.org/10.1029/2000JD000284, 2002. a
Cirino, G., Brito, J., Barbosa, H. M., Rizzo, L. V., Tunved, P., de Sá, S. S., Jimenez, J. L., Palm, B. B., Carbone, S., Lavric, J. V., Souza, R. A., Wolff, S., Walter, D., Tota, J., Oliveira, M. B., Martin, S. T., and Artaxo, P.: Observations of Manaus urban plume evolution and interaction with biogenic emissions in GoAmazon 2014/5, Atmos. Environ., 191, 513–524, https://doi.org/10.1016/j.atmosenv.2018.08.031, 2018. a
Cirino, G. G., Souza, R. A., Adams, D. K., and Artaxo, P.: The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon, Atmos. Chem. Phys., 14, 6523–6543, https://doi.org/10.5194/acp-14-6523-2014, 2014. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v
Cirino, G., Vourlitis, G., Silva, S., and Palácios, R.: Brazil-FluxMet-Stf, Mendeley Data [data set], https://doi.org/10.17632/m5h5fw872g.1, 2023. a, b
Corripio, J. G.: Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain, Int. J. Geogr. Inform. Sci., 17, 1–23, https://doi.org/10.1080/713811744, 2003. a
Corwin, K. A., Corr, C. A., Burkhardt, J., and Fischer, E. V.: Smoke-Driven Changes in Photosynthetically Active Radiation During the U.S. Agricultural Growing Season, J. Geophys. Res.-Atmos., 127, e2022JD037446, https://doi.org/10.1029/2022JD037446, 2022. a
Davidi, A., Koren, I., and Remer, L.: Direct measurements of the effect of biomass burning over the Amazon on the atmospheric temperature profile, Atmos. Chem. Phys., 9, 8211–8221, https://doi.org/10.5194/acp-9-8211-2009, 2009. a
Davison, C. W., Rahbek, C., and Morueta-Holme, N.: Land-use change and biodiversity: Challenges for assembling evidence on the greatest threat to nature, Glob. Change Biol., 27, 5414–5429, https://doi.org/10.1111/gcb.15846, 2021. a
de Magalhães, N., Evangelista, H., Condom, T., Rabatel, A., and Ginot, P.: Amazonian Biomass Burning Enhances Tropical Andean Glaciers Melting, Sci. Rep., 9, 1–12, https://doi.org/10.1038/s41598-019-53284-1, 2019. a
de Sá, S. S., Rizzo, L. V., Palm, B. B., Campuzano-Jost, P., Day, D. A., Yee, L. D., Wernis, R., Isaacman-VanWertz, G., Brito, J., Carbone, S., Liu, Y. J., Sedlacek, A., Springston, S., Goldstein, A. H., Barbosa, H. M. J., Alexander, M. L., Artaxo, P., Jimenez, J. L., and Martin, S. T.: Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season, Atmos. Chem. Phys., 19, 7973–8001, https://doi.org/10.5194/acp-19-7973-2019, 2019. a, b
Doughty, C. E., Metcalfe, D. B., Girardin, C. A., Amézquita, F. F., Cabrera, D. G., Huasco, W. H., Silva-Espejo, J. E., Araujo-Murakami, A., Da Costa, M. C., Rocha, W., Feldpausch, T. R., Mendoza, A. L., Da Costa, A. C., Meir, P., Phillips, O. L., and Malhi, Y.: Drought impact on forest carbon dynamics and fluxes in Amazonia, Nature, 519, 78–82, https://doi.org/10.1038/nature14213, 2015. a
Drugé, T., Nabat, P., Mallet, M., Michou, M., Rémy, S., and Dubovik, O.: Modeling radiative and climatic effects of brown carbon aerosols with the ARPEGE-Climat global climate model, Atmos. Chem. Phys., 22, 12167–12205, https://doi.org/10.5194/acp-22-12167-2022, 2022. a
Duchon, C. E. and O'Malley, M. S.: Estimating Cloud Type from Pyranometer Observations, J. Appl. Meteorol., 38, 132–141, https://doi.org/10.1175/1520-0450(1999)038<0132:ECTFPO>2.0.CO;2, 1999. a
Durand, M., Murchie, E. H., Lindfors, A. V., Urban, O., Aphalo, P. J., and Robson, T. M.: Diffuse solar radiation and canopy photosynthesis in a changing environment, Agr. Forest Meteorol., 311, 108684, https://doi.org/10.1016/j.agrformet.2021.108684, 2021. a
Finnigan, J.: The storage term in eddy flux calculations, Agr. Forest Meteorol., 136, 108–113, https://doi.org/10.1016/j.agrformet.2004.12.010, 2006. a
Freedman, J. M., Fitzjarrald, D. R., Moore, K. E., and Sakai, R. K.: Boundary Layer Clouds and Vegetation–Atmosphere Feedbacks, J. Clim., 14, 180–197, https://doi.org/10.1175/1520-0442(2001)013<0180:BLCAVA>2.0.CO;2, 2001. a
Fu, Z., Gerken, T., Bromley, G., Araújo, A., Bonal, D., Burban, B., Ficklin, D., Fuentes, J. D., Goulden, M., Hirano, T., Kosugi, Y., Liddell, M., Nicolini, G., Niu, S., Roupsard, O., Stefani, P., Mi, C., Tofte, Z., Xiao, J., Valentini, R., Wolf, S., and Stoy, P. C.: The surface-atmosphere exchange of carbon dioxide in tropical rainforests: Sensitivity to environmental drivers and flux measurement methodology, Agr. Forest Meteorol., 263, 292–307, https://doi.org/10.1016/j.agrformet.2018.09.001, 2018. a
Fuentes, J. D., Chamecki, M., Dos Santos, R. M. N., Von Randow, C., Stoy, P. C., Katul, G., Fitzjarrald, D., Manzi, A., Gerken, T., Trowbridge, A., Freire, L. S., Ruiz-Plancarte, J., Maia, J. M. F., Tóta, J., Dias, N., Fisch, G., Schumacher, C., Acevedo, O., Mercer, J. R., and Yañez-Serrano, A. M.: Linking meteorology, turbulence, and air chemistry in the amazon rain forest, Bull. Am. Meteorol. Soc., 97, 2329–2342, https://doi.org/10.1175/BAMS-D-15-00152.1, 2016. a
Gao, Y., Zhang, Z., Chen, J., McNulty, S., Xu, H., Chen, L., Chen, Z., and Jin, Z.: Atmospheric aerosols elevated ecosystem productivity of a poplar plantation in Beijing, China, Can. J. Forest Res., 51, 1440–1449, https://doi.org/10.1139/cjfr-2020-0396, 2021. a, b
Gates, D. M.: Biophysical Ecology, Springer New York, NY, ISBN 9781461260264, https://doi.org/10.1007/978-1-4612-6024-0, 1980. a
Gatti, L. V., Gloor, M., Miller, J. B., Doughty, C. E., Malhi, Y., Domingues, L. G., Basso, L. S., Martinewski, A., Correia, C. S., Borges, V. F., Freitas, S., Braz, R., Anderson, L. O., Rocha, H., Grace, J., Phillips, O. L., and Lloyd, J.: Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements, Nature, 506, 76–80, https://doi.org/10.1038/nature12957, 2014. a, b
Gatti, L. V., Basso, L. S., Miller, J. B., Gloor, M., Gatti Domingues, L., Cassol, H. L., Tejada, G., Aragão, L. E., Nobre, C., Peters, W., Marani, L., Arai, E., Sanches, A. H., Corrêa, S. M., Anderson, L., Von Randow, C., Correia, C. S., Crispim, S. P., and Neves, R. A.: Amazonia as a carbon source linked to deforestation and climate change, Nature, 595, 388–393, https://doi.org/10.1038/s41586-021-03629-6, 2021. a, b, c, d
Grace, J., Malhi, Y., Lloyd, J., McIntyre, J., Miranda, A. C., Meir, P., and Miranda, H. S.: The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest, Glob. Change Biol., 2, 209–217, https://doi.org/10.1111/j.1365-2486.1996.tb00073.x, 1996. a
Green, J. K., Berry, J., Ciais, P., Zhang, Y., and Gentine, P.: Amazon rainforest photosynthesis increases in response to atmospheric dryness, Sci. Adv., 6, eabb7232, https://doi.org/10.1126/sciadv.abb7232, 2020. a
Gu, L., Fuentes, J. D., Shugart, H. H., Staebler, R. M., and Black, T. A.: Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: Results from two North American deciduous forests, J. Geophys. Res.-Atmos., 104, 31421–31434, https://doi.org/10.1029/1999JD901068, 1999. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u
Gu, L., Fuentes, J. D., Garstang, M., Silva, J. T. D., Heitz, R., Sigler, J., and Shugart, H. H.: Cloud modulation of surface solar irradiance at a pasture site in Southern Brazil, Agr. Forest Meteorol., 106, 117–129, https://doi.org/10.1016/S0168-1923(00)00209-4, 2001. a, b, c
Gu, L., Baldocchi, D. D., Wofsy, S. C., Munger, J. W., Michalsky, J. J., Urbanski, S. P., and Boden, T. A.: Response of a Deciduous Forest to the Mount Pinatubo Eruption: Enhanced Photosynthesis, Science, 299, 2035–2038, https://doi.org/10.1126/science.1078366, 2003. a, b
Helliker, B. R. and Ehleringer, J. R.: Establishing a grassland signature in veins: 18O in the leaf water of C3 and C4 grasses, P. Natl. Acad. Sci. USA, 97, 7894–7898, https://doi.org/10.1073/pnas.97.14.7894, 2000. a
Hofhansl, F., Andersen, K. M., Fleischer, K., Fuchslueger, L., Rammig, A., Schaap, K. J., Valverde-Barrantes, O. J., and Lapola, D. M.: Amazon forest ecosystem responses to elevated atmospheric CO2 and alterations in nutrient availability: Filling the gaps with model-experiment integration, Front. Earth Sci., 4, 1–9, https://doi.org/10.3389/feart.2016.00019, 2016. a
Holanda, B. A., Franco, M. A., Walter, D., Artaxo, P., Carbone, S., Cheng, Y., Chowdhury, S., Ditas, F., Gysel-Beer, M., Klimach, T., Kremper, L. A., Krüger, O. O., Lavric, J. V., Lelieveld, J., Ma, C., Machado, L. A. T., Modini, R. L., Morais, F. G., Pozzer, A., Saturno, J., Su, H., Wendisch, M., Wolff, S., Pöhlker, M. L., Andreae, M. O., Pöschl, U., and Pöhlker, C.: African biomass burning affects aerosol cycling over the Amazon, Commun. Earth Environ., 4, 154, https://doi.org/10.1038/s43247-023-00795-5, 2023. a
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET – A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5, 1998. a
Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A., Daniels, A. K., Ewango, C. E., Fauset, S., Mukinzi, J. M., Sheil, D., Sonké, B., Sullivan, M. J., Sunderland, T. C., Taedoumg, H., Thomas, S. C., White, L. J., Abernethy, K. A., Adu-Bredu, S., Amani, C. A., Baker, T. R., Banin, L. F., Baya, F., Begne, S. K., Bennett, A. C., Benedet, F., Bitariho, R., Bocko, Y. E., Boeckx, P., Boundja, P., Brienen, R. J., Brncic, T., Chezeaux, E., Chuyong, G. B., Clark, C. J., Collins, M., Comiskey, J. A., Coomes, D. A., Dargie, G. C., de Haulleville, T., Kamdem, M. N. D., Doucet, J. L., Esquivel-Muelbert, A., Feldpausch, T. R., Fofanah, A., Foli, E. G., Gilpin, M., Gloor, E., Gonmadje, C., Gourlet-Fleury, S., Hall, J. S., Hamilton, A. C., Harris, D. J., Hart, T. B., Hockemba, M. B., Hladik, A., Ifo, S. A., Jeffery, K. J., Jucker, T., Yakusu, E. K., Kearsley, E., Kenfack, D., Koch, A., Leal, M. E., Levesley, A., Lindsell, J. A., Lisingo, J., Lopez-Gonzalez, G., Lovett, J. C., Makana, J. R., Malhi, Y., Marshall, A. R., Martin, J., Martin, E. H., Mbayu, F. M., Medjibe, V. P., Mihindou, V., Mitchard, E. T., Moore, S., Munishi, P. K., Bengone, N. N., Ojo, L., Ondo, F. E., Peh, K. S., Pickavance, G. C., Poulsen, A. D., Poulsen, J. R., Qie, L., Reitsma, J., Rovero, F., Swaine, M. D., Talbot, J., Taplin, J., Taylor, D. M., Thomas, D. W., Toirambe, B., Mukendi, J. T., Tuagben, D., Umunay, P. M., van der Heijden, G. M., Verbeeck, H., Vleminckx, J., Willcock, S., Wöll, H., Woods, J. T., and Zemagho, L.: Asynchronous carbon sink saturation in African and Amazonian tropical forests, Nature, 579, 80–87, https://doi.org/10.1038/s41586-020-2035-0, 2020. a
Huntingford, C., Zelazowski, P., Galbraith, D., Mercado, L. M., Sitch, S., Fisher, R., Lomas, M., Walker, A. P., Jones, C. D., Booth, B. B., Malhi, Y., Hemming, D., Kay, G., Good, P., Lewis, S. L., Phillips, O. L., Atkin, O. K., Lloyd, J., Gloor, E., Zaragoza-Castells, J., Meir, P., Betts, R., Harris, P. P., Nobre, C., Marengo, J., and Cox, P. M.: Simulated resilience of tropical rainforests to CO2 – induced climate change, Nat. Geosci., 6, 268–273, https://doi.org/10.1038/ngeo1741, 2013. a, b
Jing, X., Huang, J., Wang, G., Higuchi, K., Bi, J., Sun, Y., Yu, H., and Wang, T.: The effects of clouds and aerosols on net ecosystem CO2 exchange over semi-arid Loess Plateau of Northwest China, Atmos. Chem. Phys., 10, 8205–8218, https://doi.org/10.5194/acp-10-8205-2010, 2010. a, b, c, d, e, f, g, h, i, j, k
Junior, C. H. L. S., Aragão, L. E. O. C., Anderson, L. O., Fonseca, M. G., Shimabukuro, Y. E., Vancutsem, C., Achard, F., Beuchle, R., Numata, I., Silva, C. A., Maeda, E. E., Longo, M., and Saatchi, S. S.: Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses, Sci. Adv., 6, eaaz8360, https://doi.org/10.1126/sciadv.aaz8360, 2020. a
Kanniah, K. D., Beringer, J., North, P., and Hutley, L.: Control of atmospheric particles on diffuse radiation and terrestrial plant productivity: A review, Prog. Phys. Geogr., 36, 209–237, https://doi.org/10.1177/0309133311434244, 2012. a
Koren, I., Dagan, G., and Altaratz, O.: From aerosol-limited to invigoration of warm convective clouds, Science, 344, 1143–1146, https://doi.org/10.1126/science.1252595, 2014. a
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013. a
Lorenzi, H.: Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, no. v.2 in Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, Instituto Plantarum de Estudos da Flora, ISBN 9788586714146, https://books.google.com.br/books?id=UN4sAQAAMAAJ (last access: 25 July 2022), 2002. a
Venturini, A. M., Gontijo, J. B., Mandro, J. A., Berenguer, E., Peay, K. G., Tsai, S. M., and Bohannan, B. J. B.: Soil microbes under threat in the Amazon Rainforest, Trend. Ecol. Evol., 38, 693–696, https://doi.org/10.1016/j.tree.2023.04.014, 2023. a
Malavelle, F. F., Haywood, J. M., Mercado, L. M., Folberth, G. A., Bellouin, N., Sitch, S., and Artaxo, P.: Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model, Atmos. Chem. Phys., 19, 1301–1326, https://doi.org/10.5194/acp-19-1301-2019, 2019. a, b, c
Malhi, Y.: The productivity, metabolism and carbon cycle of tropical forest vegetation, J. Ecol., 100, 65–75, https://doi.org/10.1111/j.1365-2745.2011.01916.x, 2012. a
Malhi, Y., Melack, J., Gatti, L. V., Ometto, J. P., Kesselmeier, J., Wolff, S., Aragão, L. E. O., Costa, M. H., Saleska, S. R., Pangala, S., Basso, L. S., Rizzo, L., de Araújo, A. C., Restrepo-Coupe, N., and Silva Junior, C. H. L.: Biogeochemical Cycles in the Amazon, Chap. 6, United Nations Sustainable Development Solutions Network, New York, USA, ISBN 9781734808001, https://doi.org/10.55161/takr3454, 2021. a
Martin, S. T., Andreae, M. O., Althausen, D., Artaxo, P., Baars, H., Borrmann, S., Chen, Q., Farmer, D. K., Guenther, A., Gunthe, S. S., Jimenez, J. L., Karl, T., Longo, K., Manzi, A., Müller, T., Pauliquevis, T., Petters, M. D., Prenni, A. J., Pöschl, U., Rizzo, L. V., Schneider, J., Smith, J. N., Swietlicki, E., Tota, J., Wang, J., Wiedensohler, A., and Zorn, S. R.: An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08), Atmos. Chem. Phys., 10, 11415–11438, https://doi.org/10.5194/acp-10-11415-2010, 2010a. a
Martin, S. T., Andreae, M. O., Artaxo, P., Baumgardner, D., Chen, Q., Goldstein, A. H., Guenther, A., Heald, C. L., Mayol-Bracero, O. L., McMurry, P. H., Pauliquevis, T., Pschl, U., Prather, K. A., Roberts, G. C., Saleska, S. R., Silva Dias, M. A., Spracklen, D. V., Swietlicki, E., and Trebs, I.: Sources and properties of Amazonian aerosol particles, Rev. Geophys., 48, 42 pp., https://doi.org/10.1029/2008RG000280, 2010b. a
MATLAB: version 9.8.8.748 (R2013a), The MathWorks Inc., Natick, Massachusetts, https://www.mathworks.com (last access: 12 February 2024), 2013. a
Mercado, L. M., Bellouin, N., Sitch, S., Boucher, O., Huntingford, C., Wild, M., and Cox, P. M.: Impact of changes in diffuse radiation on the global land carbon sink, Nature, 458, 1014–1017, https://doi.org/10.1038/nature07949, 2009. a, b, c, d
Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., and Moreno, J.: Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications, Remote Sens. Environ., 113, 2037–2051, https://doi.org/10.1016/j.rse.2009.05.003, 2009. a
Meyers, T. P. and Dale, R. F.: Predicting daily insolation with hourly cloud height and coverage, J. Appl. Meteorol. Climatol., 22, 537–545, https://doi.org/10.1175/1520-0450(1983)022<0537:PDIWHC>2.0.CO;2, 1983. a
Min, Q.: Impacts of aerosols and clouds on forest-atmosphere carbon exchange, J. Geophys. Res.-Atmos., 110, D06203, https://doi.org/10.1029/2004JD004858, 2005. a
Montagnani, L., Grünwald, T., Kowalski, A., Mammarella, I., Merbold, L., Metzger, S., Sedlák, P., and Siebicke, L.: Estimating the storage term in eddy covariance measurements: The ICOS methodology, Int. Agrophys., 32, 551–567, https://doi.org/10.1515/intag-2017-0037, 2018. a
Moreira, D. S., Freitas, S. R., Bonatti, J. P., Mercado, L. M., Rosário, N. M. É., Longo, K. M., Miller, J. B., Gloor, M., and Gatti, L. V.: Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model (JULES-CCATT-BRAMS1.0): applications to numerical weather forecasting and the CO2 budget in South America, Geosci. Model Dev., 6, 1243–1259, https://doi.org/10.5194/gmd-6-1243-2013, 2013. a
Moreira, D. S., Longo, K. M., Freitas, S. R., Yamasoe, M. A., Mercado, L. M., Rosário, N. E., Gloor, E., Viana, R. S., Miller, J. B., Gatti, L. V., Wiedemann, K. T., Domingues, L. K., and Correia, C. C.: Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region, Atmos. Chem. Phys., 17, 14785–14810, https://doi.org/10.5194/acp-17-14785-2017, 2017. a, b, c, d, e, f, g, h
Morgan, W. T., Darbyshire, E., Spracklen, D. V., Artaxo, P., and Coe, H.: Non-deforestation drivers of fires are increasingly important sources of aerosol and carbon dioxide emissions across Amazonia, Sci. Rep., 9, 1–15, https://doi.org/10.1038/s41598-019-53112-6, 2019. a
Murphy, P. G. and Lugo, A. E.: Ecology of tropical dry forest, Annu. Rev. Ecol. Syst., 17, 67–88, https://doi.org/10.1146/annurev.es.17.110186.000435, 1986. a
Nagy, L., Artaxo, P., and Forsberg, B. R.: Interactions Between Biosphere, Atmosphere, and Human Land Use in the Amazon Basin: An Introduction, Springer Berlin, Heidelberg, ISBN 9783662499009, https://doi.org/10.1007/978-3-662-49902-3_1, 2016. a
Nagy, R. C., Porder, S., Brando, P., Davidson, E. A., Figueira, A. M. E. S., Neill, C., Riskin, S., and Trumbore, S.: Soil Carbon Dynamics in Soybean Cropland and Forests in Mato Grosso, Brazil, J. Geophys. Res.-Biogeo., 123, 18–31, https://doi.org/10.1002/2017JG004269, 2018. a
Nepstad, D., McGrath, D., Stickler, C., Alencar, A., Azevedo, A., Swette, B., Bezerra, T., DiGiano, M., Shimada, J., Da Motta, R. S., Armijo, E., Castello, L., Brando, P., Hansen, M. C., McGrath-Horn, M., Carvalho, O., and Hess, L.: Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains, Science, 344, 1118–1123, https://doi.org/10.1126/science.1248525, 2014. a, b
Niyogi, D., Chang, H. I., Saxena, V. K., Holt, T., Alapaty, K., Booker, F., Chen, F., Davis, K. J., Holben, B., Matsui, T., Meyers, T., Oechel, W. C., Pielke, R. A., Wells, R., Wilson, K., and Xue, Y.: Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes, Geophys. Res. Lett., 31, 1–5, https://doi.org/10.1029/2004GL020915, 2004. a, b, c
Nogueira, E. M., Nelson, B. W., Fearnside, P. M., França, M. B., and de Oliveira, Á. C. A.: Tree height in Brazil's “arc of deforestation”: Shorter trees in south and southwest Amazonia imply lower biomass, Forest Ecol. Manag., 255, 2963–2972, https://doi.org/10.1016/j.foreco.2008.02.002, 2008. a
Oliveira, M. I., Acevedo, O. C., Sörgel, M., Nascimento, E. L., Manzi, A. O., Oliveira, P. E. S., Brondani, D. V., Tsokankunku, A., and Andreae, M. O.: Planetary boundary layer evolution over the Amazon rainforest in episodes of deep moist convection at the Amazon Tall Tower Observatory, Atmos. Chem. Phys., 20, 15–27, https://doi.org/10.5194/acp-20-15-2020, 2020. a
Oliveira, P. H., Artaxo, P., Pires, C., De Lucca, S., Procópio, A., Holben, B., Schafer, J., Cardoso, L. F., Wofsy, S. C., and Rocha, H. R.: The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia, Tellus B, 59, 338–349, https://doi.org/10.1111/j.1600-0889.2007.00270.x, 2007. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Oliveira, P. S. and Marquis, R. J.: The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna, Columbia University Press New York, http://www.jstor.org/stable/10.7312/oliv12042 (last access: 25 July 2022), 2002. a
Ometto, J., Kalaba, K., Anshari, G., Chacón, N., Farrell, A., Halim, S., Neufeldt, H., and Sukumar, R.: Cross, Chap. 7, Tropical Forests, 2369–2410, Cambridge University Press, Cambridge, UK and New York, USA, ISBN 9781009325844, https://doi.org/10.1017/9781009325844.024.2369, 2022. a
Palácios, R. d. S., Romera, K. S., Curado, L. F. A., Banga, N. M., Rothmund, L. D., Sallo, F. d. S., Morais, D., Santos, A. C. A., Moraes, T. J., Morais, F. G., Landulfo, E., Franco, M. A. d. M., Kuhnen, I. A., Marques, J. B., Nogueira, J. d. S., Júnior, L. C. G. d. V., and Rodrigues, T. R.: Long Term Analysis of Optical and Radiative Properties of Aerosols in the Amazon Basin, Aerosol Air Qual. Res., 20, 139–154, https://doi.org/10.4209/aaqr.2019.04.0189, 2020. a
Pan, Y.: A large and persistent carbon sink in the world's forests, Science, 333, 988–993, 2011. a
Prado, D. E. and Gibbs, P. E.: Patterns of Species Distributions in the Dry Seasonal Forests of South America, Ann. Mo. Bot. Gard., 80, 902–927, https://doi.org/10.2307/2399937, 1993. a
Procopio, A. S., Artaxo, P., Kaufman, Y. J., Remer, L. A., Schafer, J. S., and Holben, B. N.: Multiyear analysis of amazonian biomass burning smoke radiative forcing of climate, Geophys. Res. Lett., 31, 1–4, https://doi.org/10.1029/2003GL018646, 2004. a
Rap, A., Scott, C. E., Reddington, C. L., Mercado, L., Ellis, R. J., Garraway, S., Evans, M. J., Beerling, D. J., MacKenzie, A. R., Hewitt, C. N., and Spracklen, D. V.: Enhanced global primary production by biogenic aerosol via diffuse radiation fertilization, Nat. Geosci., 11, 640–644, https://doi.org/10.1038/s41561-018-0208-3, 2018. a, b, c, d, e
Ratter, J. A., Askew, G. P., Montgomery, R. F., and Gifford, D. R.: Observations on the vegetation of northeastern Mato Grosso II. Forests and soils of the Rio Suiá–Missu area., P. Roy. Soc. Lond. B, 203, 191–208, https://doi.org/10.1098/rspb.1978.0100, 1978. a
Reboita, M. S., Krusche, N., Ambrizzi, T., Porfírio, R., and Rocha, D.: Entendendo o Tempo e o Clima na América do Sul, Terra e Didatica, 8, 34–50, 2012. a
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Glob. Change Biol., 11, 1424–1439, https://doi.org/10.1111/j.1365-2486.2005.001002.x, 2005. a
Reindl, D., Beckman, W., and Duffie, J.: Diffuse fraction correlations, Sol. Energy, 45, 1–7, https://doi.org/10.1016/0038-092X(90)90060-P, 1990. a
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., Li, R. R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T. F., Vermote, E., and Holben, B. N.: The MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 62, 947–973, https://doi.org/10.1175/JAS3385.1, 2005. a
Remer, L. A., Mattoo, S., Levy, R. C., and Munchak, L. A.: MODIS 3 km aerosol product: algorithm and global perspective, Atmos. Meas. Tech., 6, 1829–1844, https://doi.org/10.5194/amt-6-1829-2013, 2013. a, b, c
Cheng, R., KÖhler, P., and Frankenberg, C.: Impact of radiation variations on temporal upscaling of instantaneous Solar-Induced Chlorophyll Fluorescence, Agr. Forest Meteorol., 327, 109197, https://doi.org/10.1016/j.agrformet.2022.109197, 2022. a
Saatchi, S., Longo, M., Xu, L., Yang, Y., Abe, H., André, M., Aukema, J. E., Carvalhais, N., Cadillo-Quiroz, H., Cerbu, G. A., Chernela, J. M., Covey, K., Sánchez-Clavijo, L. M., Cubillos, I. V., Davies, S. J., De Sy, V., De Vleeschouwer, F., Duque, A., Sybille Durieux, A. M., De Avila Fernandes, K., Fernandez, L. E., Gammino, V., Garrity, D. P., Gibbs, D. A., Gibbon, L., Gowae, G. Y., Hansen, M., Lee Harris, N., Healey, S. P., Hilton, R. G., Johnson, C. M., Kankeu, R. S., Laporte-Goetz, N. T., Lee, H., Lovejoy, T., Lowman, M., Lumbuenamo, R., Malhi, Y., Albert Martinez, J. M. M., Nobre, C., Pellegrini, A., Radachowsky, J., Román, F., Russell, D., Sheil, D., Smith, T. B., Spencer, R. G., Stolle, F., Tata, H. L., Torres, D. d. C., Tshimanga, R. M., Vargas, R., Venter, M., West, J., Widayati, A., Wilson, S. N., Brumby, S., and Elmore, A. C.: Detecting vulnerability of humid tropical forests to multiple stressors, One Earth, 4, 988–1003, https://doi.org/10.1016/j.oneear.2021.06.002, 2021. a
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S., White, L., Silman, M., and Morel, A.: Benchmark map of forest carbon stocks in tropical regions across three continents, P. Natl Acad. Sci. USA, 108, 9899–9904, https://doi.org/10.1073/pnas.1019576108, 2011. a
Schafer, J. S., Eck, T. F., Holben, B. N., Artaxo, P., and Duarte, A. F.: Characterization of the optical properties of atmospheric aerosols in Amazônia from long-term AERONET monitoring (1993–1995 and 1999–2006), J. Geophys. Res.-Atmos., 113, 1–16, https://doi.org/10.1029/2007JD009319, 2008. a
Schuepp, P. H., Leclerc, M. Y., MacPherson, J. I., and Desjardins, R. L.: Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation, Bound.-Lay. Meteorol., 50, 355–373, https://doi.org/10.1007/BF00120530, 1990. a
Shilling, J. E., Pekour, M. S., Fortner, E. C., Artaxo, P., de Sá, S., Hubbe, J. M., Longo, K. M., Machado, L. A. T., Martin, S. T., Springston, S. R., Tomlinson, J., and Wang, J.: Aircraft observations of the chemical composition and aging of aerosol in the Manaus urban plume during GoAmazon 2014/5, Atmos. Chem. Phys., 18, 10773–10797, https://doi.org/10.5194/acp-18-10773-2018, 2018. a
Sinyuk, A., Holben, B. N., Eck, T. F., Giles, D. M., Slutsker, I., Korkin, S., Schafer, J. S., Smirnov, A., Sorokin, M., and Lyapustin, A.: The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2, Atmos. Meas. Tech., 13, 3375–3411, https://doi.org/10.5194/amt-13-3375-2020, 2020. a, b
Spitters, C. J., Toussaint, H. A., and Goudriaan, J.: Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis, Part I: Components of incoming radiation, Agr. Forest Meteorol., 38, 217–229, https://doi.org/10.1016/0168-1923(86)90060-2, 1986. a, b
Sullivan, M. J. P., Lewis, S. L., Affum-Baffoe, K., Castilho, C., Costa, F., Sanchez, A. C., Ewango, C. E. N., Hubau, W., Marimon, B., Monteagudo-Mendoza, A., Qie, L., Sonké, B., Martinez, R. V., Baker, T. R., Brienen, R. J. W., Feldpausch, T. R., Galbraith, D., Gloor, M., Malhi, Y., Aiba, S.-I., Alexiades, M. N., Almeida, E. C., de Oliveira, E. A., Dávila, E. Á., Loayza, P. A., Andrade, A., Vieira, S. A., Aragão, L., Araujo-Murakami, A., Arets, E. J. M. M., Arroyo, L., Ashton, P., C., G. A., Baccaro, F. B., Banin, L. F., Baraloto, C., Camargo, P. B., Barlow, J., Barroso, J., Bastin, J.-F., Batterman, S. A., Beeckman, H., Begne, S. K., Bennett, A. C., Berenguer, E., Berry, N., Blanc, L., Boeckx, P., Bogaert, J., Bonal, D., Bongers, F., Bradford, M., Brearley, F. Q., Brncic, T., Brown, F., Burban, B., Camargo, J. L., Castro, W., Céron, C., Ribeiro, S. C., Moscoso, V. C., Chave, J., Chezeaux, E., Clark, C. J., de Souza, F. C., Collins, M., Comiskey, J. A., Valverde, F. C., Medina, M. C., da Costa, L., Danˇcák, M., Dargie, G. C., Davies, S., Cardozo, N. D., Thales de Haulleville, de Medeiros, M. B., Pasquel, J. d. A., Derroire, G., Fiore, A. D., Doucet, J.-L., Dourdain, A., Droissart, V., Duque, L. F., Ekoungoulou, R., Elias, F., Erwin, T., Esquivel-Muelbert, A., Fauset, S., Ferreira, J., Llampazo, G. F., Foli, E., Ford, A., Gilpin, M., Hall, J. S., Hamer, K. C., Hamilton, A. C., Harris, D. J., Hart, T. B., Hédl, R., Herault, B., Herrera, R., Higuchi, N., Hladik, A., Eurídice Honorio Coronado, Huamantupa-Chuquimaco, I., Huasco, W. H., Jeffery, K. J., Jimenez-Rojas, E., Kalamandeen, M., Kamdem, M.-N., Kearsley, E., Umetsu, R. K., Khoon, L. K. K., Killeen, T., Kitayama, K., Klitgaard, B., Koch, A., Labrière, N., Laurance, W., Laurance, S., Leal, M. E., Levesley, A., Lima, A. J. N., Lisingo, J., Pontes-Lopes, A., Lopez-Gonzalez, G., Lovejoy, T., Lovett, J., Lowe, R., Magnusson, W. E., Malumbres-Olarte, J., Manzatto, Â. G., Jr., B. H. M., Marshall, A. R., Marthews, T., Reis, S. M. d. A., Maycock, C., Melgaço, K., Mendoza, C., Metali, F., Mihindou, V., Milliken, W., Mitchard, E., Morandi, P. S., Mossman, H. L., Nagy, L., Nascimento, H., Neill, D., Nilus, R., Vargas, P. N., Palacios, W., Camacho, N. P., Peacock, J., Pendry, C., Mora, M. C. P., Pickavance, G. C., Pipoly, J., Pitman, N., Playfair, M., Poorter, L., Poulsen, J. R., Poulsen, A. D., Preziosi, R., Prieto, A., Richard Primack, Ramírez-Angulo, H., Reitsma, J., Réjou-Méchain, M., Correa, Z. R., de Sousa, T. R., Bayona, L. R., Roopsind, A., Rudas, A., Rutishauser, E., Salim, K. A., Salomão, R. P., Schietti, J., Sheil, D., Silva, R. C., Espejo, J. S., Valeria, C. S., Silveira, M., Simo-Droissart, M., Simon, M. F., Singh, J., Shareva, Y. C. S., Stahl, C., Stropp, J., Sukri, R., Sunderland, T., Svátek, M., Swaine, M. D., Swamy, V., Taedoumg, H., Talbot, J., James Taplin, Taylor, D., ter Steege, H., Terborgh, J., Thomas, R., Thomas, S. C., Torres-Lezama, A., Umunay, P., Gamarra, L. V., van der Heijden, G., van der Hout, P., van der Meer, P. J., van Nieuwstadt, M., Verbeeck, H., Vernimmen, R., Vicentini, A., Vieira, I. C. G., Torre, E. V., Vleminckx, J., Vos, V. A., Wang, O., White, L. J. T., Willcock, S., Woods, J. T., Wortel, V., Young, K., Zagt, R., Zemagho, L., Zuidema, P. A., Zwerts, J. A., and Phillips, O. L.: Long-term thermal sensitivity of Earth's tropical forests, Science, 368, 869–874, https://doi.org/10.1126/science.aaw7578, 2020. a
von Randow, C., Manzi, A. O., Kruijt, B., de Oliveira, P. J., Zanchi, F. B., Silva, R. L., Hodnett, M. G., Gash, J. H., Elbers, J. A., Waterloo, M. J., Cardoso, F. L., and Kabat, P.: Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia, Theor. Appl. Climatol., 78, 5–26, https://doi.org/10.1007/s00704-004-0041-z, 2004. a, b
Vourlitis, G. L., Priante Filho, N., Hayashi, M. M., Nogueira, J. D. S., Caseiro, F. T., and Holanda Campelo, J.: Seasonal variations in the net ecosystem CO2 exchange of a mature Amazonian transitional tropical forest (cerradão), Funct. Ecol., 15, 388–395, https://doi.org/10.1046/j.1365-2435.2001.00535.x, 2001. a, b
Vourlitis, G. L., Priante Filho, N., Hayashi, M. M., Nogueira, J. D. S., Caseiro, F. T., and Campelo, J. H.: Seasonal variations in the evapotranspiration of a transitional tropical forest of Mato Grosso, Brazil, Water Resour. Res., 38, 30-1–30-11, https://doi.org/10.1029/2000wr000122, 2002. a, b, c, d
Vourlitis, G. L., De Almeida Lobo, F., Zeilhofer, P., and De Souza Nogueira, J.: Temporal patterns of net CO2 exchange for a tropical semideciduous forest of the southern Amazon Basin, J. Geophys. Res.-Biogeo., 116, 1–15, https://doi.org/10.1029/2010JG001524, 2011. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t
Wang, X., Wang, C., Wu, J., Miao, G., Chen, M., Chen, S., Wang, S., Guo, Z., Wang, Z., Wang, B., Li, J., Zhao, Y., Wu, X., Zhao, C., Lin, W., Zhang, Y., and Liu, L.: Intermediate Aerosol Loading Enhances Photosynthetic Activity of Croplands, Geophys. Res. Lett., 48, e2020GL091893, https://doi.org/10.1029/2020GL091893, 2021. a
Wang, Z., Wang, C., Wang, X., Wang, B., Wu, J., and Liu, L.: Aerosol pollution alters the diurnal dynamics of sun and shade leaf photosynthesis through different mechanisms, Plant Cell Environ., 45, 2943–2953, https://doi.org/10.1111/pce.14411, 2022. a
Wu, J., Albert, L. P., Lopes, A. P., Restrepo-Coupe, N., Hayek, M., Wiedemann, K. T., Guan, K., Stark, S. C., Christoffersen, B., Prohaska, N., Tavares, J. V., Marostica, S., Kobayashi, H., Ferreira, M. L., Campos, K. S., da Silva, R., Brando, P. M., Dye, D. G., Huxman, T. E., Huete, A. R., Nelson, B. W., and Saleska, S. R.: Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests, Science, 351, 972–976, https://doi.org/10.1126/science.aad5068, 2016. a
Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L., Menzer, O., and Reichstein, M.: Basic and extensible post-processing of eddy covariance flux data with REddyProc, Biogeosciences, 15, 5015–5030, https://doi.org/10.5194/bg-15-5015-2018, 2018. a, b
Yakir, D.: 4.07 – The Stable Isotopic Composition of Atmospheric CO2, in: Treatise on Geochemistry, edited by: Holland, H. D. and Turekian, K. K., 175–212, Pergamon, Oxford, ISBN 978-0-08-043751-4, https://doi.org/10.1016/B0-08-043751-6/04038-X, 2003. a
Yamasoe, M. A., von Randow, C., Manzi, A. O., Schafer, J. S., Eck, T. F., and Holben, B. N.: Effect of smoke and clouds on the transmissivity of photosynthetically active radiation inside the canopy, Atmos. Chem. Phys., 6, 1645–1656, https://doi.org/10.5194/acp-6-1645-2006, 2006. a, b
Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong, W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J. E., Qin, Z., Quine, T., Sitch, S., Smith, W. K., Wang, F., Wu, C., Xiao, Z., and Yang, S.: Increased atmospheric vapor pressure deficit reduces global vegetation growth, Sci. Adv., 5, 1–13, https://doi.org/10.1126/sciadv.aax1396, 2019. a
Zhang, M., Yu, G. R., Zhang, L. M., Sun, X. M., Wen, X. F., Han, S. J., and Yan, J. H.: Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China, Biogeosciences, 7, 711–722, https://doi.org/10.5194/bg-7-711-2010, 2010. a, b
Zhang, Z., Chen, J. M., Zhang, Y., and Li, M.: Improving the ability of solar-induced chlorophyll fluorescence to track gross primary production through differentiating sunlit and shaded leaves, Agr. Forest Meteorol., 341, 109658, https://doi.org/10.1016/j.agrformet.2023.109658, 2023 a
Short summary
The radiative effects of atmospheric particles are still unknown for a wide variety of species and types of vegetation present in Amazonian biomes. We examined the effects of aerosols on solar radiation and their impacts on photosynthesis in an area of semideciduous forest in the southern Amazon Basin. Under highly smoky-sky conditions, our results show substantial photosynthetic interruption (20–70 %), attributed specifically to the decrease in solar radiation and leaf canopy temperature.
The radiative effects of atmospheric particles are still unknown for a wide variety of species...
Altmetrics
Final-revised paper
Preprint