Articles | Volume 22, issue 6
https://doi.org/10.5194/bg-22-1615-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/bg-22-1615-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biological response of eelgrass epifauna, Taylor's Sea hare (Phyllaplysia taylori) and eelgrass isopod (Idotea resecata), to elevated ocean alkalinity
Coastal Sciences Division, Pacific Northwest National Laboratory, Sequim, WA, USA
Coastal Sciences Division, Pacific Northwest National Laboratory, Sequim, WA, USA
Nicholas D. Ward
Coastal Sciences Division, Pacific Northwest National Laboratory, Sequim, WA, USA
School of Oceanography, University of Washington, Seattle, WA, USA
Peter J. Regier
Coastal Sciences Division, Pacific Northwest National Laboratory, Sequim, WA, USA
Mallory C. Ringham
Ebb Carbon, Inc., San Carlos, CA, USA
Matthew D. Eisaman
Department of Earth & Planetary Sciences, Yale University, New Haven, CT, USA
Yale Center for Natural Carbon Capture, Yale University, New Haven, CT, USA
deceased
Related authors
No articles found.
Junyan Ding, Nate McDowell, Vanessa Bailey, Nate Conroy, Donnie J. Day, Yilin Fang, Kenneth M. Kemner, Matthew L. Kirwan, Charlie D. Koven, Matthew Kovach, Patrick Megonigal, Kendalynn A. Morris, Teri O’Meara, Stephanie C. Pennington, Roberta B. Peixoto, Peter Thornton, Mike Weintraub, Peter Regier, Leticia Sandoval, Fausto Machado-Silva, Alice Stearns, Nick Ward, and Stephanie J. Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1544, https://doi.org/10.5194/egusphere-2025-1544, 2025
Short summary
Short summary
We used a vegetation model to study why coastal forests are dying due to rising water levels and what happens to the ecosystem when marshes take over. We found that tree death is mainly caused by water-damaged roots, leading to major changes in the environment, such as reduced water use and carbon storage. Our study helps explain how coastal ecosystems are shifting and offers new ideas to explore in future field research.
James Stegen, Amy J. Burgin, Michelle H. Busch, Joshua B. Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian M. Deines, Julia A. Guimond, Peter Regier, Kenton Rod, Edward K. P. Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin L. Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon N. Sweetman, Jianqiu Zheng, Daniel C. Allen, Elizabeth Herndon, Beth A. Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad F. Patel
Biogeosciences, 22, 995–1034, https://doi.org/10.5194/bg-22-995-2025, https://doi.org/10.5194/bg-22-995-2025, 2025
Short summary
Short summary
The loss and gain of surface water (variable inundation) are common processes across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review the literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024, https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.
Mallory C. Ringham, Nathan Hirtle, Cody Shaw, Xi Lu, Julian Herndon, Brendan R. Carter, and Matthew D. Eisaman
Biogeosciences, 21, 3551–3570, https://doi.org/10.5194/bg-21-3551-2024, https://doi.org/10.5194/bg-21-3551-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement leverages the large surface area and carbon storage capacity of the oceans to store atmospheric CO2 as dissolved bicarbonate. We monitored CO2 uptake in seawater treated with NaOH to establish operational boundaries for carbon removal experiments. Results show that CO2 equilibration occurred on the order of weeks to months, was consistent with values expected from equilibration calculations, and was limited by mineral precipitation at high pH and CaCO3 saturation.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Matthew D. Eisaman, Sonja Geilert, Phil Renforth, Laura Bastianini, James Campbell, Andrew W. Dale, Spyros Foteinis, Patricia Grasse, Olivia Hawrot, Carolin R. Löscher, Greg H. Rau, and Jakob Rønning
State Planet, 2-oae2023, 3, https://doi.org/10.5194/sp-2-oae2023-3-2023, https://doi.org/10.5194/sp-2-oae2023-3-2023, 2023
Short summary
Short summary
Ocean-alkalinity-enhancement technologies refer to various methods and approaches aimed at increasing the alkalinity of seawater. This chapter explores technologies for increasing ocean alkalinity, including electrochemical-based approaches, ocean liming, accelerated weathering of limestone, hydrated carbonate addition, and coastal enhanced weathering, and suggests best practices in research and development.
Manab Kumar Dutta, Krishnan Sreelash, Damodaran Padmalal, Nicholas D. Ward, and Thomas S. Bianchi
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-200, https://doi.org/10.5194/bg-2022-200, 2022
Revised manuscript not accepted
Short summary
Short summary
Indian estuaries contribute to 2.62 % and 1.09 % of global riverine DIC and DOC export to the ocean, respectively. Major Indian estuaries emit ~9718 Gg yr-1 and 3.27 Gg yr-1 of CO2 and CH4 to the atmosphere, respectively, which contributes ~0.67 % and ~0.12 % to global CO2 and CH4 outgassing from estuaries.
Cited articles
Albright, R., Caldeira, L., Hosfelt, J., Kwiatkowski, L., Maclaren, J. K., Mason, B. M., Nebuchina, Y., Ninokawa, A., Pongratz, J., Ricke, K. L., Rivlin, T., Schneider, K., Sesboüé, M., Shamberger, K., Silverman, J., Wolfe, K.., Zhu, K., and Caldeira, K.: Reversal of ocean acidification enhances net coral reef calcification, Nature, 531, 362–365, 2016.
ASTM International: Standard Guide for Conducting Acute Toxicity Tests on Test Materials with Fishes, Macroinvertebrates, and Amphibians, in: Annual Book of Standards, Vol. 11.06, ASTM International, Pennsylvania, USA, 23, https://doi.org/10.1520/E0729-23, 2000.
Beeman, R.: Notes on the California Species of Aplysia (Gastropoda, Opisthobranchia), Veliger, 5, 145–147, 1963.
Best, R. J. and Stachowicz, J. J.: Trophic cascades in seagrass meadows depend on mesograzer variation in feeding rates, predation susceptibility, and abundance, Mar. Ecol. Prog. Ser., 456, 29–42, https://doi.org/10.3354/meps09678, 2012.
Bianucci, L., Long, W., Khangaonkar, T., Pelletier, G., Ahmed, A., Mohamedali, T., Roberts, M., and Figueroa-Kaminsky, C.: Sensitivity of the regional ocean acidification and carbonate system in Puget Sound to ocean and freshwater inputs, Elementa, 6, 22, https://doi.org/10.1525/elementa.151, 2018.
Bridges, C.: Larval development and life history of Phyllaplysia taylori dall (Opistobranchiata: Anaspidea), M.S. Thesis, University of the Pacific, 115 pp., https://scholarlycommons.pacific.edu/uop_etds/1798 (last access: 27 August 2024), 1973.
Comeau, L. A., Sonier, R., Guyondet, T., Landry, T., Ramsay, A., and Davidson, J.: Behavioural response of bivalve molluscs to calcium hydroxide, Aquaculture, 466, 78–85, https://doi.org/10.1016/j.aquaculture.2016.09.045, 2017.
Cotter, E., Regier, P., Walters, E., Ward, N., and Cavagnaro, R. J.: Autonomous measurements of carbon dioxide uptake in a blue carbon habitat, Pacific Northwest National Laboratory, 19 pp., https://doi.org/10.2172/1984287, 2022.
Cripps, G., Widdicombe, S., Spicer, J. I., and Findlay, H. S.: Biological impacts of enhanced alkalinity in Carcinus maenas, Mar. Pollut. Bull., 71, 190–198, https://doi.org/10.1016/j.marpolbul.2013.03.015, 2013.
Cross, J., Sweeney, C., Jewett, E., Feely, R., McElhany, P., Carter, B., Stein, T., Kitch, G., and Gledhill, D.: Strategy for NOAA Carbon Dioxide Removal Research, NOAA, 81 pp., https://doi.org/10.25923/gzke-8730, 2023.
Cyronak, T., Kapsenberg, L., Palter, J., Schulz, K. K. G., and Grasse, P.: Environmental impacts of ocean alkalinity enhancement [Special Issue]. Biogeosciences, 2024.
de Lannoy, C.-F., Eisaman, M.D., Jose, A., Karnitz, S. D., DeVaul, R. W., Hannun, K., and Rivest, J. L. B.: Indirect ocean capture of atmospheric CO2: Part I. Prototype of a negative emissions technology, Int. J. Greenh. Gas Con., 70, 243–253, 2018.
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean Acidification: The Other CO2 Problem, Annu. Rev. Mar. Sci., 1, 169–192, https://doi.org/10.1146/annurev.marine.010908.163834, 2009.
Doney, S. C., Busch, D. S., Cooley, S. R., and Kroeker, K. J.: The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities, Annu. Rev. Env. Resour., 45, 83–112, https://doi.org/10.1146/annurev-environ-012320-083019, 2020.
Eisaman, M. D., Rivest, J. L. B., Karnitz, S. D., De Lannoy, C.-F., Jose, A., DeVaul, R. W., and Hannun, K.: Indirect Ocean Capture of Atmospheric CO2: Part II. Understanding the Cost of Negative Emissions, Int. J. Greenh. Gas Con., 70, 254–261, https://doi.org/10.1016/j.ijggc.2018.02.020, 2018.
Eisaman, M. D., Geilert, S., Renforth, P., Bastianini, L., Campbell, J., Dale, A. W., Foteinis, S., Grasse, P., Hawrot, O., Löscher, C. R., Rau, G. H., and Rønning, J.: Assessing the technical aspects of ocean-alkalinity-enhancement approaches, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 3, https://doi.org/10.5194/sp-2-oae2023-3-2023, 2023.
Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C.: Impacts of ocean acidification on marine fauna and ecosystem processes, ICES J. Mar. Sci., 65, 414–432, https://doi.org/10.1093/icesjms/fsn048, 2008.
Fassbender, A. J., Alin, S. R., Feely, R. A., Sutton, A. J., Newton, J. A., Krembs, C., Bos, J., Keyzers, M., Devol, A., Ruef, W., and Pelletier, G.: Seasonal carbonate chemistry variability in marine surface waters of the US Pacific Northwest, Earth Syst. Sci. Data, 10, 1367–1401, https://doi.org/10.5194/essd-10-1367-2018, 2018.
Feng, E. Y., Koeve, W., Keller, D. P., and Oschlies, A.: Model-Based Assessment of the CO2 Sequestration Potential of Coastal Ocean Alkalinization, Earth's Future, 5, 1252–1266, 2017.
Fox, J. and Weisberg, S.: An R Companion to Applied Regression, 3rd Edn., Sage, Thousand Oaks CA, R [code], https://www.john-fox.ca/Companion/ (last access: 27 August 2024), 2019.
Gore, S., Renforth, P., and Perkins, R.: The potential environmental response to increasing ocean alkalinity for negative emissions, Mitig. Adapt. Strateg. Glob. Change, 24, 1191–1211, https://doi.org/10.1007/s11027-018-9830-z, 2019.
Government of Canada: What is a LD50 and LC50?: https://www.ccohs.ca/oshanswers/chemicals/ld50.html, last access: 29 January 2024.
Hartmann, J., Suitner, N., Lim, C., Schneider, J., Marín-Samper, L., Arístegui, J., Renforth, P., Taucher, J., and Riebesell, U.: Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches–consequences for durability of CO2 storage, Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, 2023.
Harvey, L.: Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions, J. Geophys. Res.-Ocean., 113, C04028, https://doi.org/10.1029/2007JC004373, 2008.
Ho, D. T., Bopp, L., Palter, J. B., Long, M. C., Boyd, P. W., Neukermans, G., and Bach, L. T.: Monitoring, reporting, and verification for ocean alkalinity enhancement, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 12, https://doi.org/10.5194/sp-2-oae2023-12-2023, 2023.
Horwitz, R., Norin, T., Watson, S., Pistevos, J., Beldade, R., Hacquart, S., Gattuso, J-P., Rodolfo-Metalpa, R., Vidal-Dupiol, J., Killen, S., and Mills, S.: Near-future ocean warming and acidification alter foraging behaviour, locomotion, and metabolic rate in a keystone marine mollusc, Sci. Rep., 10, 5461, https://doi.org/10.1038/s41598-020-62304-4, 2020.
Hughes, B. B., Lummis, S. C., Anderson, S. C., and Kroeker, K. J.: Unexpected resilience of a seagrass system exposed to global stressors, Glob. Change Biol., 24, 224–234, https://doi.org/10.1111/gcb.13854, 2017.
Ilyina, T., Wolf-Gladrow, D., Munhoen, G., and Heinze, C.: Assessing the potential of calcium-based artificial ocean akalinization to mitigate rising atmospheric CO2 and ocean acidification, Geophys. Res. Lett., 40, 5909–591, https://doi.org/10.1002/2013GL057981, 2013.
IPCC: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.: Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 3–32, https://doi.org/10.1017/9781009157896.001, 2022.
Jones, K., Hemery, L. G., Ward, N. D., Regier, P. J., Ringham, M. C., and Eisaman, M. D.: Biological response of eelgrass epifauna, Taylor’s Sea hare (Phyllaplysia taylori) and eelgrass isopod (Idotea resecata), to elevated ocean alkalinity from 2023-07-24 to 2023-09-29, National Centers for Environmental Information [data set], https://doi.org/10.25921/53s1-h309, 2025.
Kassambara, A.: Ggpubr: “Ggplot2” Based Publication Ready Plots, R [code], https://rpkgs.datanovia.com/ggpubr/ (last access: 27 August 2024), 2022.
Kassambara, A.: rstatix: Pipe-Friendly Framework for Basic Statistical Tests, R package version 0.7.2, R [code], https://CRAN.R-project.org/package=rstatix (last access: 27 August 2024), 2023.
Kennedy, L. A., Juanes, F., and El-Sabaawi, R.: Eelgrass as Valuable Nearshore Foraging Habitat for Juvenile Pacific Salmon in the Early Marine Period, Mar. Coast Fish., 10, 190–203, https://doi.org/10.1002/mcf2.10018, 2018.
Kheshgi, H. S.: Sequestering atmospheric carbon dioxide by increasing ocean alkalinity, Energy, 20, 915–922, 1995.
Köhler, P., Hartmann, J., and Wolf-Gladrow, D. A.: Geoengineering potential of artificially enhanced silicate weathering of olivine, P. Natl. Acad. Sci. USA, 107, 20228–20233, 2010.
Koschorreck, M., Prairie, Y. T., Kim, J., and Marcé, R.: Technical note: CO2 is not like CH4 – limits of and corrections to the headspace method to analyse pCO2 in fresh water, Biogeosciences, 18, 1619–1627, https://doi.org/10.5194/bg-18-1619-2021 2021.
Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., and Gattuso, J.-P.: Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming, Glob. Change Biol., 19, 1884–1896, https://doi.org/10.1111/gcb.12179, 2013.
Kuris, A., Sadeghian, P., Carlton, J., and Campos, E.: Decapoda, in: The Light and Smith Manual: Intertidal invertebrates from central California to Oregon, University of California Press, 632–656, https://doi.org/10.2307/jj.5973107, 2007.
La Plante, E., Chen, X., Bustillos, S., Bouissonnie, A., Traynor, T., Jassby, D., Corsini, L., Simonetti, D., and Sant, G.: Electrolytic seawater mineralization and the mass balances that demonstrate carbon dioxide removal, ACS EST Engg, https://doi.org/10.1021/acsestengg.3c00004, 2023.
Lewis, J. T. and Boyer, K. E.: Grazer Functional Roles, Induced Defenses, and Indirect Interactions: Implications for Eelgrass Restoration in San Francisco Bay, Diversity, 6, 751–770, https://doi.org/10.3390/d6040751, 2014.
Lu, X., Ringham, M., Hirtle, N., Hillis, K., Shaw, C., Herndon, J., Carter, B. R., and Eisaman, M. D.: Characterization of an Electrochemical Approach to Ocean Alkalinity Enhancement, AGU Fall Meeting Abstracts, 2022AGUFMGC31C..01L, 2022.
Montserrat, F., Renforth, P., Hartmann, J., Leermakers, M., Knops, P., and Meysman, F. J. R.: Olivine dissolution in seawater: implications for CO2 sequestration through enhanced weathering in coastal environments, Environ. Sci. Technol., 51, 3960–3972, 2017.
Moras, C. A., Bach, L. T., Cyronak, T., Joannes-Boyau, R., and Schulz, K. G.: Ocean alkalinity enhancement – avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution, Biogeosciences, 19, 3537–3557, https://doi.org/10.5194/bg-19-3537-2022, 2022.
National Academies of Sciences, Engineering, and Medicine: A Research Strategy for Ocean-based Carbon Dioxide Removal and Sequestration, National Academies Press, 308 pp., https://doi.org/10.17226/26278, 2022.
National Research Council: Effects of Ocean Acidification on the Physiology of Marine Organisms, in: Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean, National Academies Press, 45–58, https://doi.org/10.17226/12904, 2010.
Nduagu, E.: Production of Mg(OH)2 from Mg-silicate rock for CO2 mineral sequestration, Dissertation for Abo Akademi University, ISBN: 978-952-12-2821-6, 2012.
Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P. (Eds.): Guide to Best Practices in Ocean Alkalinity Enhancement Research, Copernicus Publications, State Planet, 2-oae2023, https://doi.org/10.5194/sp-2-oae2023, 2023.
Pierrot, D., Epitalon, J.-M., Orr, J. C., Lewis, E., and Wallace, D. W. R.: MS Excel program developed for CO2 system calculations – version 3.0, GitHub, https://github.com/dpierrot/co2sys_xl (last access: 27 January 2025), 2021.
Pinheiro, J., Bates, D., and R Core Team: nlme: Linear and Nonlinear Mixed Effects Models, R package version 3.1-164, R [code], https://CRAN.R-project.org/package=nlme (last access: 27 August 2024), 2023.
Portner, H. O., Bock, C., and Reipschläger, A.: Modulation of the Cost of pHi Regulation During Metabolic Depression: A 31P-NMR Study in Invertebrate (Sipunculus Nudus) Isolated Muscle, J. Exp.Biol., 203, 2417–2428, https://doi.org/10.1242/jeb.203.16.2417, 2000.
Quantics Biostatistics: Ecotoxicology – NOEC and LOEC, https://www.quantics.co.uk/blog/ecotoxicology-noec-and-loec/ (last access: 22 August 2024), 2016.
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, R [code], https://www.R-project.org/ (last access: 27 August 2024), 2023.
Rau, G. H.: Electrochemical splitting of calcium carbonate to increase solution alkalinity: Implications for mitigation of carbon dioxide and ocean acidity, Environ. Sci. Technol., 42, 8935–8940, 2008.
Regier, P., Ward, N.D., Izquierdo, A., Baldwin, A.H., Day, D., McElhinny, J., Patel, K., Vargas, R., Zheng, J., Exchange Consortium, and Myers-Pigg, A.: Coastal inundation regime moderates the short-term effects of sediment and soil additions on seawater oxygen and greenhouse gas dynamics: a microcosm experiment, Front. Mar. Sci., 10, 1308590, https://doi.org/10.3389/fmars.2023.1308590, 2023.
Renforth, P. and Henderson, G.: Assessing ocean alkalinity for carbon sequestration, Rev. Geophys., 55, 636–674, 2017.
Ricketts, E. F. and Calvin, J.: Between Pacific tides: Iodetea resecata, in: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd Edn., edited by: Hiebert, T. C., Butler, B. A., and Shanks, A. L.,University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR, account of the habits and habitats of some five hundred of the common, conspicuous seashore invertebrates of the Pacific Coast between Sitka, Alaska, and Northern Mexico, Stanford, Stanford University Press, Stanford, 1952.
Riebesell, U., Basso, D., Geilert, S., Dale, A. W., and Kreuzburg, M.: Mesocosm experiments in ocean alkalinity enhancement research, in: Guide to Best Practices in Ocean Alkalinity Enhancement Research, edited by: Oschlies, A., Stevenson, A., Bach, L. T., Fennel, K., Rickaby, R. E. M., Satterfield, T., Webb, R., and Gattuso, J.-P., Copernicus Publications, State Planet, 2-oae2023, 6, https://doi.org/10.5194/sp-2-oae2023-6-2023, 2023.
Rigopoulos, I., Harrison, A. L., Delimitis, A., Ioannou, I., Efstathiou, A. M., Kyratsi, T., and Oelkers, E. H.: Carbon sequestration via enhanced weathering of peridotites and basalts in seawater, Appl. Geochem., 91, 197–207, 2018.
Ringham, M. C., Hirtle, N., Shaw, C., Lu, X., Herndon, J., Carter, B. R., and Eisaman, M. D.: An assessment of ocean alkalinity enhancement using aqueous hydroxides: kinetics, efficiency, and precipitation thresholds, Biogeosciences, 21, 3551–3570, 2024, https://doi.org/10.5194/bg-21-3551-2024
Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V., Kriegler, E., Riahi, K., van Vuuren, D. P., Doelman, J., Drouet, L., Edmonds, J., Fricko, O., Harmsen, M., Havlík, P., Humpenöder, F., Stehfest, E., and Tavoni, M.: Scenarios towards limiting global mean temperature increase below 1.5 °C, Nat. Clim. Change, 8, 325–332, https://doi.org/10.1038/s41558-018-0091-3, 2018.
Ross, P. M., Parker, L., O'Connor, W. A., and Bailey, E. A.: The Impact of Ocean Acidification on Reproduction, Early Development and Settlement of Marine Organisms, Water, 3, 1005–1030, https://doi.org/10.3390/w3041005, 2011.
Sadro, S.: Arthropoda: Decapoda, in: Identification guide to larval marine invertebrates of the Pacific Northwest, Oregon State University Press, ISBN 9780870715310, 176–178, 2001.
Shaw, C., Ringham, M. C., Lu, X., Carter, B. R., Eisaman, M. D., and Tyka, M.: Understanding the Kinetics of Electrochemically derived Magnesium Hydroxide for Ocean Alkalinity Enhancement, in: AGU Fall Meeting Abstracts, Vol. 2022, Chicago, IL, 12–16 December 2022, GC32I-0713, 2022.
Sherman, K. and DeBruyckere, L.: Eelgrass Habitats on the U.S. West Coast: State of the Knowledge of Eelgrass Ecosystem Services and Eelgrass Extent, Pacific Marine and Estuarine Fish Habitat Partnership for The Nature Conservancy, 67 pp., https://www.pacificfishhabitat.org/wp-content/uploads/2017/09/EelGrass_Report_Final_ForPrint_web.pdf (last access: 30 March 2024), 2018.
Shi, Y. and Li, Y.: Impacts of ocean acidification on physiology and ecology of marine invertebrates: A comprehensive review, Aquat. Ecol., 58, 207–226, https://doi.org/10.1007/s10452-023-10058-2, 2023.
Suitner, N., Faucher, G., Lim, C., Schneider, J., Moras, C. A., Riebesell, U., and Hartmann, J.: Ocean alkalinity enhancement approaches and the predictability of runaway precipitation processes: results of an experimental study to determine critical alkalinity ranges for safe and sustainable application scenarios, Biogeosciences, 21, 4587–4604, https://doi.org/10.5194/bg-21-4587-2024, 2024.
Tanner, R. L., Faye, L. E., and Stillman, J. H.: Temperature and salinity sensitivity of respiration, grazing, and defecation rates in the estuarine eelgrass sea hare, Phyllaplysia taylori, Mar. Biol., 166, 109, https://doi.org/10.1007/s00227-019-3559-4, 2019.
Thayer, G. and Phillips, R.: Importance of Eelgrass Beds in Puget Sound, Mar. Fish. Rev., 39, 18–22, 1977.
Tresguerres, M., Clifford, A. M., Harter, T. S., Roa, J. N., Thies, A. B., Yee, D. P., and Brauner, C. J.: Evolutionary links between intra- and extracellular acid–base regulation in fish and other aquatic animals, J. Exp. Zool., 333, 449–465, https://doi.org/10.1002/jez.2367, 2020.
Tresguerres, M., Kwan, G. T., and Weinrauch, A.: Evolving views of ionic, osmotic and acid–base regulation in aquatic animals, J.Exp. Biol., 226, jeb245747, https://doi.org/10.1242/jeb.245747, 2023.
Tyka, M. D., Arsdale, C. V., and Platt, J. C.: CO2 capture by pumping surface acidity to the deep ocean, Energy Environ. Sci., 15, 786–798, https://doi.org/10.1039/D1EE01532J, 2022.
Wang, H., Pilcher, D. J., Kearney, K. A., Cross, J. N., Shugart, O. M., Eisaman, M. D., and Carter, B. R.: Simulated Impact of Ocean Alkalinity Enhancement on Atmospheric CO2 Removal in the Bering Sea, Earth's Future, 11, e2022EF002816, https://doi.org/10.1029/2022EF002816, 2023.
Welton, L. L. and Miller, M. A.: Isopoda and Tanaidacea: the isopods and allies, in: Intertidal invertebrates of California, edited by: Morris, R. H., Abbott, D. P., and Haderlie, E. C., Stanford University Press, California, 536–558, 1980.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, R [code], ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org (last access: 27 August 2024), 2016.
Wickham, H. and Bryan, J.: readxl: Read Excel Files, R [code], https://readxl.tidyverse.org, https://github.com/tidyverse/readxl (last access: 27 August 2024), 2023.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and Yutani, H.: Welcome to the tidyverse, Journal of Open Source Software, 4, 1686, https://doi.org/10.21105/joss.01686, 2019.
Wickham, H., François, R., Henry, L., Müller, K., and Vaughan, D.: dplyr: A Grammar of Data Manipulation, R package version 1.1.4, R [code], https://github.com/tidyverse/dplyr, https://dplyr.tidyverse.org (last access: 27 August 2024), 2023.
Wood, H., Sköld, H., and Eriksson, S.: Health and population-dependent effects of ocean acidification on the marine isopod Idotea balthica, Mar. Biol., 161, 2423–2431, https://doi.org/10.1007/s00227-014-2518-3, 2014.
Zayas-Santiago, C. C., Rivas-Ubach, A., Kuo, L.-J., Ward, N. D., and Zimmerman, R. C.: Metabolic Profiling Reveals Biochemical Pathways Responsible for Eelgrass Response to Elevated CO2 and Temperature, Sci. Rep., 10, 4693, https://doi.org/10.1038/s41598-020-61684-x, 2020.
Zeileis, A. and Hothorn, T.: Diagnostic Checking in Regression Relationships, R [code], R News, 2, 7–10, https://CRAN.R-project.org/doc/Rnews/ (last access: 27 August 2024), 2002.
Zimmerman, R. C., Hill, V. J., Jinuntuya, M., Celebi, B., Ruble, D., Smith, M., Cedeno, T., and Swingle, W. M.: Experimental impacts of climate warming and ocean carbonation on eelgrass Zostera marina, Mar. Ecol. Prog. Ser., 566, 1–15, https://doi.org/10.3354/meps12051, 2017.
Zlatkin, R. and Heuer, R.: Ocean acidification affects acid-base physiology and behaviour in a model invertebrate, the California sea hare (Aplysia californica), Roy. Soc. Open Sci., 6, 191041, https://doi.org/10.1098/rsos.191041, 2019.
Zlatkin, R., Grosell, M., and Heuer, R.: The effects of Ocean Acidification in the California sea hare (Aplysia californica), Federation of American Societies for Experimental Biology, 34, p. 1, https://doi.org/10.1096/fasebj.2020.34.s1.07006, 2020.
Short summary
Ocean alkalinity enhancement is a marine carbon dioxide removal method that aims to mitigate the effects of climate change. This method causes localized increases in ocean pH, but the biological impacts of such changes are not well known. Our study investigated the response of two nearshore invertebrate species to increased pH and found the sea hare to be sensitive to pH changes, whereas the isopod was more resilient. Understanding interactions with biology is important as this field expands.
Ocean alkalinity enhancement is a marine carbon dioxide removal method that aims to mitigate the...
Special issue
Altmetrics
Final-revised paper
Preprint