Articles | Volume 22, issue 6
https://doi.org/10.5194/bg-22-1711-2025
https://doi.org/10.5194/bg-22-1711-2025
Research article
 | 
01 Apr 2025
Research article |  | 01 Apr 2025

Exploring microscale heterogeneity as a driver of biogeochemical transformations and gas transport in peat

Lukas Kohl, Petri Kiuru, Marjo Palviainen, Maarit Raivonen, Markku Koskinen, Mari Pihlatie, and Annamari Laurén

Related authors

Pore network modeling as a new tool for determining gas diffusivity in peat
Petri Kiuru, Marjo Palviainen, Arianna Marchionne, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, and Annamari Laurén
Biogeosciences, 19, 5041–5058, https://doi.org/10.5194/bg-19-5041-2022,https://doi.org/10.5194/bg-19-5041-2022, 2022
Short summary
Peat macropore networks – new insights into episodic and hotspot methane emission
Petri Kiuru, Marjo Palviainen, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, Vincent Gauci, Iñaki Urzainki, and Annamari Laurén
Biogeosciences, 19, 1959–1977, https://doi.org/10.5194/bg-19-1959-2022,https://doi.org/10.5194/bg-19-1959-2022, 2022
Short summary
Clear, transparent, and timely communication for fair authorship decisions: a practical guide
Shahzad Gani, Lukas Kohl, Rima Baalbaki, Federico Bianchi, Taina M. Ruuskanen, Olli-Pekka Siira, Pauli Paasonen, and Hanna Vehkamäki
Geosci. Commun., 4, 507–516, https://doi.org/10.5194/gc-4-507-2021,https://doi.org/10.5194/gc-4-507-2021, 2021
Short summary
An automated system for trace gas flux measurements from plant foliage and other plant compartments
Lukas Kohl, Markku Koskinen, Tatu Polvinen, Salla Tenhovirta, Kaisa Rissanen, Marjo Patama, Alessandro Zanetti, and Mari Pihlatie
Atmos. Meas. Tech., 14, 4445–4460, https://doi.org/10.5194/amt-14-4445-2021,https://doi.org/10.5194/amt-14-4445-2021, 2021
Short summary

Cited articles

Ball, B.: Modelling of soil pores as tubes using gas permeabilities, gas diffusivities, and water release, J. Soil Sci., 32, 465–481, https://doi.org/10.1111/j.1365-2389.1981.tb01723.x, 1981. a, b
Ballard, T. M.: Gaseous diffusion evaluation in forest humus, Soil Sci. Soc. Am. J., 34, 532–533, https://doi.org/10.2136/SSSAJ1970.03615995003400030046X, 1970. a
Bartholomeus, R. P., Witte, J. P. M., van Bodegom, P. M., van Dam, J. C., and Aerts, R.: Critical soil conditions for oxygen stress to plant roots: substituting the Feddes-function by a process-based model, J. Hydrol., 360, 147–165, https://doi.org/10.1016/J.JHYDROL.2008.07.029, 2008. a
Boon, A., Robinson, J. S., Nightingale, P. D., Cardenas, L., Chadwick, D. R., and Verhoef, A.: Determination of the gas diffusion coefficient of a peat grassland soil, Eur. J. Soil Sci., 64, 681–687, https://onlinelibrary.wiley.com/doi/full/10.1111/ejss.12056, 2013. a
Bratbak, G. and Dundas, I.: Bacterial dry matter content and biomass estimations, Appl. Environ. Microb., 48, 755–757, 1984. a
Download
Short summary
We present an assay to illuminate heterogeneity in biogeochemical transformations within peat samples. For this, we injected isotope-labeled acetate into peat cores and monitored the release of label-derived gases, which we compared to microtomography images. The fraction of label converted to CO2 and the rapidness of this conversion were linked to injection depth and air-filled porosity.
Share
Altmetrics
Final-revised paper
Preprint