Articles | Volume 22, issue 10
https://doi.org/10.5194/bg-22-2363-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-2363-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ideas and perspectives: How sediment archives can improve model projections of marine ecosystem change
Isabell Hochfeld
CORRESPONDING AUTHOR
Institute of Marine Ecosystem and Fishery Science, University of Hamburg, Hamburg, Germany
Ben A. Ward
School of Ocean & Earth Science, University of Southampton Waterfront Campus, Southampton, United Kingdom
Anke Kremp
Leibniz Institute for Baltic Sea Research Warnemünde IOW, Rostock, Germany
Juliane Romahn
Senckenberg Society for Nature Research, Frankfurt am Main, Germany
LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
Institute of Insect Biotechnology, Justus Liebig University Gießen, Gießen, Germany
Alexandra Schmidt
Environmental Genomics, Department of Biology, University of Konstanz, Konstanz, Germany
Max Planck Institute of Animal Behavior, Radolfzell, Germany
Miklós Bálint
Senckenberg Society for Nature Research, Frankfurt am Main, Germany
LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
Institute of Insect Biotechnology, Justus Liebig University Gießen, Gießen, Germany
Lutz Becks
Aquatic Ecology and Evolution, Department of Biology, University of Konstanz, Konstanz, Germany
Jérôme Kaiser
Leibniz Institute for Baltic Sea Research Warnemünde IOW, Rostock, Germany
Helge W. Arz
Leibniz Institute for Baltic Sea Research Warnemünde IOW, Rostock, Germany
Sarah Bolius
Leibniz Institute for Baltic Sea Research Warnemünde IOW, Rostock, Germany
Laura S. Epp
Environmental Genomics, Department of Biology, University of Konstanz, Konstanz, Germany
Markus Pfenninger
Senckenberg Society for Nature Research, Frankfurt am Main, Germany
Christopher A. Klausmeier
Kellogg Biological Station, Michigan State University, Hickory Corners, USA
Elena Litchman
Kellogg Biological Station, Michigan State University, Hickory Corners, USA
Helmholtz-Zentrum Hereon, Geesthacht, Germany
Related authors
Isabell Hochfeld and Jana Hinners
Biogeosciences, 21, 5591–5611, https://doi.org/10.5194/bg-21-5591-2024, https://doi.org/10.5194/bg-21-5591-2024, 2024
Short summary
Short summary
Ecosystem models disagree on future changes in marine ecosystem functioning. We suspect that the lack of phytoplankton adaptation represents a major uncertainty factor, given the key role that phytoplankton play in marine ecosystems. Using an evolutionary ecosystem model, we found that phytoplankton adaptation can notably change simulated ecosystem dynamics. Future models should include phytoplankton adaptation; otherwise they can systematically overestimate future ecosystem-level changes.
Marco Puglia, Thomas Bibby, Jamie Wilson, and Ben Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-3050, https://doi.org/10.5194/egusphere-2025-3050, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Mixotrophs use both photosynthesis and predation as source of nutrition. Simulations show they can increase ocean carbon storage, but long-term effects are not yet understood. Using a low-resolution ocean-ecology model that ran for 10,000 years, we compared simulations with and without mixotrophs. Mixotrophs increased global carbon storage by trapping more organic carbon in the ocean interior, although interactions with the ocean circulation offset these effects in the North Atlantic.
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, and Gerhard Schmiedl
Clim. Past, 21, 1025–1041, https://doi.org/10.5194/cp-21-1025-2025, https://doi.org/10.5194/cp-21-1025-2025, 2025
Short summary
Short summary
We report palaeoclimate and sediment provenance records for the last 220 kyr from a sediment core from the northern Red Sea. They comprise high-resolution grain size, clay mineral, and geochemical data, together with Nd and Sr isotope data. The data sets document a strong temporal variability in dust influx on glacial–interglacial timescales and several shorter-term strong fluvial episodes. A key finding is that the Nile delta became a major dust source during glacioeustatic sea-level lowstands.
Isabell Hochfeld and Jana Hinners
Biogeosciences, 21, 5591–5611, https://doi.org/10.5194/bg-21-5591-2024, https://doi.org/10.5194/bg-21-5591-2024, 2024
Short summary
Short summary
Ecosystem models disagree on future changes in marine ecosystem functioning. We suspect that the lack of phytoplankton adaptation represents a major uncertainty factor, given the key role that phytoplankton play in marine ecosystems. Using an evolutionary ecosystem model, we found that phytoplankton adaptation can notably change simulated ecosystem dynamics. Future models should include phytoplankton adaptation; otherwise they can systematically overestimate future ecosystem-level changes.
Aaron A. Naidoo-Bagwell, Fanny M. Monteiro, Katharine R. Hendry, Scott Burgan, Jamie D. Wilson, Ben A. Ward, Andy Ridgwell, and Daniel J. Conley
Geosci. Model Dev., 17, 1729–1748, https://doi.org/10.5194/gmd-17-1729-2024, https://doi.org/10.5194/gmd-17-1729-2024, 2024
Short summary
Short summary
As an extension to the EcoGEnIE 1.0 Earth system model that features a diverse plankton community, EcoGEnIE 1.1 includes siliceous plankton diatoms and also considers their impact on biogeochemical cycles. With updates to existing nutrient cycles and the introduction of the silicon cycle, we see improved model performance relative to observational data. Through a more functionally diverse plankton community, the new model enables more comprehensive future study of ocean ecology.
Raphaël Hubert-Huard, Nils Andersen, Helge W. Arz, Werner Ehrmann, and Gerhard Schmiedl
Clim. Past, 20, 267–280, https://doi.org/10.5194/cp-20-267-2024, https://doi.org/10.5194/cp-20-267-2024, 2024
Short summary
Short summary
We have studied the geochemistry of benthic foraminifera (micro-fossils) from a sediment core from the Red Sea. Our data show that the circulation and carbon cycling of the Red Sea during the last glacial period responded to high-latitude millennial-scale climate variability and to the orbital influence of the African–Indian monsoon system. This implies a sensitive response of the Red Sea to climate changes.
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, Hartmut Schulz, and Gerhard Schmiedl
Clim. Past, 20, 37–52, https://doi.org/10.5194/cp-20-37-2024, https://doi.org/10.5194/cp-20-37-2024, 2024
Short summary
Short summary
Climatic and associated hydrological changes controlled the aeolian versus fluvial transport processes and the composition of the sediments in the central Red Sea through the last ca. 200 kyr. We identify source areas of the mineral dust and pulses of fluvial discharge based on high-resolution grain size, clay mineral, and geochemical data, together with Nd and Sr isotope data. We provide a detailed reconstruction of changes in aridity/humidity.
Julia Rieke Hagemann, Lester Lembke-Jene, Frank Lamy, Maria-Elena Vorrath, Jérôme Kaiser, Juliane Müller, Helge W. Arz, Jens Hefter, Andrea Jaeschke, Nicoletta Ruggieri, and Ralf Tiedemann
Clim. Past, 19, 1825–1845, https://doi.org/10.5194/cp-19-1825-2023, https://doi.org/10.5194/cp-19-1825-2023, 2023
Short summary
Short summary
Alkenones and glycerol dialkyl glycerol tetraether lipids (GDGTs) are common biomarkers for past water temperatures. In high latitudes, determining temperature reliably is challenging. We analyzed 33 Southern Ocean sediment surface samples and evaluated widely used global calibrations for both biomarkers. For GDGT-based temperatures, previously used calibrations best reflect temperatures >5° C; (sub)polar temperature bias necessitates a new calibration which better aligns with modern values.
Markus Czymzik, Rik Tjallingii, Birgit Plessen, Peter Feldens, Martin Theuerkauf, Matthias Moros, Markus J. Schwab, Carla K. M. Nantke, Silvia Pinkerneil, Achim Brauer, and Helge W. Arz
Clim. Past, 19, 233–248, https://doi.org/10.5194/cp-19-233-2023, https://doi.org/10.5194/cp-19-233-2023, 2023
Short summary
Short summary
Productivity increases in Lake Kälksjön sediments during the last 9600 years are likely driven by the progressive millennial-scale winter warming in northwestern Europe, following the increasing Northern Hemisphere winter insolation and decadal to centennial periods of a more positive NAO polarity. Strengthened productivity variability since ∼5450 cal yr BP is hypothesized to reflect a reinforcement of NAO-like atmospheric circulation.
Shubham Krishna, Victoria Peterson, Luisa Listmann, and Jana Hinners
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-249, https://doi.org/10.5194/bg-2022-249, 2023
Revised manuscript not accepted
Short summary
Short summary
Marine viruses have been identified as key players in biogeochemical cycles and in the termination of phytoplankton bloom. In this study, we apply a coupled model system to investigate the role viruses in Baltic Sea ecosystem and how it will change with the climate change. According to our results, presence of viruses increased nutrient retention in the upper water column and reduced the transfer of organic matter to higher trophic levels. Future warming is expected to elevate these effects.
Wout Krijgsman, Iuliana Vasiliev, Anouk Beniest, Timothy Lyons, Johanna Lofi, Gabor Tari, Caroline P. Slomp, Namik Cagatay, Maria Triantaphyllou, Rachel Flecker, Dan Palcu, Cecilia McHugh, Helge Arz, Pierre Henry, Karen Lloyd, Gunay Cifci, Özgür Sipahioglu, Dimitris Sakellariou, and the BlackGate workshop participants
Sci. Dril., 31, 93–110, https://doi.org/10.5194/sd-31-93-2022, https://doi.org/10.5194/sd-31-93-2022, 2022
Short summary
Short summary
BlackGate seeks to MSP drill a transect to study the impact of dramatic hydrologic change in Mediterranean–Black Sea connectivity by recovering the Messinian to Holocene (~ 7 Myr) sedimentary sequence in the North Aegean, Marmara, and Black seas. These archives will reveal hydrographic, biotic, and climatic transitions studied by a broad scientific community spanning the stratigraphic, tectonic, biogeochemical, and microbiological evolution of Earth’s most recent saline and anoxic giant.
María H. Toyos, Gisela Winckler, Helge W. Arz, Lester Lembke-Jene, Carina B. Lange, Gerhard Kuhn, and Frank Lamy
Clim. Past, 18, 147–166, https://doi.org/10.5194/cp-18-147-2022, https://doi.org/10.5194/cp-18-147-2022, 2022
Short summary
Short summary
Past export production in the southeast Pacific and its link to Patagonian ice dynamics is unknown. We reconstruct biological productivity changes at the Pacific entrance to the Drake Passage, covering the past 400 000 years. We show that glacial–interglacial variability in export production responds to glaciogenic Fe supply from Patagonia and silica availability due to shifts in oceanic fronts, whereas dust, as a source of lithogenic material, plays a minor role.
Cited articles
Abrantes, F., Lebreiro, S., Rodrigues, T., Gil, I., Bartels-Jónsdóttir, H., Oliveira, P., Kissel, C., and Grimalt, J. O.: Shallow-marine sediment cores record climate variability and earthquake activity off Lisbon (Portugal) for the last 2000 years, Quaternary Sci. Rev., 24, 2477–2494, https://doi.org/10.1016/j.quascirev.2004.04.009, 2005.
Alsos, I. G., Rijal, D. P., Ehrich, D., Karger, D. N., Yoccoz N. G., Heintzman P. D., Brown, A. G., Lammers, Y., Pellissier, L., Alm, T., Bråthen, K. A., Coissac, E., Merkel, M. K. F., Alberti, A., Denoeud, F., Bakke, J., and PhyloNorway Consortium: Postglacial species arrival and diversity buildup of northern ecosystems took millennia, Sci. Adv., 8, eabo7434, https://doi.org/10.1126/sciadv.abo7434, 2022.
Alsos, I. G., Boussange, V., Rijal, D. P., Beaulieu, M., Brown, A. G., Herzschuh, U., Svenning, J.-C., and Pellissier, L.: Using ancient sedimentary DNA to forecast ecosystem trajectories under climate change, Philos. T. R. Soc. B, 379, 20230017, https://doi.org/10.1098/rstb.2023.0017, 2024.
Appleby, P. G.: Chronostratigraphic Techniques in Recent Sediments, in: Tracking Environmental Change Using Lake Sediments, Volume 1: Basin Analysis, Coring, and Chronological Techniques, edited by: Last, W. M. and Smol, J. P., Springer, Dordrecht, 171–203, https://doi.org/10.1007/0-306-47669-X_9, 2001.
Aranguren-Gassis, M., Kremer, C. T., Klausmeier, C. A., and Litchman, E.: Nitrogen limitation inhibits marine diatom adaptation to high temperatures, Ecol. Lett., 22, 1860–1869, https://doi.org/10.1111/ele.13378, 2019.
Argyle, P. A., Hinners, J., Walworth, N. G., Collins, S., Levine, N. M., and Doblin, M. A.: A High-Throughput Assay for Quantifying Phenotypic Traits of Microalgae, Front. Microbiol., 2910, 706235, https://doi.org/10.3389/fmicb.2021.706235, 2021.
Armbrecht, L., Weber, M. E., Raymo, M. E., Peck, V. L., Williams, T., Warnock, J., Kato, Y., Hernández-Almeida, I., Hoem, F., Reilly, B., Hemming, S., Bailey, I., Martos, Y. M. , Gutjahr, M., Percuoco, V., Allen, C., Brachfeld, S., Cardillo, F. G., Du, Z., Fauth, G., Fogwill, C., Garcia, M., Glüder, A., Guitard, M., Hwang, J.-H., Iizuka, M., Kenlee, B., O’Connell, S., Pérez, L. F., Ronge, T. A., Seki, O., Tauxe, L., Tripathi, S., and Zheng, X.: Ancient marine sediment DNA reveals diatom transition in Antarctica, Nat. Commun., 13, 5787, https://doi.org/10.1038/s41467-022-33494-4, 2022.
Bálint, M., Pfenninger, M., Grossart, H.-P., Taberlet, P., Vellend, M., Leibold, M. A., Englund, G., and Bowler, D.: Environmental DNA time series in ecology, Trends Ecol. Evol., 33, 945–957, https://doi.org/10.1016/j.tree.2018.09.003, 2018.
Ballantyne, A. P., Greenwood, D., Sinninghe Damsté, J., Csank, A., Eberle, J., and Rybczynski, N.: Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple independent proxies, Geology, 38, 603–606, https://doi.org/10.1130/G30815.1, 2010.
Beckmann, A., Schaum, C.-E., and Hense, I.: Phytoplankton adaptation in ecosystem models, J. Theor. Biol., 468, 60–71, https://doi.org/10.1016/j.jtbi.2019.01.041, 2019.
Bennington, C. C., McGraw, J. B., and Vavrek, M. C.: Ecological Genetic Variation in Seed Banks. II. Phenotypic and Genetic Differences Between Young and Old Subpopulations of Luzula Parviflora, J. Ecol., 79, 627–643, https://doi.org/10.2307/2260658, 1991.
Betini, G. S., McAdam, A. G., Griswold, C. K., and Norris, D. R.: A fitness trade-off between seasons causes multigenerational cycles in phenotype and population size, Elife, 6, e1877, https://doi.org/10.7554/eLife.18770, 2017.
Blank, C. and Sánchez-Baracaldo, P.: Timing of morphological and ecological innovations in the cyanobacteria–a key to understanding the rise in atmospheric oxygen, Geobiology, 8, 1–23, https://doi.org/10.1111/j.1472-4669.2009.00220.x, 2010.
Bolius, S., Schmidt, A., Kaiser, J., Arz, H. W., Dellwig, O., Karsten, U., Epp, L. S., and Kremp, A.: Resurrection of a diatom after 7000 years from anoxic Baltic Sea sediment, ISME J., 19, wrae252, https://doi.org/10.1093/ismejo/wrae252, 2025.
Bradley, R. S.: Paleoclimatology: Reconstructing Climates of the Quaternary, Academic Press, 2nd Edition, 613 pp., ISBN-13 978-0-12-124010-3, 1999.
Brumsack, H.-J.: The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation, Palaeogeogr. Palaeocl., 232, 344–361, https://doi.org/10.1016/j.palaeo.2005.05.011, 2006.
Canfield, D. E.: Factors influencing organic carbon preservation in marine sediments, Chem. Geol., 114, 315–329, https://doi.org/10.1016/0009-2541(94)90061-2, 1994.
Capo, E., Giguet-Covex, C., Rouillard, A., Nota, K., Heintzman, P. D., Vuillemin, A., Ariztegui, D., Arnaud, F., Belle, S., Bertilsson, S., Bigler, C., Bindler, R., Brown, A. G., Clarke, C. L., Crump, S. E., Debroas, D., Englund, G., Ficetola, G. F., Garner, R. E., Gauthier, J., Gregory-Eaves, I., Heinecke, L., Herzschuh, U., Ibrahim, A., Kisand, V., Kjær, K. H., Lammers, Y., Littlefair, J., Messager, E., Monchamp, M.-E., Olajos, F., Orsi, W., Pedersen, M. W., Rijal, D. P., Rydberg, J., Spanbauer, T., Stoof-Leichsenring, K. R., Taberlet, P., Talas, L., Thomas, C., Walsh, D. A., Wang, Y., Willerslev, E., van Woerkom, A., Zimmermann, H. H., Coolen, M. J. L., Epp, L. S., Domaizon, I., Alsos, I. G., and Parducci, L.: Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: Overview and recommendations, Quaternary, 4, 6, https://doi.org/10.3390/quat4010006, 2021.
Cermeño, P., Marañón, E., and Romero, O. E.: Response of marine diatom communities to Late Quaternary abrupt climate changes, J. Plankton Res., 35, 12–21, https://doi.org/10.1093/plankt/fbs073, 2013.
Chen, B. and Smith, S. L.: CITRATE 1.0: Phytoplankton continuous trait-distribution model with one-dimensional physical transport applied to the North Pacific, Geosci. Model Dev., 11, 467–495, https://doi.org/10.5194/gmd-11-467-2018, 2018.
Clark, J. R., Daines, S. J., Lenton, T. M., Watson, A. J., and Williams, H. T.: Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters, Ecol. Modell., 222, 3823–3837, https://doi.org/10.1016/j.ecolmodel.2011.10.001, 2011.
Clarke, C. L., Edwards, M. E., Brown, A. G., Gielly, L., Lammers, Y., Heintzman, P. D., Ancin-Murguzur, F. J., Bråthen, K.-A., Goslar, T., and Alsos, I. G.: Holocene floristic diversity and richness in northeast Norway revealed by sedimentary ancient DNA (seda DNA) and pollen, Boreas, 48, 299–316, https://doi.org/10.1111/bor.12357, 2019.
Cléroux, C., Cortijo, E., Anand, P., Labeyrie, L., Bassinot, F., Caillon, N., and Duplessy, J.-C.: Mg Ca and Sr Ca ratios in planktonic foraminifera: Proxies for upper water column temperature reconstruction, Paleoceanography, 23, PA3214, https://doi.org/10.1029/2007PA001505, 2008.
Collins, S.: Growth rate evolution in improved environments under Prodigal Son dynamics, Evol. Appl., 9, 1179–1188, https://doi.org/10.1111/eva.12403, 2016.
Collins, S. and Bell, G.: Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga, Nature, 431, 566–569, https://doi.org/10.1038/nature02945, 2004.
Collins, S., Boyd, P. W., and Doblin, M. A.: Evolution, microbes, and changing ocean conditions, Annu. Rev. Mar. Sci., 12, 181–208, https://doi.org/10.1146/annurev-marine-010318-095311, 2020.
Coolen, M. J.: 7000 years of Emiliania huxleyi viruses in the Black Sea, Science, 333, 451–452, https://doi.org/10.1126/science.1200072, 2011.
Coolen, M. J., Saenz, J. P., Giosan, L., Trowbridge, N. Y., Dimitrov, P., Dimitrov, D., and Eglinton, T. I.: DNA and lipid molecular stratigraphic records of haptophyte succession in the Black Sea during the Holocene, Earth Planet. Sci. Lett., 284, 610–621, https://doi.org/10.1016/j.epsl.2009.05.029, 2009.
Coolen, M. J., Orsi, W. D., Balkema, C., Quince, C., Harris, K., Sylva, S. P., Filipova-Marinova, M., and Giosan, L.: Evolution of the plankton paleome in the Black Sea from the Deglacial to Anthropocene, P. Natl. Acad. Sci. USA, 110, 8609–8614, https://doi.org/10.1073/pnas.1219283110, 2013.
Delebecq, G., Schmidt, S., Ehrhold, A., Latimier, M., and Siano, R.: Revival of ancient marine dinoflagellates using molecular biostimulation, J. Phycol., 56, 1077–1089, https://doi.org/10.1111/jpy.13010, 2020.
Dellwig, O., Wegwerth, A., Schnetger, B., Schulz, H., and Arz, H. W.: Dissimilar behaviors of the geochemical twins W and Mo in hypoxic-euxinic marine basins, Earth-Sci. Rev., 193, 1–23, https://doi.org/10.1016/j.earscirev.2019.03.017, 2019.
Denman, K. L.: A model simulation of the adaptive evolution through mutation of the coccolithophore Emiliania huxleyi based on a published laboratory study, Front. Mar. Sci., 3, 286, https://doi.org/10.3389/fmars.2016.00286, 2017.
Dommain, R., Andama, M., McDonough, M. M., Prado, N. A., Goldhammer, T., Potts, R., Maldonado, J. E., Nkurunungi, J. B., and Campana, M. G.: The challenges of reconstructing tropical biodiversity with sedimentary ancient DNA: A 2200-year-long metagenomic record from Bwindi impenetrable forest, Uganda, Frontiers in Ecology and Evolution, 8, 218, https://doi.org/10.3389/fevo.2020.00218, 2020.
Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. T., and Berman-Frank, I.: Impact of ocean acidification on the structure of future phytoplankton communities, Nature Climate Change, 5, 1002–1006, https://doi.org/10.1038/nclimate2722, 2015.
Dutkiewicz, S., Cermeno, P., Jahn, O., Follows, M. J., Hickman, A. E., Taniguchi, D. A. A., and Ward, B. A.: Dimensions of marine phytoplankton diversity, Biogeosciences, 17, 609–634, https://doi.org/10.5194/bg-17-609-2020, 2020.
Edwards, M. and Richardson, A. J.: Impact of climate change on marine pelagic phenology and trophic mismatch, Nature, 430, 881–884, https://doi.org/10.1038/nature02808, 2004.
Elena, S. F. and Lenski, R. E.: Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation, Nat. Rev. Genet., 4, 457–469, https://doi.org/10.1038/nrg1088, 2003.
Ellegaard, M. and Ribeiro, S.: The long-term persistence of phytoplankton resting stages in aquatic `seed banks', Biol. Rev., 93, 166–183, https://doi.org/10.1111/brv.12338, 2018.
Ellegaard, M., Dale, B., Mertens, K. N., Pospelova, V., and Ribeiro, S.: Dinoflagellate Cysts as Proxies for Holocene Environmental Change in Estuaries: Diversity, Abundance and Morphology, in: Applications of Paleoenvironmental Techniques in Estuarine Studies, Developments in Paleoenvironmental Research, Volume 20, edited by: Weckström, K., Saunders, K., Gell, P., and Skilbeck, C., Springer, Dordrecht, 295–312, https://doi.org/10.1007/978-94-024-0990-1_12, 2017.
Ellegaard, M., Clokie, M. R., Czypionka, T., Frisch, D., Godhe, A., Kremp, A., Letarov, A., McGenity, T. J., Ribeiro, S., and John Anderson, N.: Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation, Communications Biology, 3, 169, https://doi.org/10.1038/s42003-020-0899-z, 2020.
Elliott, J. A., Thackeray, S. J., Huntingford, C., and Jones, R. G.: Combining a regional climate model with a phytoplankton community model to predict future changes in phytoplankton in lakes, Freshwater Biol., 50, 1404–1411, https://doi.org/10.1111/j.1365-2427.2005.01409.x, 2005.
Eppley, R. W., Rogers, J. N., and McCarthy, J. J.: Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton, Limnol. Oceanogr., 14, 912–920, https://doi.org/10.4319/lo.1969.14.6.0912, 1969.
Fenchel, T.: Marine plankton food chains, Annu. Rev. Ecol. Syst., 19, 19–38, https://doi.org/10.1146/annurev.es.19.110188.000315, 1988.
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.: Primary production of the biosphere: integrating terrestrial and oceanic components, Science, 281, 237–240, https://doi.org/10.1126/science.281.5374.237, 1998.
Frindte, K., Lehndorff, E., Vlaminck, S., Werner, K., Kehl, M., Khormali, F., and Knief, C.: Evidence for signatures of ancient microbial life in paleosols, Sci. Rep., 10, 16830, https://doi.org/10.1038/s41598-020-73938-9, 2020.
Gibbs, S. J., Bown, P. R., Ward, B. A., Alvarez, S. A., Kim, H., Archontikis, O. A., Sauterey, B., Poulton, A. J., Wilson, J., and Ridgwell, A.: Algal plankton turn to hunting to survive and recover from end-Cretaceous impact darkness, Sci. Adv., 6, eabc9123, https://doi.org/10.1126/sciadv.abc9123, 2020.
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., and Egozcue, J. J.: Microbiome datasets are compositional: and this is not optional, Front. Microbiol., 8, 2224, https://doi.org/10.3389/fmicb.2017.02224, 2017.
Godhe, A., Asplund, M. E., Härnström, K., Saravanan, V., Tyagi, A., and Karunasagar, I.: Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR, Appl. Environ. Microb., 74, 7174–7182, https://doi.org/10.1128/AEM.01298-08, 2008.
Gustafsson, B. G., Schenk, F., Blenckner, T., Eilola, K., Meier, H. M., Müller-Karulis, B., Neumann, T., Ruoho-Airola, T., Savchuk, O. P., and Zorita, E.: Reconstructing the development of Baltic Sea eutrophication 1850–2006, Ambio, 41, 534–548, https://doi.org/10.1007/s13280-012-0318-x, 2012.
Hain, M. P., Sigman, D., and Haug, G.: The biological Pump in the Past, in: Treatise on Geochemistry (Second Edition), edited by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, 8, 485–517, https://doi.org/10.1016/B978-0-08-095975-7.00618-5, 2014.
Hajdas, I., Ascough, P., Garnett, M. H., Fallon, S. J., Pearson, C. L., Quarta, G., Spalding, K. L., Yamaguchi, H., and Yoneda, M.: Radiocarbon dating, Nature Reviews Methods Primers, 1, 62, https://doi.org/10.1038/s43586-021-00058-7, 2021.
Hancock, G., Leslie, C., Everett, S., Tims, S., Brunskill, G., and Haese, R.: Plutonium as a chronomarker in Australian and New Zealand sediments: a comparison with 137Cs, J. Environ. Radioactiv., 102, 919–929, https://doi.org/10.1016/j.jenvrad.2009.09.008, 2011.
Härnström, K., Ellegaard, M., Andersen, T. J., and Godhe, A.: Hundred years of genetic structure in a sediment revived diatom population, P. Natl. Acad. Sci. USA, 108, 4252–4257, https://doi.org/10.1073/pnas.1013528108, 2011.
Hattich, G., Jokinen, S., Sildever, S., Gareis, M., Heikkinen, J., Junghardt, N., Segovia, M., Machado, M., and Sjöqvist, C.: Temperature optima of a natural diatom population increases as global warming proceeds, Nat. Clim. Change, 14, 518–525, https://doi.org/10.1038/s41558-024-01981-9, 2024.
Haywood, A. M., Valdes, P. J., and Sellwood, B. W.: Global scale palaeoclimate reconstruction of the middle Pliocene climate using the UKMO GCM: initial results, Global Planet. Change, 25, 239–256, https://doi.org/10.1016/S0921-8181(00)00028-X, 2000.
Hedges, J. I. and Keil, R. G.: Sedimentary organic matter preservation: an assessment and speculative synthesis, Mar. Chem., 49, 81–115, https://doi.org/10.1016/0304-4203(95)00008-F, 1995.
Hellweger, F. L. and Bucci, V.: A bunch of tiny individuals – Individual-based modeling for microbes, Ecol. Modell., 220, 8–22, https://doi.org/10.1016/j.ecolmodel.2008.09.004, 2009.
Hense, I.: Regulative feedback mechanisms in cyanobacteria-driven systems: a model study, Mar. Ecol. Prog. Ser., 339, 41–47, https://doi.org/10.3354/meps339041, 2007.
Hense, I. and Beckmann, A.: Towards a model of cyanobacteria life cycle – effects of growing and resting stages on bloom formation of N2-fixing species, Ecol. Modell., 195, 205–218, https://doi.org/10.1016/j.ecolmodel.2005.11.018, 2006.
Hillaire-Marcel, C. and de Vernal, A.: Proxies in late cenozoic paleoceanography, Elsevier, 1st Edition, 864 pp., ISBN 9780080525044, 2007.
Hinners, J., Kremp, A., and Hense, I.: Evolution in temperature-dependent phytoplankton traits revealed from a sediment archive: do reaction norms tell the whole story?, Proc. R. Soc. B: Biol. Sci., 284, 20171888, https://doi.org/10.1098/rspb.2017.1888, 2017.
Hinners, J., Hense, I., and Kremp, A.: Modelling phytoplankton adaptation to global warming based on resurrection experiments, Ecol. Modell., 400, 27–33, https://doi.org/10.1016/j.ecolmodel.2019.03.006, 2019.
Hinners, J., Argyle, P. A., Walworth, N. G., Doblin, M. A., Levine, N. M., and Collins, S.: Multi-trait diversification in marine diatoms in constant and warmed environments, P. Roy. Soc. B, 291, 20232564, https://doi.org/10.1098/rspb.2023.2564, 2024.
Hirschhorn, J. N. and Daly, M. J.: Genome-wide association studies for common diseases and complex traits, Nat. Rev. Genet., 6, 95–108, https://doi.org/10.1038/nrg1521, 2005.
Hjerne, O., Hajdu, S., Larsson, U., Downing, A. S., and Winder, M.: Climate Driven Changes in Timing, Composition and Magnitude of the Baltic Sea Phytoplankton Spring Bloom, Front. Mar. Sci., 6, 482, https://doi.org/10.3389/fmars.2019.00482, 2019.
Hochfeld, I. and Hinners, J.: Evolutionary adaptation to steady or changing environments affects competitive outcomes in marine phytoplankton, Limnol. Oceanogr., 69, 1172–1186, https://doi.org/10.1002/lno.12559, 2024a.
Hochfeld, I. and Hinners, J.: Phytoplankton adaptation to steady or changing environments affects marine ecosystem functioning, Biogeosciences, 21, 5591–5611, https://doi.org/10.5194/bg-21-5591-2024, 2024b.
Holland, M. M., Bitz, C. M., and Tremblay, B.: Future abrupt reductions in the summer Arctic sea ice, Geophys. Res. Lett., 33, L23503, https://doi.org/10.1029/2006GL028024, 2006.
Hollingsworth, A.: Validation and diagnosis of atmospheric models, Dynam. Atmos. Oceans, 20, 227–246, https://doi.org/10.1016/0377-0265(94)90019-1, 1994.
Hollowed, A. B., Barange, M., Beamish, R. J., Brander, K., Cochrane, K., Drinkwater, K., Foreman, M. G., Hare, J. A., Holt, J., Ito, S., Kim, S., King, J. R., Loeng, H., MacKenzie, B. R., Mueter, F. J., Okey, T. A., Peck, M. A., Radchenko, V. I., Rice, J. C., Schirripa, M. J., Yatsu, A., and Yamanaka, Y.: Projected impacts of climate change on marine fish and fisheries, ICES J. Mar. Sci., 70, 1023–1037, https://doi.org/10.1093/icesjms/fst081, 2013.
Hutchins, D. A. and Fu, F.: Microorganisms and ocean global change, Nat. Microbiol., 2, 17058, https://doi.org/10.1038/nmicrobiol.2017.58, 2017.
Hutchins, D. A., Walworth, N. G., Webb, E. A., Saito, M. A., Moran, D., McIlvin, M. R., Gale, J., and Fu, F.-X.: Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide, Nat. Commun., 6, 8155, https://doi.org/10.1038/ncomms9155, 2015.
Intergovernmental Panel on Climate Change (IPCC): Summary for Policymakers, in: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Lee, H. and Romero, J., IPCC, Geneva, Switzerland, 1–34, https://doi.org/10.59327/IPCC/AR6-9789291691647.001, 2023.
Irwin, A. J., Finkel, Z. V., Müller-Karger, F. E., and Ghinaglia, L. T.: Phytoplankton adapt to changing ocean environments, P. Natl. Acad. Sci. USA, 112, 5762–5766, https://doi.org/10.1073/pnas.1414752112, 2015.
Isanta-Navarro, J., Hairston Jr., N. G., Beninde, J., Meyer, A., Straile, D., Möst, M., and Martin-Creuzburg, D.: Reversed evolution of grazer resistance to cyanobacteria, Nat. Commun., 12, 1945, https://doi.org/10.1038/s41467-021-22226-9, 2021.
Jin, P. and Agustí, S.: Fast adaptation of tropical diatoms to increased warming with trade-offs, Sci. Rep., 8, 17771, https://doi.org/10.1038/s41598-018-36091-y, 2018.
Kabel, K., Moros, M., Porsche, C., Neumann, T., Adolphi, F., Andersen, T. J., Siegel, H., Gerth, M., Leipe, T., Jansen, E., and Damsté, J. S. S.: Impact of climate change on the Baltic Sea ecosystem over the past 1,000 years, Nat. Clim. Change, 2, 871–874, https://doi.org/10.1038/nclimate1595, 2012.
Kaiser, J., van der Meer, M. T., and Arz, H. W.: Long-chain alkenones in Baltic Sea surface sediments: new insights, Org. Geochem., 112, 93–104, https://doi.org/10.1016/j.orggeochem.2017.07.002, 2017.
Kerfoot, W. C. and Weider, L. J.: Experimental paleoecology (resurrection ecology): chasing Van Valen's Red Queen hypothesis, Limnol. Oceanogr., 49, 1300–1316, https://doi.org/10.4319/lo.2004.49.4_part_2.1300, 2004.
Kjær, K. H., Winther Pedersen, M., De Sanctis, B., De Cahsan, B., Korneliussen, T. S., Michelsen, C. S., Sand, K. K., Jelavić, S., Ruter, A. H., Schmidt, A. M., Kjeldsen, K. K., Tesakov, A. S., Snowball, I., Gosse, J. C., Alsos, I. G., Wang, Y., Dockter, C., Rasmussen, M., Jørgensen, M. E., Skadhauge, B., Prohaska, A., Kristensen, J. Å., Bjerager, M., Allentoft, M. E., Coissac, E., PhyloNorway Consortium, Rouillard, A., Simakova, A., Fernandez-Guerra, A., Bowler, C., Macias-Fauria, M., Vinner, L., Welch, J. J., Hidy, A. J., Sikora, M., Collins, M. J., Durbin, R., Larsen, N. K., and Willerslev, E.: A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA, Nature, 612, 283–291, https://doi.org/10.1038/s41586-022-05453-y, 2022.
Klausmeier, C. A., Osmond, M. M., Kremer, C. T., and Litchman, E.: Ecological limits to evolutionary rescue, Philos. T. R. Soc. B, 375, 20190453, https://doi.org/10.1098/rstb.2019.0453, 2020a.
Klausmeier, C. A., Kremer, C. T., and Koffel, T.: Trait-based ecological and eco-evolutionary theory, in: Theoretical Ecology: concepts and applications, edited by: McCann, K. S. and Gellner, G., Oxford University Press, 161–194, https://doi.org/10.1093/oso/9780198824282.003.0011, 2020.
Korkonen, S. T., Ojala, A., Kosonen, E. M., and Weckström, J. B.: Seasonality of chrysophyte cyst and diatom assemblages in varved Lake Nautajärvi–implications for palaeolimnological studies, J. Limnol., 76, 366–379, https://doi.org/10.4081/jlimnol.2017.1473, 2017.
Krasovec, M., Sanchez-Brosseau, S., and Piganeau, G.: First estimation of the spontaneous mutation rate in diatoms, Genome Biol. Evol., 11, 1829–1837, https://doi.org/10.1093/gbe/evz130, 2019.
Kremer, C. T. and Klausmeier, C. A.: Coexistence in a variable environment: eco-evolutionary perspectives, J. Theor. Biol., 339, 14–25, https://doi.org/10.1016/j.jtbi.2013.05.005, 2013.
Kremer, C. T. and Klausmeier, C. A.: Species packing in eco-evolutionary models of seasonally fluctuating environments, Ecol. Lett., 20, 1158–1168, https://doi.org/10.1111/ele.12813, 2017.
Kremp, A., Hinners, J., Klais, R., Leppänen, A.-P., and Kallio, A.: Patterns of vertical cyst distribution and survival in 100-year-old sediment archives of three spring dinoflagellate species from the Northern Baltic Sea, European J. Phycol., 53, 135–145, https://doi.org/10.1080/09670262.2017.1386330, 2018.
Krishna, S., Peterson, V., Listmann, L., and Hinners, J.: Interactive effects of viral lysis and warming in a coastal ocean identified from an idealized ecosystem model, Ecol. Modell., 487, 110550, https://doi.org/10.1016/j.ecolmodel.2023.110550, 2024.
Lässig, M., Mustonen, V., and Walczak, A. M.: Predicting evolution, Nature Ecology & Evolution, 1, 0077, https://doi.org/10.1038/s41559-017-0077, 2017.
Laufkötter, C., Vogt, M., Gruber, N., Aita-Noguchi, M., Aumont, O., Bopp, L., Buitenhuis, E., Doney, S. C., Dunne, J., Hashioka, T., Hauck, J., Hirata, T., John, J., Le Quéré, C., Lima, I. D., Nakano, H., Seferian, R., Totterdell, I., Vichi, M., and Völker, C.: Drivers and uncertainties of future global marine primary production in marine ecosystem models, Biogeosciences, 12, 6955–6984, https://doi.org/10.5194/bg-12-6955-2015, 2015.
Laufkötter, C., Vogt, M., Gruber, N., Aumont, O., Bopp, L., Doney, S. C., Dunne, J. P., Hauck, J., John, J. G., Lima, I. D., Seferian, R., and Völker, C.: Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem, Biogeosciences, 13, 4023–4047, https://doi.org/10.5194/bg-13-4023-2016, 2016.
Le Gland, G., Vallina, S. M., Smith, S. L., and Cermeño, P.: SPEAD 1.0 – Simulating Plankton Evolution with Adaptive Dynamics in a two-trait continuous fitness landscape applied to the Sargasso Sea, Geosci. Model Dev., 14, 1949–1985, https://doi.org/10.5194/gmd-14-1949-2021, 2021.
Lear, C. H., Rosenthal, Y., and Slowey, N.: Benthic foraminiferal Mg/Ca-paleothermometry: A revised core-top calibration, Geochim. Cosmochim. Acta, 66, 3375–3387, https://doi.org/10.1016/S0016-7037(02)00941-9, 2002.
Lee, S., Hofmeister, R., and Hense, I.: The role of life cycle processes on phytoplankton spring bloom composition: a modelling study applied to the Gulf of Finland, J. Marine Syst., 178, 75–85, https://doi.org/10.1016/j.jmarsys.2017.10.010, 2018.
Lehtimäki, J., Moisander, P., Sivonen, K., and Kononen, K.: Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria, Appl. Environ. Microb., 63, 1647–1656, https://doi.org/10.1128/aem.63.5.1647-1656.1997, 1997.
Lenski, R. E. and Travisano, M.: Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations., P. Natl. Acad. Sci. USA, 91, 6808–6814, https://doi.org/10.1073/pnas.91.15.6808, 1994.
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J.: Tipping elements in the Earth's climate system, P. Natl. Acad. Sci. USA, 105, 1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008.
Levins, R.: Theory of fitness in a heterogeneous environment. I. The fitness set and adaptive function, Am. Nat., 96, 361–373, https://doi.org/10.1086/282245, 1962.
Li, Q., Bruggeman, J., Burchard, H., Klingbeil, K., Umlauf, L., and Bolding, K.: Integrating CVMix into GOTM (v6.0): a consistent framework for testing, comparing, and applying ocean mixing schemes, Geosci. Model Dev., 14, 4261–4282, https://doi.org/10.5194/gmd-14-4261-2021, 2021.
Limoges, A., Van Nieuwenhove, N., Head, M. J., Mertens, K. N., Pospelova, V., and Rochon, A.: A review of rare and less well known extant marine organic-walled dinoflagellate cyst taxa of the orders Gonyaulacales and Suessiales from the Northern Hemisphere, Mar. Micropaleontol., 159, 101801, https://doi.org/10.1016/j.marmicro.2019.101801, 2020.
Listmann, L., LeRoch, M., Schlüter, L., Thomas, M. K., and Reusch, T. B.: Swift thermal reaction norm evolution in a key marine phytoplankton species, Evol. Appl., 9, 1156–1164, https://doi.org/10.1111/eva.12362, 2016.
Litchman, E., Klausmeier, C. A., Schofield, O. M., and Falkowski, P. G.: The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level, Ecol. Lett., 10, 1170–1181, https://doi.org/10.1111/j.1461-0248.2007.01117.x, 2007.
Litchman, E., de Tezanos Pinto, P., Edwards, K. F., Klausmeier, C. A., Kremer, C. T., and Thomas, M. K.: Global biogeochemical impacts of phytoplankton: a trait-based perspective, J. Ecol., 103, 1384–1396, https://doi.org/10.1111/1365-2745.12438, 2015.
Lomstein, B. A., Langerhuus, A. T., D'Hondt, S., Jørgensen, B. B., and Spivack, A. J.: Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment, Nature, 484, 101–104, https://doi.org/10.1038/nature10905, 2012.
Lowe, D. J. and Alloway, B. V.: Tephrochronology, in: Encyclopaedia of Scientific Dating Methods, edited by: Rink, W. J. and Thompson, J. W., Springer, Dordrecht, 783–799, https://doi.org/10.1007/978-94-007-6304-3_19, 2015.
Maslin, M. A., Pike, J., Stickley, C., and Ettwein, V.: Evidence of Holocene climate variability from marine sediments, in: Global Change in the Holocene, edited by: Mackay, A., Battarbee, R., Birks, J., and Oldfield, F., London, Arnold, 185–209, ISBN 978-0-340-81214-3, 2003.
Matul, A., Spielhagen, R. F., Kazarina, G., Kruglikova, S., Dmitrenko, O., and Mohan, R.: Warm-water events in the eastern Fram Strait during the last 2000 years as revealed by different microfossil groups, Polar. Res., 37, 1540243, https://doi.org/10.1080/17518369.2018.1540243, 2018.
McGraw, J., Vavrek, M., and Bennington, C.: Ecological genetic variation in seed banks I. Establishment of a time transect, The J. Ecol., 79, 617–625, https://doi.org/10.2307/2260657, 1991.
Medlin, L., Sáez, A. G., and Young, J. R.: A molecular clock for coccolithophores and implications for selectivity of phytoplankton extinctions across the K/T boundary, Mar. Micropaleontol., 67, 69–86, https://doi.org/10.1016/j.marmicro.2007.08.007, 2008.
Medwed, C., Karsten, U., Romahn, J., Kaiser, J., Dellwig, O., Arz, H., and Kremp, A.: Archives of cyanobacterial traits: insights from resurrected Nodularia spumigena from Baltic Sea sediments reveal a shift in temperature optima, ISME Communications, 4, ycae140, https://doi.org/10.1093/ismeco/ycae140, 2024.
Mejbel, H. S., Dodsworth, W., Baud, A., Gregory-Eaves, I., and Pick, F. R.: Comparing quantitative methods for analyzing sediment DNA records of cyanobacteria in experimental and reference lakes, Front. Microbiol., 12, 669910, https://doi.org/10.3389/fmicb.2021.669910, 2021.
Melbinger, A. and Vergassola, M.: The Impact of Environmental Fluctuations on Evolutionary Fitness Functions, Sci. Rep., 5, 15211, https://doi.org/10.1038/srep15211, 2015.
Mitchell, D., Willerslev, E., and Hansen, A.: Damage and repair of ancient DNA, Mutat. Res.-Fund. Mol. M, 571, 265–276, https://doi.org/10.1016/j.mrfmmm.2004.06.060, 2005.
Monchamp, M.-E., Walser, J.-C., Pomati, F., and Spaak, P.: Sedimentary DNA reveals cyanobacterial community diversity over 200 years in two perialpine lakes, Appl. Environ. Microb., 82, 6472–6482, https://doi.org/10.1128/AEM.02174-16, 2016.
Muhs, D. R.: Evidence for the timing and duration of the last interglacial period from high-precision uranium-series ages of corals on tectonically stable coastlines, Quaternary Res., 58, 36–40, https://doi.org/10.1006/qres.2002.2339, 2002.
North Greenland Ice Core Project members: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, https://doi.org/10.1038/nature02805, 2004.
O'Donnell, D. R., Hamman, C. R., Johnson, E. C., Kremer, C. T., Klausmeier, C. A., and Litchman, E.: Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs, Glob. Change Biol., 24, 4554–4565, https://doi.org/10.1111/gcb.14360, 2018.
Østman, B., Hintze, A., and Adami, C.: Impact of epistasis and pleiotropy on evolutionary adaptation, P. Roy. Soc. B-Biol. Sci., 279, 247–256, https://doi.org/10.1098/rspb.2011.0870, 2012.
Pauwels, K., De Meester, L., Put, S., Decaestecker, E., Decaestecker, E., and Stoks, R.: Rapid evolution of phenoloxidase expression, a component of innate immune function, in a natural population of Daphnia magna, Limnol. Oceanogr., 55, 1408–1413, https://doi.org/10.4319/lo.2010.55.3.1408, 2010.
Peer, A. and Miller, T.: Climate change, migration phenology, and fisheries management interact with unanticipated consequences, N. Am. J. Fish. Manage., 34, 94–110, https://doi.org/10.1080/02755947.2013.847877, 2014.
Pfenninger, M.: On the potential for GWAS with phenotypic population means and allele-frequency data (popGWAS), bioRxiv [preprint], https://doi.org/10.1101/2024.06.12.598621, 14 June 2024.
Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., Brander, K., Bruno, J. F., Buckley, L. B., Burrows, M. T., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., O’Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F., Thompson, S. A., and Richardson, A. J.: Global imprint of climate change on marine life, Nat. Clim. Change, 3, 919–925, https://doi.org/10.1038/nclimate1958, 2013.
Prahl, F. G., Muehlhausen, L. A., and Zahnle, D. L.: Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions, Geochim. Cosmochim. Acta, 52, 2303–2310, https://doi.org/10.1016/0016-7037(88)90132-9, 1988.
Rosell-Melé, A.: Interhemispheric appraisal of the value of alkenone indices as temperature and salinity proxies in high-latitude locations, Paleoceanography, 13, 694–703, https://doi.org/10.1029/98PA02355, 1998.
Sallon, S., Solowey, E., Cohen, Y., Korchinsky, R., Egli, M., Woodhatch, I., Simchoni, O., and Kislev, M.: Germination, genetics, and growth of an ancient date seed, Science, 320, 1464–1464, https://doi.org/10.1126/science.1153600, 2008.
Salzmann, U., Haywood, A., Lunt, D., Valdes, P., and Hill, D.: A new global biome reconstruction and data-model comparison for the Middle Pliocene, Global Ecol. Biogeogr., 17, 432–447, https://doi.org/10.1111/j.1466-8238.2008.00381.x, 2008.
Sanyal, A., Larsson, J., van Wirdum, F., Andrén, T., Moros, M., Lönn, M., and Andrén, E.: Not dead yet: Diatom resting spores can survive in nature for several millennia, Am. J. Bot., 109, 67–82, https://doi.org/10.1002/ajb2.1780, 2022.
Sathyendranath, S., Gouveia, A. D., Shetye, S. R., Ravindran, P., and Platt, T.: Biological control of surface temperature in the Arabian Sea, Nature, 349, 54–56, https://doi.org/10.1038/349054a0, 1991.
Sauterey, B., Ward, B., Rault, J., Bowler, C., and Claessen, D.: The implications of eco-evolutionary processes for the emergence of marine plankton community biogeography, Am. Nat., 190, 116–130, https://doi.org/10.1086/692067, 2017.
Schabhüttl, S., Hingsamer, P., Weigelhofer, G., Hein, T., Weigert, A., and Striebel, M.: Temperature and species richness effects in phytoplankton communities, Oecologia, 171, 527–536, https://doi.org/10.1007/s00442-012-2419-4, 2013.
Schaum, C.-E., Barton, S., Bestion, E., Buckling, A., Garcia-Carreras, B., Lopez, P., Lowe, C., Pawar, S., Smirnoff, N., Trimmer, M., and Yvon-Durocher, G.: Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis, Nat. Ecol. Evol., 1, 0094, https://doi.org/10.1038/s41559-017-0094, 2017.
Schmidt, A., Romahn, J., Andrén, E., Kremp, A., Kaiser, J., Arz, H. W., Dellwig, O., Bálint, M., and Epp, L. S.: Decoding the Baltic Sea's past and present: a simple molecular index for ecosystem assessment, Ecol. Indic., 166, 112494, https://doi.org/10.1016/j.ecolind.2024.112494, 2024.
Schouten, S., Hopmans, E. C., and Damsté, J. S. S.: The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review, Org. Geochem., 54, 19–61, https://doi.org/10.1016/j.orggeochem.2012.09.006, 2013.
Semenov, M., Chernov, T., Zhelezova, A., Nikitin, D., Tkhakakhova, A., Ivanova, E., Xenofontova, N., Sycheva, S., Kolganova, T., and Kutovaya, O.: Microbial communities of interglacial and interstadial paleosols of the Late Pleistocene, Eurasian Soil Sci., 53, 772–779, https://doi.org/10.1134/S1064229320060101, 2020.
Smith, S. L., Vallina, S. M., and Merico, A.: Phytoplankton size-diversity mediates an emergent trade-off in ecosystem functioning for rare versus frequent disturbances, Sci. Rep., 6, 34170, https://doi.org/10.1038/srep34170, 2016.
Stirling, C., Esat, T., Lambeck, K., and McCulloch, M.: Timing and duration of the Last Interglacial: evidence for a restricted interval of widespread coral reef growth, Earth Planet. Sci. Lett., 160, 745–762, https://doi.org/10.1016/S0012-821X(98)00125-3, 1998.
Stroeve, J., Holland, M. M., Meier, W., Scambos, T., and Serreze, M.: Arctic sea ice decline: Faster than forecast, Geophys. Res. Lett., 34, L09501, https://doi.org/10.1029/2007GL029703, 2007.
Tittensor, D. P., Novaglio, C., Harrison, C. S., Heneghan, R. F., Barrier, N., Bianchi, D., Bopp, L., Bryndum-Buchholz, A., Britten, G. L., Büchner, M., Büchner, M., Cheung, W. W. L., Christensen, V., Coll, M., Dunne, J. P., Eddy, T. D., Everett, J. D., Fernandes-Salvador, J. A., Fulton, E. A., Galbraith, E. D., Gascuel, D., Guiet, J., John, J. G., Link, J. S., Lotze, H. K., Maury, O., Ortega-Cisneros, K., Palacios-Abrantes, J., Petrik, C. M., du Pontavice, H., Rault, J., Richardson, A. J., Shannon, L., Shin, Y.-J., Steenbeek, J., Stock, C. A., and Blanchard, J. L.: Next-generation ensemble projections reveal higher climate risks for marine ecosystems, Nat. Clim. Change, 11, 973–981, https://doi.org/10.1038/s41558-021-01173-9, 2021.
Tonani, M., Balmaseda, M., Bertino, L., Blockley, E., Brassington, G., Davidson, F., Drillet, Y., Hogan, P., Kuragano, T., Lee, T., Mehra, A., Paranathara, F., Tanajura, C. A. S., and Wang, H.: Status and future of global and regional ocean prediction systems, J. Oper. Oceanogr., 8, s201–s220, https://doi.org/10.1080/1755876X.2015.1049892, 2015.
Tyler, A. L., Asselbergs, F. W., Williams, S. M., and Moore, J. H.: Shadows of complexity: what biological networks reveal about epistasis and pleiotropy, Bioessays, 31, 220–227, https://doi.org/10.1002/bies.200800022, 2009.
Uffelmann, E., Huang, Q. Q., Munung, N. S., De Vries, J., Okada, Y., Martin, A. R., Martin, H. C., Lappalainen, T., and Posthuma, D.: Genome-wide association studies, Nature Reviews Methods Primers, 1, 59, https://doi.org/10.1038/s43586-021-00056-9, 2021.
Umlauf, L., Burchard, H., and Bolding, K.: GOTM-scientific documentation: version 3.2, Institut für Ostseeforschung, https://www.io-warnemuende.de/files/forschung/meereswissenschaftliche-berichte/mebe63_2005-gotm.pdf (last access: 28 April 2025), 2005.
Van Nieuwenhove, N., Head, M. J., Limoges, A., Pospelova, V., Mertens, K. N., Matthiessen, J., De Schepper, S., de Vernal, A., Eynaud, F., Londeix, L., Marretj, F., Penaud, A., Radih, T., and Rochon, A.: An overview and brief description of common marine organic-walled dinoflagellate cyst taxa occurring in surface sediments of the Northern Hemisphere, Mar. Micropaleontol., 159, 101814, https://doi.org/10.1016/j.marmicro.2019.101814, 2020.
Vasselon, V., Bouchez, A., Rimet, F., Jacquet, S., Trobajo, R., Corniquel, M., Tapolczai, K., and Domaizon, I.: Avoiding quantification bias in metabarcoding: Application of a cell biovolume correction factor in diatom molecular biomonitoring, Methods Ecol. Evol., 9, 1060–1069, https://doi.org/10.1111/2041-210X.12960, 2018.
Vincent, W. and Silvester, W.: Growth of blue-green algae in the Manukau (New Zealand) oxidation ponds – I. Growth potential of oxidation pond water and comparative optima for blue-green and green algal growth, Water Res., 13, 711–716, https://doi.org/10.1016/0043-1354(79)90234-3, 1979.
Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., and Yang, J.: 10 years of GWAS discovery: biology, function, and translation, Am. J. Hum. Genet., 101, 5–22, https://doi.org/10.1016/j.ajhg.2017.06.005, 2017.
Wakeham, S. G. and Canuel, E. A.: Degradation and Preservation of Organic Matter in Marine Sediments, in: Marine Organic Matter: Biomarkers, Isotopes and DNA, The Handbook of Environmental Chemistry, Volume 2N, edited by: Volkman, J. K., Springer, Berlin, Heidelberg, 295–321, https://doi.org/10.1007/698_2_009, 2006.
Ward, B. A., Dutkiewicz, S., Jahn, O., and Follows, M. J.: A size-structured food-web model for the global ocean, Limnol. Oceanogr., 57, 1877–1891, https://doi.org/10.4319/lo.2012.57.6.1877, 2012.
Ward, B. A., Collins, S., Dutkiewicz, S., Gibbs, S., Bown, P., Ridgwell, A., Sauterey, B., Wilson, J., and Oschlies, A.: Considering the role of adaptive evolution in models of the ocean and climate system, J. Adv. Model. Earth Syst., 11, 3343–3361, https://doi.org/10.1029/2018MS001452, 2019.
Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.: Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Mar. Ecol. Prog. Ser., 622, 1–16, https://doi.org/10.3354/meps12994, 2019.
Weckström, K.: Assessing recent eutrophication in coastal waters of the Gulf of Finland (Baltic Sea) using subfossil diatoms, J. Paleolimnol., 35, 571–592, https://doi.org/10.1007/s10933-005-5264-1, 2006.
Weitz, J. S., Stock, C. A., Wilhelm, S. W., Bourouiba, L., Coleman, M. L., Buchan, A., Follows, M. J., Fuhrman, J. A., Jover, L. F., Lennon, J. T., Middelboe, M., Sonderegger, D. L., Suttle, C. A., Taylor, B. P., Frede Thingstad, T., Wilson, W. H., and Eric Wommack, K.: A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes, ISME J., 9, 1352–1364, https://doi.org/10.1038/ismej.2014.220, 2015.
Wersebe, M. J. and Weider, L. J.: Resurrection genomics provides molecular and phenotypic evidence of rapid adaptation to salinization in a keystone aquatic species, P. Natl. Acad. Sci. USA, 120, e2217276120, https://doi.org/10.1073/pnas.2217276120, 2023.
Willerslev, E., Hansen, A. J., Binladen, J., Brand, T. B., Gilbert, M. T. P., Shapiro, B., Bunce, M., Wiuf, C., Gilichinsky, D. A., and Cooper, A.: Diverse plant and animal genetic records from Holocene and Pleistocene sediments, Science, 300, 791–795, https://doi.org/10.1126/science.1084114, 2003.
Wittenborn, A. K., Radtke, H., Dutheil, C., Arz, H. W., and Kaiser, J.: A downcore calibration of the TEX temperature proxy for the Baltic Sea, Cont. Shelf Res., 251, 104875, https://doi.org/10.1016/j.csr.2022.104875, 2022.
Wood, S. M., Kremp, A., Savela, H., Akter, S., Vartti, V.-P., Saarni, S., and Suikkanen, S.: Cyanobacterial akinete distribution, viability, and cyanotoxin records in sediment archives from the Northern Baltic Sea, Front. Microbiol., 12, 681881, https://doi.org/10.3389/fmicb.2021.681881, 2021.
Wörmer, L., Hoshino, T., Bowles, M. W., Viehweger, B., Adhikari, R. R., Xiao, N., Uramoto, G., Könneke, M., Lazar, C. S., Morono, Y., Inagaki, F., and Hinrichs, K.-U.: Microbial dormancy in the marine subsurface: global endospore abundance and response to burial, Sci. Adv., 5, eaav1024, https://doi.org/10.1126/sciadv.aav1024, 2019.
Zimmermann, H. H., Stoof-Leichsenring, K. R., Dinkel, V., Harms, L., Schulte, L., Hütt, M.-T., Nürnberg, D., Tiedemann, R., and Herzschuh, U.: Marine ecosystem shifts with deglacial sea-ice loss inferred from ancient DNA shotgun sequencing, Nat. Commun., 14, 1650, https://doi.org/10.1038/s41467-023-36845-x, 2023.
Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., Eglinton, T. I., Emeis, K.-C., Huguet, C., Koch, B. P., de Lange, G. J., de Leeuw, J. W., Middelburg, J. J., Mollenhauer, G., Prahl, F. G., Rethemeyer, J., and Wakeham, S. G.: Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record, Biogeosciences, 7, 483–511, https://doi.org/10.5194/bg-7-483-2010, 2010.
Short summary
Marine ecosystem models (MEMs) are valuable for assessing the threats of global warming to biodiversity and ecosystem functioning, but their predictions vary widely. We argue that MEMs should consider evolutionary processes and undergo independent validation. Here, we present a novel framework for MEM development using validation data from sediment archives, which map long-term environmental and evolutionary change. Our approach is a crucial step towards improving the predictive power of MEMs.
Marine ecosystem models (MEMs) are valuable for assessing the threats of global warming to...
Altmetrics
Final-revised paper
Preprint