Articles | Volume 22, issue 12
https://doi.org/10.5194/bg-22-3127-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-3127-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fungi present distinguishable isotopic signals in their lipids when grown on glycolytic versus tricarboxylic acid cycle intermediates
Stanislav Jabinski
Department of Ecosystem Biology, University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czechia
Institute of Soil Biology and Biochemistry, Biology Centre CAS, Na Sádkách 7, 370 05 České Budějovice, Czechia
Vítězslav Kučera
Faculty of Sciences, Charles University, Albertov 6, 128 00 Praha, Czechia
Institute of Microbiology CAS, Vídeňská 1083, 142 20 Praha, Czechia
Marek Kopáček
Department of Ecosystem Biology, University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czechia
Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05 České Budějovice, Czechia
Jan Jansa
Institute of Microbiology CAS, Vídeňská 1083, 142 20 Praha, Czechia
Department of Ecosystem Biology, University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czechia
Institute of Soil Biology and Biochemistry, Biology Centre CAS, Na Sádkách 7, 370 05 České Budějovice, Czechia
Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05 České Budějovice, Czechia
Related authors
Jolanta Niedźwiecka, Roey Angel, Petr Čapek, Ana Catalina Lara, Stanislav Jabinski, Travis B. Meador, and Hana Šantrůčková
SOIL, 11, 735–753, https://doi.org/10.5194/soil-11-735-2025, https://doi.org/10.5194/soil-11-735-2025, 2025
Short summary
Short summary
Studies on how microbes use C in soils typically assume oxic conditions but often overlook anaerobic processes and extracellular metabolite release. We examined how O2 and Fe content affect C mineralisation in forest soils by tracking 13C flow into biomass, CO2, metabolites, and active microbes under oxic and anoxic conditions. Results showed that anoxic conditions preserved C longer, especially in high-Fe soils. We conclude that microbial exudates play a role in anoxic C stabilisation.
Jolanta Niedźwiecka, Roey Angel, Petr Čapek, Ana Catalina Lara, Stanislav Jabinski, Travis B. Meador, and Hana Šantrůčková
SOIL, 11, 735–753, https://doi.org/10.5194/soil-11-735-2025, https://doi.org/10.5194/soil-11-735-2025, 2025
Short summary
Short summary
Studies on how microbes use C in soils typically assume oxic conditions but often overlook anaerobic processes and extracellular metabolite release. We examined how O2 and Fe content affect C mineralisation in forest soils by tracking 13C flow into biomass, CO2, metabolites, and active microbes under oxic and anoxic conditions. Results showed that anoxic conditions preserved C longer, especially in high-Fe soils. We conclude that microbial exudates play a role in anoxic C stabilisation.
Daniel A. Petrash, Ingrid M. Steenbergen, Astolfo Valero, Travis B. Meador, Tomáš Pačes, and Christophe Thomazo
Biogeosciences, 19, 1723–1751, https://doi.org/10.5194/bg-19-1723-2022, https://doi.org/10.5194/bg-19-1723-2022, 2022
Short summary
Short summary
We spectroscopically evaluated the gradients of dissolved C, N, S, Fe and Mn in a newly formed redox-stratified lake. The lake features an intermediate redox state between nitrogenous and euxinic conditions that encompasses vigorous open sulfur cycling fuelled by the reducible Fe and Mn stocks of the anoxic sediments. This results in substantial bottom water loads of dissolved iron and sulfate. Observations made in this ecosystem have relevance for deep-time paleoceanographic reconstructions.
Cited articles
Baldrian, P., Voříšková, J., Dobiášová, P., Merhautová, V., Lisá, L., and Valášková, V.: Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil, Plant Soil, 338, 111–125, https://doi.org/10.1007/s11104-010-0324-3, 2011.
Banerjee, D. and Mahapatra, S.: Fungal tannase: a journey from strain isolation to enzyme applications, Dyn. Biochem. Process. Biotechnol. Mol. Biol., 6, 49–60, 2012.
Boer, W. D., Folman, L. B., Summerbell, R. C., and Boddy, L.: Living in a fungal world: impact of fungi on soil bacterial niche development, FEMS Microbiol. Rev., 29, 795–811, 2005.
Boschker, H. T. S. and Middelburg, J. J.: Stable isotopes and biomarkers in microbial ecology, FEMS Microbiol. Ecol., 40, 85–95, https://doi.org/10.1111/j.1574-6941.2002.tb00940.x, 2002.
Boschker, H. T. S., Nold, S. C., Wellsbury, P., Bos, D., De Graaf, W., Pel, R., Parkes, R. J., and Cappenberg, T. E.: Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers, Nature, 392, 801–805, 1998.
Braun, A., Spona-Friedl, M., Avramov, M., Elsner, M., Baltar, F., Reinthaler, T., Herndl, G. J., and Griebler, C.: Reviews and syntheses: Heterotrophic fixation of inorganic carbon – significant but invisible flux in environmental carbon cycling, Biogeosciences, 18, 3689–3700, https://doi.org/10.5194/bg-18-3689-2021, 2021.
Bukovská, P., Bonkowski, M., Konvalinková, T., Beskid, O., Hujslová, M., and Püschel, D.: Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers?, Mycorrhiza, 28, 269–83, https://doi.org/10.1007/s00572-018-0825-0, 2018.
Canarini, A., Fuchslueger, L., Schnecker, J., Metze, D., Nelson, D. B., Kahmen, A., Watzka, M., Pötsch, E. M., Schaumberger, A., Bahn, M., and Richter, A.: Soil fungi remain active and invest in storage compounds during drought independent of future climate conditions, Nat. Commun., 15, 10410, https://doi.org/10.1038/s41467-024-54537-y, 2024.
Carlson C. A., Bates N. R., Hansell, D. A., and Steinberg, D. K.: Carbon Cycle, in: Encyclopedia of Ocean Science, 2nd edition, edited by: Steele, J., Thorpe, S., and Turekian, K., Academic Press, ISBN 9780123744739, 477–486, 2001.
Caro, T. A., McFarlin, J., Jech, S., Fierer, N., and Kopf, S:. Hydrogen stable isotope probing of lipids demonstrates slow rates of microbial growth in soil, P. Natl. Acad. Sci. USA, 120, e2211625120, https://doi.org/10.1073/pnas.2211625120, 2023.
Ciais, P., Dolman, A. J., Bombelli, A., Duren, R., Peregon, A., Rayner, P. J., Miller, C., Gobron, N., Kinderman, G., Marland, G., Gruber, N., Chevallier, F., Andres, R. J., Balsamo, G., Bopp, L., Bréon, F.-M., Broquet, G., Dargaville, R., Battin, T. J., Borges, A., Bovensmann, H., Buchwitz, M., Butler, J., Canadell, J. G., Cook, R. B., DeFries, R., Engelen, R., Gurney, K. R., Heinze, C., Heimann, M., Held, A., Henry, M., Law, B., Luyssaert, S., Miller, J., Moriyama, T., Moulin, C., Myneni, R. B., Nussli, C., Obersteiner, M., Ojima, D., Pan, Y., Paris, J.-D., Piao, S. L., Poulter, B., Plummer, S., Quegan, S., Raymond, P., Reichstein, M., Rivier, L., Sabine, C., Schimel, D., Tarasova, O., Valentini, R., Wang, R., van der Werf, G., Wickland, D., Williams, M., and Zehner, C.: Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system, Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, 2014.
Cooper, A. J. L. and Kuhara, T.: α-Ketoglutaramate: an overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle, Metab. Brain Dis., 29, 991–1006, https://doi.org/10.1007/s11011-013-9444-9, 2014.
Dijkhuizen, L. and Harder, W.: Microbial metabolism of carbon dioxide, in: Comprehensive Biotechnology: the principles, applications, and regulations of biotechnology in industry, agriculture, and medicine, edited by: Dalton, H., editor-in-chief: Moo-Young, M., Vol. 1, Pergamon Press, Oxford, 409–423, 1985.
Dirghangi, S. S. and Pagani, M.: Hydrogen isotope fractionation during lipid biosynthesis by Tetrahymena thermophila, Org. Geochem., 64, 105–111, 2013.
Dumont, M. G. and Murrell, J. C.: Stable isotope probing—linking microbial identity to function, Nat. Rev. Microbiol., 3, 499–504, 2005.
Erb, T. J.: Carboxylases in natural and synthetic microbial pathways, Appl. Environ. Microb., 77, 8466–8477, https://doi.org/10.1128/AEM.05702-11, 2011.
Feisthauer, S., Wick, L. Y., Kästner, M., Kaschabek, S. R., Schlömann, M., and Richnow, H. H.: Differences of heterotrophic 13CO2 assimilation by Pseudomonas knackmussii strain B13 and Rhodococcus opacus 1CP and potential impact on biomarker stable isotope probing, Environ. Microbiol., 10, 1641–1651, 2008.
Fioretto, A., Di Nardo, C., Papa, S., and Fuggi, A.: Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem, Soil Biol. Biochem., 37, 1083–1091, https://doi.org/10.1016/j.soilbio.2004.11.007, 2005.
Fischer, C. R., Bowen, B. P., Pan, C., Northen, T. R., and Banfield, J. F.: Stable-isotope probing reveals that hydrogen isotope fractionation in proteins and lipids in a microbial community are different and species-specific, ACS Chem. Biol., 8, 1755–1763, 2013.
Frey, S. D.: Mycorrhizal fungi as mediators of soil organic matter dynamics, Annu. Rev. Ecol. Evol. S., 50, 237–259, https://doi.org/10.1146/annurev-ecolsys-110617-062331, 2019.
Grinhut, T., Hadar, Y., and Chen, Y.: Degradation and transformation of humic substances by saprotrophic fungi: processes and mechanisms, Fungal Biol. Rev., 21, 179–189, 2007.
Hayes, J. M.: An introduction to isotopic calculations, Woods Hole Oceanographic Institution, Woods Hole, MA, 2543, 2004.
Hoefs, J.: Stable isotope geochemistry, Springer International Publishing AG, Vol. 285, 2018.
Högberg, P., Nordgren, A., Buchmann, N., Taylor, A. F. S., Ekblad, A., Högberg, M. N., Nyberg, G., Ottosson-Löfvenius, M., and Read, D. J.: Large-scale forest girdling shows that current photosynthesis drives soil respiration, Nature, 411, 789–792, 2001.
Huguet, A., Meador, T. B., Laggoun-Défarge, F., Könneke, M., Wu, W., Derenne, S., and Hinrichs, K.-U.: Production rates of bacterial tetraether lipids and fatty acids in peatland under varying oxygen concentrations, Geochim. Cosmochim. Ac., 203, 103–116, https://doi.org/10.1016/j.gca.2017.01.012, 2017.
Jabinski, S., Rangel, W. d. M., Kopáček, M., Jílková, V., Jansa, J., and Meador, T. B.: Constraining activity and growth substrate of fungal decomposers via assimilation patterns of inorganic carbon and water into lipid biomarkers, Appl. Environ. Microb., 90, e02065-23, https://doi.org/10.1128/aem.02065-23, 2024.
Kellermann, M. Y., Wegener, G., Elvert, M., Yoshinaga, M. Y., Lin, Y.-S., Holler, T., et al.: Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing micro bial communities, P. Natl. Acad. Sci. USA, 109, 19321–19326, https://doi.org/10.1073/pnas.1208795109, 2012.
Kellermann, M. Y., Yoshinaga, M. Y., Wegener, G., Krukenberg, V., and Hinrichs, K.-U.: Tracing the production and fate of individual archaeal intact polar lipids using stable isotope probing, Org. Geochem., 95, 13–20, https://doi.org/10.1016/j.orggeochem.2016.02.004, 2016.
Kendall, C. and Caldwell, E. A.: Fundamentals of isotope geochemistry, in: Isotope tracers in catchment hydrology, Elsevier, 51–86, 1998.
Kirk, T. K. and Farrell, R. L.: Enzymatic “combustion”: the microbial degradation of lignin, Annu. Rev. Microbiol., 41, 465–501, https://doi.org/10.1146/annurev.mi.41.100187.002341, 1987.
Kopf, S. H., McGlynn, S. E., Green-Saxena, A., Guan, Y., Newman, D. K., and Orphan, V. J.: Heavy water and 15N labelling with NanoSIMS analysis reveals growth rate-dependent metabolic heterogeneity in chemostats, Environ. Microbiol., 17, 2542–2556, https://doi.org/10.1111/1462-2920.12752, 2015.
Kopf, S. H., Sessions, A. L., Cowley, E. S., Reyes, C., Van Sambeek, L., Hu, Y., Orphan, V. J., Kato, R., and Newman, D. K.: Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum, P. Natl. Acad. Sci. USA, 113, E110–E116, 2016.
Kornberg, H. L.: Anaplerotic sequences in microbial metabolism, Angew. Chem. Int. Edit., 4, 558–565, https://doi.org/10.1002/anie.196505581, 1965.
Kreuzer-Martin, H. W.: Stable isotope probing: linking functional activity to specific members of microbial communities, Soil Sci. Soc. Am. J., 71, 611–619, 2007.
Lekha, P. K. and Lonsane, B. K.: Production and application of tannin acyl hydrolase: state of the art, Adv. Appl. Microbiol., 44, 215–260, 1997.
Lindahl, B. D. and Tunlid, A.: Ectomycorrhizal fungi–potential organic matter decomposers, yet not saprotrophs, New Phytol., 205, 1443–1447, https://doi.org/10.1111/nph.13201, 2015.
Maloney, A. E., Kopf, S. H., Zhang, Z., McFarlin, J., Nelson, D. B., Masterson, A. L., and Zhang, X.: Large enrichments in fatty acid ratios distinguish respiration from aerobic fermentation in yeast Saccharomyces cerevisiae, P. Natl. Acad. Sci. USA, 121, e2310771121, https://doi.org/10.1073/pnas.231077112, 2024.
Mäkelä, M. R., Marinović, M., Nousiainen, P., Liwanag, A. J., Benoit, I., Sipilä, J., Hatakka, A. de Vries, R. P., and Hilden, K. S.: Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass, Adv. Appl. Microbiol., 91, 63–137, 2015.
Osburn, M. R., Sessions, A. L., Pepe-Ranney, C., and Spear, J. R.: Hydrogen-isotopic variability in fatty acids from Yellowstone National Park hot spring microbial communities, Geochim. Cosmochim. Ac., 75, 4830–4845, 2011.
Pilecky, M., Meador, T. B., and Wassenaar, L. I.: Advancements in Compound-Specific Hydrogen Stable-Isotope Analysis of Fatty and Amino Acids, TrAC-Trend. Anal. Chem., 186, 118194, https://doi.org/10.1016/j.trac.2025.118194, 2025.
Romanenko, V. I.: Heterotrophic assimilation of CO2 by bacterial flora of water, Mikrobiologiia, 33, 679–683, 1964.
Roslev, P., Larsen, M. B., Jørgensen, D., and Hesselsoe, M.: Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria, J. Microbiol. Meth., 59, 381–393, https://doi.org/10.1016/j.mimet.2004.08.002, 2004.
Sachse, D., Billault, I., Bowen, G. J., Chikaraishi, Y., Dawson, T. E., Feakins, S. J., Freeman, K. H., Magill, C. R., McInerney, F.A., van der Meer, M. T. J., Polissar, P., Robins, R. J., Sachs, J. P., Schmidt, H.-L., Sessions, A. L., White, J. W. C., West, J. B., and Kahmen, A.: Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms, Annu. Rev. Earth Pl. Sc., 40, 221–249, 2012.
Schinner, F. and Concin, R.: Carbon dioxide fixation by wood-rotting fungi, Eur. J. Forest Pathol., 11, 120–123, https://doi.org/10.1111/j.1439-0329.1981.tb00077.x, 1981.
Schinner, F., Concin, R., and Binder, H.: Heterotrophic CO2-fixation by fungi in dependence on the concentration of the carbon source, Phyton, 22, 81–85, 1982.
Sessions, A. L.: Caltech Fractome Database, California Institute Of Technology [data set], https://fractome.caltech.edu/, last access: 6 June 2025.
Sessions, A. L. and Hayes, J. M.: Calculation of hydrogen isotopic fractionations in biogeochemical systems, Geochim. Cosmochim. Ac. 69, 593–597, 2005.
Smith, S. E. and Read, D.: Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants, 3rd edn., in: Mycorrhizal symbiosis. third ed. London: Academic Press, 2008, 145–190, https://doi.org/10.1016/B978-012370526-6.50007-6, 2008.
Šnajdr, J., Cajthaml, T., Valášková, V., Merhautová, V., Petránková, M., Spetz, P., Leppännen, K., and Baldrian, P.: Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition, FEMS Microbiol. Ecol., 75, 291–303, https://doi.org/10.1111/j.1574-6941.2010.00999.x, 2011.
Sorokin, Y. I.: Heterotrophic carbon dioxide assimilation by microorganisms, Zhurnal Obshchei Biologii, 22, 265–272, 1961.
Sorokin, J. I.: On the carbon dioxide uptake during the cell synthesis by microorganisms, Z. Allg. Mikrobiol., 6, 69–73, https://doi.org/10.1002/jobm.3630060107, 1966.
Treonis, A. M., Ostle, N. J., Stott, A. W., Primrose, R., Grayston, S. J., and Ineson, P.: Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs, Soil Biol. Biochem., 36, 533–537, 2004.
Valentine, D. L.: Isotopic remembrance of metabolism past, P. Natl. Acad. Sci. USA, 106, 12565–12566, https://doi.org/10.1073/pnas.0906428106, 2009.
Warren, C. R.: D2O labelling reveals synthesis of small, water-soluble metabolites in soil, Soil Biol. Biochem., 165, 108543, https://doi.org/10.1016/j.soilbio.2021.108543, 2022.
Wegener, G., Bausch, M., Holler, T., Thang, N. M., Prieto Mollar, X., Kellermann, M. Y., Hinrichs K.-U., and Boetius, A.: Assessing sub-seafloor microbial activity by combined stable isotope probing with deuterated water and 13C-bicarbonate, Environ. Microbiol., 14, 1517–1527, https://doi.org/10.1111/j.1462-2920.2012.02739.x, 2012.
Wegener, G., Kellermann, M. Y., and Elvert, M.: Tracking activity and function of microorganisms by stable isotope probing of membrane lipids, Curr. Opin. Biotech., 41, 43–52, https://doi.org/10.1016/j.copbio.2016.04.022, 2016.
Wijker, R. S., Sessions, A. L., Fuhrer, T., and Phan, M.: variation in microbial lipids is controlled by NADPH metabolism, P. Natl. Acad. Sci. USA, 116, 12173–12182, https://doi.org/10.1073/pnas.1818372116, 2019.
Willers, C., Jansen van Rensburg, P. J., and Claassens, S.: Phospholipid fatty acid profiling of microbial communities–a review of interpretations and recent applications, J. Appl. Microbiol., 119, 1207–1218, 2015.
Wu, W., Meador, T., and Hinrichs, K.-U.: Production and turnover of microbial organic matter in surface intertidal sediments, Org. Geochem., 121, 104–113, https://doi.org/10.1016/j.orggeochem.2018.04.006, 2018.
Wu, W., Meador, T. B., Könneke, M., Elvert, M., Wegener, G., and Hinrichs, K. U.: Substrate-dependent incorporation of carbon and hydrogen for lipid biosynthesis by Methanosarcina barkeri, Env. Microbiol. Rep., 12, 555567, https://doi.org/10.1111/1758-2229.12876, 2020.
Zhang, X., Gillespie, A. L., and Sessions, A. L.: Large D/H variations in bacterial lipids reflect central metabolic pathways, P. Natl. Acad. Sci. USA, 106, 12580–12586, https://doi.org/10.1073/pnas.0903030106, 2009.
Short summary
Microbial production is a key parameter in estimation of organic matter cycling in environmental systems, and fungi play a major role as decomposers. In order to improve investigation of fungal production and turnover times in environmental studies, we determined the isotopic signals encoded into lipid biomarkers of fungal pure cultures growing on various carbon substrates in media with isotopically labeled water and bicarbonate.
Microbial production is a key parameter in estimation of organic matter cycling in environmental...
Altmetrics
Final-revised paper
Preprint