Articles | Volume 22, issue 13
https://doi.org/10.5194/bg-22-3181-2025
https://doi.org/10.5194/bg-22-3181-2025
Research article
 | 
03 Jul 2025
Research article |  | 03 Jul 2025

Acidification, warming, and nutrient management are projected to cause reductions in shell and tissue weights of oysters in a coastal plain estuary

Catherine R. Czajka, Marjorie A. M. Friedrichs, Emily B. Rivest, Pierre St-Laurent, Mark J. Brush, and Fei Da

Related authors

Environmental drivers of spatial variability in benthic macrofauna biomass and associated carbon fluxes in a large coastal-plain estuary
Seyi Ajayi, Raymond Najjar, Emily Rivest, Ryan Woodland, Marjorie A. M. Friedrichs, Pierre St-Laurent, and Spencer Davis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1315,https://doi.org/10.5194/egusphere-2025-1315, 2025
Short summary
Impacts and uncertainties of climate-induced changes in watershed inputs on estuarine hypoxia
Kyle E. Hinson, Marjorie A. M. Friedrichs, Raymond G. Najjar, Maria Herrmann, Zihao Bian, Gopal Bhatt, Pierre St-Laurent, Hanqin Tian, and Gary Shenk
Biogeosciences, 20, 1937–1961, https://doi.org/10.5194/bg-20-1937-2023,https://doi.org/10.5194/bg-20-1937-2023, 2023
Short summary
Reviews and syntheses: Spatial and temporal patterns in seagrass metabolic fluxes
Melissa Ward, Tye L. Kindinger, Heidi K. Hirsh, Tessa M. Hill, Brittany M. Jellison, Sarah Lummis, Emily B. Rivest, George G. Waldbusser, Brian Gaylord, and Kristy J. Kroeker
Biogeosciences, 19, 689–699, https://doi.org/10.5194/bg-19-689-2022,https://doi.org/10.5194/bg-19-689-2022, 2022
Short summary
Relative impacts of global changes and regional watershed changes on the inorganic carbon balance of the Chesapeake Bay
Pierre St-Laurent, Marjorie A. M. Friedrichs, Raymond G. Najjar, Elizabeth H. Shadwick, Hanqin Tian, and Yuanzhi Yao
Biogeosciences, 17, 3779–3796, https://doi.org/10.5194/bg-17-3779-2020,https://doi.org/10.5194/bg-17-3779-2020, 2020
Short summary
The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay
Isaac D. Irby, Marjorie A. M. Friedrichs, Fei Da, and Kyle E. Hinson
Biogeosciences, 15, 2649–2668, https://doi.org/10.5194/bg-15-2649-2018,https://doi.org/10.5194/bg-15-2649-2018, 2018
Short summary

Related subject area

Biogeochemistry: Modelling, Aquatic
Modeling the contribution of micronekton diel vertical migrations to carbon export in the mesopelagic zone
Hélène Thibault, Frédéric Ménard, Jeanne Abitbol-Spangaro, Jean-Christophe Poggiale, and Séverine Martini
Biogeosciences, 22, 2181–2200, https://doi.org/10.5194/bg-22-2181-2025,https://doi.org/10.5194/bg-22-2181-2025, 2025
Short summary
Mixing, spatial resolution and argon saturation in a suite of coupled general ocean circulation biogeochemical models off Mauritania
Heiner Dietze and Ulrike Löptien
Biogeosciences, 22, 1215–1236, https://doi.org/10.5194/bg-22-1215-2025,https://doi.org/10.5194/bg-22-1215-2025, 2025
Short summary
Efficiency metrics for ocean alkalinity enhancements under responsive and prescribed atmospheric pCO2 conditions
Michael D. Tyka
Biogeosciences, 22, 341–353, https://doi.org/10.5194/bg-22-341-2025,https://doi.org/10.5194/bg-22-341-2025, 2025
Short summary
Changes in Arctic Ocean plankton community structure and trophic dynamics on seasonal to interannual timescales
Gabriela Negrete-García, Jessica Y. Luo, Colleen M. Petrik, Manfredi Manizza, and Andrew D. Barton
Biogeosciences, 21, 4951–4973, https://doi.org/10.5194/bg-21-4951-2024,https://doi.org/10.5194/bg-21-4951-2024, 2024
Short summary
Global impact of benthic denitrification on marine N2 fixation and primary production simulated by a variable-stoichiometry Earth system model
Na Li, Christopher J. Somes, Angela Landolfi, Chia-Te Chien, Markus Pahlow, and Andreas Oschlies
Biogeosciences, 21, 4361–4380, https://doi.org/10.5194/bg-21-4361-2024,https://doi.org/10.5194/bg-21-4361-2024, 2024
Short summary

Cited articles

Abatzoglou, J. T. and Brown, T. J.: A comparison of statistical downscaling methods suited for wildfire applications, Int. J. Clim., 32, 772–780, https://doi.org/10.1002/joc.2312, 2012. 
Allen, K. L., Ihde, T., Knoche, S., Townsend, H., and Lewis, K. A.: Simulated climate change impacts on striped bass, blue crab and Eastern oyster in oyster sanctuary habitats of Chesapeake Bay, Estuar. Coast. Shelf Sci., 292, 108465, https://doi.org/10.1016/j.ecss.2023.108465, 2023. 
Amaral, V., Cabral, H. N., and Bishop, M. J.: Effects of estuarine acidification on predator–prey interactions, Mar. Ecol. Prog. Ser., 445, 117–127, https://doi.org/10.3354/meps09487, 2012. 
Barclay, K. M., Gingras, M. K., Packer, S. T., and Leighton, L. R.: The role of gastropod shell composition and microstructure in resisting dissolution caused by ocean acidification, Mar. Environ. Res., 162, 105105, https://doi.org/10.1016/j.marenvres.2020.105105, 2020. 
Barton, A., Waldbusser, G. G., Feely, R. A., Weisberg, S. B., Newton, J. A., Hales, B., Cudd, S., Eudeline, B., Langdon, C. J., Jefferds, I., King, T., Suhrbier, A., and McLaughlin, K.: Impacts of Coastal Acidification on the Pacific Northwest Shellfish Industry and Adaptation Strategies Implemented in Response, Oceanography, 28, 146–159, http://www.jstor.org/stable/24861877, 2015. 
Download
Short summary
Under future acidification, warming, and nutrient management, substantial reductions in shell and tissue weights of Eastern oysters are projected for the Chesapeake Bay. Lower oyster growth rates will be largely driven by reduced calcium carbonate saturation states and reduced food availability. Oyster aquaculture practices in the region will likely be affected, with site selection becoming increasingly important as impacts will be highly spatially variable.
Share
Altmetrics
Final-revised paper
Preprint