Articles | Volume 22, issue 13
https://doi.org/10.5194/bg-22-3181-2025
https://doi.org/10.5194/bg-22-3181-2025
Research article
 | 
03 Jul 2025
Research article |  | 03 Jul 2025

Acidification, warming, and nutrient management are projected to cause reductions in shell and tissue weights of oysters in a coastal plain estuary

Catherine R. Czajka, Marjorie A. M. Friedrichs, Emily B. Rivest, Pierre St-Laurent, Mark J. Brush, and Fei Da

Related authors

Environmental drivers of spatial variability in benthic macrofauna biomass and associated carbon fluxes in a large coastal-plain estuary
Seyi Ajayi, Raymond Najjar, Emily Rivest, Ryan Woodland, Marjorie A. M. Friedrichs, Pierre St-Laurent, and Spencer Davis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1315,https://doi.org/10.5194/egusphere-2025-1315, 2025
Short summary
Impacts and uncertainties of climate-induced changes in watershed inputs on estuarine hypoxia
Kyle E. Hinson, Marjorie A. M. Friedrichs, Raymond G. Najjar, Maria Herrmann, Zihao Bian, Gopal Bhatt, Pierre St-Laurent, Hanqin Tian, and Gary Shenk
Biogeosciences, 20, 1937–1961, https://doi.org/10.5194/bg-20-1937-2023,https://doi.org/10.5194/bg-20-1937-2023, 2023
Short summary
Reviews and syntheses: Spatial and temporal patterns in seagrass metabolic fluxes
Melissa Ward, Tye L. Kindinger, Heidi K. Hirsh, Tessa M. Hill, Brittany M. Jellison, Sarah Lummis, Emily B. Rivest, George G. Waldbusser, Brian Gaylord, and Kristy J. Kroeker
Biogeosciences, 19, 689–699, https://doi.org/10.5194/bg-19-689-2022,https://doi.org/10.5194/bg-19-689-2022, 2022
Short summary

Cited articles

Abatzoglou, J. T. and Brown, T. J.: A comparison of statistical downscaling methods suited for wildfire applications, Int. J. Clim., 32, 772–780, https://doi.org/10.1002/joc.2312, 2012. 
Allen, K. L., Ihde, T., Knoche, S., Townsend, H., and Lewis, K. A.: Simulated climate change impacts on striped bass, blue crab and Eastern oyster in oyster sanctuary habitats of Chesapeake Bay, Estuar. Coast. Shelf Sci., 292, 108465, https://doi.org/10.1016/j.ecss.2023.108465, 2023. 
Amaral, V., Cabral, H. N., and Bishop, M. J.: Effects of estuarine acidification on predator–prey interactions, Mar. Ecol. Prog. Ser., 445, 117–127, https://doi.org/10.3354/meps09487, 2012. 
Barclay, K. M., Gingras, M. K., Packer, S. T., and Leighton, L. R.: The role of gastropod shell composition and microstructure in resisting dissolution caused by ocean acidification, Mar. Environ. Res., 162, 105105, https://doi.org/10.1016/j.marenvres.2020.105105, 2020. 
Barton, A., Waldbusser, G. G., Feely, R. A., Weisberg, S. B., Newton, J. A., Hales, B., Cudd, S., Eudeline, B., Langdon, C. J., Jefferds, I., King, T., Suhrbier, A., and McLaughlin, K.: Impacts of Coastal Acidification on the Pacific Northwest Shellfish Industry and Adaptation Strategies Implemented in Response, Oceanography, 28, 146–159, http://www.jstor.org/stable/24861877, 2015. 
Download
Short summary
Under future acidification, warming, and nutrient management, substantial reductions in shell and tissue weights of Eastern oysters are projected for the Chesapeake Bay. Lower oyster growth rates will be largely driven by reduced calcium carbonate saturation states and reduced food availability. Oyster aquaculture practices in the region will likely be affected, with site selection becoming increasingly important as impacts will be highly spatially variable.
Share
Altmetrics
Final-revised paper
Preprint