Articles | Volume 10, issue 11
https://doi.org/10.5194/bg-10-7161-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-7161-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Macrofaunal colonization across the Indian margin oxygen minimum zone
L. A. Levin
Center for Marine Biodiversity and Conservation and Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA
A. L. McGregor
Center for Marine Biodiversity and Conservation and Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA
G. F. Mendoza
Center for Marine Biodiversity and Conservation and Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA
C. Woulds
School of Geosciences, The University of Edinburgh, Edinburgh EH9 3JW, UK
now at: School of Geography, University of Leeds, Leeds, LS2 9JT, UK
P. Cross
Center for Marine Biodiversity and Conservation and Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA
U. Witte
Oceanlab, University of Aberdeen, Newburgh, Aberdeenshire AB41 6AA, UK
A. J. Gooday
National Oceanography Centre, Southampton, SO14 3ZH, UK
G. Cowie
School of Geosciences, The University of Edinburgh, Edinburgh EH9 3JW, UK
H. Kitazato
Japan Agency for Marine-Earth Science and Technology, Natsushima 2-15, Yokosuka, Kanagawa 237-0061, Japan
Related authors
Michael R. Roman, Andrew H. Altieri, Denise Breitburg, Erica M. Ferrer, Natalya D. Gallo, Shin-ichi Ito, Karin Limburg, Kenneth Rose, Moriaki Yasuhara, and Lisa A. Levin
Biogeosciences, 21, 4975–5004, https://doi.org/10.5194/bg-21-4975-2024, https://doi.org/10.5194/bg-21-4975-2024, 2024
Short summary
Short summary
Oxygen-depleted ocean waters have increased worldwide. In order to improve our understanding of the impacts of this oxygen loss on marine life it is essential that we develop reliable indicators that track the negative impacts of low oxygen. We review various indicators of low-oxygen stress for marine animals including their use, research needs, and application to confront the challenges of ocean oxygen loss.
Clare Woulds, Dick Van Oevelen, Silvia Hidalgo-Martinez, and Filip Meysman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3676, https://doi.org/10.5194/egusphere-2025-3676, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Marine sediments are locations of carbon storage. Only some deposited carbon remains stored, while most is lost as CO2 through respiration by organisms. We report experiments to investigate the organisms responsible for marine sediment respiration. Larger organisms and microbes contributed equally to respiration. The groups competed to feed on fresh carbon. Respiration of older carbon was stimulated when both groups were present, thus burrowing activities allow microbial activity to increase.
Michael R. Roman, Andrew H. Altieri, Denise Breitburg, Erica M. Ferrer, Natalya D. Gallo, Shin-ichi Ito, Karin Limburg, Kenneth Rose, Moriaki Yasuhara, and Lisa A. Levin
Biogeosciences, 21, 4975–5004, https://doi.org/10.5194/bg-21-4975-2024, https://doi.org/10.5194/bg-21-4975-2024, 2024
Short summary
Short summary
Oxygen-depleted ocean waters have increased worldwide. In order to improve our understanding of the impacts of this oxygen loss on marine life it is essential that we develop reliable indicators that track the negative impacts of low oxygen. We review various indicators of low-oxygen stress for marine animals including their use, research needs, and application to confront the challenges of ocean oxygen loss.
Andrea Habura, Stephen P. Alexander, Steven D. Hanes, Andrew J. Gooday, Jan Pawlowski, and Samuel S. Bowser
J. Micropalaeontol., 43, 337–347, https://doi.org/10.5194/jm-43-337-2024, https://doi.org/10.5194/jm-43-337-2024, 2024
Short summary
Short summary
Two species of giant, single-celled "trees” inhabit the seafloor in McMurdo Sound, Antarctica. These unicellular creatures are large enough to be seen and counted by scuba divers. We found that one of the tree species is widely spread, whereas the other inhabits only a small region on the western side of the sound. These types of unicellular trees have not been found elsewhere in the world ocean and are particularly vulnerable to the effects of climate change.
Wojciech Majewski, Witold Szczuciński, and Andrew J. Gooday
Biogeosciences, 20, 523–544, https://doi.org/10.5194/bg-20-523-2023, https://doi.org/10.5194/bg-20-523-2023, 2023
Short summary
Short summary
We studied foraminifera living in the fjords of South Georgia, a sub-Antarctic island sensitive to climate change. As conditions in water and on the seafloor vary, different associations of these microorganisms dominate far inside, in the middle, and near fjord openings. Assemblages in inner and middle parts of fjords are specific to South Georgia, but they may become widespread with anticipated warming. These results are important for interpretating fossil records and monitoring future change.
Cited articles
Aberle, N. and Witte, U.: Deep-sea macrofauna exposed to a simulated sedimentation event in the abyssal NE Atlantic: in situ pulse-chase experiments using 13C-labelled phytodetritus, Mar. Ecol. Prog. Ser., 251, 37–47, 2003.
Blair, N. E., Levin, L. A., DeMaster, D. J., and Plaia, G.: The short-term fate of fresh algal carbon in continental slope sediments. Limnol. Oceanogr., 41, 1208–1219, 1996.
Bograd, S. J., Castro, C. G., Di Lorenzo, E., Palacios, D. M., Bailey, H., Gilly, W., and Chavez, F. P.: Oxygen declines and the shoaling of the hypoxic boundary in the California Current, Geophys. Res. Lett., 35, L12607. https://doi.org/10.1029/2008GL034185, 2008.
Buhring, S. I., Lampadariou, N.: Moodley, L., Tselepides, A., and Witte, U., Benthic microbial and whole-community responses to different amounts of 13C-enriched algae: in situ experiments in the deep Cretan Sea (Eastern Mediterranean), Limnol. Oceanogr., 51, 157–165, 2006.
Chan, F., Barth, J. A., Lubchenco, J., Kirincich, A., Weeks, H., Peterson, W. T., and Menge, B. A.: Emergence of anoxia in the California Current large marine ecosystem, Science, 319, p. 920, 2008
Desbruyeres, D., Bevas, J., and Khripounoff, A.: Un cas de colonization rapide d'une sediment profound, Oceanol. Acta, 3, 285–291, 1980.
Desbruyeres, D., Deming J.W., Dinet, A., and Khripounoff, A.: Reactions de l'ecosysteme benthique profound aux perturbations: noveaux resultants experimenteaux, in: Peuplements profonds du Golfe de Gascogne, edited by: Laubier, L. and Monniot, C., Institute Franceais de Recherche pour l'Exploration de la Mer, 193–209, 1985.
Díaz, R. J. and Rosenberg, R.: Spreading dead zones and consequences for marine ecosystems, Science, 321, 926–929, 2008.
Gooday, A. J., Bett, B. J., Escobar, E., Ingole, B., Levin, L. A., Neira, C., Raman, A. V., and Sellanes, J.: Habitat heterogeneity and its relationship to biodiversity in oxygen minimum zones, Mar. Ecol., 31, 125–147, 2010.
Grassle, J. P. and Grassle, J. F.: Sibling species in the marine pollution indicator Capitella (Polychaeta), Science, 19, 567–569, 1976.
Grassle, J. F. and Morse-Porteous, L. S.: Macrofaunal colonization of disturbed deep-sea environments and the structure of deep-sea communities, Deep Sea Res., 34, 1911–1950, 1987.
Helly, J. and Levin, L. A.: Global distribution of naturally occurring marine hypoxia on continental margins, Deep Sea Res., 51, 1159-1168, 2004.
Hughes, D. J., Lamont, P. A., Levin, L. A., Packer, M. and Gage, J. D.: Macrofaunal community structure and bioturbation across the Pakistan margin oxygen minimum zone, north-east Arabian Sea, Deep Sea Res. II., 56, 434–448, 2010.
Hunter, W. R., Levin, L. A., Kitazato, H., and Witte, U.: Macrobenthic assemblage structure and organismal stoichiometry control faunal processing of particulate organic carbon and nitrogen in oxygen minimum zone sediments, Biogeosciences, 9, 993–1006, https://doi.org/10.5194/bg-9-993-2012, 2012.
Ingole, B. S., Sautya, S., Sivadas, S., Singh, R., and Nanajkar, M.: Macrofaunal community structure in the western Indian continental margin including the oxygen minimum zone, Mar. Ecol., 31, 148–166, https://doi.org/10.1111/j.1439-0485.2009.00356.x, 2010.
Kaminski, M. A., Grassle, J. F., and Whitlach, R. B.: Life history and recolonization among agglutinated foraminifera in the Panama Basin, in: Second Workshop on Agglutinated Foraminifera, edited by: Gradstein, M. F. and Rögl, F., Abhandlungen der Geologischen Bundesanstalt, Wien, 41, 229–243, 1988.
Keeling, R. F., Kórtzinger, A., and Gruber, N.: Ocean deoxygenation in a warming world, Annu. Rev. Mar. Sci., 2, 199–229, 2010.
Levin, L. A.: Oxygen minimum zone benthos: adaptation and community response to hypoxia, Oceanogr. Mar. Biol. Ann. Rev., 41, 1–45, 2003.
Levin, L. A., Blair, N., DeMaster, D. J., Plaia, G., Fornes, W., Martin, C. and Thomas, C.: Rapid subduction of organic matter by maldanid polychaetes on the North Carolina slope, J. Mar. Res., 55, 595–611, 1997.
Levin, L. A, Blair, N., Martin, C., DeMaster, D., Plaia, G., and Thomas, C.: Macrofaunal processing of phytodetritus at two sites on the Carolina margin: In situ experiments using 13C-labeled diatoms, Mar. Ecol. Progr. Ser., 182, 37–54, 1999.
Levin, L. A. and DiBacco, C.: The influence of sediment transport on short-term recolonization by seamount infauna, Mar. Ecol. Progr. Ser., 123, 163–175, 1995.
Levin, L. A. and Gage, J. D.: Relationships between oxygen, organic matter and the diversity of bathyal macrofauna, Deep Sea Res., 45, 129–163, 1998.
Levin, L. A. and Smith, C. R.: Response of fauna to disturbance and enrichment in the deep sea: a sediment tray experiment, Deep Sea Res., 31, 1277–1285, 1984.
Levin L. A., Gage J. D., Martin C., and Lamont P. A.: Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea, Deep Sea Res. II, 47, 189–226, 2000.
Levin, L. A., Ziebis, W., Mendoza, G. F., Growey-Cannon, V., and Walther, S.: Recruitment response of methane-seep macrofauna to sulfide-rich sediments: An in situ experiment, J. Exp.. Mar. Biol. Ecol., 330, 132–150, 2006.
Levin L. A., Whitcraft, C., Mendoza, G. F., Gonzalez, J. P., and Cowie, G.: Oxygen and organic matter thresholds for benthic faunal activity: a case study across the Pakistan margin oxygen minimum zone (700–1100 m), Deep Sea Res. II, 56, 449–471, 2009.
Levin, L. A., Ziebis, W., Mendoza, G. F., Bertics, V. J., Washington, T., Gonzalez, J., Thurber, A. R., Ebbe, B., and Lee, R. W.: Ecological release and niche partitioning under stress: Lessons from dorvilleid polychaetes in sulfidic sediments at methane seeps, Deep Sea Res. II, 92, 214–233, 2013.
McClatchie, S., Goericke, R., Cosgrove, R., Auad, G., & Vetter, R. Oxygen in the Southern California Bight: Multidecadal trends and implications for demersal fisheries, Geophys. Res. Lett., 37, L19602. https://doi.org/10.1029/2010GL044497, 2010.
Menot, L., Crassous, P., Desbruyeres, D., Galeron, J., Khripounoff, A., and Sibuet, M.: Colonization patterns along the equatorial West African margin: Implications for functioning and diversity maintenance of bathyal and abyssal communities, Deep Sea Res. II, 56, 2313–2325, 2009.
Pacheco, A. S., Laudien, J., Thiel, M., Oliva, M., and Heilmayer, O.: Succession and seasonal onset of colonization in subtidal hard-bottom communities off northern Chile, Mar. Ecol., 32, 75–87, https://doi.org/10.1111/j.1439-0485.2010.00398.x, 2011.
Pozzato, L., van Oevelen, D., Moodley, L., Soetaert, K., and Middelburg, J. J.: Carbon processing at the deep-sea floor of the Arabian Sea oxygen minimum zone: A tracer approach, J. Sea Res., 78, 45–58, 2013.
Rabalais, N. N., Díaz, R. J., Levin, L. A., Turner, R. E., Gilbert, D., and Zhang, J.: Dynamics and distribution of natural and human-caused hypoxia, Biogeosciences, 7, 585–619, https://doi.org/10.5194/bg-7-585-2010, 2010.
Ramirez-Llodra, E., Tyler, P. A., Baker, M. C., Bergstad, O. A., Clark, M. R., Escobar, E., Levin, L. A., Menot, L., Rowden A. A., Smith, C. R., and Van Dover, C. L.: Man and the last great wilderness: Human impact on the deep sea, PLoS ONE, 6, e22588, https://doi.org/10.1371/journal.pone.0022588, 2011
Smith, C. R.: Colonization studies in the deep sea: are results biased by experimental designs?, in: Nineteenth European Marine Biology Symposium, edited by: Gibbs, P. E., Cambridge University Press, Cambridge, 183–190, 1985.
Smith, C. R. and Hessler, R. R.: Colonization and succession in deep-sea ecosystems, Trends Ecol. Evol., 2, 359–363, 1987.
Snelgrove, P. V. R. and Smith, C. R.: A riot of species in an environmental calm: the paradox of the species-rich deep sea, Oceanogr. Mar. Biol. Ann. Rev., 40, 311–342, 2002.
Snelgrove, P. V. R., Grassle, J. F., and Petrecca, R. F.: The role of food patches in maintaining high deep-sea diversity: field experiments using hydrodynamically unbiased colonization trays, Limnol. Oceanogr., 37, 1543–1550, 1992.
Snelgrove, P. V. R., Grassle, J. F., and Petrecca, R. F.: Macrofaunal response to artificial enrichments and depressions in a deep-sea habitat, J. Mar. Res., 52, 345–369, 1994.
Snelgrove, P. V. R., Butman, C. A., and Grassle, J. F.: Potential flow artifacts associated with benthic experimental gear: deep-sea mudbox examples, J. Mar. Res., 53, 821–845, 1995.
Snelgrove, P. V. R., Grassle, J. F., and Petrecca, R. F.: Experimental evidence for aging of food patches as a factor contributing to high deep-sea macrofaunal diversity, Limnol. Oceanogr., 41, 605–614, 1996.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding oxygen-minimum zones in the tropical oceans, Science, 320, 655–658, 2008.
Stramma, L., Schmidt, S., Levin, L. A., and Johnson, G. C.: Ocean oxygen minima expansions and their biological impacts, Deep Sea Res., 210, 587–595, 2010.
Sweetman A. and Witte U.: Macrofaunal response to phytodetritus in a bathyal Norwegian fjord, Deep Sea Res., 155, 1503–1514, 2008.
Witte, U., Aberle, N., Sand, M., and Wenzhofer, F.: Rapid response of deep-sea benthic community to POM enrichment: an in situ experimental study, Mar. Ecol. Prog. Ser., 51, 27–36, 2003.
Woulds, C., Cowie, G. L., Levin, L. A., Andersson, J. H., Middelburg, J. J., Vandewiele, S., Lamont, P. A., Larkin, K. E., Gooday, A. J., Schumacher, S., Whitcraft, C., Jeffreys, R., and Schwartz, M.: Oxygen as a control on sea floor biological communities and their roles in sedimentary carbon cycling, Limnol. Oceanogr., 52, 1698–1709, 2007.
Woulds, C., Cowie, G., Andersson, J. H., Middelburg, J. J., and Levin, L. A.: 13C tracer studies on the short-term fate of organic carbon in marine sediments: comparing the Pakistan margin to other regions, Deep Sea Res. II, 56, 393–402, 2009.
Altmetrics
Final-revised paper
Preprint