Articles | Volume 13, issue 13
https://doi.org/10.5194/bg-13-4005-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-4005-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Transfer of diazotroph-derived nitrogen towards non-diazotrophic planktonic communities: a comparative study between Trichodesmium erythraeum, Crocosphaera watsonii and Cyanothece sp.
Hugo Berthelot
CORRESPONDING AUTHOR
Aix Marseille Université, CNRS/INSU, Université
de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288,
Marseille, France
Sophie Bonnet
Aix Marseille Université, CNRS/INSU, Université
de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288,
Marseille, France
Institut de Recherche pour le Développement,
CNRS/Aix-Marseille Université, Mediterranean Institute of Oceanography
(MIO), 101 Promenade R. Laroque, BPA5, 98848, Noumea cedex, New
Caledonia
Olivier Grosso
Aix Marseille Université, CNRS/INSU, Université
de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288,
Marseille, France
Véronique Cornet
Aix Marseille Université, CNRS/INSU, Université
de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288,
Marseille, France
Aude Barani
Aix Marseille Université, CNRS/INSU, Université
de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288,
Marseille, France
Related authors
Sophie Bonnet, Mathieu Caffin, Hugo Berthelot, Olivier Grosso, Mar Benavides, Sandra Helias-Nunige, Cécile Guieu, Marcus Stenegren, and Rachel Ann Foster
Biogeosciences, 15, 4215–4232, https://doi.org/10.5194/bg-15-4215-2018, https://doi.org/10.5194/bg-15-4215-2018, 2018
Mathieu Caffin, Hugo Berthelot, Véronique Cornet-Barthaux, Aude Barani, and Sophie Bonnet
Biogeosciences, 15, 3795–3810, https://doi.org/10.5194/bg-15-3795-2018, https://doi.org/10.5194/bg-15-3795-2018, 2018
Mathieu Caffin, Thierry Moutin, Rachel Ann Foster, Pascale Bouruet-Aubertot, Andrea Michelangelo Doglioli, Hugo Berthelot, Cécile Guieu, Olivier Grosso, Sandra Helias-Nunige, Nathalie Leblond, Audrey Gimenez, Anne Alexandra Petrenko, Alain de Verneil, and Sophie Bonnet
Biogeosciences, 15, 2565–2585, https://doi.org/10.5194/bg-15-2565-2018, https://doi.org/10.5194/bg-15-2565-2018, 2018
Short summary
Short summary
We performed N budgets to assess the role of N2 fixation on production and export in the western tropical South Pacific Ocean. We deployed a combination of techniques including high-sensitivity measurements of N input and sediment traps deployment. We demonstrated that N2 fixation was the major source of new N before atmospheric deposition and upward nitrate fluxes. It contributed significantly to organic matter export, indicating a high efficiency of this region to export carbon.
Karine Leblanc, Véronique Cornet, Mathieu Caffin, Martine Rodier, Anne Desnues, Hugo Berthelot, Kendra Turk-Kubo, and Jules Heliou
Biogeosciences, 13, 5205–5219, https://doi.org/10.5194/bg-13-5205-2016, https://doi.org/10.5194/bg-13-5205-2016, 2016
France Van Wambeke, Ulrike Pfreundt, Aude Barani, Hugo Berthelot, Thierry Moutin, Martine Rodier, Wolfgang R. Hess, and Sophie Bonnet
Biogeosciences, 13, 3187–3202, https://doi.org/10.5194/bg-13-3187-2016, https://doi.org/10.5194/bg-13-3187-2016, 2016
Short summary
Short summary
The phytoplankton is at the base of the plankton food web in large parts of oceanic "deserts" such as the South Pacific Ocean, where nitrogen sources limit activity. Mesocosms were fertilized with phosphorus to stimulate diazotrophy (atmospheric N2 fixation). Mostly diazotroph-derived nitrogen fuelled the heterotrophic bacterial community through indirect processes generating dissolved organic matter and detritus, such as mortality, lysis and grazing of both diazotrophs and non-diazotrophs.
Brian P. V. Hunt, Sophie Bonnet, Hugo Berthelot, Brandon J. Conroy, Rachel A. Foster, and Marc Pagano
Biogeosciences, 13, 3131–3145, https://doi.org/10.5194/bg-13-3131-2016, https://doi.org/10.5194/bg-13-3131-2016, 2016
Short summary
Short summary
Biological nitrogen (N) fixation is an important source of N for food webs in tropical and subtropical oceans. However, uptake pathways remain poorly understood. This study found that fixed N contributed a third of total zooplankton N in the New Caledonia lagoon. Fixed N reached the zooplankton through 1) direct grazing on N fixers and 2) grazing on phytoplankton that had taken up N released by fixers. We report the first record of direct zooplankton grazing on the unicellular N fixer UCYN-C.
Sophie Bonnet, Hugo Berthelot, Kendra Turk-Kubo, Sarah Fawcett, Eyal Rahav, Stéphane L'Helguen, and Ilana Berman-Frank
Biogeosciences, 13, 2653–2673, https://doi.org/10.5194/bg-13-2653-2016, https://doi.org/10.5194/bg-13-2653-2016, 2016
Short summary
Short summary
N2 fixation rates were measured daily in ~ 50 m3 mesocosms deployed in New Caledonia to investigate the high-frequency dynamics of diazotrophy and the fate of diazotroph-derived nitrogen (DDN) oligotrophic ecosystems. ~ 10 % of UCYN-C from the water column were exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. 16 ± 6 % of the DDN was released to the dissolved pool and 21 ± 4 % was transferred to non-diazotrophic plankton.
H. Berthelot, T. Moutin, S. L'Helguen, K. Leblanc, S. Hélias, O. Grosso, N. Leblond, B. Charrière, and S. Bonnet
Biogeosciences, 12, 4099–4112, https://doi.org/10.5194/bg-12-4099-2015, https://doi.org/10.5194/bg-12-4099-2015, 2015
Siqi Wu, Moge Du, Xianhui Sean Wan, Corday Selden, Mar Benavides, Sophie Bonnet, Robert Hamersley, Carolin R. Löscher, Margaret R. Mulholland, Xiuli Yan, and Shuh-Ji Kao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-104, https://doi.org/10.5194/bg-2021-104, 2021
Preprint withdrawn
Short summary
Short summary
Nitrogen (N2) fixation is one of the most important nutrient sources to the ocean. Here, we report N2 fixation in the deep, dark ocean in the South China Sea via a highly sensitive new method and elaborate controls, showing the overlooked importance of N2 fixation in the deep ocean. By global data compilation, we also provide an easy measured basic parameter to estimate deep N2 fixation. Our study may help to expand the area limit of N2 fixation studies and better constrain global N2 fixation.
Sophie Bonnet, Mathieu Caffin, Hugo Berthelot, Olivier Grosso, Mar Benavides, Sandra Helias-Nunige, Cécile Guieu, Marcus Stenegren, and Rachel Ann Foster
Biogeosciences, 15, 4215–4232, https://doi.org/10.5194/bg-15-4215-2018, https://doi.org/10.5194/bg-15-4215-2018, 2018
Dina Spungin, Natalia Belkin, Rachel A. Foster, Marcus Stenegren, Andrea Caputo, Mireille Pujo-Pay, Nathalie Leblond, Cécile Dupouy, Sophie Bonnet, and Ilana Berman-Frank
Biogeosciences, 15, 3893–3908, https://doi.org/10.5194/bg-15-3893-2018, https://doi.org/10.5194/bg-15-3893-2018, 2018
Short summary
Short summary
The way marine organisms die can determine the fate of organic matter (OM) in the ocean. We investigated whether a form of auto-induced programmed cell death (PCD) influenced phytoplankton mortality and fate of OM. Our results from high biomass blooms of the cyanobacterium Trichodesmium show evidence for PCD and high production of sticky carbon material termed transparent exopolymeric particles (TEP) that facilitates cellular aggregation and enhances the vertical flux of OM to depth.
Mathieu Caffin, Hugo Berthelot, Véronique Cornet-Barthaux, Aude Barani, and Sophie Bonnet
Biogeosciences, 15, 3795–3810, https://doi.org/10.5194/bg-15-3795-2018, https://doi.org/10.5194/bg-15-3795-2018, 2018
Mar Benavides, Katyanne M. Shoemaker, Pia H. Moisander, Jutta Niggemann, Thorsten Dittmar, Solange Duhamel, Olivier Grosso, Mireille Pujo-Pay, Sandra Hélias-Nunige, Alain Fumenia, and Sophie Bonnet
Biogeosciences, 15, 3107–3119, https://doi.org/10.5194/bg-15-3107-2018, https://doi.org/10.5194/bg-15-3107-2018, 2018
Short summary
Short summary
We measured N2 fixation rates and identified diazotrophic phylotypes in the mesopelagic layer along a transect spanning from New Caledonia to French Polynesia. N2 fixation rates were low but consistently detected across all depths and stations. A distinct diazotrophic phylotype dominated at 650 dbar, coinciding with the oxygenated Subantarctic Mode Water (SAMW) and suggesting that the distribution of aphotic diazotroph communities is to some extent controlled by water mass structure.
Angela N. Knapp, Kelly M. McCabe, Olivier Grosso, Nathalie Leblond, Thierry Moutin, and Sophie Bonnet
Biogeosciences, 15, 2619–2628, https://doi.org/10.5194/bg-15-2619-2018, https://doi.org/10.5194/bg-15-2619-2018, 2018
Short summary
Short summary
The spatial distribution of biological N2 fixation fluxes to the ocean remains poorly constrained. Here we use nitrogen isotope budgets to identify significant N2 fixation inputs to the western tropical South Pacific (WTSP), where N2 fixation supports > 50 % of export production at stations proximal to iron sources. The significant N2 fixation inputs in the WTSP may offset nitrogen loss in the oxygen-deficient zones of the eastern tropical South Pacific.
Mathieu Caffin, Thierry Moutin, Rachel Ann Foster, Pascale Bouruet-Aubertot, Andrea Michelangelo Doglioli, Hugo Berthelot, Cécile Guieu, Olivier Grosso, Sandra Helias-Nunige, Nathalie Leblond, Audrey Gimenez, Anne Alexandra Petrenko, Alain de Verneil, and Sophie Bonnet
Biogeosciences, 15, 2565–2585, https://doi.org/10.5194/bg-15-2565-2018, https://doi.org/10.5194/bg-15-2565-2018, 2018
Short summary
Short summary
We performed N budgets to assess the role of N2 fixation on production and export in the western tropical South Pacific Ocean. We deployed a combination of techniques including high-sensitivity measurements of N input and sediment traps deployment. We demonstrated that N2 fixation was the major source of new N before atmospheric deposition and upward nitrate fluxes. It contributed significantly to organic matter export, indicating a high efficiency of this region to export carbon.
Marcus Stenegren, Andrea Caputo, Carlo Berg, Sophie Bonnet, and Rachel A. Foster
Biogeosciences, 15, 1559–1578, https://doi.org/10.5194/bg-15-1559-2018, https://doi.org/10.5194/bg-15-1559-2018, 2018
Short summary
Short summary
We successfully performed quantitative PCR at sea. The qPCR data were procured within 3 h and used in decisions on further sampling on site. We designed and applied a new primer and probe set for quantifying the UCYN-A1 host and observed discrepancies between host and symbiont, which contradict previous studies. Lastly, we observed a clear vertical separation between a subsurface group (UCYN-A with hosts) and a surface group (remaining diazotrophs), mainly separated by temperature.
Yangyang Lu, Zuozhu Wen, Dalin Shi, Mingming Chen, Yao Zhang, Sophie Bonnet, Yuhang Li, Jiwei Tian, and Shuh-Ji Kao
Biogeosciences, 15, 1–12, https://doi.org/10.5194/bg-15-1-2018, https://doi.org/10.5194/bg-15-1-2018, 2018
Short summary
Short summary
We investigated the light response of field Trichodesmium N2 fixation and net dissolved nitrogen release behavior. Our results suggest that N2 fixation was a function of light intensity, and the light requirement of Trichodesmium nitrogen fixation was high relative to its photosynthetic light demand. Meanwhile, light is a crucial parameter driving the physiological state of Trichodesmium, which subsequently determined the C / N metabolism and net dissolved nitrogen release.
Thierry Moutin, Andrea Michelangelo Doglioli, Alain de Verneil, and Sophie Bonnet
Biogeosciences, 14, 3207–3220, https://doi.org/10.5194/bg-14-3207-2017, https://doi.org/10.5194/bg-14-3207-2017, 2017
Short summary
Short summary
The overall goal of OUTPACE was to obtain a successful representation of the interactions between planktonic organisms and the cycle of biogenic elements in the western tropical South Pacific Ocean across trophic and N2 fixation gradients. The international OUTPACE cruise took place between 18 February and 3 April 2015 aboard the RV L’Atalante and involved 60 scientists. The transect covered ~4 000 km from the western part of the Melanesian archipelago to the western boundary of the gyre.
Karine Leblanc, Véronique Cornet, Mathieu Caffin, Martine Rodier, Anne Desnues, Hugo Berthelot, Kendra Turk-Kubo, and Jules Heliou
Biogeosciences, 13, 5205–5219, https://doi.org/10.5194/bg-13-5205-2016, https://doi.org/10.5194/bg-13-5205-2016, 2016
Audrey Gimenez, Melika Baklouti, Sophie Bonnet, and Thierry Moutin
Biogeosciences, 13, 5103–5120, https://doi.org/10.5194/bg-13-5103-2016, https://doi.org/10.5194/bg-13-5103-2016, 2016
Short summary
Short summary
In the context of the VAHINE mesocosm experiment in the Nouméa lagoon (New Caledonia), a 1-D vertical biogeochemical mechanistic model was used together with the in situ experiment to complement our comprehension of the planktonic ecosystem dynamics and the main biogeochemical carbon, nitrogen and phosphate fluxes. The model also showed the fate of fixed N2 by providing, over time, the proportion of diazotroph-derived nitrogen (DDN) in each compartment (mineral and organic) of the model.
Angela N. Knapp, Sarah E. Fawcett, Alfredo Martínez-Garcia, Nathalie Leblond, Thierry Moutin, and Sophie Bonnet
Biogeosciences, 13, 4645–4657, https://doi.org/10.5194/bg-13-4645-2016, https://doi.org/10.5194/bg-13-4645-2016, 2016
Short summary
Short summary
The goal of this manuscript was to track the fate of newly fixed nitrogen (N) in large volume mesocosms in the coastal waters of New Caledonia. We used a N isotope ("δ15N") budget and found a shift in the δ15N of sinking particulate N over the 23-day experiment, indicating that nitrate supported export production at the beginning of the experiment, but that nitrogen fixation supported export at the end. We infer that nitrogen fixation supported export production by a release of dissolved N.
Sophie Bonnet, Melika Baklouti, Audrey Gimenez, Hugo Berthelot, and Ilana Berman-Frank
Biogeosciences, 13, 4461–4479, https://doi.org/10.5194/bg-13-4461-2016, https://doi.org/10.5194/bg-13-4461-2016, 2016
Dina Spungin, Ulrike Pfreundt, Hugo Berthelot, Sophie Bonnet, Dina AlRoumi, Frank Natale, Wolfgang R. Hess, Kay D. Bidle, and Ilana Berman-Frank
Biogeosciences, 13, 4187–4203, https://doi.org/10.5194/bg-13-4187-2016, https://doi.org/10.5194/bg-13-4187-2016, 2016
Short summary
Short summary
The marine cyanobacterium Trichodesmium spp. forms massive blooms important to carbon and nitrogen cycling in the oceans that often collapse abruptly. We investigated a Trichodesmium bloom in the lagoon waters of New Caledonia to specifically elucidate the cellular processes mediating the bloom decline. We demonstrate physiological, biochemical, and genetic evidence for nutrient and oxidative stress that induced a genetically controlled programmed cell death (PCD) pathway leading to bloom demise.
Ulrike Pfreundt, Dina Spungin, Sophie Bonnet, Ilana Berman-Frank, and Wolfgang R. Hess
Biogeosciences, 13, 4135–4149, https://doi.org/10.5194/bg-13-4135-2016, https://doi.org/10.5194/bg-13-4135-2016, 2016
Short summary
Short summary
The VAHINE experiment in the New Caledonia lagoon (SW Pacific) targeted the dynamics of nutrient pools and fluxes, N2 fixation, and the composition and productivity of the microbial communities. To connect this information to the actual activities of diverse microbial taxa, we present the analysis of the community-wide gene expression for 23 days. The results from this experiment provide insight into the microbial activities in a low-nutrient, low-chlorophyll ecosystem and within a mesocosm.
Marc Tedetti, Lauriane Marie, Rüdiger Röttgers, Martine Rodier, France Van Wambeke, Sandra Helias, Mathieu Caffin, Véronique Cornet-Barthaux, and Cécile Dupouy
Biogeosciences, 13, 3283–3303, https://doi.org/10.5194/bg-13-3283-2016, https://doi.org/10.5194/bg-13-3283-2016, 2016
Short summary
Short summary
In the framework of the VAHINE project, we investigated the spectral characteristics and the variability of dissolved and particulate chromophoric materials throughout a 23-day mesocosm experiment conducted in the south-west Pacific at the mouth of the New Caledonian coral lagoon. We found that the dynamics of CDOM and particulate matter absorption were strongly coupled with those of cyanobacteria Synechococcus spp. and bacterial production.
France Van Wambeke, Ulrike Pfreundt, Aude Barani, Hugo Berthelot, Thierry Moutin, Martine Rodier, Wolfgang R. Hess, and Sophie Bonnet
Biogeosciences, 13, 3187–3202, https://doi.org/10.5194/bg-13-3187-2016, https://doi.org/10.5194/bg-13-3187-2016, 2016
Short summary
Short summary
The phytoplankton is at the base of the plankton food web in large parts of oceanic "deserts" such as the South Pacific Ocean, where nitrogen sources limit activity. Mesocosms were fertilized with phosphorus to stimulate diazotrophy (atmospheric N2 fixation). Mostly diazotroph-derived nitrogen fuelled the heterotrophic bacterial community through indirect processes generating dissolved organic matter and detritus, such as mortality, lysis and grazing of both diazotrophs and non-diazotrophs.
Brian P. V. Hunt, Sophie Bonnet, Hugo Berthelot, Brandon J. Conroy, Rachel A. Foster, and Marc Pagano
Biogeosciences, 13, 3131–3145, https://doi.org/10.5194/bg-13-3131-2016, https://doi.org/10.5194/bg-13-3131-2016, 2016
Short summary
Short summary
Biological nitrogen (N) fixation is an important source of N for food webs in tropical and subtropical oceans. However, uptake pathways remain poorly understood. This study found that fixed N contributed a third of total zooplankton N in the New Caledonia lagoon. Fixed N reached the zooplankton through 1) direct grazing on N fixers and 2) grazing on phytoplankton that had taken up N released by fixers. We report the first record of direct zooplankton grazing on the unicellular N fixer UCYN-C.
Sophie Bonnet, Thierry Moutin, Martine Rodier, Jean-Michel Grisoni, Francis Louis, Eric Folcher, Bertrand Bourgeois, Jean-Michel Boré, and Armelle Renaud
Biogeosciences, 13, 2803–2814, https://doi.org/10.5194/bg-13-2803-2016, https://doi.org/10.5194/bg-13-2803-2016, 2016
Short summary
Short summary
e main goal of the VAHINE project was to study the fate of N2 fixation in the ocean. Three large-volume (~ 50 m3) mesocosms were deployed in a tropical oligotrophic ecosystem (the New Caledonia lagoon, south-eastern Pacific). This introductory paper describes the scientific objectives of the project in detail as well as the implementation plan: the mesocosm description and deployment, the selection of the study site, and the logistical and sampling strategy.
Sophie Bonnet, Hugo Berthelot, Kendra Turk-Kubo, Sarah Fawcett, Eyal Rahav, Stéphane L'Helguen, and Ilana Berman-Frank
Biogeosciences, 13, 2653–2673, https://doi.org/10.5194/bg-13-2653-2016, https://doi.org/10.5194/bg-13-2653-2016, 2016
Short summary
Short summary
N2 fixation rates were measured daily in ~ 50 m3 mesocosms deployed in New Caledonia to investigate the high-frequency dynamics of diazotrophy and the fate of diazotroph-derived nitrogen (DDN) oligotrophic ecosystems. ~ 10 % of UCYN-C from the water column were exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. 16 ± 6 % of the DDN was released to the dissolved pool and 21 ± 4 % was transferred to non-diazotrophic plankton.
Ulrike Pfreundt, France Van Wambeke, Mathieu Caffin, Sophie Bonnet, and Wolfgang R. Hess
Biogeosciences, 13, 2319–2337, https://doi.org/10.5194/bg-13-2319-2016, https://doi.org/10.5194/bg-13-2319-2016, 2016
Short summary
Short summary
The Southwest Pacific has one of the highest N2 fixation rates in the global ocean, yet information is scarce on the bacterioplankton interrelationships. We detected high microbial diversity in the New Caledonia lagoon and inside a 50 000 L experimental enclosure of the same water mass over 3 weeks and give evidence for previously unknown niche partitioning. Phosphate fertilization promoted the growth of efficient N2 fixing cyanobacteria triggering the growth of most heterotrophic bacteria.
K. A. Turk-Kubo, I. E. Frank, M. E. Hogan, A. Desnues, S. Bonnet, and J. P. Zehr
Biogeosciences, 12, 7435–7452, https://doi.org/10.5194/bg-12-7435-2015, https://doi.org/10.5194/bg-12-7435-2015, 2015
Short summary
Short summary
-A shift from diatom-associated diazotrophs (DDAs) to unicellular cyanobacterial group C (UCYN-C) in response to DIP fertilization was captured in a large-scale mesocosm experiment in the Noumea lagoon (NL), a low-nutrient low-chlorophyll coastal environment. -First report of in situ net growth and mortality rates for unicellular diazotrophs UCYN-A2, and UCYN-C. -First quantitative abundance data for diazotrophs in NL indicate that DDAs and UCYN-A1/A2 may be important N2 fixers in this region.
H. Berthelot, T. Moutin, S. L'Helguen, K. Leblanc, S. Hélias, O. Grosso, N. Leblond, B. Charrière, and S. Bonnet
Biogeosciences, 12, 4099–4112, https://doi.org/10.5194/bg-12-4099-2015, https://doi.org/10.5194/bg-12-4099-2015, 2015
M. Girault, H. Arakawa, A. Barani, H. J. Ceccaldi, F. Hashihama, and G. Gregori
Biogeosciences, 12, 3607–3621, https://doi.org/10.5194/bg-12-3607-2015, https://doi.org/10.5194/bg-12-3607-2015, 2015
Short summary
Short summary
This study focuses on the distribution of three heterotrophic prokaryote groups in relation to the environmental conditions met in the western part of NPSG. Our results showed that the high variability between the various heterotrophic prokaryote cluster abundances depend both on the mesoscale structures and the oligotrophic gradient. To the best of our knowledge, this study is the first report of the heterotrophic prokaryotes distribution under La Niña conditions in the western part of NPSG.
C. Ridame, J. Dekaezemacker, C. Guieu, S. Bonnet, S. L'Helguen, and F. Malien
Biogeosciences, 11, 4783–4800, https://doi.org/10.5194/bg-11-4783-2014, https://doi.org/10.5194/bg-11-4783-2014, 2014
Related subject area
Biogeochemistry: Environmental Microbiology
Changes in diazotrophic community structure associated with Kuroshio succession in the northern South China Sea
Technical note: A comparison of methods for estimating coccolith mass
Fractionation of stable carbon isotopes during formate consumption in anoxic rice paddy soils and lake sediments
Effects of surface water interactions with karst groundwater on microbial biomass, metabolism, and production
Characteristics of bacterial and fungal communities and their associations with sugar compounds in atmospheric aerosols at a rural site in northern China
Overview: ‘Global change effects on terrestrial biogeochemistry at the plant-soil interface’
Responses of globally important phytoplankton species to olivine dissolution products and implications for carbon dioxide removal via ocean alkalinity enhancement
Differentiation of cognate bacterial communities in thermokarst landscapes: implications for ecological consequences of permafrost degradation
A multi-phase biogeochemical model for mitigating earthquake-induced liquefaction via microbially induced desaturation and calcium carbonate precipitation
Phosphorus regulates ectomycorrhizal fungi biomass production in a Norway spruce forest
Reallocation of elemental content and macromolecules in the coccolithophore Emiliania huxleyi to acclimate to climate change
Abrasion of sedimentary rocks as a source of hydrogen peroxide and nutrients to subglacial ecosystems
Nitrous oxide (N2O) synthesis by the freshwater cyanobacterium Microcystis aeruginosa
Interdisciplinary strategy to assess the impact of meteorological variables on the biochemical composition of the rain and the dynamics of a small eutrophic lake under rain forcing
Depth-related patterns in microbial community responses to complex organic matter in the western North Atlantic Ocean
Assessing the influence of ocean alkalinity enhancement on a coastal phytoplankton community
Eddy-enhanced primary production sustains heterotrophic microbial activities in the Eastern Tropical North Atlantic
Composition and niche-specific characteristics of microbial consortia colonizing Marsberg copper mine in the Rhenish Massif
Diversity and assembly processes of microbial eukaryotic communities in Fildes Peninsula Lakes (West Antarctica)
Nitrophobic ectomycorrhizal fungi are associated with enhanced hydrophobicity of soil organic matter in a Norway spruce forest
Physiological control on carbon isotope fractionation in marine phytoplankton
Implementation of mycorrhizal mechanisms into soil carbon model improves the prediction of long-term processes of plant litter decomposition
Impact of dust addition on the microbial food web under present and future conditions of pH and temperature
Fractionation of stable carbon isotopes during acetate consumption by methanogenic and sulfidogenic microbial communities in rice paddy soils and lake sediments
Hydrothermal trace metal release and microbial metabolism in the northeastern Lau Basin of the South Pacific Ocean
Sedimentation rate and organic matter dynamics shape microbiomes across a continental margin
Disturbance triggers non-linear microbe–environment feedbacks
Hydrographic fronts shape productivity, nitrogen fixation, and microbial community composition in the southern Indian Ocean and the Southern Ocean
Microbial and geo-archaeological records reveal the growth rate, origin and composition of desert rock surface communities
Metagenomic insights into the metabolism of microbial communities that mediate iron and methane cycling in Lake Kinneret iron-rich methanic sediments
Spatiotemporal patterns of N2 fixation in coastal waters derived from rate measurements and remote sensing
Biotic and abiotic transformation of amino acids in cloud water: experimental studies and atmospheric implications
Potential bioavailability of organic matter from atmospheric particles to marine heterotrophic bacteria
Microbial functional signature in the atmospheric boundary layer
New insight to niche partitioning and ecological function of ammonia oxidizing archaea in subtropical estuarine ecosystem
Impact of reactive surfaces on the abiotic reaction between nitrite and ferrous iron and associated nitrogen and oxygen isotope dynamics
Reviews and syntheses: Bacterial bioluminescence – ecology and impact in the biological carbon pump
Salinity-dependent algae uptake and subsequent carbon and nitrogen metabolisms of two intertidal foraminifera (Ammonia tepida and Haynesina germanica)
On giant shoulders: how a seamount affects the microbial community composition of seawater and sponges
Spatial variations in sedimentary N-transformation rates in the North Sea (German Bight)
Patterns of (trace) metals and microorganisms in the Rainbow hydrothermal vent plume at the Mid-Atlantic Ridge
Co-occurrence of Fe and P stress in natural populations of the marine diazotroph Trichodesmium
Senescence as the main driver of iodide release from a diverse range of marine phytoplankton
Reviews and syntheses: Biological weathering and its consequences at different spatial levels – from nanoscale to global scale
Deep-sea sponge grounds as nutrient sinks: denitrification is common in boreo-Arctic sponges
Inducing the attachment of cable bacteria on oxidizing electrodes
Bacterial degradation activity in the eastern tropical South Pacific oxygen minimum zone
Macromolecular fungal ice nuclei in Fusarium: effects of physical and chemical processing
Effects of sea animal colonization on the coupling between dynamics and activity of soil ammonia-oxidizing bacteria and archaea in maritime Antarctica
Comprehensive characterization of an aspen (Populus tremuloides) leaf litter sample that maintained ice nucleation activity for 48 years
Han Zhang, Guangming Mai, Weicheng Luo, Meng Chen, Ran Duan, and Tuo Shi
Biogeosciences, 21, 2529–2546, https://doi.org/10.5194/bg-21-2529-2024, https://doi.org/10.5194/bg-21-2529-2024, 2024
Short summary
Short summary
We report taxon-specific biogeography of N2-fixing microbes (diazotrophs) driven by Kuroshio intrusion (Kl) into the South China Sea. We show that the composition and distribution of distinct diazotrophic taxa shift with Kl-induced variations in physicochemical parameters of seawater and that Kl shapes diazotrophic community primarily as a stochastic process. This study thus has implications for the distribution of diazotrophs in a future warming ocean, as Kls are projected to intensify.
Celina Rebeca Valença, Luc Beaufort, Gustaaf Marinus Hallegraeff, and Marius Nils Müller
Biogeosciences, 21, 1601–1611, https://doi.org/10.5194/bg-21-1601-2024, https://doi.org/10.5194/bg-21-1601-2024, 2024
Short summary
Short summary
Coccolithophores contribute to the global carbon cycle and their calcite structures (coccoliths) are used as a palaeoproxy to understand past oceanographic conditions. Here, we compared three frequently used methods to estimate coccolith mass from the model species Emiliania huxleyi and the results allow for a high level of comparability between the methods, facilitating future comparisons and consolidation of mass changes observed from ecophysiological and biogeochemical studies.
Ralf Conrad and Peter Claus
Biogeosciences, 21, 1161–1172, https://doi.org/10.5194/bg-21-1161-2024, https://doi.org/10.5194/bg-21-1161-2024, 2024
Short summary
Short summary
Knowledge of carbon isotope fractionation is important for the assessment of the pathways involved in the degradation of organic matter. Formate is an important intermediate during this process. It was mainly converted to carbon dioxide and acetate both in the presence and absence of sulfate. Methane was only a minor product and was mainly formed from the acetate. The acetate was depleted in the heavy carbon atom relative to formate, while the carbon dioxide was enriched.
Adrian Barry-Sosa, Madison K. Flint, Justin C. Ellena, Jonathan B. Martin, and Brent C. Christner
EGUsphere, https://doi.org/10.5194/egusphere-2024-49, https://doi.org/10.5194/egusphere-2024-49, 2024
Short summary
Short summary
This study examined springs in North Central Florida focusing on how interactions between the surface and subsurface affected the properties of groundwater microbes. We found that microbes reproduced at rates that greatly exceed those documented for any other aquifer. Although the groundwater discharged to spring runs contains low concentrations of nutrients, our results indicate that microbes have access to sources of energy and produce new cells at rates similar to surface water bodies.
Mutong Niu, Shu Huang, Wei Hu, Yajie Wang, Wanyun Xu, Wan Wei, Qiang Zhang, Zihan Wang, Donghuan Zhang, Rui Jin, Libin Wu, Junjun Deng, Fangxia Shen, and Pingqing Fu
Biogeosciences, 20, 4915–4930, https://doi.org/10.5194/bg-20-4915-2023, https://doi.org/10.5194/bg-20-4915-2023, 2023
Short summary
Short summary
Sugar compounds in air can trace the source of bioaerosols that affect public health and climate. In rural north China, we observed increased fungal activity at night and less variable bacterial community diversity. Certain night-increasing sugar compounds were more closely related to fungi than bacteria. The fungal community greatly influenced sugar compounds, while bacteria played a limited role. Caution is advised when using sugar compounds to trace airborne microbes, particularly bacteria.
Lucia Fuchslueger, Emily F. Solly, Alberto Canarini, and Albert C. Brangarí
EGUsphere, https://doi.org/10.5194/egusphere-2023-2975, https://doi.org/10.5194/egusphere-2023-2975, 2023
Short summary
Short summary
This overview features empirical, conceptual, and modelling-based studies of the special issue ‘Global change effects on terrestrial biogeochemistry at the plant-soil interface’, summarizing key findings on plants responses to eCO2, soil organisms responses to warming, impacts on soil organic carbon, nitrogen, and mineral nutrient cycling and water level changes affecting greenhouse gas emissions, from the arctic to tropics, crucial for deciphering feedbacks to global change.
David A. Hutchins, Fei-Xue Fu, Shun-Chung Yang, Seth G. John, Stephen J. Romaniello, M. Grace Andrews, and Nathan G. Walworth
Biogeosciences, 20, 4669–4682, https://doi.org/10.5194/bg-20-4669-2023, https://doi.org/10.5194/bg-20-4669-2023, 2023
Short summary
Short summary
Applications of the mineral olivine are a promising means to capture carbon dioxide via coastal enhanced weathering, but little is known about the impacts on important marine phytoplankton. We examined the effects of olivine dissolution products on species from three major phytoplankton groups: diatoms, coccolithophores, and cyanobacteria. Growth and productivity were generally either unaffected or stimulated, suggesting the effects of olivine on key phytoplankton are negligible or positive.
Ze Ren, Shudan Ye, Hongxuan Li, Xilei Huang, and Luyao Chen
Biogeosciences, 20, 4241–4258, https://doi.org/10.5194/bg-20-4241-2023, https://doi.org/10.5194/bg-20-4241-2023, 2023
Short summary
Short summary
Permafrost thaw initiates thermokarst landscape formation, resulting in distinct new habitats, including degraded permafrost soil, thermokarst lake sediments, and lake water. These distinct habitats harbored differentiated bacterial communities that originated from the same source, differing in diversity, assembly mechanisms, and environmental influences. The results imply ecological consequences of permafrost degradation in the face of further climate change.
Caitlyn A. Hall, Andre van Turnhout, Edward Kavazanjian Jr., Leon A. van Paassen, and Bruce Rittmann
Biogeosciences, 20, 2903–2917, https://doi.org/10.5194/bg-20-2903-2023, https://doi.org/10.5194/bg-20-2903-2023, 2023
Short summary
Short summary
Earthquake-induced soil liquefaction poses a significant global threat. Microbially induced desaturation and precipitation (MIDP) via denitrification is a potentially sustainable, non-disruptive bacteria-driven ground improvement technique under existing structures. We developed a next-generation biogeochemical model to understand and predict the behavior of MIDP in the natural environment to design field-based hazard mitigation treatments.
Juan Pablo Almeida, Lorenzo Menichetti, Alf Ekblad, Nicholas P. Rosenstock, and Håkan Wallander
Biogeosciences, 20, 1443–1458, https://doi.org/10.5194/bg-20-1443-2023, https://doi.org/10.5194/bg-20-1443-2023, 2023
Short summary
Short summary
In forests, trees allocate a significant amount of carbon belowground to support mycorrhizal symbiosis. In northern forests nitrogen normally regulates this allocation and consequently mycorrhizal fungi growth. In this study we demonstrate that in a conifer forest from Sweden, fungal growth is regulated by phosphorus instead of nitrogen. This is probably due to an increase in nitrogen deposition to soils caused by decades of human pollution that has altered the ecosystem nutrient regime.
Yong Zhang, Yong Zhang, Shuai Ma, Hanbing Chen, Jiabing Li, Zhengke Li, Kui Xu, Ruiping Huang, Hong Zhang, Yonghe Han, and Jun Sun
Biogeosciences, 20, 1299–1312, https://doi.org/10.5194/bg-20-1299-2023, https://doi.org/10.5194/bg-20-1299-2023, 2023
Short summary
Short summary
We found that increasing light intensity compensates for the negative effects of low phosphorus (P) availability on cellular protein and nitrogen contents. Reduced P availability, increasing light intensity, and ocean acidification act synergistically to increase cellular contents of carbohydrate and POC and the allocation of POC to carbohydrate. These regulation mechanisms in Emiliania huxleyi could provide vital information for evaluating carbon cycle in marine ecosystems under global change.
Beatriz Gill-Olivas, Jon Telling, Mark Skidmore, and Martyn Tranter
Biogeosciences, 20, 929–943, https://doi.org/10.5194/bg-20-929-2023, https://doi.org/10.5194/bg-20-929-2023, 2023
Short summary
Short summary
Microbial ecosystems have been found in all subglacial environments sampled to date. Yet, little is known of the sources of energy and nutrients that sustain these microbial populations. This study shows that crushing of sedimentary rocks, which contain organic carbon, carbonate and sulfide minerals, along with previously weathered silicate minerals, produces a range of compounds and nutrients which can be utilised by the diverse suite of microbes that inhabit glacier beds.
Federico Fabisik, Benoit Guieysse, Jonathan Procter, and Maxence Plouviez
Biogeosciences, 20, 687–693, https://doi.org/10.5194/bg-20-687-2023, https://doi.org/10.5194/bg-20-687-2023, 2023
Short summary
Short summary
We show, for the first time, that pure cultures of the cyanobacterium Microcystis aeruginosa can synthesize the potent greenhouse gas N2O using nitrite as substrate. Our findings have broad environmental implications because M. aeruginosa is globally found in freshwater ecosystems and is often the dominant species found in algae blooms. Further research is now needed to determine the occurrence and significance of N2O emissions from ecosystems rich with M. aeruginosa.
Fanny Noirmain, Jean-Luc Baray, Frédéric Tridon, Philippe Cacault, Hermine Billard, Guillaume Voyard, Joël Van Baelen, and Delphine Latour
Biogeosciences, 19, 5729–5749, https://doi.org/10.5194/bg-19-5729-2022, https://doi.org/10.5194/bg-19-5729-2022, 2022
Short summary
Short summary
We present a study linking rain, meteorology, and mountain lake phytoplankton dynamics on the basis of a case study at Aydat (France) in September 2020. The air mass origin mainly influences the rain chemical composition, which depends on the type of rain, convective or stratiform. Our results also highlighted a non-negligible presence of photosynthetic cells in rainwater. The impact of the atmospheric forcing on the lake could play a key role in phytoplankton dynamics in the temperate zone.
Sarah A. Brown, John Paul Balmonte, Adrienne Hoarfrost, Sherif Ghobrial, and Carol Arnosti
Biogeosciences, 19, 5617–5631, https://doi.org/10.5194/bg-19-5617-2022, https://doi.org/10.5194/bg-19-5617-2022, 2022
Short summary
Short summary
Bacteria use extracellular enzymes to cut large organic matter to sizes small enough for uptake. We compared the enzymatic response of surface, mid-water, and deep-ocean bacteria to complex natural substrates. Bacteria in surface and mid-depth waters produced a much wider range of enzymes than those in the deep ocean and may therefore consume a broader range of organic matter. The extent to which organic matter is recycled by bacteria depends in part on its residence time at different depths.
Aaron Ferderer, Zanna Chase, Fraser Kennedy, Kai G. Schulz, and Lennart T. Bach
Biogeosciences, 19, 5375–5399, https://doi.org/10.5194/bg-19-5375-2022, https://doi.org/10.5194/bg-19-5375-2022, 2022
Short summary
Short summary
Ocean alkalinity enhancement has the capacity to remove vast quantities of carbon from the atmosphere, but its effect on marine ecosystems is largely unknown. We assessed the effect of increased alkalinity on a coastal phytoplankton community when seawater was equilibrated and not equilibrated with atmospheric CO2. We found that the phytoplankton community was moderately affected by increased alkalinity and equilibration with atmospheric CO2 had little influence on this effect.
Quentin Devresse, Kevin W. Becker, Arne Bendinger, Johannes Hahn, and Anja Engel
Biogeosciences, 19, 5199–5219, https://doi.org/10.5194/bg-19-5199-2022, https://doi.org/10.5194/bg-19-5199-2022, 2022
Short summary
Short summary
Eddies are ubiquitous in the ocean and alter physical, chemical, and biological processes. However, how they affect organic carbon production and consumption is largely unknown. Here we show how an eddy triggers a cascade effect on biomass production and metabolic activities of phyto- and bacterioplankton. Our results may contribute to the improvement of biogeochemical models used to estimate carbon fluxes in the ocean.
Sania Arif, Heiko Nacke, Elias Schliekmann, Andreas Reimer, Gernot Arp, and Michael Hoppert
Biogeosciences, 19, 4883–4902, https://doi.org/10.5194/bg-19-4883-2022, https://doi.org/10.5194/bg-19-4883-2022, 2022
Short summary
Short summary
The natural enrichment of Chloroflexi (Ktedonobacteria) at the Kilianstollen Marsberg copper mine rocks being exposed to the acidic sulfate-rich leachate led to an investigation of eight metagenomically assembled genomes (MAGs) involved in copper and other transition heavy metal resistance in addition to low pH resistance and aromatic compounds degradation. The present study offers functional insights about a novel cold-adapted Ktedonobacteria MAG extremophily along with other phyla MAGs.
Chunmei Zhang, Huirong Li, Yinxin Zeng, Haitao Ding, Bin Wang, Yangjie Li, Zhongqiang Ji, Yonghong Bi, and Wei Luo
Biogeosciences, 19, 4639–4654, https://doi.org/10.5194/bg-19-4639-2022, https://doi.org/10.5194/bg-19-4639-2022, 2022
Short summary
Short summary
The unique microbial eukaryotic community structure and lower diversity have been demonstrated in five freshwater lakes of the Fildes Peninsula, Antarctica. Stochastic processes and biotic co-occurrence patterns were shown to be important in shaping microbial eukaryotic communities in the area. Our study provides a better understanding of the dynamic patterns and ecological assembly processes of microbial eukaryotic communities in Antarctic oligotrophic lakes (Fildes Peninsula).
Juan Pablo Almeida, Nicholas P. Rosenstock, Susanne K. Woche, Georg Guggenberger, and Håkan Wallander
Biogeosciences, 19, 3713–3726, https://doi.org/10.5194/bg-19-3713-2022, https://doi.org/10.5194/bg-19-3713-2022, 2022
Short summary
Short summary
Fungi living in symbiosis with tree roots can accumulate belowground, forming special tissues than can repel water. We measured the water repellency of organic material incubated belowground and correlated it with fungal growth. We found a positive association between water repellency and root symbiotic fungi. These results are important because an increase in soil water repellency can reduce the release of CO2 from soils into the atmosphere and mitigate the effects of greenhouse gasses.
Karen M. Brandenburg, Björn Rost, Dedmer B. Van de Waal, Mirja Hoins, and Appy Sluijs
Biogeosciences, 19, 3305–3315, https://doi.org/10.5194/bg-19-3305-2022, https://doi.org/10.5194/bg-19-3305-2022, 2022
Short summary
Short summary
Reconstructions of past CO2 concentrations rely on proxy estimates, with one line of proxies relying on the CO2-dependence of stable carbon isotope fractionation in marine phytoplankton. Culturing experiments provide insights into which processes may impact this. We found, however, that the methods with which these culturing experiments are performed also influence 13C fractionation. Caution should therefore be taken when extrapolating results from these experiments to proxy applications.
Weilin Huang, Peter M. van Bodegom, Toni Viskari, Jari Liski, and Nadejda A. Soudzilovskaia
Biogeosciences, 19, 1469–1490, https://doi.org/10.5194/bg-19-1469-2022, https://doi.org/10.5194/bg-19-1469-2022, 2022
Short summary
Short summary
This work focuses on one of the essential pathways of mycorrhizal impact on C cycles: the mediation of plant litter decomposition. We present a model based on litter chemical quality which precludes a conclusive examination of mycorrhizal impacts on soil C. It improves long-term decomposition predictions and advances our understanding of litter decomposition dynamics. It creates a benchmark in quantitatively examining the impacts of plant–microbe interactions on soil C dynamics.
Julie Dinasquet, Estelle Bigeard, Frédéric Gazeau, Farooq Azam, Cécile Guieu, Emilio Marañón, Céline Ridame, France Van Wambeke, Ingrid Obernosterer, and Anne-Claire Baudoux
Biogeosciences, 19, 1303–1319, https://doi.org/10.5194/bg-19-1303-2022, https://doi.org/10.5194/bg-19-1303-2022, 2022
Short summary
Short summary
Saharan dust deposition of nutrients and trace metals is crucial to microbes in the Mediterranean Sea. Here, we tested the response of microbial and viral communities to simulated dust deposition under present and future conditions of temperature and pH. Overall, the effect of the deposition was dependent on the initial microbial assemblage, and future conditions will intensify microbial responses. We observed effects on trophic interactions, cascading all the way down to viral processes.
Ralf Conrad, Pengfei Liu, and Peter Claus
Biogeosciences, 18, 6533–6546, https://doi.org/10.5194/bg-18-6533-2021, https://doi.org/10.5194/bg-18-6533-2021, 2021
Short summary
Short summary
Acetate is an important intermediate during the anaerobic degradation of organic matter. It is consumed by methanogenic and sulfidogenic microorganisms accompanied by stable carbon isotope fractionation. We determined isotope fractionation under different conditions in two paddy soils and two lake sediments and also determined the composition of the microbial communities. Despite a relatively wide range of experimental conditions, the range of fractionation factors was quite moderate.
Natalie R. Cohen, Abigail E. Noble, Dawn M. Moran, Matthew R. McIlvin, Tyler J. Goepfert, Nicholas J. Hawco, Christopher R. German, Tristan J. Horner, Carl H. Lamborg, John P. McCrow, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 18, 5397–5422, https://doi.org/10.5194/bg-18-5397-2021, https://doi.org/10.5194/bg-18-5397-2021, 2021
Short summary
Short summary
A previous study documented an intense hydrothermal plume in the South Pacific Ocean; however, the iron release associated with this plume and the impact on microbiology were unclear. We describe metal concentrations associated with multiple hydrothermal plumes in this region and protein signatures of plume-influenced microbes. Our findings demonstrate that resources released from these systems can be transported away from their source and may alter the physiology of surrounding microbes.
Sabyasachi Bhattacharya, Tarunendu Mapder, Svetlana Fernandes, Chayan Roy, Jagannath Sarkar, Moidu Jameela Rameez, Subhrangshu Mandal, Abhijit Sar, Amit Kumar Chakraborty, Nibendu Mondal, Sumit Chatterjee, Bomba Dam, Aditya Peketi, Ranadhir Chakraborty, Aninda Mazumdar, and Wriddhiman Ghosh
Biogeosciences, 18, 5203–5222, https://doi.org/10.5194/bg-18-5203-2021, https://doi.org/10.5194/bg-18-5203-2021, 2021
Short summary
Short summary
Physicochemical determinants of microbiome architecture across continental shelves–slopes are unknown, so we explored the geomicrobiology along 3 m sediment horizons of seasonal (shallow coastal) and perennial (deep sea) hypoxic zones of the Arabian Sea. Nature, concentration, and fate of the organic matter delivered to the sea floor were found to shape the microbiome across the western Indian margin, under direct–indirect influence of sedimentation rate and water column O2 level.
Aditi Sengupta, Sarah J. Fansler, Rosalie K. Chu, Robert E. Danczak, Vanessa A. Garayburu-Caruso, Lupita Renteria, Hyun-Seob Song, Jason Toyoda, Jacqueline Hager, and James C. Stegen
Biogeosciences, 18, 4773–4789, https://doi.org/10.5194/bg-18-4773-2021, https://doi.org/10.5194/bg-18-4773-2021, 2021
Short summary
Short summary
Conceptual models link microbes with the environment but are untested. We test a recent model using riverbed sediments. We exposed sediments to disturbances, going dry and becoming wet again. As the length of dry conditions got longer, there was a sudden shift in the ecology of microbes, chemistry of organic matter, and rates of microbial metabolism. We propose a new model based on feedbacks initiated by disturbance that cascade across biological, chemical, and functional aspects of the system.
Cora Hörstmann, Eric J. Raes, Pier Luigi Buttigieg, Claire Lo Monaco, Uwe John, and Anya M. Waite
Biogeosciences, 18, 3733–3749, https://doi.org/10.5194/bg-18-3733-2021, https://doi.org/10.5194/bg-18-3733-2021, 2021
Short summary
Short summary
Microbes are the main drivers of productivity and nutrient cycling in the ocean. We present a combined approach assessing C and N uptake and microbial community diversity across ecological provinces in the Southern Ocean and southern Indian Ocean. Provinces showed distinct genetic fingerprints, but microbial activity varied gradually across regions, correlating with nutrient concentrations. Our study advances the biogeographic understanding of microbial diversity across C and N uptake regimes.
Nimrod Wieler, Tali Erickson Gini, Osnat Gillor, and Roey Angel
Biogeosciences, 18, 3331–3342, https://doi.org/10.5194/bg-18-3331-2021, https://doi.org/10.5194/bg-18-3331-2021, 2021
Short summary
Short summary
Biological rock crusts (BRCs) are common microbial-based assemblages covering rocks in drylands. BRCs play a crucial role in arid environments because of the limited activity of plants and soil. Nevertheless, BRC development rates have never been dated. Here we integrated archaeological, microbiological and geological methods to provide a first estimation of the growth rate of BRCs under natural conditions. This can serve as an affordable dating tool in archaeological sites in arid regions.
Michal Elul, Maxim Rubin-Blum, Zeev Ronen, Itay Bar-Or, Werner Eckert, and Orit Sivan
Biogeosciences, 18, 2091–2106, https://doi.org/10.5194/bg-18-2091-2021, https://doi.org/10.5194/bg-18-2091-2021, 2021
Mindaugas Zilius, Irma Vybernaite-Lubiene, Diana Vaiciute, Donata Overlingė, Evelina Grinienė, Anastasija Zaiko, Stefano Bonaglia, Iris Liskow, Maren Voss, Agneta Andersson, Sonia Brugel, Tobia Politi, and Paul A. Bukaveckas
Biogeosciences, 18, 1857–1871, https://doi.org/10.5194/bg-18-1857-2021, https://doi.org/10.5194/bg-18-1857-2021, 2021
Short summary
Short summary
In fresh and brackish waters, algal blooms are often dominated by cyanobacteria, which have the ability to utilize atmospheric nitrogen. Cyanobacteria are also unusual in that they float to the surface and are dispersed by wind-driven currents. Their patchy and dynamic distribution makes it difficult to track their abundance and quantify their effects on nutrient cycling. We used remote sensing to map the distribution of cyanobacteria in a large Baltic lagoon and quantify their contributions.
Saly Jaber, Muriel Joly, Maxence Brissy, Martin Leremboure, Amina Khaled, Barbara Ervens, and Anne-Marie Delort
Biogeosciences, 18, 1067–1080, https://doi.org/10.5194/bg-18-1067-2021, https://doi.org/10.5194/bg-18-1067-2021, 2021
Short summary
Short summary
Our study is of interest to atmospheric scientists and environmental microbiologists, as we show that clouds can be considered a medium where bacteria efficiently degrade and transform amino acids, in competition with chemical processes. As current atmospheric multiphase models are restricted to chemical degradation of organic compounds, our conclusions motivate further model development.
Kahina Djaoudi, France Van Wambeke, Aude Barani, Nagib Bhairy, Servanne Chevaillier, Karine Desboeufs, Sandra Nunige, Mohamed Labiadh, Thierry Henry des Tureaux, Dominique Lefèvre, Amel Nouara, Christos Panagiotopoulos, Marc Tedetti, and Elvira Pulido-Villena
Biogeosciences, 17, 6271–6285, https://doi.org/10.5194/bg-17-6271-2020, https://doi.org/10.5194/bg-17-6271-2020, 2020
Romie Tignat-Perrier, Aurélien Dommergue, Alban Thollot, Olivier Magand, Timothy M. Vogel, and Catherine Larose
Biogeosciences, 17, 6081–6095, https://doi.org/10.5194/bg-17-6081-2020, https://doi.org/10.5194/bg-17-6081-2020, 2020
Short summary
Short summary
The adverse atmospheric environmental conditions do not appear suited for microbial life. We conducted the first global comparative metagenomic analysis to find out if airborne microbial communities might be selected by their ability to resist these adverse conditions. The relatively higher concentration of fungi led to the observation of higher proportions of stress-related functions in air. Fungi might likely resist and survive atmospheric physical stress better than bacteria.
Yanhong Lu, Shunyan Cheung, Ling Chen, Shuh-Ji Kao, Xiaomin Xia, Jianping Gan, Minhan Dai, and Hongbin Liu
Biogeosciences, 17, 6017–6032, https://doi.org/10.5194/bg-17-6017-2020, https://doi.org/10.5194/bg-17-6017-2020, 2020
Short summary
Short summary
Through a comprehensive investigation, we observed differential niche partitioning among diverse ammonia-oxidizing archaea (AOA) sublineages in a typical subtropical estuary. Distinct AOA communities observed at DNA and RNA levels suggested that a strong divergence in ammonia-oxidizing activity among different AOA groups occurs. Our result highlights the importance of identifying major ammonia oxidizers at RNA level in future studies.
Anna-Neva Visser, Scott D. Wankel, Pascal A. Niklaus, James M. Byrne, Andreas A. Kappler, and Moritz F. Lehmann
Biogeosciences, 17, 4355–4374, https://doi.org/10.5194/bg-17-4355-2020, https://doi.org/10.5194/bg-17-4355-2020, 2020
Short summary
Short summary
This study focuses on the chemical reaction between Fe(II) and nitrite, which has been reported to produce high levels of the greenhouse gas N2O. We investigated the extent to which dead biomass and Fe(II) minerals might enhance this reaction. Here, nitrite reduction was highest when both additives were present but less pronounced if only Fe(II) minerals were added. Both reaction systems show distinct differences, rather low N2O levels, and indicated the abiotic production of N2.
Lisa Tanet, Séverine Martini, Laurie Casalot, and Christian Tamburini
Biogeosciences, 17, 3757–3778, https://doi.org/10.5194/bg-17-3757-2020, https://doi.org/10.5194/bg-17-3757-2020, 2020
Short summary
Short summary
Bioluminescent bacteria, the most abundant light-emitting organisms in the ocean, can be free-living, be symbiotic or colonize organic particles. This review suggests that they act as a visual target and may indirectly influence the sequestration of biogenic carbon in oceans by increasing the attraction rate for consumers. We summarize the instrumentation available to quantify this impact in future studies and propose synthetic figures integrating these ecological and biogeochemical concepts.
Michael Lintner, Bianca Biedrawa, Julia Wukovits, Wolfgang Wanek, and Petra Heinz
Biogeosciences, 17, 3723–3732, https://doi.org/10.5194/bg-17-3723-2020, https://doi.org/10.5194/bg-17-3723-2020, 2020
Short summary
Short summary
Foraminifera are unicellular marine organisms that play an important role in the marine element cycle. Changes of environmental parameters such as salinity or temperature have a significant impact on the faunal assemblages. Our experiments show that changing salinity in the German Wadden Sea immediately influences the foraminiferal community. It seems that A. tepida is better adapted to salinity fluctuations than H. germanica.
Kathrin Busch, Ulrike Hanz, Furu Mienis, Benjamin Mueller, Andre Franke, Emyr Martyn Roberts, Hans Tore Rapp, and Ute Hentschel
Biogeosciences, 17, 3471–3486, https://doi.org/10.5194/bg-17-3471-2020, https://doi.org/10.5194/bg-17-3471-2020, 2020
Short summary
Short summary
Seamounts are globally abundant submarine structures that offer great potential to study the impacts and interactions of environmental gradients at a single geographic location. In an exemplary way, we describe potential mechanisms by which a seamount can affect the structure of pelagic and benthic (sponge-)associated microbial communities. We conclude that the geology, physical oceanography, biogeochemistry, and microbiology of seamounts are even more closely linked than currently appreciated.
Alexander Bratek, Justus E. E. van
Beusekom, Andreas Neumann, Tina Sanders, Jana Friedrich, Kay-Christian Emeis, and Kirstin Dähnke
Biogeosciences, 17, 2839–2851, https://doi.org/10.5194/bg-17-2839-2020, https://doi.org/10.5194/bg-17-2839-2020, 2020
Short summary
Short summary
The following paper highlights the importance of benthic N-transformation rates in different sediment types in the southern North Sea as a source of fixed nitrogen for primary producers and also as a sink of fixed nitrogen. Sedimentary fluxes of dissolved inorganic nitrogen support ∼7 to 59 % of the average annual primary production. Semi-permeable and permeable sediments contribute ∼68 % of the total benthic N2 production rates, counteracting eutrophication in the southern North Sea.
Sabine Haalboom, David M. Price, Furu Mienis, Judith D. L. van Bleijswijk, Henko C. de Stigter, Harry J. Witte, Gert-Jan Reichart, and Gerard C. A. Duineveld
Biogeosciences, 17, 2499–2519, https://doi.org/10.5194/bg-17-2499-2020, https://doi.org/10.5194/bg-17-2499-2020, 2020
Short summary
Short summary
Mineral mining in deep-sea hydrothermal settings will lead to the formation of plumes of fine-grained, chemically reactive, suspended matter. Understanding how natural hydrothermal plumes evolve as they disperse from their source, and how they affect their surrounding environment, may help in characterising the behaviour of the diluted part of mining plumes. The natural plume provided a heterogeneous, geochemically enriched habitat conducive to the development of a distinct microbial ecology.
Noelle A. Held, Eric A. Webb, Matthew M. McIlvin, David A. Hutchins, Natalie R. Cohen, Dawn M. Moran, Korinna Kunde, Maeve C. Lohan, Claire Mahaffey, E. Malcolm S. Woodward, and Mak A. Saito
Biogeosciences, 17, 2537–2551, https://doi.org/10.5194/bg-17-2537-2020, https://doi.org/10.5194/bg-17-2537-2020, 2020
Short summary
Short summary
Trichodesmium is a globally important marine nitrogen fixer that stimulates primary production in the surface ocean. We surveyed metaproteomes of Trichodesmium populations across the North Atlantic and other oceans, and we found that they experience simultaneous phosphate and iron stress because of the biophysical limits of nutrient uptake. Importantly, nitrogenase was most abundant during co-stress, indicating the potential importance of this phenotype to global nitrogen and carbon cycling.
Helmke Hepach, Claire Hughes, Karen Hogg, Susannah Collings, and Rosie Chance
Biogeosciences, 17, 2453–2471, https://doi.org/10.5194/bg-17-2453-2020, https://doi.org/10.5194/bg-17-2453-2020, 2020
Short summary
Short summary
Tropospheric iodine takes part in numerous atmospheric chemical cycles, including tropospheric ozone destruction and aerosol formation. Due to its significance for atmospheric processes, it is crucial to constrain its sources and sinks. This paper aims at investigating and understanding features of biogenic iodate-to-iodide reduction in microalgal monocultures. We find that phytoplankton senescence may play a crucial role in the release of iodide to the marine environment.
Roger D. Finlay, Shahid Mahmood, Nicholas Rosenstock, Emile B. Bolou-Bi, Stephan J. Köhler, Zaenab Fahad, Anna Rosling, Håkan Wallander, Salim Belyazid, Kevin Bishop, and Bin Lian
Biogeosciences, 17, 1507–1533, https://doi.org/10.5194/bg-17-1507-2020, https://doi.org/10.5194/bg-17-1507-2020, 2020
Short summary
Short summary
Effects of biological activity on mineral weathering operate at scales ranging from short-term, microscopic interactions to global, evolutionary timescale processes. Microorganisms have had well-documented effects at large spatio-temporal scales, but to establish the quantitative significance of microscopic measurements for field-scale processes, higher-resolution studies of liquid chemistry at local weathering sites and improved upscaling to soil-scale dissolution rates are still required.
Christine Rooks, James Kar-Hei Fang, Pål Tore Mørkved, Rui Zhao, Hans Tore Rapp, Joana R. Xavier, and Friederike Hoffmann
Biogeosciences, 17, 1231–1245, https://doi.org/10.5194/bg-17-1231-2020, https://doi.org/10.5194/bg-17-1231-2020, 2020
Short summary
Short summary
Sponge grounds are known as nutrient sources, providing nitrate and ammonium to the ocean. We found that they also can do the opposite: in six species from Arctic and North Atlantic sponge grounds, we measured high rates of denitrification, which remove these nutrients from the sea. Rates were highest when the sponge tissue got low in oxygen, which happens when sponges stop pumping because of stress. Sponge grounds may become nutrient sinks when exposed to stress.
Cheng Li, Clare E. Reimers, and Yvan Alleau
Biogeosciences, 17, 597–607, https://doi.org/10.5194/bg-17-597-2020, https://doi.org/10.5194/bg-17-597-2020, 2020
Short summary
Short summary
Novel filamentous cable bacteria that grow in the top layer of intertidal mudflat sediment were attracted to electrodes poised at a positive electrical potential. Several diverse morphologies of Desulfobulbaceae filaments, cells, and colonies were observed on the electrode surface. These observations provide information to suggest conditions that will induce cable bacteria to perform electron donation to an electrode, informing future experiments that culture cable bacteria outside of sediment.
Marie Maßmig, Jan Lüdke, Gerd Krahmann, and Anja Engel
Biogeosciences, 17, 215–230, https://doi.org/10.5194/bg-17-215-2020, https://doi.org/10.5194/bg-17-215-2020, 2020
Short summary
Short summary
Little is known about the rates of bacterial element cycling in oxygen minimum zones (OMZs). We measured bacterial production and rates of extracellular hydrolytic enzymes at various in situ oxygen concentrations in the OMZ off Peru. Our field data show unhampered bacterial activity at low oxygen concentrations. Meanwhile bacterial degradation of organic matter substantially contributed to the formation of the OMZ.
Anna T. Kunert, Mira L. Pöhlker, Kai Tang, Carola S. Krevert, Carsten Wieder, Kai R. Speth, Linda E. Hanson, Cindy E. Morris, David G. Schmale III, Ulrich Pöschl, and Janine Fröhlich-Nowoisky
Biogeosciences, 16, 4647–4659, https://doi.org/10.5194/bg-16-4647-2019, https://doi.org/10.5194/bg-16-4647-2019, 2019
Short summary
Short summary
A screening of more than 100 strains from 65 different species revealed that the ice nucleation activity within the fungal genus Fusarium is more widespread than previously assumed. Filtration experiments suggest that the single cell-free Fusarium IN is smaller than 100 kDa (~ 6 nm) and that aggregates can be formed in solution. Exposure experiments, freeze–thaw cycles, and long-term storage tests demonstrate a high stability of Fusarium IN under atmospherically relevant conditions.
Qing Wang, Renbin Zhu, Yanling Zheng, Tao Bao, and Lijun Hou
Biogeosciences, 16, 4113–4128, https://doi.org/10.5194/bg-16-4113-2019, https://doi.org/10.5194/bg-16-4113-2019, 2019
Short summary
Short summary
We investigated abundance, potential activity, and diversity of soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) in five Antarctic tundra patches, including penguin colony, seal colony, and tundra marsh. We have found (1) sea animal colonization increased AOB population size.; (2) AOB contributed to ammonia oxidation rates more than AOA in sea animal colonies; (3) community structures of AOB and AOA were closely related to soil biogeochemical processes associated with animal activities.
Yalda Vasebi, Marco E. Mechan Llontop, Regina Hanlon, David G. Schmale III, Russell Schnell, and Boris A. Vinatzer
Biogeosciences, 16, 1675–1683, https://doi.org/10.5194/bg-16-1675-2019, https://doi.org/10.5194/bg-16-1675-2019, 2019
Short summary
Short summary
Ice nucleation particles (INPs) help ice form at temperatures as high as −4 °C and contribute to the formation of precipitation. Leaf litter contains a high concentration of INPs, but the organisms that produce them are unknown. Here, we cultured two bacteria and one fungus from leaf litter that produce INPs similar to those found in leaf litter. This suggests that leaf litter may be an important habitat of these organisms and supports a role of these organisms as producers of atmospheric INPs.
Cited articles
Aminot, A. and Kérouel, R.: Dosage Automatique des Nutriments dans les Eaux Marines, Ifremer, Plouzané, 2007.
Benavides, M., Bronk, D. A., Agawin, N. S. R., Pérez-Hernández, M. D., Hernández-Guerra, A., and Arístegui, J.: Longitudinal variability of size-fractionated N2 fixation and DON release rates along 24.5° N in the subtropical North Atlantic, J. Geophys. Res.-Oceans, 118, 3406–3415, https://doi.org/10.1002/jgrc.20253, 2013.
Bergman, B. and Carpenter, E. J.: Nitrogenase confined to randomly distributed trichomes in the marine cyanobacterium Trichodesmium thiebautii, J. Phycol., 27, 158–165, https://doi.org/10.1111/j.0022-3646.1991.00158.x, 1991.
Bergman, B., Sandh, G., Lin, S., Larsson, J., and Carpenter, E. J.: Trichodesmium – a widespread marine cyanobacterium with unusual nitrogen fixation properties, FEMS Microbiol. Rev., 37, 286–302, https://doi.org/10.1111/j.1574-6976.2012.00352.x, 2013.
Berman-Frank, I., Lundgren, P., Chen, Y. B., Küpper, H., Kolber, Z., Bergman, B., and Falkowski, P.: Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium, Science, 294, 1534–1537, https://doi.org/10.1126/science.1064082, 2001.
Berman-Frank, I., Bidle, K. D., Haramaty, L., and Falkowski, P. G.: The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway, Limnol. Oceanogr., 49, 997–1005, https://doi.org/10.4319/lo.2004.49.4.0997, 2004.
Berthelot, H., Bonnet, S., Camps, M., Grosso, O., and Moutin, T.: Assessment of the dinitrogen released as ammonium and dissolved organic nitrogen by unicellular and filamentous marine diazotrophic cyanobacteria grown in culture, Front. Mar. Sci., 2, 80, https://doi.org/10.3389/fmars.2015.00080, 2015a.
Berthelot, H., Moutin, T., L'Helguen, S., Leblanc, K., Hélias, S., Grosso, O., Leblond, N., Charrière, B., and Bonnet, S.: Dinitrogen fixation and dissolved organic nitrogen fueled primary production and particulate export during the VAHINE mesocosm experiment (New Caledonia lagoon), Biogeosciences, 12, 4099–4112, https://doi.org/10.5194/bg-12-4099-2015, 2015b.
Bonnet, S., Biegala, I. C., Dutrieux, P., Slemons, L. O., and Capone, D. G.: Nitrogen fixation in the western equatorial Pacific: rates, diazotrophic cyanobacterial size class distribution, and biogeochemical significance, Global Biogeochem. Cy., 23, 1–13, https://doi.org/10.1029/2008GB003439, 2009.
Bonnet, S., Rodier, M., Turk-Kubo, K. A., Germineaud, C., Menkes, C., Ganachaud, A., Cravatte, S., Raimbault, P., Campbell, E., Quéroué, F., Sarthou, G., Desnues, A., Maes, C., and Eldin, G.: Contrasted geographical distribution of N2 fixation rates and nifH phylotypes in the Coral and Solomon Seas (South-Western Pacific) during austral winter conditions, Global Biogeochem. Cy., 29, 1874–1892, https://doi.org/10.1002/2015GB005117, 2015.
Bonnet, S., Berthelot, H., Turk-Kubo, K., Fawcett, S., Rahav, E., L'Helguen, S., and Berman-Frank, I.: Dynamics of N2 fixation and fate of diazotroph-derived nitrogen in a low-nutrient, low-chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia), Biogeosciences, 13, 2653–2673, https://doi.org/10.5194/bg-13-2653-2016, 2016a.
Bonnet, S., Moutin, T., Rodier, M., Grisoni, J.-M., Louis, F., Folcher, E., Bourgeois, B., Boré, J.-M., and Renaud, A.: Introduction to the project VAHINE: VAriability of vertical and tropHIc transfer of diazotroph derived N in the south wEst Pacific, Biogeosciences, 13, 2803–2814, https://doi.org/10.5194/bg-13-2803-2016, 2016b.
Bonnet, S., Berthelot, H., Turk-Kubo, K., Cornet-Bartaux, V., Fawcett, S. E., Berman-Frank, I., Barani, A., Dekaezemacker, J., Benavides, M., Charriere, B., and Capone, D. G.: Diazotroph derived nitrogen supports diatoms growth in the South West Pacific: a quantitative study using nanoSIMS, Limnol. Oceanogr., in press, 2016c.
Bourbonnais, A., Lehmann, M. F, Waniek, J. J., and Schulz-Bull, D. E.: Nitrate isotope anomalies reflect N2 fixation in the Azores Front region (subtropical NE Atlantic), J. Geophys. Res., 114, C03003, https://doi.org/10.1029/2007JC004617, 2009.
Bradley, P. B., Lomas, M. W., and Bronk, D. A.: Inorganic and organic nitrogen use by phytoplankton along Chesapeake Bay, measured using a flow cytometric sorting approach, Estuar. Coast., 33, 971–984, https://doi.org/10.1007/s12237-009-9252-y, 2010.
Bronk, D. A., See, J. H., Bradley, P., and Killberg, L.: DON as a source of bioavailable nitrogen for phytoplankton, Biogeosciences, 4, 283–296, https://doi.org/10.5194/bg-4-283-2007, 2007.
Bryceson, I. and Fay, P.: Nitrogen fixation in Oscillatoria (Trichodesmium) erythraea in relation to bundle formation and trichome differentiation, Mar. Biol., 61, 159–166, https://doi.org/10.1007/BF00386655, 1981.
Buitenhuis, E. T., Li, W. K. W., Vaulot, D., Lomas, M. W., Landry, M. R., Partensky, F., Karl, D. M., Ulloa, O., Campbell, L., Jacquet, S., Lantoine, F., Chavez, F., Macias, D., Gosselin, M., and McManus, G. B.: Picophytoplankton biomass distribution in the global ocean, Earth Syst. Sci. Data, 4, 37–46, https://doi.org/10.5194/essd-4-37-2012, 2012.
Capone, D. G., Ferrier, M. D., and Carpenter, E. J.: Amino acid cycling in colonies of the planktonic marine cyanobacterium Trichodesmium thiebautii, Appl. Environ. Microb., 60, 3989–3995, 1994.
Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B., and Carpenter, E. J.: Trichodesmium, a globally significant marine cyanobacterium, Science, 276, 1221–1229, https://doi.org/10.1126/science.276.5316.1221, 1997.
Capone, D. G., Burns, J. A., Montoya, J. P., Subramaniam, A., Mahaffey, C., Gunderson, T., Michaels, A. F., and Carpenter, E. J.: Nitrogen fixation by Trichodesmium spp.: an important source of new nitrogen to the tropical and subtropical North Atlantic Ocean, Global Biogeochem. Cy., 19, GB2024, https://doi.org/10.1029/2004GB002331, 2005.
Carpenter, E. J. and Janson, S.: Intracellular cyanobacterial symbionts in the marine diatom Climacodium frauenfeldianum (Bacillariophyceae), J. Phycol., 36, 540–544, https://doi.org/10.1046/j.1529-8817.2000.99163.x, 2000.
Chavez, F. P. and Smith, S. L.: Biological and chemical consequences of open ocean upwelling, in: Upwelling in the Ocean: Modern Processes and Ancient Records, edited by: Summerhayes, C. P., Emeis, K.-C., and Angel, M. V., Wiley, 149–169, 1995.
Chen, Y.-B., Zehr, J. P., and Mellon, M.: Growth and nitrogen fixation of the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. IMS 101 in defined media: evidence for a circadian rhythm, J. Phycol., 32, 916–923, https://doi.org/10.1111/j.0022-3646.1996.00916.x, 1996.
Collos, Y. and Berges, J. A.: Nitrogen metabolism in phytoplankton, in: Marine Ecology, Encyclopedia of Life Support Systems (EOLSS), 1–18, 2002.
Dabundo, R., Lehmann, M. F., Treibergs, L., Tobias, C. R., Altabet, M. A., Moisander, P. H., and Granger, J.: The Contamination of Commercial 15N2 Gas Stocks with 15N Labeled Nitrate and Ammonium and Consequences for Nitrogen Fixation Measurements, PLoS ONE, 9, e110335, https://doi.org/10.1371/journal.pone.0110335, 2014.
Devassy, V. P., Bhattathiri, P. M. A., and Qasim, S. Z.: Succession of organisms following Trichodesmium phenomenon, Indian J. Mar. Sci., 8, 89–93, 1979.
Dore, J. E., Brum, J. R., Tupas, L. M., and Karl, D. M.: Seasonal and interannual variability in sources of nitrogen supporting export in the oligotrophic subtropical North Pacific Ocean, Limnol. Oceanogr., 47, 1595–1607, https://doi.org/10.4319/lo.2002.47.6.1595, 2002.
Dore, J. E., Letelier, R. M., Church, M. J., Lukas, R., and Karl, D. M.: Summer phytoplankton blooms in the oligotrophic North Pacific Subtropical Gyre: historical perspective and recent observations, Prog. Oceanogr., 76, 2–38, https://doi.org/10.1016/j.pocean.2007.10.002, 2008.
Dron, A., Rabouille, S., Claquin, P., Le Roy, B., Talec, A., and Sciandra, A.: Light-dark (12 : 12) cycle of carbon and nitrogen metabolism in Crocosphaera watsonii WH8501: relation to the cell cycle, Environ. Microbiol., 14, 967–981, https://doi.org/10.1111/j.1462-2920.2011.02675.x, 2012.
Finzi-Hart, J. A., Pett-Ridge, J., Weber, P. K., Popa, R., Fallon, S. J., Gunderson, T., Hutcheon, I. D., Nealson, K. H., and Capone, D. G.: Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry, P. Natl. Acad. Sci. USA, 106, 6345–6350, https://doi.org/10.1073/pnas.0810547106, 2009.
Foster, R. A., Kuypers, M. M. M., Vagner, T., Paerl, R. W., Musat, N., and Zehr, J. P.: Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses, ISME J., 5, 1484–1493, https://doi.org/10.1038/ismej.2011.26, 2011.
Foster, R. A., Sztejrenszus, S., and Kuypers, M. M.: Measuring carbon and N2 fixation in field populations of colonial and free-living unicellular cyanobacteria using nanometer-scale secondary ion mass spectrometry, edited by: Raven, J., J. Phycol., 49, 502–516, https://doi.org/10.1111/jpy.12057, 2013.
Fukuda, R., Ogawa, H., Nagata, T., and Koike, I. I.: Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments, Appl. Environ. Microb., 64, 3352–3358, 1998.
Garcia, N., Raimbault, P., and Sandroni, V.: Seasonal nitrogen fixation and primary production in the Southwest Pacific: nanoplankton diazotrophy and transfer of nitrogen to picoplankton organisms, Mar. Ecol.-Prog. Ser., 343, 25–33, https://doi.org/10.3354/meps06882, 2007.
Glibert, P. M. and Bronk, D. A.: Release of dissolved organic nitrogen by marine diazotrophic cyanobacteria Trichodesmium spp., Appl. Environ. Microb., 60, 3996–4000, 1994.
Grégori, G., Colosimo, A., and Denis, M.: Phytoplankton group dynamics in the Bay of Marseilles during a 2-year survey based on analytical flow cytometry, Cytometry, 44, 247–256, 2001.
Hasle, G. R.: The inverted microscope, in: Phytoplankton Manual, edited by: Sournia, A., Monographs on Oceanographic Methodology 6, UNESCO, Paris, 191–916, 1978.
Hewson, I., Govil, S., Capone, D., Carpenter, E., and Fuhrman, J.: Evidence of Trichodesmium viral lysis and potential significance for biogeochemical cycling in the oligotrophic ocean, Aquat. Microb. Ecol., 36, 1–8, https://doi.org/10.3354/ame036001, 2004.
Hewson, I., Poretsky, R. S., Beinart, R. A., White, A. E., Shi, T., Bench, S. R., Moisander, P. H., Paerl, R. W., Tripp, H. J., Montoya, J. P., Moran, M. A., and Zehr, J. P.: In situ transcriptomic analysis of the globally important keystone N2-fixing taxon Crocosphaera watsonii, ISME J., 3, 618–631, https://doi.org/10.1038/ismej.2009.8, 2009.
Hmelo, L., Van Mooy, B., and Mincer, T.: Characterization of bacterial epibionts on the cyanobacterium Trichodesmium, Aquat. Microb. Ecol., 67, 1–14, https://doi.org/10.3354/ame01571, 2012.
Holmes, R. M., Aminot, A., Kérouel, R., Hooker, B. A., and Peterson, B. J.: A simple and precise method for measuring ammonium in marine and freshwater ecosystems, Can. J. Fish. Aquat. Sci., 56, 1801–1808, https://doi.org/10.1139/f99-128, 1999.
Kana, T. M., Darkangelo, C., Hunt, M. D., Oldham, J. B., Bennett, G. E., and Cornwell, J. C.: Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples, Anal. Chem., 66, 4166–4170, https://doi.org/10.1021/ac00095a009, 1994.
Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier, R., Lipschultz, F., Paerl, H., Sigman, D., and Stal, L.: Dinitrogen fixation in the world's oceans, Biogeochemistry, 57, 47–98, https://doi.org/10.1023/A:1015798105851, 2002.
Karl, D. M., Church, M. J., Dore, J. E., Letelier, R. M., and Mahaffey, C.: Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation, P. Natl. Acad. Sci. USA, 109, 1842–1849, https://doi.org/10.1073/pnas.1120312109, 2012.
Knapp, A. N., Sigman, D. M., and Lipschultz, F.: N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic Time-series Study site, Global Biogeochem. Cy., 19, GB1018, https://doi.org/10.1029/2004GB002320, 2005.
Konno, U., Tsunogai, U., Komatsu, D. D., Daita, S., Nakagawa, F., Tsuda, A., Matsui, T., Eum, Y.-J., and Suzuki, K.: Determination of total N2 fixation rates in the ocean taking into account both the particulate and filtrate fractions, Biogeosciences, 7, 2369–2377, https://doi.org/10.5194/bg-7-2369-2010, 2010.
Kudela, R. M. and Dugdale, R. C.: Nutrient regulation of phytoplankton productivity in Monterey Bay, California, Deep-Sea Res. Pt. II, 47, 1023–1053, https://doi.org/10.1016/S0967-0645(99)00135-6, 2000.
Leblanc, K., Cornet, V., Caffin, M., Rodier, M., Desnues, A., Berthelot, H., Turk-Kubo, K., and Heliou, J.: Phytoplankton community structure in the VAHINE MESOCOSM experiment, Biogeosciences Discuss., https://doi.org/10.5194/bg-2015-605, in review, 2016.
LaRoche, J. and Breitbarth, E.: Importance of the diazotrophs as a source of new nitrogen in the ocean, J. Sea Res., 53, 67–91, https://doi.org/10.1016/j.seares.2004.05.005, 2005.
Lee Chen, Y., Tuo, S., and Chen, H.: Co-occurrence and transfer of fixed nitrogen from Trichodesmium spp. to diatoms in the low-latitude Kuroshio Current in the NW Pacific, Mar. Ecol.-Prog. Ser., 421, 25–38, https://doi.org/10.3354/meps08908, 2011.
Lenes, J. M. and Heil, C. A.: A historical analysis of the potential nutrient supply from the N2 fixing marine cyanobacterium Trichodesmium spp. to Karenia brevis blooms in the eastern Gulf of Mexico, J. Plankton Res., 32, 1421–1431, https://doi.org/10.1093/plankt/fbq061, 2010.
Luo, Y.-W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I., Bode, A., Bonnet, S., Boström, K. H., Böttjer, D., Capone, D. G., Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J. E., Falcón, L. I., Fernández, A., Foster, R. A., Furuya, K., Gómez, F., Gundersen, K., Hynes, A. M., Karl, D. M., Kitajima, S., Langlois, R. J., LaRoche, J., Letelier, R. M., Marañón, E., McGillicuddy Jr., D. J., Moisander, P. H., Moore, C. M., Mouriño-Carballido, B., Mulholland, M. R., Needoba, J. A., Orcutt, K. M., Poulton, A. J., Rahav, E., Raimbault, P., Rees, A. P., Riemann, L., Shiozaki, T., Subramaniam, A., Tyrrell, T., Turk-Kubo, K. A., Varela, M., Villareal, T. A., Webb, E. A., White, A. E., Wu, J., and Zehr, J. P.: Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates, Earth Syst. Sci. Data, 4, 47–73, https://doi.org/10.5194/essd-4-47-2012, 2012.
Marie, D., Brussaard, C., Partensky, F., and Vaulot, D.: Flow cytometric analysis of phytoplankton, bacteria and viruses. In: Current Protocols in Cytometry, Hoboken, NJ, Wiley, 11.11.1–11.11.15., 1999.
Mague, T. H., Weare, N. M., and Holm-Hansen, O.: Nitrogen fixation in the North Pacific Ocean, Mar. Biol., 24, 109–119, https://doi.org/10.1007/BF00389344, 1974.
Miller, C. B. and Wheeler, P. A.: Habitat determinants of primary production in the sea. In: Biological Oceanography, Second Edition, John Wiley and Sons, Ltd., 2012.
Mohr, W., Großkopf, T., Wallace, D. W. R., LaRoche, J., and Grosskopf, T.: Methodological underestimation of oceanic nitrogen fixation rates, PLoS One, 5, e12583, https://doi.org/10.1371/journal.pone.0012583, 2010.
Moisander, P. H., Beinart, R. A., Hewson, I., White, A. E., Johnson, K. S., Carlson, C. A., Montoya, J. P., and Zehr, J. P.: Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain, Science, 327, 1512–1514, https://doi.org/10.1126/science.1185468, 2010.
Montoya, J. P., Voss, M., Kahler, P., and Capone, D. G.: A simple, high-precision, high-sensitivity tracer assay for N2 fixation, Appl. Environ. Microb., 62, 986–993, 1996.
Montoya, J. P., Carpenter, E. J., and Capone, D. G.: Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic, Limnol. Oceanogr., 47, 1617–1628, https://doi.org/10.4319/lo.2002.47.6.1617, 2002.
Montoya, J. P., Holl, C. M., Zehr, J. P., Hansen, A., Villareal, T. A., and Capone, D. G.: High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean, Nature, 430, 1027–1032, https://doi.org/10.1038/nature02824, 2004.
Moore, J. K., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., LaRoche, J., Lenton, T. M., Mahowald, N. M., Marañón, E., Marinov, I., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of nutrient limitation, Nat. Geosci., 6, 1–10, https://doi.org/10.1038/NGEO1765, 2013.
Mulholland, M. R. and Bernhardt, P. W.: The effect of growth rate, phosphorus concentration, and temperature on N2 fixation, carbon fixation, and nitrogen release in continuous cultures of Trichodesmium IMS101, Limnol. Oceanogr., 50, 839–849, https://doi.org/10.4319/lo.2005.50.3.0839, 2005.
Mulholland, M. R. and Capone, D. G.: Stoichiometry of nitrogen and carbon utilization in cultured populations of Trichodesmium IMS101: implications for growth, Limnol. Oceanogr., 46, 436–443, https://doi.org/10.4319/lo.2001.46.2.0436, 2001.
Mulholland, M. R., Ohki, K., and Capone, D. G.: Nutrient controls on nitrogen uptake and metabolism by natural populations and cultures of Trichodesmium (Cyanobacteria), J. Phycol., 37, 1001–1009, https://doi.org/10.1046/j.1529-8817.2001.00080.x, 2001.
Mulholland, M., Bronk, D., and Capone, D.: Dinitrogen fixation and release of ammonium and dissolved organic nitrogen by Trichodesmium IMS101, Aquat. Microb. Ecol., 37, 85–94, https://doi.org/10.3354/ame037085, 2004.
Mulholland, M. R., Bernhardt, P. W., Heil, C. A., Bronk, D. A., and O'Neil, J. M.: Nitrogen fixation and release of fixed nitrogen by Trichodesmium spp. in the Gulf of Mexico, Limnol. Oceanogr., 51, 1762–1776, https://doi.org/10.4319/lo.2006.51.4.1762, 2006.
Musat, N., Halm, H., Winterholler, B., Hoppe, P., Peduzzi, S., Hillion, F., Horreard, F., Amann, R., Jørgensen, B. B., and Kuypers, M. M. M.: A single-cell view on the ecophysiology of anaerobic phototrophic bacteria, P. Natl. Acad. Sci. USA, 105, 17861–17866, https://doi.org/10.1073/pnas.0809329105, 2008.
Nausch, M.: Microbial activities on Trichodesmium colonies, Mar. Ecol.-Prog. Ser., 141, 173–181, https://doi.org/10.3354/meps141173, 1996.
Needoba, J. A., Foster, R. A., Sakamoto, C., Zehr, J. P., and Johnson, K. S.: Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean, Limnol. Oceanogr., 52, 1317–1327, https://doi.org/10.4319/lo.2007.52.4.1317, 2007.
O'Neil, J. M., Metzler, P. M., and Glibert, P. M.: Ingestion of 15N2-labelled Trichodesmium spp., and ammonium regeneration by the harpacticoid copepod Macrosetella gracilis, Mar. Biol., 125, 89–96, https://doi.org/10.1007/BF00350763, 1996.
Ohki, K.: Possible role of temperate phage in the regulation of Trichodesmium biomass: marine cyanobacteria, Bull. l'Institut océanographique, Monaco, Supplement, 287–291, 1999.
Paerl, H. W., Priscu, J. C., and Brawner, D. L.: Immunochemical localization of nitrogenase in marine Trichodesmium aggregates: relationship to N2 fixation potential, Appl. Environ. Microb., 55, 2965–2975, 1989.
Ploug, H., Musat, N., Adam, B., Moraru, C. L., Lavik, G., Vagner, T., Bergman, B., and Kuypers, M. M. M.: Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea., ISME J., 4, 1215–1223, https://doi.org/10.1038/ismej.2010.53, 2010.
Polerecky, L., Adam, B., Milucka, J., Musat, N., Vagner, T., and Kuypers, M. M. M.: Look@NanoSIMS – a tool for the analysis of nanoSIMS data in environmental microbiology, Environ. Microbiol., 14, 1009–1023, https://doi.org/10.1111/j.1462-2920.2011.02681.x, 2012.
Pujo-Pay, M. and Raimbault, P.: improvement of the wet-oxidation procedure for simultaneous determination of particulate organic nitrogen and phosphorus collected on filters, Mar. Ecol.-Prog. Ser., 105, 203–207, doi10.3354/meps105203, 1994.
Raimbault, P. and Garcia, N.: Evidence for efficient regenerated production and dinitrogen fixation in nitrogen-deficient waters of the South Pacific Ocean: impact on new and export production estimates, Biogeosciences, 5, 323–338, https://doi.org/10.5194/bg-5-323-2008, 2008.
Redfield, A.: On the proportions of organic derivations in sea water and their relation to the composition of plankton, in: James Johnstone Memorial Volume, edited by: Daniel, R., University Press of Liverpool, 177–192, 1934.
Rochelle-Newall, E., Ridame, C., Dimier-Hugueney, C., and L'Helguen, S.: Impact of iron limitation on primary production (dissolved and particulate) and secondary production in cultured Trichodesmium sp., Aquat. Microb. Ecol., 72, 143–153, https://doi.org/10.3354/ame01690, 2014.
Rodier, M. and Le Borgne, R.: Population dynamics and environmental conditions affecting Trichodesmium spp. (filamentous cyanobacteria) blooms in the south–west lagoon of New Caledonia, J. Exp. Mar. Biol. Ecol., 358, 20–32, https://doi.org/10.1016/j.jembe.2008.01.016, 2008.
Romans, K. M., Carpenter, E. J., and Bergman, B.: Buoyancy regulation in the colonial diazotrophic cyanobacterium Trichodesmium tenue: ultrastructure and storage of carbohydrate, polyphosphate, and nitrogen, J. Phycol., 30, 935–942, https://doi.org/10.1111/j.0022-3646.1994.00935.x, 1994.
Sandh, G., Xu, L., and Bergman, B.: Diazocyte development in the marine diazotrophic cyanobacterium Trichodesmium, Microbiology, 158, 345–352, https://doi.org/10.1099/mic.0.051268-0, 2012.
Sheridan, C. C., Steinberg, D. K., and Kling, G. W.: The microbial and metazoan community associated with colonies of Trichodesmium spp.: a quantitative survey, J. Plankton Res., 24, 913–922, https://doi.org/10.1093/plankt/24.9.913, 2002.
Shiozaki, T., Kodama, T., and Furuya, K.: Large-scale impact of the island mass effect through nitrogen fixation in the western South Pacific Ocean, Geophys. Res. Lett., 41, 2907–2913, https://doi.org/10.1002/2014GL059835, 2014.
Sieracki, M. E., Haugen, E. M., and Cucci, T. L.: Overestimation of heterotrophic bacteria in the Sargasso Sea: direct evidence by flow and imaging cytometry, Deep-Sea Res. Pt. I, 42, 1399–1409, https://doi.org/10.1016/0967-0637(95)00055-B, 1995.
Slawyk, G. and Raimbault, P.: Simple procedure for simultaneous recovery of dissolved inorganic and organic nitrogen in 15N-tracer experiments and improving the isotopic mass balance, Mar. Ecol.-Prog. Ser., 124, 289–299, https://doi.org/10.3354/meps124289, 1995.
Smayda, T. J.: From phytoplankton to biomass, in: Phytoplankton Manual, edited by: Sournia, A., Monographs on Oceanographic Methodology 6, UNESCO, Paris, 273–279, 1978.
Smetacek, V.: Biological oceanography: diatoms and the silicate factor, Nature, 391, 224–225, https://doi.org/10.1038/34528, 1998.
Sohm, J. A., Edwards, B. R., Wilson, B. G., and Webb, E. A.: Constitutive extracellular eolysaccharide (EPS) production by specific isolates of Crocosphaera watsonii, Front. Microbiol., 2, 229, https://doi.org/10.3389/fmicb.2011.00229, 2011.
Subramaniam, A., Yager, P. L., Carpenter, E. J., Mahaffey, C., Björkman, K. M., Cooley, S., Kustka, A. B., Montoya, J. P., Sañudo-Wilhelmy, S. A., Shipe, R., and Capone, D. G.: Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean, P. Natl. Acad. Sci., 105, 10460–10465, https://doi.org/10.1073/pnas.0710279105, 2008.
Sun, J. and Liu, D.: Geometric models for calculating cell biovolume and surface area for phytoplankton, J. Plankton Res., 25, 1331–1346, https://doi.org/10.1093/plankt/fbg096, 2003.
Tseng, Y. F., Lin, F. J., Chiang, K. P., Kao, S. J., and Shiah, F. K.: Potential impacts of N2-fixing Trichodesmium on heterotrophic bacterioplankton turnover rates and organic carbon transfer efficiency in the subtropical oligotrophic ocean system, Terr. Atmos. Ocean. Sci., 16, 361–376, 2005.
Turk-Kubo, K. A., Frank, I. E., Hogan, M. E., Desnues, A., Bonnet, S., and Zehr, J. P.: Diazotroph community succession during the VAHINE mesocosm experiment (New Caledonia lagoon), Biogeosciences, 12, 7435–7452, https://doi.org/10.5194/bg-12-7435-2015, 2015.
Walsby, A. E.: The gas vesicles and buoyancy of Trichodesmium, in: Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs, vol. 362, edited by: Carpenter, E. J., Capone, D. G., and Rueter, J. G., Springer, Dordrecht, the Netherlands, 141–161, 1992.
Wannicke, N., Korth, F., Liskow, I., and Voss, M.: Incorporation of diazotrophic fixed N2 by mesozooplankton – case studies in the southern Baltic Sea, J. Marine Syst., 117, 1–13, https://doi.org/10.1016/j.jmarsys.2013.03.005, 2013.
Webb, E. A., Ehrenreich, I. M., Brown, S. L., Valois, F. W., and Waterbury, J. B.: Phenotypic and genotypic characterization of multiple strains of the diazotrophic cyanobacterium, Crocosphaera watsonii, isolated from the open ocean, Environ. Microbiol., 11, 338–348, https://doi.org/10.1111/j.1462-2920.2008.01771.x, 2009.
Wilkerson, F. P., Dugdale, R. C., Kudela, R. M., and Chavez, F. P.: Biomass and productivity in Monterey Bay, California: contribution of the large phytoplankton, Deep-Sea Res. Pt. II, 47, 1003–1022, https://doi.org/10.1016/S0967-0645(99)00134-4, 2000.
Yeung, L. Y., Berelson, W. M., Young, E. D., Prokopenko, M. G., Rollins, N., Coles, V. J., Montoya, J. P., Carpenter, E. J., Steinberg, D. K., Foster, R. A., Capone, D. G., and Yager, P. L.: Impact of diatom-diazotroph associations on carbon export in the Amazon River plume, Geophys. Res. Lett., 39, 1–6, https://doi.org/10.1029/2012GL053356, 2012.
Yool, A., Martin, A. P., Fernandez, C., and Clark, D. R.: The significance of nitrification for oceanic new production, Nature, 447, 999–1002, https://doi.org/10.1038/nature05885, 2007.
Zehr, J. P., Mellon, M. T., and Zani, S.: New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes, Appl. Environ. Microb., 64, 3444–3450, 1998.
Zehr, J. P., Waterbury, J. B., Turner, P. J., Montoya, J. P., Omoregie, E., Steward, G. F., Hansen, A., and Karl, D. M.: Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean, Nature, 412, 635–638, https://doi.org/10.1038/35088063, 2001.
Altmetrics
Final-revised paper
Preprint