Research article
03 Jan 2018
Research article | 03 Jan 2018
Organic matter dynamics along a salinity gradient in Siberian steppe soils
Norbert Bischoff et al.
Related authors
Limited protection of macro-aggregate-occluded organic carbon in Siberian steppe soils
Norbert Bischoff, Robert Mikutta, Olga Shibistova, Alexander Puzanov, Marina Silanteva, Anna Grebennikova, Roland Fuß, and Georg Guggenberger
Biogeosciences, 14, 2627–2640, https://doi.org/10.5194/bg-14-2627-2017,https://doi.org/10.5194/bg-14-2627-2017, 2017
Short summary
Relevance of aboveground litter for soil organic matter formation – a soil profile perspective
Patrick Liebmann, Patrick Wordell-Dietrich, Karsten Kalbitz, Robert Mikutta, Fabian Kalks, Axel Don, Susanne K. Woche, Leena R. Dsilva, and Georg Guggenberger
Biogeosciences, 17, 3099–3113, https://doi.org/10.5194/bg-17-3099-2020,https://doi.org/10.5194/bg-17-3099-2020, 2020
Short summary
Limited protection of macro-aggregate-occluded organic carbon in Siberian steppe soils
Norbert Bischoff, Robert Mikutta, Olga Shibistova, Alexander Puzanov, Marina Silanteva, Anna Grebennikova, Roland Fuß, and Georg Guggenberger
Biogeosciences, 14, 2627–2640, https://doi.org/10.5194/bg-14-2627-2017,https://doi.org/10.5194/bg-14-2627-2017, 2017
Short summary
Fate of rice shoot and root residues, rhizodeposits, and microbe-assimilated carbon in paddy soil – Part 1: Decomposition and priming effect
Zhenke Zhu, Guanjun Zeng, Tida Ge, Yajun Hu, Chengli Tong, Olga Shibistova, Xinhua He, Juan Wang, Georg Guggenberger, and Jinshui Wu
Biogeosciences, 13, 4481–4489, https://doi.org/10.5194/bg-13-4481-2016,https://doi.org/10.5194/bg-13-4481-2016, 2016
Short summary
Agricultural uses reshape soil C, N, and P stoichiometry in subtropical ecosystems
H. Y. Liu, J. G. Zhou, J. Shen, Y. Y. Li, Y. Li, T. D. Ge, G. Guggenberger, and J. Wu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-211,https://doi.org/10.5194/bg-2016-211, 2016
Revised manuscript not accepted
Short summary
Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic
N. Gentsch, R. Mikutta, R. J. E. Alves, J. Barta, P. Čapek, A. Gittel, G. Hugelius, P. Kuhry, N. Lashchinskiy, J. Palmtag, A. Richter, H. Šantrůčková, J. Schnecker, O. Shibistova, T. Urich, B. Wild, and G. Guggenberger
Biogeosciences, 12, 4525–4542, https://doi.org/10.5194/bg-12-4525-2015,https://doi.org/10.5194/bg-12-4525-2015, 2015
Pasture degradation modifies the water and carbon cycles of the Tibetan highlands
W. Babel, T. Biermann, H. Coners, E. Falge, E. Seeber, J. Ingrisch, P.-M. Schleuß, T. Gerken, J. Leonbacher, T. Leipold, S. Willinghöfer, K. Schützenmeister, O. Shibistova, L. Becker, S. Hafner, S. Spielvogel, X. Li, X. Xu, Y. Sun, L. Zhang, Y. Yang, Y. Ma, K. Wesche, H.-F. Graf, C. Leuschner, G. Guggenberger, Y. Kuzyakov, G. Miehe, and T. Foken
Biogeosciences, 11, 6633–6656, https://doi.org/10.5194/bg-11-6633-2014,https://doi.org/10.5194/bg-11-6633-2014, 2014
Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals
M. Schrumpf, K. Kaiser, G. Guggenberger, T. Persson, I. Kögel-Knabner, and E.-D. Schulze
Biogeosciences, 10, 1675–1691, https://doi.org/10.5194/bg-10-1675-2013,https://doi.org/10.5194/bg-10-1675-2013, 2013
Related subject area
Reviews and syntheses: Soil responses to manipulated precipitation changes – an assessment of meta-analyses
Akane O. Abbasi, Alejandro Salazar, Youmi Oh, Sabine Reinsch, Maria del Rosario Uribe, Jianghanyang Li, Irfan Rashid, and Jeffrey S. Dukes
Biogeosciences, 17, 3859–3873, https://doi.org/10.5194/bg-17-3859-2020,https://doi.org/10.5194/bg-17-3859-2020, 2020
Short summary
From fibrous plant residues to mineral-associated organic carbon – the fate of organic matter in Arctic permafrost soils
Isabel Prater, Sebastian Zubrzycki, Franz Buegger, Lena C. Zoor-Füllgraff, Gerrit Angst, Michael Dannenmann, and Carsten W. Mueller
Biogeosciences, 17, 3367–3383, https://doi.org/10.5194/bg-17-3367-2020,https://doi.org/10.5194/bg-17-3367-2020, 2020
Short summary
Relevance of aboveground litter for soil organic matter formation – a soil profile perspective
Patrick Liebmann, Patrick Wordell-Dietrich, Karsten Kalbitz, Robert Mikutta, Fabian Kalks, Axel Don, Susanne K. Woche, Leena R. Dsilva, and Georg Guggenberger
Biogeosciences, 17, 3099–3113, https://doi.org/10.5194/bg-17-3099-2020,https://doi.org/10.5194/bg-17-3099-2020, 2020
Short summary
A revised pan-Arctic permafrost soil Hg pool based on Western Siberian peat Hg and carbon observations
Artem G. Lim, Martin Jiskra, Jeroen E. Sonke, Sergey V. Loiko, Natalia Kosykh, and Oleg S. Pokrovsky
Biogeosciences, 17, 3083–3097, https://doi.org/10.5194/bg-17-3083-2020,https://doi.org/10.5194/bg-17-3083-2020, 2020
Short summary
The soil organic carbon stabilization potential of old and new wheat cultivars: a 13CO2-labeling study
Marijn Van de Broek, Shiva Ghiasi, Charlotte Decock, Andreas Hund, Samuel Abiven, Cordula Friedli, Roland A. Werner, and Johan Six
Biogeosciences, 17, 2971–2986, https://doi.org/10.5194/bg-17-2971-2020,https://doi.org/10.5194/bg-17-2971-2020, 2020
Short summary
Drivers and modelling of blue carbon stock variability in sediments of southeastern Australia
Carolyn J. Ewers Lewis, Mary A. Young, Daniel Ierodiaconou, Jeffrey A. Baldock, Bruce Hawke, Jonathan Sanderman, Paul E. Carnell, and Peter I. Macreadie
Biogeosciences, 17, 2041–2059, https://doi.org/10.5194/bg-17-2041-2020,https://doi.org/10.5194/bg-17-2041-2020, 2020
Short summary
A comparison of patterns of microbial C : N : P stoichiometry between topsoil and subsoil along an aridity gradient
Yuqing Liu, Wenhong Ma, Dan Kou, Xiaxia Niu, Tian Wang, Yongliang Chen, Dima Chen, Xiaoqin Zhu, Mengying Zhao, Baihui Hao, Jinbo Zhang, Yuanhe Yang, and Huifeng Hu
Biogeosciences, 17, 2009–2019, https://doi.org/10.5194/bg-17-2009-2020,https://doi.org/10.5194/bg-17-2009-2020, 2020
Short summary
Increasing soil carbon stocks in eight permanent forest plots in China
Jianxiao Zhu, Chuankuan Wang, Zhang Zhou, Guoyi Zhou, Xueyang Hu, Lai Jiang, Yide Li, Guohua Liu, Chengjun Ji, Shuqing Zhao, Peng Li, Jiangling Zhu, Zhiyao Tang, Chengyang Zheng, Richard A. Birdsey, Yude Pan, and Jingyun Fang
Biogeosciences, 17, 715–726, https://doi.org/10.5194/bg-17-715-2020,https://doi.org/10.5194/bg-17-715-2020, 2020
Short summary
Estimates of mean residence times of phosphorus in commonly considered inorganic soil phosphorus pools
Julian Helfenstein, Chiara Pistocchi, Astrid Oberson, Federica Tamburini, Daniel S. Goll, and Emmanuel Frossard
Biogeosciences, 17, 441–454, https://doi.org/10.5194/bg-17-441-2020,https://doi.org/10.5194/bg-17-441-2020, 2020
Short summary
Lability classification of soil organic matter in the northern permafrost region
Peter Kuhry, Jiří Bárta, Daan Blok, Bo Elberling, Samuel Faucherre, Gustaf Hugelius, Christian J. Jørgensen, Andreas Richter, Hana Šantrůčková, and Niels Weiss
Biogeosciences, 17, 361–379, https://doi.org/10.5194/bg-17-361-2020,https://doi.org/10.5194/bg-17-361-2020, 2020
Current, steady-state and historical weathering rates of base cations at two forest sites in northern and southern Sweden: a comparison of three methods
Sophie Casetou-Gustafson, Harald Grip, Stephen Hillier, Sune Linder, Bengt A. Olsson, Magnus Simonsson, and Johan Stendahl
Biogeosciences, 17, 281–304, https://doi.org/10.5194/bg-17-281-2020,https://doi.org/10.5194/bg-17-281-2020, 2020
Short summary
Weathering rates in Swedish forest soils
Cecilia Akselsson, Salim Belyazid, Johan Stendahl, Roger Finlay, Bengt A. Olsson, Martin Erlandsson Lampa, Håkan Wallander, Jon Petter Gustafsson, and Kevin Bishop
Biogeosciences, 16, 4429–4450, https://doi.org/10.5194/bg-16-4429-2019,https://doi.org/10.5194/bg-16-4429-2019, 2019
Short summary
Exogenous phosphorus compounds interact with nitrogen availability to regulate dynamics of soil inorganic phosphorus fractions in a meadow steppe
Heyong Liu, Ruzhen Wang, Hongyi Wang, Yanzhuo Cao, Feike A. Dijkstra, Zhan Shi, Jiangping Cai, Zhengwen Wang, Hongtao Zou, and Yong Jiang
Biogeosciences, 16, 4293–4306, https://doi.org/10.5194/bg-16-4293-2019,https://doi.org/10.5194/bg-16-4293-2019, 2019
Spatial gradients in the characteristics of soil-carbon fractions are associated with abiotic features but not microbial communities
Aditi Sengupta, Julia Indivero, Cailene Gunn, Malak M. Tfaily, Rosalie K. Chu, Jason Toyoda, Vanessa L. Bailey, Nicholas D. Ward, and James C. Stegen
Biogeosciences, 16, 3911–3928, https://doi.org/10.5194/bg-16-3911-2019,https://doi.org/10.5194/bg-16-3911-2019, 2019
Short summary
Biological enhancement of mineral weathering by Pinus sylvestris seedlings – effects of plants, ectomycorrhizal fungi, and elevated CO2
Nicholas P. Rosenstock, Patrick A. W. van Hees, Petra M. A. Fransson, Roger D. Finlay, and Anna Rosling
Biogeosciences, 16, 3637–3649, https://doi.org/10.5194/bg-16-3637-2019,https://doi.org/10.5194/bg-16-3637-2019, 2019
Short summary
Past aridity's effect on carbon mineralization potentials in grassland soils
Zhenjiao Cao, Yufu Jia, Yue Cai, Xin Wang, Huifeng Hu, Jinbo Zhang, Juan Jia, and Xiaojuan Feng
Biogeosciences, 16, 3605–3619, https://doi.org/10.5194/bg-16-3605-2019,https://doi.org/10.5194/bg-16-3605-2019, 2019
Short summary
Plant functional traits determine latitudinal variations in soil microbial function: evidence from forests in China
Zhiwei Xu, Guirui Yu, Qiufeng Wang, Xinyu Zhang, Ruili Wang, Ning Zhao, Nianpeng He, and Ziping Liu
Biogeosciences, 16, 3333–3349, https://doi.org/10.5194/bg-16-3333-2019,https://doi.org/10.5194/bg-16-3333-2019, 2019
Short summary
Dynamics of deep soil carbon – insights from 14C time series across a climatic gradient
Tessa Sophia van der Voort, Utsav Mannu, Frank Hagedorn, Cameron McIntyre, Lorenz Walthert, Patrick Schleppi, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 16, 3233–3246, https://doi.org/10.5194/bg-16-3233-2019,https://doi.org/10.5194/bg-16-3233-2019, 2019
Short summary
Frequency and intensity of nitrogen addition alter soil inorganic sulfur fractions, but the effects vary with mowing management in a temperate steppe
Tianpeng Li, Heyong Liu, Ruzhen Wang, Xiao-Tao Lü, Junjie Yang, Yunhai Zhang, Peng He, Zhirui Wang, Xingguo Han, and Yong Jiang
Biogeosciences, 16, 2891–2904, https://doi.org/10.5194/bg-16-2891-2019,https://doi.org/10.5194/bg-16-2891-2019, 2019
Shifting mineral and redox controls on carbon cycling in seasonally flooded mineral soils
Rachelle E. LaCroix, Malak M. Tfaily, Menli McCreight, Morris E. Jones, Lesley Spokas, and Marco Keiluweit
Biogeosciences, 16, 2573–2589, https://doi.org/10.5194/bg-16-2573-2019,https://doi.org/10.5194/bg-16-2573-2019, 2019
Short summary
Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island, Antarctic Peninsula region
Lars A. Meier, Patryk Krauze, Isabel Prater, Fabian Horn, Carlos E. G. R. Schaefer, Thomas Scholten, Dirk Wagner, Carsten W. Mueller, and Peter Kühn
Biogeosciences, 16, 2481–2499, https://doi.org/10.5194/bg-16-2481-2019,https://doi.org/10.5194/bg-16-2481-2019, 2019
Short summary
Global satellite-driven estimates of heterotrophic respiration
Alexandra G. Konings, A. Anthony Bloom, Junjie Liu, Nicholas C. Parazoo, David S. Schimel, and Kevin W. Bowman
Biogeosciences, 16, 2269–2284, https://doi.org/10.5194/bg-16-2269-2019,https://doi.org/10.5194/bg-16-2269-2019, 2019
Short summary
Microbial biobanking – cyanobacteria-rich topsoil facilitates mine rehabilitation
Wendy Williams, Angela Chilton, Mel Schneemilch, Stephen Williams, Brett Neilan, and Colin Driscoll
Biogeosciences, 16, 2189–2204, https://doi.org/10.5194/bg-16-2189-2019,https://doi.org/10.5194/bg-16-2189-2019, 2019
Short summary
Modeling soil organic carbon dynamics in temperate forests with Yasso07
Zhun Mao, Delphine Derrien, Markus Didion, Jari Liski, Thomas Eglin, Manuel Nicolas, Mathieu Jonard, and Laurent Saint-André
Biogeosciences, 16, 1955–1973, https://doi.org/10.5194/bg-16-1955-2019,https://doi.org/10.5194/bg-16-1955-2019, 2019
Short summary
Iron minerals inhibit the growth of Pseudomonas brassicacearum J12 via a free-radical mechanism: implications for soil carbon storage
Hai-Yan Du, Guang-Hui Yu, Fu-Sheng Sun, Muhammad Usman, Bernard A. Goodman, Wei Ran, and Qi-Rong Shen
Biogeosciences, 16, 1433–1445, https://doi.org/10.5194/bg-16-1433-2019,https://doi.org/10.5194/bg-16-1433-2019, 2019
Short summary
Multidecadal persistence of organic matter in soils: multiscale investigations down to the submicron scale
Suzanne Lutfalla, Pierre Barré, Sylvain Bernard, Corentin Le Guillou, Julien Alléon, and Claire Chenu
Biogeosciences, 16, 1401–1410, https://doi.org/10.5194/bg-16-1401-2019,https://doi.org/10.5194/bg-16-1401-2019, 2019
Short summary
Fluvial sedimentary deposits as carbon sinks: organic carbon pools and stabilization mechanisms across a Mediterranean catchment
María Martínez-Mena, María Almagro, Noelia García-Franco, Joris de Vente, Eloisa García, and Carolina Boix-Fayos
Biogeosciences, 16, 1035–1051, https://doi.org/10.5194/bg-16-1035-2019,https://doi.org/10.5194/bg-16-1035-2019, 2019
Short summary
Large-scale predictions of salt-marsh carbon stock based on simple observations of plant community and soil type
Hilary Ford, Angus Garbutt, Mollie Duggan-Edwards, Jordi F. Pagès, Rachel Harvey, Cai Ladd, and Martin W. Skov
Biogeosciences, 16, 425–436, https://doi.org/10.5194/bg-16-425-2019,https://doi.org/10.5194/bg-16-425-2019, 2019
Short summary
Impacts of temperature and soil characteristics on methane production and oxidation in Arctic tundra
Jianqiu Zheng, Taniya RoyChowdhury, Ziming Yang, Baohua Gu, Stan D. Wullschleger, and David E. Graham
Biogeosciences, 15, 6621–6635, https://doi.org/10.5194/bg-15-6621-2018,https://doi.org/10.5194/bg-15-6621-2018, 2018
Short summary
Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska
Loeka L. Jongejans, Jens Strauss, Josefine Lenz, Francien Peterse, Kai Mangelsdorf, Matthias Fuchs, and Guido Grosse
Biogeosciences, 15, 6033–6048, https://doi.org/10.5194/bg-15-6033-2018,https://doi.org/10.5194/bg-15-6033-2018, 2018
Short summary
Modeling rhizosphere carbon and nitrogen cycling in Eucalyptus plantation soil
Rafael Vasconcelos Valadares, Júlio César Lima Neves, Maurício Dutra Costa, Philip James Smethurst, Luiz Alexandre Peternelli, Guilherme Luiz Jesus, Reinaldo Bertola Cantarutti, and Ivo Ribeiro Silva
Biogeosciences, 15, 4943–4954, https://doi.org/10.5194/bg-15-4943-2018,https://doi.org/10.5194/bg-15-4943-2018, 2018
Short summary
Cited articles
Amini, S., Ghadiri, H., Chen, C., and Marschner, P.: Salt-affected soils,
reclamation, carbon dynamics, and biochar: a review, J. Soils Sediments,
16, 939–953, https://doi.org/10.1007/s11368-015-1293-1, 2016.
Barin, M., Aliasgharzad, N., Olsson, P. A., and Rasouli-Sadaghiani, M.:
Salinity-induced differences in soil microbial communities around the
hypersaline Lake Urmia, Soil Res., 53, 494–504, https://doi.org/10.1071/SR14090,
2015.
Bates, D., Mächler, M., and Bolker, B.: Fitting linear mixed-effects
models using lme4, J. Stat. Softw., 1–51, available at:
http://arxiv.org/abs/1406.5823\%5Cnhttp://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2011/06/pdfKU_S0z6LjT.pdf (last access: 1 August 2016),
2012.
Batjes, N. H.: Total carbon and nitrogen in the soils of the world, Eur. J.
Soil Sci., 47, 151–163, https://doi.org/10.1111/j.1365-2389.1996.tb01386.x, 1996.
Baumann, K. and Marschner, P.: Effects of salinity on microbial tolerance to
drying and rewetting, Biogeochemistry, 112, 71–80,
https://doi.org/10.1007/s10533-011-9672-1, 2011.
Bischoff, N., Mikutta, R., Shibistova, O., Puzanov, A., Reichert, E.,
Silanteva, M., Grebennikova, A., Schaarschmidt, F., Heinicke, S., and
Guggenberger, G.: Land-use change under different climatic conditions:
Consequences for organic matter and microbial communities in Siberian steppe
soils, Agr. Ecosyst. Environ., 235, 253–264,
https://doi.org/10.1016/j.agee.2016.10.022, 2016.
Breulmann, M., Masyutenko, N. P., Kogut, B. M., Schroll, R., Dörfler,
U., Buscot, F., and Schulz, E.: Short-term bioavailability of carbon in soil
organic matter fractions of different particle sizes and densities in
grassland ecosystems, Sci. Total Environ., 497–498, 29–37,
https://doi.org/10.1016/j.scitotenv.2014.07.080, 2014.
Cheshire, M. V.: Nature and origin of carbohydrates in soils, Academic
Press, London, 1979.
Chowdhury, N., Marschner, P., and Burns, R.: Response of microbial activity
and community structure to decreasing soil osmotic and matric potential,
Plant Soil, 344, 241–254, https://doi.org/10.1007/s11104-011-0743-9, 2011.
DIN ISO, 11277: Soil quality – determination of particle size distribution
in mineral soil material – method by sieving and sedimentation, 2002.
Eder, E., Spielvogel, S., Kölbl, A., Albert, G., and Kögel-Knabner,
I.: Analysis of hydrolysable neutral sugars in mineral soils: Improvement of
alditol acetylation for gas chromatographic separation and measurement, Org.
Geochem., 41, 580–585, https://doi.org/10.1016/j.orggeochem.2010.02.009, 2010.
Ekelund, F., Rønn, R., and Christensen, S.: Distribution with depth of
protozoa, bacteria and fungi in soil profiles from three Danish forest
sites, Soil Biol. Biochem., 33, 475–481,
https://doi.org/10.1016/S0038-0717(00)00188-7, 2001.
Essington, M. E.: Soil and water chemistry – An integrative approach, CRC
Press, Boca Raton, USA, 2004.
Evelin, H., Kapoor, R., and Giri, B.: Arbuscular mycorrhizal fungi in
alleviation of salt stress: A review, Ann. Bot., 104, 1263–1280,
https://doi.org/10.1093/aob/mcp251, 2009.
FAO: Lecture notes on the major soils of the world, edited by:
Driessen, P., Deckers, J., Spaargaren, O., and Nachtergaele, F., World soil Resour. reports,
94, p. 336, https://doi.org/10.1136/gut.27.11.1400-b, 2001.
Fierer, N., Schimel, J. P., and Holden, P. A.: Variations in microbial
community composition through two soil depth profiles, Soil Biol. Biochem.,
35, 167–176, https://doi.org/10.1016/S0038-0717(02)00251-1, 2003.
Frostegård, Å., Tunlid, A., and Bååth, E.: Use and misuse of
PLFA measurements in soils, Soil Biol. Biochem., 43, 1621–1625,
https://doi.org/10.1016/j.soilbio.2010.11.021, 2011.
Gentsch, N., Mikutta, R., Alves, R. J. E., Barta, J., Capek, P., Gittel, A.,
Hugelius, G., Kuhry, P., Lashchinskiy, N., Palmtag, J., Richter, A.,
Šantrucková, H., Schnecker, J., Shibistova, O., Urich, T., Wild, B.,
and Guggenberger, G.: Storage and transformation of organic matter fractions
in cryoturbated permafrost soils across the Siberian Arctic, Biogeosciences,
12, 4525–4542, https://doi.org/10.5194/bg-12-4525-2015, 2015.
Golchin, A., Oades, J. M., Skjemstad, J. O., and Clarke, P.: Study of free
and occluded particulate organic matter in soils by solid state 13C CP/MAS
NMR spectroscopy and scanning electron microscopy, Aust. J. Soil Res., 32,
285–309, https://doi.org/10.1071/SR9940285, 1994.
Gunina, A. and Kuzyakov, Y.: Sugars in soil and sweets for microorganisms:
Review of origin, content, composition and fate, Soil Biol. Biochem., 90,
87–100, https://doi.org/10.1016/j.soilbio.2015.07.021, 2015.
Gunina, A., Dippold, M. A., Glaser, B., and Kuzyakov, Y.: Fate of low
molecular weight organic substances in an arable soil: From microbial uptake
to utilisation and stabilisation, Soil Biol. Biochem., 77, 304–313,
https://doi.org/10.1016/j.soilbio.2014.06.029, 2014.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.:
Very high resolution interpolated climate surfaces for global land areas,
Int. J. Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005.
Hothorn, T., Bretz, F., and Westfall, P.: Simultaneous inference in general
parametric models, Biometrical J., 50, 346–363, https://doi.org/10.1002/bimj.200810425,
2008.
Hua, Q., Barbetti, M., and Rakowski, A. Z.: Atmospheric radiocarbon for the
period 1950–2010, Radiocarbon, 55, 2059–2072,
https://doi.org/10.2458/azu_js_rc.v55i2.16177, 2013.
IUSS Working Group WRB: World reference base for soil resources
2014, International soil classification system for naming soils and creating
legends for soil maps, World Soil Resour. Reports No. 106, p. 191,
https://doi.org/10.1017/S0014479706394902, 2014.
Kalinina, O., Krause, S.-E., Goryachkin, S. V., Karavaeva, N. A., Lyuri, D.
I., and Giani, L.: Self-restoration of post-agrogenic chernozems of Russia:
Soil development, carbon stocks, and dynamics of carbon pools, Geoderma, 162,
196–206, https://doi.org/10.1016/j.geoderma.2011.02.005, 2011.
Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., and
Nico, P. S.: Mineral-organic associations: formation, properties, and
relevance in soil environments, Adv. Agron., 130, 140,
https://doi.org/10.1016/bs.agron.2014.10.005, 2015.
Lal, R.: Soil carbon sequestration impacts on global climate change and food
security, Science, 304, 1623–1627, https://doi.org/10.1126/science.1097396, 2004.
Läuchli, A. and Grattan, S. R.: Plant growth and development under
salinity stress, in: Advances in molecular breeding toward drought and salt
tolerant crops, edited by: Jenks, M. A., Hasegawa, P. M., and Mohan Jain, S.,
Springer, Dordrecht, Netherlands, 1–32, 2007.
Lennon, J. T., Aanderud, Z. T., Lehmkuhl, B. K., and Schoolmaster, D. R.:
Mapping the niche space of soil microorganisms using taxonomy and traits,
Ecology, 93, 1867–1879, https://doi.org/10.1890/11-1745.1, 2012.
Lenth, R. V. and Herve, M.: lsmeans: Least-squares means, R package version
2.17, available at:
http://cran.r-project.org/package=lsmeans (last access: 1 August 2016),
2015.
Martinez-Beltran, J. and Manzur, C. L.: Overview of salinity problems in the
world and FAO strategies to address the problem, in: Proceedings of the
international salinity forum, Riverside, USA, 311–313, 2005.
Mavi, M. S., Sanderman, J., Chittleborough, D. J., Cox, J. W., and Marschner,
P.: Sorption of dissolved organic matter in salt-affected soils: effect of
salinity, sodicity and texture, Sci. Total Environ., 435–436, 337–44,
https://doi.org/10.1016/j.scitotenv.2012.07.009, 2012.
McKeague, J. A. and Day, J. H.: Dithionite- and oxalate-extractable Fe and
Al as aids in differentiating various classes of soils, Can. J. Soil Sci.,
46, 13–22, https://doi.org/10.4141/cjss66-003, 1966.
Muñoz-Rojas, M., Jordán, A., Zavala, L. M., De la Rosa, D., Abd-Elmabod,
S. K., and Anaya-Romero, M.: Organic carbon stocks in Mediterranean soil
types under different land uses (Southern Spain), Solid Earth, 3, 375–386,
https://doi.org/10.5194/se-3-375-2012, 2012.
Nelson, P. N. and Oades, J. M.: Organic matter, sodicity, and soil
structure, in: Sodic soils: Distribution, properties, management, and
environmental consequences, edited by: Sumner, M. E. and Naidu, R., Oxford
University Press Inc, New York, 51–75, 1998.
Olsson, P. A.: Signature fatty acids provide tools for determination of the
distribution and interactions of mycorrhizal fungi in soil, FEMS Microbiol.
Ecol., 29, 303–310, https://doi.org/10.1111/j.1574-6941.1999.tb00621.x, 1999.
Pankhurst, C. E., Yu, S., Hawke, B. G., and Harch, B. D.: Capacity of fatty
acid profiles and substrate utilization patterns to describe differences in
soil microbial communities associated with increased salinity or alkalinity
at three locations in South Australia, Biol. Fert. Soils, 33, 204–217,
https://doi.org/10.1007/s003740000309, 2001.
Paramonov, E. G.: The creation of forest as agrarian landscapes for ensuring
sustainable management in Kulunda steppe, Bulletin AB RGS [Izvestiya AO
RGO], 40, 57–63, 2016 (in Russian with English abstract).
Pathak, H. and Rao, D. L. N.: Carbon and nitrogen mineralization from added
organic matter in saline and alkali soils, Soil Biol. Biochem., 30, 695–702,
https://doi.org/10.1016/S0038-0717(97)00208-3, 1998.
Peinemann, N., Guggenberger, G., and Zech, W.: Soil organic matter and its
lignin component in surface horizons of salt-affected soils of the
Argentinian Pampa, Catena, 60, 113–128, https://doi.org/10.1016/j.catena.2004.11.008,
2005.
Plante, A. F., Virto, I., and Malhi, S. S.: Pedogenic, mineralogical and
land-use controls on organic carbon stabilization in two contrasting soils,
Can. J. Soil Sci., 90, 15–26, https://doi.org/10.4141/CJSS09052, 2010.
Poeplau, C. and Don, A.: Sensitivity of soil organic carbon stocks and
fractions to different land-use changes across Europe, Geoderma, 192,
189–201, https://doi.org/10.1016/j.geoderma.2012.08.003, 2013.
Qadir, M. and Schubert, S.: Degradation processes and nutrient constraints
in sodic soils, Land Degrad. Dev., 13, 275–294, https://doi.org/10.1002/ldr.504, 2002.
Rath, K. M. and Rousk, J.: Salt effects on the soil microbial decomposer
community and their role in organic carbon cycling: A review, Soil Biol.
Biochem., 81, 108–123, https://doi.org/10.1016/j.soilbio.2014.11.001, 2015.
R Core Team: R: A language and environment for statistical computing,
available at:
http://www.r-project.org/ (last access: 1 August 2016), 2016.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., and
Ramsey, C. B.: IntCal13 and Marine13 radiocarbon age calibration curves
0–50,000 years cal BP, Radiocarbon, 55, 1869–1887,
https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Rengasamy, P., Greene, R. S. B., Ford, G. W., and Mehanni, A. H.:
Identification of dispersive behaviour and the management of red-brown
earths, Soil Res., 22, 413–431, https://doi.org/10.1071/Sr9840413, 1984.
Rietz, D. N. and Haynes, R. J.: Effects of irrigation-induced salinity and
sodicity on soil microbial activity, Soil Biol. Biochem., 35, 845–854,
https://doi.org/10.1016/S0038-0717(03)00125-1, 2003.
Ruess, L. and Chamberlain, P. M.: The fat that matters: Soil food web
analysis using fatty acids and their carbon stable isotope signature, Soil
Biol. Biochem., 42, 1898–1910, https://doi.org/10.1016/j.soilbio.2010.07.020, 2010.
Rumpel, C. and Dignac, M.-F.: Gas chromatographic analysis of
monosaccharides in a forest soil profile: Analysis by gas chromatography
after trifluoroacetic acid hydrolysis and reduction–acetylation, Soil Biol.
Biochem., 38, 1478–1481, https://doi.org/10.1016/j.soilbio.2005.09.017, 2006.
Schimel, J., Balser, T. C., and Wallenstein, M.: Microbial stress-response
physiology and its implications for ecosystem function, Ecology, 88,
1386–1394, https://doi.org/10.1890/06-0219, 2007.
Schlichting, E., Blume, H.-P., and Stahr, K.: Bodenkundliches Praktikum –
Eine Einführung in pedologisches Arbeiten für Ökologen,
insbesondere Land- und Forstwirte, und für Geowissenschaftler, 2nd Edn.,
Blackwell Wissenschafts-Verlag Berlin, Wien, Austria, 1995.
Schnecker, J., Wild, B., Fuchslueger, L., and Richter, A.: A field method to
store samples from temperate mountain grassland soils for analysis of
phospholipid fatty acids, Soil Biol. Biochem., 51, 81–83,
https://doi.org/10.1016/j.soilbio.2012.03.029, 2012.
Setia, R., Rengasamy, P. and Marschner, P.: Effect of exchangeable cation
concentration on sorption and desorption of dissolved organic carbon in
saline soils, Sci. Total Environ., 465, 226–232,
https://doi.org/10.1016/j.scitotenv.2013.01.010, 2013.
Setia, R., Rengasamy, P., and Marschner, P.: Effect of mono- and divalent
cations on sorption of water-extractable organic carbon and microbial
activity, Biol. Fert. Soils, 50, 727–734, https://doi.org/10.1007/s00374-013-0888-1,
2014.
Steffens, M., Kölbl, A., Schörk, E., Gschrey, B., and
Kögel-Knabner, I.: Distribution of soil organic matter between fractions
and aggregate size classes in grazed semiarid steppe soil profiles, Plant
Soil, 338, 63–81, https://doi.org/10.1007/s11104-010-0594-9, 2010.
Steinhof, A.: Data analysis at the Jena
14C laboratory, Radiocarbon,
55, 282–293, https://doi.org/10.2458/azu_js_rc.55.16350, 2013.
Steinhof, A., Baatzsch, A., Hejja, I., and Wagner, T.: Ion source
improvements at the Jena
14C-AMS facility, Nucl. Instrum. Meth. B, 269,
3196–3198, https://doi.org/10.1016/j.nimb.2011.04.018, 2011.
Sumner, M. E.: Sodic soils: New perspectives, Aust. J. Soil Res., 31,
683–750, https://doi.org/10.1071/SR9930683, 1993.
Sumner, M. E., Rengasamy, P., and Naidu, R.: Sodic soils: a reappraisal,
in: Sodic soils: Distribution, properties, management, and environmental
consequences, edited by: Sumner, M. E. and Naidu, R., Oxford University Press
Inc, New York, 3–17, 1998.
Taylor, J. P., Wilson, B., Mills, M. S., and Burns, R. G.: Comparison of
microbial numbers and enzymatic activities in surface soils and subsoils
using various techniques, Soil Biol. Biochem., 34, 387–401,
https://doi.org/10.1016/S0038-0717(01)00199-7, 2002.
Titlyanova, A. A., Romanova, I. P., Kosykh, N. P., and Mironycheva-Tokareva,
N. P.: Pattern and process in above-ground and below-ground components of
grassland ecosystems, J. Veg. Sci., 10, 307–320, https://doi.org/10.2307/3237060, 1999.
U.S. Salinity Laboratory Staff: Diagnosis and improvement of saline and
alkaline soils, edited by: Richards, L. A., Government Printing Office,
Washington DC, 1954.
Walthert, L., Graf, U., Kammer, A., Luster, J., Pezzotta, D., Zimmermann,
S., and Hagedorn, F.: Determination of organic and inorganic carbon,
δ13 C, and nitrogen in soils containing carbonates after acid fumigation with
HCl, J. Plant Nutr. Soil Sc., 173, 207–216, https://doi.org/10.1002/jpln.200900158,
2010.
Wickham, H.: ggplot2: Elegant graphics for data analysis, Springer-Verlag New York, ISBN 978-0-387-98140-6, https://doi.org/10.1007/978-0-387-98141-3, 211 pp.,
2009.
Wong, V. N. L., Greene, R. S. B., Dalal, R. C., and Murphy, B. W.: Soil
carbon dynamics in saline and sodic soils: A review, Soil Use Manage., 26,
2–11, https://doi.org/10.1111/j.1475-2743.2009.00251.x, 2010.
Zelles, L.: Fatty acid patterns of phospholipids and lipopolysaccharides in
the characterisation of microbial communities in soil: a review, Biol. Fert.
Soils, 29, 111–129, https://doi.org/10.1007/s003740050533, 1999.