Articles | Volume 15, issue 9
https://doi.org/10.5194/bg-15-3049-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/bg-15-3049-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems – concepts, emerging trends, and research challenges
Department of Environmental Science and Engineering, Ewha Womans
University, Seoul, 03760, Republic of Korea
Omme K. Nayna
Department of Environmental Science and Engineering, Ewha Womans
University, Seoul, 03760, Republic of Korea
Most S. Begum
Department of Environmental Science and Engineering, Ewha Womans
University, Seoul, 03760, Republic of Korea
Eliyan Chea
Department of Environmental Science, Royal University of Phnom Penh,
Phnom Penh, Cambodia
Jens Hartmann
Institute for Geology, Universität Hamburg, Hamburg, Germany
Richard G. Keil
School of Oceanography, University of Washington, Seattle, 98112, USA
Sanjeev Kumar
Geosciences Division, Physical Research Laboratory, Ahmedabad, 380009,
India
Xixi Lu
Department of Geography, National University of Singapore, Singapore
Lishan Ran
Department of Geography, University of Hong Kong, Pokfulam Road, Hong
Kong
Jeffrey E. Richey
School of Oceanography, University of Washington, Seattle, 98112, USA
Vedula V. S. S. Sarma
National Institute of Oceanography, Council of Scientific and
Industrial Research, Visakhapatnam, India
Shafi M. Tareq
Department of Environmental Sciences, Jahangirnagar University, Dhaka,
1342, Bangladesh
Do Thi Xuan
Department of Soil Science, Cantho University, Cantho, Vietnam
Ruihong Yu
College of Environment and Resources, University of Inner Mongolia,
Hohhot, China
Related authors
Mingyang Tian, Jens Hartmann, Gibran Romero-Mujalli, Thorben Amann, Lishan Ran, and Ji-Hyung Park
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-131, https://doi.org/10.5194/bg-2023-131, 2023
Manuscript not accepted for further review
Short summary
Short summary
Effective water quality management in the Elbe River from 1984 to 2018 significantly reduced CO2 emissions, particularly after Germany's reunification. Key factors in the reduction include organic carbon removal and nutrient management, with nitrogen control being more critical than phosphorus for the restoration of ecosystem capacity. Unpredictable influxes of organic carbon and the relocation of emissions from wastewater treatment can cause uncertainties for CO2 removals.
Hyojin Jin, Tae Kyung Yoon, Most Shirina Begum, Eun-Ju Lee, Neung-Hwan Oh, Namgoo Kang, and Ji-Hyung Park
Biogeosciences, 15, 6349–6369, https://doi.org/10.5194/bg-15-6349-2018, https://doi.org/10.5194/bg-15-6349-2018, 2018
Short summary
Short summary
Basin-wide comparisons of 3 major greenhouse gases (GHGs) were combined with measurements of C isotopes in DOC, CO2, and CH4 to explore how dams and urban wastewater modify the continuum of riverine GHG dynamics in a highly human-impacted river basin in Korea. Contrasting dam effects on 3 GHGs and pulsatile increases in GHGs downstream of urban tributaries delivering wastewater-derived GHGs and old DOC suggest anthropogenic discontinuities in riverine metabolic processes and GHG dynamics.
Most Shirina Begum, Hyojin Jin, Inae Jang, Jung-Min Lee, Han Bin Oh, and Ji-Hyung Park
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-93, https://doi.org/10.5194/bg-2017-93, 2017
Manuscript not accepted for further review
Short summary
Short summary
A basin-scale field survey was combined with two laboratory incubation experiments to explore human impacts on organic matter biodegradation and CO2 emission in a highly urbanized river system in South Korea. The results suggest that river impoundment and pollution can alter the optical properties and biodegradability of both dissolved and particulate organic matter in the modified river system to such a degree that can induce a priming effect on biodegradation and CO2 emission.
Mi-Hee Lee, Jean-Lionel Payeur-Poirier, Ji-Hyung Park, and Egbert Matzner
Biogeosciences, 13, 5421–5432, https://doi.org/10.5194/bg-13-5421-2016, https://doi.org/10.5194/bg-13-5421-2016, 2016
Short summary
Short summary
Heavy storm events may increase the organic matter fluxes from forested watersheds and deteriorate water quality. Our study in two forested watershed in Korea revealed, that a larger proportion of coniferous forests likely leads to less organic carbon and larger of inorganic nitrogen fluxes to the receiving surface water bodies. More severe monsoon storms in the future will increase the fluxes of dissolved organic matter.
Tae Kyung Yoon, Hyojin Jin, Neung-Hwan Oh, and Ji-Hyung Park
Biogeosciences, 13, 3915–3930, https://doi.org/10.5194/bg-13-3915-2016, https://doi.org/10.5194/bg-13-3915-2016, 2016
Short summary
Short summary
Spray- and marble-type equilibrators and a membrane-enclosed CO2 sensor were compared to assess their suitability for continuous pCO2 measurements in inland waters. The results suggest that the fast response of the equilibration systems facilitates capturing large spatial variations in pCO2 during short underway measurements. The membrane-enclosed sensor would be suitable for long-term continuous measurements if biofouling could be overcome by antifouling measures such as copper mesh coverings.
Phil-Goo Kang, Myron J. Mitchell, Patrick J. McHale, Charles T. Driscoll, Shreeram Inamdar, and Ji-Hyung Park
Biogeosciences, 13, 2787–2801, https://doi.org/10.5194/bg-13-2787-2016, https://doi.org/10.5194/bg-13-2787-2016, 2016
Short summary
Short summary
Lakes play important roles in controlling organic matter derived from watersheds and within-lake production. The organic matter is normally measured by elemental quantities, such as carbon(C) and nitrogen(N), because the two elements are essential for aquatic ecosystems. We observed an decrease of C, but an increase of N in organic matters in a lake. The reason of the different pattern might be that inorganic N in the lake appeared to be recycled to produce organic N due to within-lake processes.
E.-J. Lee, G.-Y. Yoo, Y. Jeong, K.-U. Kim, J.-H. Park, and N.-H. Oh
Biogeosciences, 12, 3109–3118, https://doi.org/10.5194/bg-12-3109-2015, https://doi.org/10.5194/bg-12-3109-2015, 2015
B.-J. Jung, J.-K. Lee, H. Kim, and J.-H. Park
Biogeosciences, 11, 6119–6129, https://doi.org/10.5194/bg-11-6119-2014, https://doi.org/10.5194/bg-11-6119-2014, 2014
Short summary
Short summary
Storm-enhanced export of particulate organic carbon in a mountainous headwater stream increased nonlinearly above thresholds of precipitation and discharge, far exceeding the relatively small increases of dissolved organic carbon. Particulate organic carbon exported during extreme storm events provide potential sources of reactive organic components that can rapidly biodegrade and form disinfection byproducts such as trihalomethanes in the headwater stream.
Mak A. Saito, Jaclyn K. Saunders, Matthew R. McIlvin, Erin M. Bertrand, John A. Breier, Margaret Mars Brisbin, Sophie M. Colston, Jaimee R. Compton, Tim J. Griffin, W. Judson Hervey, Robert L. Hettich, Pratik D. Jagtap, Michael Janech, Rod Johnson, Rick Keil, Hugo Kleikamp, Dagmar Leary, Lennart Martens, J. Scott P. McCain, Eli Moore, Subina Mehta, Dawn M. Moran, Jaqui Neibauer, Benjamin A. Neely, Michael V. Jakuba, Jim Johnson, Megan Duffy, Gerhard J. Herndl, Richard Giannone, Ryan Mueller, Brook L. Nunn, Martin Pabst, Samantha Peters, Andrew Rajczewski, Elden Rowland, Brian Searle, Tim Van Den Bossche, Gary J. Vora, Jacob R. Waldbauer, Haiyan Zheng, and Zihao Zhao
Biogeosciences, 21, 4889–4908, https://doi.org/10.5194/bg-21-4889-2024, https://doi.org/10.5194/bg-21-4889-2024, 2024
Short summary
Short summary
The ability to assess the functional capabilities of microbes in the environment is of increasing interest. Metaproteomics, the ability to measure proteins across microbial populations, has been increasing in capability and popularity in recent years. Here, an international team of scientists conducted an intercomparison study using samples collected from the North Atlantic Ocean and observed consistency in the peptides and proteins identified, their functions, and their taxonomic origins.
Niels Suitner, Giulia Faucher, Carl Lim, Julieta Schneider, Charly A. Moras, Ulf Riebesell, and Jens Hartmann
Biogeosciences, 21, 4587–4604, https://doi.org/10.5194/bg-21-4587-2024, https://doi.org/10.5194/bg-21-4587-2024, 2024
Short summary
Short summary
Recent studies described the precipitation of carbonates as a result of alkalinity enhancement in seawater, which could adversely affect the carbon sequestration potential of ocean alkalinity enhancement (OAE) approaches. By conducting experiments in natural seawater, this study observed uniform patterns during the triggered runaway carbonate precipitation, which allow the prediction of safe and efficient local application levels of OAE scenarios.
Annika Nolte, Ezra Haaf, Benedikt Heudorfer, Steffen Bender, and Jens Hartmann
Hydrol. Earth Syst. Sci., 28, 1215–1249, https://doi.org/10.5194/hess-28-1215-2024, https://doi.org/10.5194/hess-28-1215-2024, 2024
Short summary
Short summary
This study examines about 8000 groundwater level (GWL) time series from five continents to explore similarities in groundwater systems at different scales. Statistical metrics and machine learning techniques are applied to identify common GWL dynamics patterns and analyze their controlling factors. The study also highlights the potential and limitations of this data-driven approach to improve our understanding of groundwater recharge and discharge processes.
Allanah Joy Paul, Mathias Haunost, Silvan Urs Goldenberg, Jens Hartmann, Nicolás Sánchez, Julieta Schneider, Niels Suitner, and Ulf Riebesell
EGUsphere, https://doi.org/10.5194/egusphere-2024-417, https://doi.org/10.5194/egusphere-2024-417, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is being assessed for its potential to absorb atmospheric CO2 and store it for a long time. OAE still needs comprehensive assessment of its safety and effectiveness. We studied an idealised OAE application in a natural low nutrient ecosystem over one month. Our results showed that biogeochemical functioning remained mostly stable, but that the long-term capability for storing carbon may be limited at high alkalinity concentration.
Shuai Chen, Jun Zhong, Lishan Ran, Yuanbi Yi, Wanfa Wang, Zelong Yan, Si-liang Li, and Khan M. G. Mostofa
Biogeosciences, 20, 4949–4967, https://doi.org/10.5194/bg-20-4949-2023, https://doi.org/10.5194/bg-20-4949-2023, 2023
Short summary
Short summary
This study found the source of dissolved organic carbon and its optical properties (e.g., aromaticity, humification) are related to human land use and catchment slope in anthropogenically impacted subtropical mountainous rivers. The study highlights that the combination of dual carbon isotopes and optical properties represents a useful tool in tracing the origin of dissolved organic carbon and its in-stream processes.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Mingyang Tian, Jens Hartmann, Gibran Romero-Mujalli, Thorben Amann, Lishan Ran, and Ji-Hyung Park
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-131, https://doi.org/10.5194/bg-2023-131, 2023
Manuscript not accepted for further review
Short summary
Short summary
Effective water quality management in the Elbe River from 1984 to 2018 significantly reduced CO2 emissions, particularly after Germany's reunification. Key factors in the reduction include organic carbon removal and nutrient management, with nitrogen control being more critical than phosphorus for the restoration of ecosystem capacity. Unpredictable influxes of organic carbon and the relocation of emissions from wastewater treatment can cause uncertainties for CO2 removals.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Jens Hartmann, Niels Suitner, Carl Lim, Julieta Schneider, Laura Marín-Samper, Javier Arístegui, Phil Renforth, Jan Taucher, and Ulf Riebesell
Biogeosciences, 20, 781–802, https://doi.org/10.5194/bg-20-781-2023, https://doi.org/10.5194/bg-20-781-2023, 2023
Short summary
Short summary
CO2 can be stored in the ocean via increasing alkalinity of ocean water. Alkalinity can be created via dissolution of alkaline materials, like limestone or soda. Presented research studies boundaries for increasing alkalinity in seawater. The best way to increase alkalinity was found using an equilibrated solution, for example as produced from reactors. Adding particles for dissolution into seawater on the other hand produces the risk of losing alkalinity and degassing of CO2 to the atmosphere.
Shuang Gao, Jörg Schwinger, Jerry Tjiputra, Ingo Bethke, Jens Hartmann, Emilio Mayorga, and Christoph Heinze
Biogeosciences, 20, 93–119, https://doi.org/10.5194/bg-20-93-2023, https://doi.org/10.5194/bg-20-93-2023, 2023
Short summary
Short summary
We assess the impact of riverine nutrients and carbon (C) on projected marine primary production (PP) and C uptake using a fully coupled Earth system model. Riverine inputs alleviate nutrient limitation and thus lessen the projected PP decline by up to 0.7 Pg C yr−1 globally. The effect of increased riverine C may be larger than the effect of nutrient inputs in the future on the projected ocean C uptake, while in the historical period increased nutrient inputs are considered the largest driver.
Samuel De Xun Chua, Xi Xi Lu, Chantha Oeurng, Ty Sok, and Carl Grundy-Warr
Hydrol. Earth Syst. Sci., 26, 609–625, https://doi.org/10.5194/hess-26-609-2022, https://doi.org/10.5194/hess-26-609-2022, 2022
Short summary
Short summary
We found that the annual flood at the Cambodian floodplains decreased from 1960 to 2019. Consequently, the Tonle Sap Lake, the largest lake in Southeast Asia, is shrinking. The results are worrying because the local fisheries and planting calendar might be disrupted. This drastic decline of flooding extent is caused mostly by local factors, namely water withdrawal for irrigation and channel incision from sand mining activities.
Boyi Liu, Mingyang Tian, Kaimin Shih, Chun Ngai Chan, Xiankun Yang, and Lishan Ran
Biogeosciences, 18, 5231–5245, https://doi.org/10.5194/bg-18-5231-2021, https://doi.org/10.5194/bg-18-5231-2021, 2021
Short summary
Short summary
Spatial and temporal patterns of pCO2 in the subtropical Dong River basin were mainly affected by C inputs and in-stream metabolism, both of which varied due to differential catchment settings, land cover, and hydrological conditions. CO2 fluxes in the wet season were 2-fold larger than in the dry season due to high pCO2 and turbulence caused by high flow velocity. The absence of high CO2 fluxes in small rivers could be associated with the depletion effect caused by abundant precipitation.
Xinyu Liu, Xixi Lu, Ruihong Yu, Heyang Sun, Hao Xue, Zhen Qi, Zhengxu Cao, Zhuangzhuang Zhang, and Tingxi Liu
Biogeosciences, 18, 4855–4872, https://doi.org/10.5194/bg-18-4855-2021, https://doi.org/10.5194/bg-18-4855-2021, 2021
Short summary
Short summary
Gradual riparian wetland drying is increasingly sensitive to global warming and contributes to climate change. We analyzed the emissions of CO2, CH4, and N2O from riparian wetlands in the Xilin River basin to understand the role of these ecosystems in greenhouse gas emissions. Our study showed that anthropogenic activities have extensively changed the hydrological characteristics of the riparian wetlands and might accelerate carbon loss, which could further affect greenhouse gas emissions.
Wagner de Oliveira Garcia, Thorben Amann, Jens Hartmann, Kristine Karstens, Alexander Popp, Lena R. Boysen, Pete Smith, and Daniel Goll
Biogeosciences, 17, 2107–2133, https://doi.org/10.5194/bg-17-2107-2020, https://doi.org/10.5194/bg-17-2107-2020, 2020
Short summary
Short summary
Biomass-based terrestrial negative emission technologies (tNETS) have high potential to sequester CO2. Many CO2 uptake estimates do not include the effect of nutrient deficiencies in soils on biomass production. We show that nutrients can be partly resupplied by enhanced weathering (EW) rock powder application, increasing the effectiveness of tNETs. Depending on the deployed amounts of rock powder, EW could also improve soil hydrology, adding a new dimension to the coupling of tNETs with EW.
Thorben Amann, Jens Hartmann, Eric Struyf, Wagner de Oliveira Garcia, Elke K. Fischer, Ivan Janssens, Patrick Meire, and Jonas Schoelynck
Biogeosciences, 17, 103–119, https://doi.org/10.5194/bg-17-103-2020, https://doi.org/10.5194/bg-17-103-2020, 2020
Short summary
Short summary
Weathering is a major control on atmospheric CO2 at geologic timescales. Enhancement of this process can be used to actively remove CO2 from the atmosphere. Field results are still scarce and with this experiment we try to add some near-natural insights into dissolution processes. Results show CO2 sequestration potentials but also highlight the strong variability of outcomes that can be expected in natural environments. Such experiments are of the utmost importance to identify key processes.
Fabrice Lacroix, Tatiana Ilyina, and Jens Hartmann
Biogeosciences, 17, 55–88, https://doi.org/10.5194/bg-17-55-2020, https://doi.org/10.5194/bg-17-55-2020, 2020
Short summary
Short summary
Contributions of rivers to the oceanic cycling of carbon have been poorly represented in global models until now. Here, we assess the long–term implications of preindustrial riverine loads in the ocean in a novel framework which estimates the loads through a hierarchy of weathering and land–ocean export models. We investigate their impacts for the oceanic biological production and air–sea carbon flux. Finally, we assess the potential incorporation of the framework in an Earth system model.
Thorben Amann and Jens Hartmann
Biogeosciences, 16, 2949–2960, https://doi.org/10.5194/bg-16-2949-2019, https://doi.org/10.5194/bg-16-2949-2019, 2019
Short summary
Short summary
With the recent publication of the IPCC special report on the 1.5 °C target and increased attention on carbon dioxide removal (CDR) technologies, we think it is time to advance from the current way of looking at specific strategies to a more holistic CDR perspective, since multiple "side effects" may lead to additional CO2 uptake into different carbon pools. This paper explores potential co-benefits between terrestrial CDR strategies to facilitate a maximum CO2 sequestration effect.
Lin Lin, Xixi Lu, Shaoda Liu, Shie-Yui Liong, and Kaidao Fu
Biogeosciences, 16, 2205–2219, https://doi.org/10.5194/bg-16-2205-2019, https://doi.org/10.5194/bg-16-2205-2019, 2019
Short summary
Short summary
Damming did not significantly increase carbon dioxide emissions from the reservoir surface, as shown in a case study in a reservoir constrained within the narrow upper Mekong River valley. This finding might provide some evidence to the green credits for hydropower in China. One-year monitoring of carbon dioxide emissions from the water surface found that the higher emissions were concentrated at the riverine inlets in winter and more related to the mixing process of inflow and reservoir water.
Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Gaojun Li
Earth Surf. Dynam., 7, 191–197, https://doi.org/10.5194/esurf-7-191-2019, https://doi.org/10.5194/esurf-7-191-2019, 2019
Siyue Li, Rong Mao, Yongmei Ma, and Vedula V. S. S. Sarma
Biogeosciences, 16, 681–693, https://doi.org/10.5194/bg-16-681-2019, https://doi.org/10.5194/bg-16-681-2019, 2019
Short summary
Short summary
We provide a first determination of k in human-impacted subtropical streams and small rivers. High and highly variable k values reflect different controls on water turbulence. New models of k are developed using water depth and flow velocity. We show that previous estimates of riverine CO2 evasion from subtropical streams and small rivers are conservative and highlight the importance of incorporating scale-appropriate k measurements into extensive pCO2 investigations for accurate C budgets.
Moturi S. Krishna, Rongali Viswanadham, Mamidala H. K. Prasad, Vuravakonda R. Kumari, and Vedula V. S. S. Sarma
Biogeosciences, 16, 505–519, https://doi.org/10.5194/bg-16-505-2019, https://doi.org/10.5194/bg-16-505-2019, 2019
Short summary
Short summary
An order-of-magnitude variability in DIC was found within the Indian estuaries due to significant variability in size of rivers, precipitation pattern and lithology in the catchments. Indian monsoonal estuaries annually export ∼ 10.3 Tg of DIC to the northern Indian Ocean, of which 75 % enters into the Bay of Bengal. Our results indicated that chemical weathering of carbonate and silicate minerals by soil CO2 is the major source of DIC in the Indian monsoonal rivers.
Manab Kumar Dutta, Sanjeev Kumar, Rupa Mukherjee, Prasun Sanyal, and Sandip Kumar Mukhopadhyay
Biogeosciences, 16, 289–307, https://doi.org/10.5194/bg-16-289-2019, https://doi.org/10.5194/bg-16-289-2019, 2019
Short summary
Short summary
The study focused on understanding C biogeochemistry of two adjacently located estuaries undergoing different levels of anthropogenic stresses. Different parameters related to C cycling were measured in an anthropogenically influenced and a mangrove-dominated estuary. Although the entire estuarine system acted as a source of carbon dioxide to the regional atmosphere, emission approximately 17 times higher was noticed from the anthropogenically affected estuary compared to mangrove-dominated one.
Diani F. S. Less, Alan C. Cunha, Henrique O. Sawakuchi, Vania Neu, Aline M. Valério, Nicholas D. Ward, Daimio C. Brito, Joel E. M. Diniz, William Gagne-Maynard, Carlos M. Abreu, Milton Kampel, Alex V. Krusche, and Jeffrey E. Richey
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-465, https://doi.org/10.5194/bg-2018-465, 2018
Preprint withdrawn
Short summary
Short summary
Biogeochemistry studies focused in carbon cycle in the Amazon River mouth are scarce. Our study provided a long-term quantification of CO2 fluxes and pCO2 and evaluation of the most important hydrodynamic, biogeochemical and meteorological parameters related to them. The highest FCO2 and pCO2 was obtained at high discharge season, water and air temperatures, dissolved oxygen, dissolved organic carbon, nitrate, dissolved inorganic nitrogen and pH could be considered predictors for pCO2 and FCO2.
Hyojin Jin, Tae Kyung Yoon, Most Shirina Begum, Eun-Ju Lee, Neung-Hwan Oh, Namgoo Kang, and Ji-Hyung Park
Biogeosciences, 15, 6349–6369, https://doi.org/10.5194/bg-15-6349-2018, https://doi.org/10.5194/bg-15-6349-2018, 2018
Short summary
Short summary
Basin-wide comparisons of 3 major greenhouse gases (GHGs) were combined with measurements of C isotopes in DOC, CO2, and CH4 to explore how dams and urban wastewater modify the continuum of riverine GHG dynamics in a highly human-impacted river basin in Korea. Contrasting dam effects on 3 GHGs and pulsatile increases in GHGs downstream of urban tributaries delivering wastewater-derived GHGs and old DOC suggest anthropogenic discontinuities in riverine metabolic processes and GHG dynamics.
Yilong Wang, Philippe Ciais, Daniel Goll, Yuanyuan Huang, Yiqi Luo, Ying-Ping Wang, A. Anthony Bloom, Grégoire Broquet, Jens Hartmann, Shushi Peng, Josep Penuelas, Shilong Piao, Jordi Sardans, Benjamin D. Stocker, Rong Wang, Sönke Zaehle, and Sophie Zechmeister-Boltenstern
Geosci. Model Dev., 11, 3903–3928, https://doi.org/10.5194/gmd-11-3903-2018, https://doi.org/10.5194/gmd-11-3903-2018, 2018
Short summary
Short summary
We present a new modeling framework called Global Observation-based Land-ecosystems Utilization Model of Carbon, Nitrogen and Phosphorus (GOLUM-CNP) that combines a data-constrained C-cycle analysis with data-driven estimates of N and P inputs and losses and with observed stoichiometric ratios. GOLUM-CNP provides a traceable tool, where a consistency between different datasets of global C, N, and P cycles has been achieved.
Mingyang Tian, Xiankun Yang, Lishan Ran, Yuanrong Su, Lingyu Li, Ruihong Yu, Haizhu Hu, and Xi Xi Lu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-292, https://doi.org/10.5194/bg-2018-292, 2018
Preprint withdrawn
Short summary
Short summary
We investigated the spatial and temporal variability of riverine CO2 outgassing characteristics of the Yellow River source region. Riverine CO2 emission were in situ monitored under different land cover types (i.e., glacier, permafrost, wetland, and grassland) in the research area.This study will lead to a better understanding of riverine carbon export, especially for alpine rivers, which will help refine the global estimation of global GHG gas emission.
Thi Phuong Quynh Le, Cyril Marchand, Cuong Tu Ho, Nhu Da Le, Thi Thuy Duong, XiXi Lu, Phuong Kieu Doan, Trung Kien Nguyen, Thi Mai Huong Nguyen, and Duy An Vu
Biogeosciences, 15, 4799–4814, https://doi.org/10.5194/bg-15-4799-2018, https://doi.org/10.5194/bg-15-4799-2018, 2018
Short summary
Short summary
The Red River is a typical south-east Asian river, strongly affected by climate and human activity. This study showed the spatial and seasonal variability of CO2 emissions at the water–air interface of the lower part of this river due to natural conditions (meteo-hydrological-geomorphological characteristics) and human activities (dam impoundment, population, land use). The Red River water was supersaturated with CO2, providing a mean water–air CO2 flux of 530 ± 17 mmol m−2 d−1.
Lishan Ran, Mingyang Tian, Nufang Fang, Suiji Wang, Xixi Lu, Xiankun Yang, and Frankie Cho
Biogeosciences, 15, 3857–3871, https://doi.org/10.5194/bg-15-3857-2018, https://doi.org/10.5194/bg-15-3857-2018, 2018
Short summary
Short summary
We systematically assessed the transport and fate of riverine carbon in the moderate-sized Wuding catchment on the Chinese Loess Plateau by constructing a riverine carbon budget and further relating it to terrestrial ecosystem productivity. The riverine carbon export accounted for 16 % of the catchment's net ecosystem production (NEP). It seems that a significant fraction of terrestrial NEP in this catchment is laterally transported from the terrestrial biosphere to the drainage network.
Hewen Niu, Shichang Kang, Hailong Wang, Rudong Zhang, Xixi Lu, Yun Qian, Rukumesh Paudyal, Shijin Wang, Xiaofei Shi, and Xingguo Yan
Atmos. Chem. Phys., 18, 6441–6460, https://doi.org/10.5194/acp-18-6441-2018, https://doi.org/10.5194/acp-18-6441-2018, 2018
Short summary
Short summary
Deposition of light-absorbing carbonaceous aerosol on the surface of glaciers can greatly alter the energy fluxes of glaciers. Two years of continuous observations of carbonaceous aerosols in a glacierized region are analyzed. We mainly studied the light absorption properties of carbonaceous aerosol and have employed a global aerosol–climate model to estimate source attributions of atmospheric black carbon.
Jakob Zscheischler, Miguel D. Mahecha, Valerio Avitabile, Leonardo Calle, Nuno Carvalhais, Philippe Ciais, Fabian Gans, Nicolas Gruber, Jens Hartmann, Martin Herold, Kazuhito Ichii, Martin Jung, Peter Landschützer, Goulven G. Laruelle, Ronny Lauerwald, Dario Papale, Philippe Peylin, Benjamin Poulter, Deepak Ray, Pierre Regnier, Christian Rödenbeck, Rosa M. Roman-Cuesta, Christopher Schwalm, Gianluca Tramontana, Alexandra Tyukavina, Riccardo Valentini, Guido van der Werf, Tristram O. West, Julie E. Wolf, and Markus Reichstein
Biogeosciences, 14, 3685–3703, https://doi.org/10.5194/bg-14-3685-2017, https://doi.org/10.5194/bg-14-3685-2017, 2017
Short summary
Short summary
Here we synthesize a wide range of global spatiotemporal observational data on carbon exchanges between the Earth surface and the atmosphere. A key challenge was to consistently combining observational products of terrestrial and aquatic surfaces. Our primary goal is to identify today’s key uncertainties and observational shortcomings that would need to be addressed in future measurement campaigns or expansions of in situ observatories.
Lishan Ran, Xi Xi Lu, and Shaoda Liu
Biogeosciences, 14, 2183–2198, https://doi.org/10.5194/bg-14-2183-2017, https://doi.org/10.5194/bg-14-2183-2017, 2017
Short summary
Short summary
Understanding riverine carbon dynamics is critical for not only better estimates of various carbon fluxes but also evaluating their significance in the global carbon budget. In this study, we examined the dynamics of riverine CO2 partial pressure (pCO2) in the Yangtze River basin. Its pCO2 was characterized by strong spatial and temporal variations. With a basin-wide mean pCO2 of 2662(±1240) μatm, substantial CO2 evasion is expected. Future efforts are needed to evaluate its significance.
Most Shirina Begum, Hyojin Jin, Inae Jang, Jung-Min Lee, Han Bin Oh, and Ji-Hyung Park
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-93, https://doi.org/10.5194/bg-2017-93, 2017
Manuscript not accepted for further review
Short summary
Short summary
A basin-scale field survey was combined with two laboratory incubation experiments to explore human impacts on organic matter biodegradation and CO2 emission in a highly urbanized river system in South Korea. The results suggest that river impoundment and pollution can alter the optical properties and biodegradability of both dissolved and particulate organic matter in the modified river system to such a degree that can induce a priming effect on biodegradation and CO2 emission.
Mi-Hee Lee, Jean-Lionel Payeur-Poirier, Ji-Hyung Park, and Egbert Matzner
Biogeosciences, 13, 5421–5432, https://doi.org/10.5194/bg-13-5421-2016, https://doi.org/10.5194/bg-13-5421-2016, 2016
Short summary
Short summary
Heavy storm events may increase the organic matter fluxes from forested watersheds and deteriorate water quality. Our study in two forested watershed in Korea revealed, that a larger proportion of coniferous forests likely leads to less organic carbon and larger of inorganic nitrogen fluxes to the receiving surface water bodies. More severe monsoon storms in the future will increase the fluxes of dissolved organic matter.
Tae Kyung Yoon, Hyojin Jin, Neung-Hwan Oh, and Ji-Hyung Park
Biogeosciences, 13, 3915–3930, https://doi.org/10.5194/bg-13-3915-2016, https://doi.org/10.5194/bg-13-3915-2016, 2016
Short summary
Short summary
Spray- and marble-type equilibrators and a membrane-enclosed CO2 sensor were compared to assess their suitability for continuous pCO2 measurements in inland waters. The results suggest that the fast response of the equilibration systems facilitates capturing large spatial variations in pCO2 during short underway measurements. The membrane-enclosed sensor would be suitable for long-term continuous measurements if biofouling could be overcome by antifouling measures such as copper mesh coverings.
Phil-Goo Kang, Myron J. Mitchell, Patrick J. McHale, Charles T. Driscoll, Shreeram Inamdar, and Ji-Hyung Park
Biogeosciences, 13, 2787–2801, https://doi.org/10.5194/bg-13-2787-2016, https://doi.org/10.5194/bg-13-2787-2016, 2016
Short summary
Short summary
Lakes play important roles in controlling organic matter derived from watersheds and within-lake production. The organic matter is normally measured by elemental quantities, such as carbon(C) and nitrogen(N), because the two elements are essential for aquatic ecosystems. We observed an decrease of C, but an increase of N in organic matters in a lake. The reason of the different pattern might be that inorganic N in the lake appeared to be recycled to produce organic N due to within-lake processes.
Richard G. Keil, Jacquelyn A. Neibauer, Christina Biladeau, Kelsey van der Elst, and Allan H. Devol
Biogeosciences, 13, 2077–2092, https://doi.org/10.5194/bg-13-2077-2016, https://doi.org/10.5194/bg-13-2077-2016, 2016
Short summary
Short summary
Drifting sediment traps were deployed in the oxygen-deficient waters of the Arabian Sea, where the sinking flux is less attenuated than in more oxic waters. Six mechanisms that might explain this "enhanced flux" were evaluated using literature and data. In the upper 500 m, evidence was found supporting an oxygen effect and/or changes in the efficiency of the microbial loop, including the addition of chemoautotrophic carbon to the sinking flux.
M. Sollai, E. C. Hopmans, S. Schouten, R. G. Keil, and J. S. Sinninghe Damsté
Biogeosciences, 12, 4725–4737, https://doi.org/10.5194/bg-12-4725-2015, https://doi.org/10.5194/bg-12-4725-2015, 2015
Short summary
Short summary
The distribution of Thaumarchaeota and anammox bacteria in the water column of the eastern tropical North Pacific (ETNP) oxygen-deficient zone (ODZ) was investigated by collecting suspended particulate matter (SPM) and analyzing it for the content of specific intact polar lipids (IPLs) produced by the two microbial groups. We found a clear niche segregation in the distribution of the two groups in the coastal waters of the ETNP but a partial overlap of their niches in the open-water setting.
E.-J. Lee, G.-Y. Yoo, Y. Jeong, K.-U. Kim, J.-H. Park, and N.-H. Oh
Biogeosciences, 12, 3109–3118, https://doi.org/10.5194/bg-12-3109-2015, https://doi.org/10.5194/bg-12-3109-2015, 2015
G. G. Laruelle, R. Lauerwald, J. Rotschi, P. A. Raymond, J. Hartmann, and P. Regnier
Biogeosciences, 12, 1447–1458, https://doi.org/10.5194/bg-12-1447-2015, https://doi.org/10.5194/bg-12-1447-2015, 2015
Short summary
Short summary
This study quantifies the exchange of carbon dioxide (CO2) between the atmosphere and the land-ocean aquatic continuum (LOAC) of the northeast North American coast, which consists of rivers, estuaries, and the coastal ocean. Our analysis reveals significant variations of the flux intensity both in time and space across the study area. Ice cover, snowmelt, and the intensity of the estuarine filter are identified as important control factors of the CO2 exchange along the LOAC.
L. Ran, X. X. Lu, J. E. Richey, H. Sun, J. Han, R. Yu, S. Liao, and Q. Yi
Biogeosciences, 12, 921–932, https://doi.org/10.5194/bg-12-921-2015, https://doi.org/10.5194/bg-12-921-2015, 2015
Short summary
Short summary
This paper investigated the spatial and temporal variations of pCO2 in the Yellow River watershed. While the pCO2 responded exponentially to total suspended solids (TSS) export when the TSS concentration was less than 100 kg m-3, it decreased and remained stable thereafter if the TSS concentration was greater than 100 kg m-3. The average pCO2 for the watershed was estimated at 2810±1985 μatm, indicating a large potential for CO2 evasion.
B.-J. Jung, J.-K. Lee, H. Kim, and J.-H. Park
Biogeosciences, 11, 6119–6129, https://doi.org/10.5194/bg-11-6119-2014, https://doi.org/10.5194/bg-11-6119-2014, 2014
Short summary
Short summary
Storm-enhanced export of particulate organic carbon in a mountainous headwater stream increased nonlinearly above thresholds of precipitation and discharge, far exceeding the relatively small increases of dissolved organic carbon. Particulate organic carbon exported during extreme storm events provide potential sources of reactive organic components that can rapidly biodegrade and form disinfection byproducts such as trihalomethanes in the headwater stream.
X. Ma, X. X. Lu, M. van Noordwijk, J. T. Li, and J. C. Xu
Hydrol. Earth Syst. Sci., 18, 1979–1994, https://doi.org/10.5194/hess-18-1979-2014, https://doi.org/10.5194/hess-18-1979-2014, 2014
D. C. E. Bakker, B. Pfeil, K. Smith, S. Hankin, A. Olsen, S. R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K. M. O'Brien, U. Schuster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N. R. Bates, J. Boutin, Y. Bozec, W.-J. Cai, R. D. Castle, F. P. Chavez, L. Chen, M. Chierici, K. Currie, H. J. W. de Baar, W. Evans, R. A. Feely, A. Fransson, Z. Gao, B. Hales, N. J. Hardman-Mountford, M. Hoppema, W.-J. Huang, C. W. Hunt, B. Huss, T. Ichikawa, T. Johannessen, E. M. Jones, S. D. Jones, S. Jutterström, V. Kitidis, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. B. Manke, J. T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, A. M. Omar, T. Ono, G.-H. Park, K. Paterson, D. Pierrot, A. F. Ríos, C. L. Sabine, S. Saito, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K. F. Sullivan, H. Sun, A. J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima, S. M. A. C. van Heuven, D. Vandemark, P. Vlahos, D. W. R. Wallace, R. Wanninkhof, and A. J. Watson
Earth Syst. Sci. Data, 6, 69–90, https://doi.org/10.5194/essd-6-69-2014, https://doi.org/10.5194/essd-6-69-2014, 2014
L. Ran, X. X. Lu, and Z. Xin
Biogeosciences, 11, 945–959, https://doi.org/10.5194/bg-11-945-2014, https://doi.org/10.5194/bg-11-945-2014, 2014
R. Valentini, A. Arneth, A. Bombelli, S. Castaldi, R. Cazzolla Gatti, F. Chevallier, P. Ciais, E. Grieco, J. Hartmann, M. Henry, R. A. Houghton, M. Jung, W. L. Kutsch, Y. Malhi, E. Mayorga, L. Merbold, G. Murray-Tortarolo, D. Papale, P. Peylin, B. Poulter, P. A. Raymond, M. Santini, S. Sitch, G. Vaglio Laurin, G. R. van der Werf, C. A. Williams, and R. J. Scholes
Biogeosciences, 11, 381–407, https://doi.org/10.5194/bg-11-381-2014, https://doi.org/10.5194/bg-11-381-2014, 2014
V. V. S. S. Sarma, A. Lenton, R. M. Law, N. Metzl, P. K. Patra, S. Doney, I. D. Lima, E. Dlugokencky, M. Ramonet, and V. Valsala
Biogeosciences, 10, 7035–7052, https://doi.org/10.5194/bg-10-7035-2013, https://doi.org/10.5194/bg-10-7035-2013, 2013
G. G. Laruelle, H. H. Dürr, R. Lauerwald, J. Hartmann, C. P. Slomp, N. Goossens, and P. A. G. Regnier
Hydrol. Earth Syst. Sci., 17, 2029–2051, https://doi.org/10.5194/hess-17-2029-2013, https://doi.org/10.5194/hess-17-2029-2013, 2013
J. A. Collins, A. Govin, S. Mulitza, D. Heslop, M. Zabel, J. Hartmann, U. Röhl, and G. Wefer
Clim. Past, 9, 1181–1191, https://doi.org/10.5194/cp-9-1181-2013, https://doi.org/10.5194/cp-9-1181-2013, 2013
P. K. Patra, J. G. Canadell, R. A. Houghton, S. L. Piao, N.-H. Oh, P. Ciais, K. R. Manjunath, A. Chhabra, T. Wang, T. Bhattacharya, P. Bousquet, J. Hartman, A. Ito, E. Mayorga, Y. Niwa, P. A. Raymond, V. V. S. S. Sarma, and R. Lasco
Biogeosciences, 10, 513–527, https://doi.org/10.5194/bg-10-513-2013, https://doi.org/10.5194/bg-10-513-2013, 2013
Related subject area
Biogeochemistry: Rivers & Streams
The role of nitrogen and iron biogeochemical cycles in the production and export of dissolved organic matter in agricultural headwater catchments
From Iron Curtain to green belt: shift from heterotrophic to autotrophic nitrogen retention in the Elbe River over 35 years of passive restoration
The influence of burn severity on dissolved organic carbon concentrations across a stream network differs based on seasonal wetness conditions
Molecular level characterization of supraglacial dissolved organic matter sources and exported pools on the southern Greenland Ice Sheet
High seasonal and spatial dynamics of bio- and photodegradation in boreal humic waters
Seasonal particulate organic carbon dynamics of the Kolyma River tributaries, Siberia
Geomorphologic controls and anthropogenic impacts on dissolved organic carbon from mountainous rivers: insights from optical properties and carbon isotopes
Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway
Physical and stoichiometric controls on stream respiration in a headwater stream
Local processes with a global impact: unraveling the dynamics of gas evasion in a step-and-pool configuration
Complex dissolved organic matter (DOM) on the roof of the world – Tibetan DOM molecular characteristics indicate sources, land use effects, and processing along the fluvial–limnic continuum
Maximum respiration rates in hyporheic zone sediments are primarily constrained by organic carbon concentration and secondarily by organic matter chemistry
Glacier loss and vegetation expansion alter organic and inorganic carbon dynamics in high-mountain streams
Particulate organic matter in the Lena River and its delta: from the permafrost catchment to the Arctic Ocean
Stable isotopic evidence for the excess leaching of unprocessed atmospheric nitrate from forested catchments under high nitrogen saturation
Nitrogen isotopes reveal a particulate-matter-driven biogeochemical reactor in a temperate estuary
High-resolution vertical biogeochemical profiles in the hyporheic zone reveal insights into microbial methane cycling
Organic matter transformations are disconnected between surface water and the hyporheic zone
CO2 emissions from peat-draining rivers regulated by water pH
Effects of peatland management on aquatic carbon concentrations and fluxes
Resistance and resilience of stream metabolism to high flow disturbances
Enhanced bioavailability of dissolved organic matter (DOM) in human-disturbed streams in Alpine fluvial networks
Spatial and temporal variability of pCO2 and CO2 emissions from the Dong River in south China
Fluvial carbon dioxide emission from the Lena River basin during the spring flood
Diel patterns in stream nitrate concentration produced by in-stream processes
Complex interactions of in-stream dissolved organic matter and nutrient spiralling unravelled by Bayesian regression analysis
Spatial–temporal variations in riverine carbon strongly influenced by local hydrological events in an alpine catchment
Rapid soil organic carbon decomposition in river systems: effects of the aquatic microbial community and hydrodynamical disturbance
Increased carbon capture by a silicate-treated forested watershed affected by acid deposition
Thermokarst amplifies fluvial inorganic carbon cycling and export across watershed scales on the Peel Plateau, Canada
Temporary and net sinks of atmospheric CO2 due to chemical weathering in subtropical catchment with mixing carbonate and silicate lithology
From canals to the coast: dissolved organic matter and trace metal composition in rivers draining degraded tropical peatlands in Indonesia
Distribution and flux of dissolved iron in the peatland-draining rivers and estuaries of Sarawak, Malaysian Borneo
Comparisons of dissolved organic matter and its optical characteristics in small low and high Arctic catchments
High-frequency measurements explain quantity and quality of dissolved organic carbon mobilization in a headwater catchment
Dissolved inorganic nitrogen in a tropical estuary in Malaysia: transport and transformation
Behaviour of Dissolved Phosphorus with the associated nutrients in relation to phytoplankton biomass of the Rajang River-South China Sea continuum
Synchrony in catchment stream colour levels is driven by both local and regional climate
The post-monsoon carbon biogeochemistry of the Hooghly–Sundarbans estuarine system under different levels of anthropogenic impacts
Riverine particulate C and N generated at the permafrost thaw front: case study of western Siberian rivers across a 1700 km latitudinal transect
Geochemistry of the dissolved loads during high-flow season of rivers in the southeastern coastal region of China: anthropogenic impact on chemical weathering and carbon sequestration
CO2 partial pressure and CO2 emission along the lower Red River (Vietnam)
Stable isotopes of nitrate reveal different nitrogen processing mechanisms in streams across a land use gradient during wet and dry periods
Riverine carbon export in the arid to semiarid Wuding River catchment on the Chinese Loess Plateau
Use of argon to measure gas exchange in turbulent mountain streams
Shifts in stream hydrochemistry in responses to typhoon and non-typhoon precipitation
QUAL-NET, a high temporal-resolution eutrophication model for large hydrographic networks
Diel fluctuations of viscosity-driven riparian inflow affect streamflow DOC concentration
A comprehensive biogeochemical record and annual flux estimates for the Sabaki River (Kenya)
Hydro-ecological controls on dissolved carbon dynamics in groundwater and export to streams in a temperate pine forest
Thibault Lambert, Rémi Dupas, and Patrick Durand
Biogeosciences, 21, 4533–4547, https://doi.org/10.5194/bg-21-4533-2024, https://doi.org/10.5194/bg-21-4533-2024, 2024
Short summary
Short summary
This study investigates dissolved organic carbon (DOC) export in headwater catchments. Results show small links between DOC, nitrates, and the iron cycle throughout the year, calling into question our current conceptualization of DOC export at the catchment scale. Indeed, this study evidences that the winter period, referred as a non-productive period in our current conceptual model, acts as an active period for DOC production in riparian soils and DOC export toward stream waters.
Alexander Wachholz, James W. Jawitz, and Dietrich Borchardt
Biogeosciences, 21, 3537–3550, https://doi.org/10.5194/bg-21-3537-2024, https://doi.org/10.5194/bg-21-3537-2024, 2024
Short summary
Short summary
Human activities are rivers' main source of nitrogen, causing eutrophication and other hazards. However, rivers can serve as a natural defense mechanism against this by retaining nitrogen. We show that the Elbe River retains more nitrogen during times of high pollution. With improvements in water quality, less nitrogen is retained. We explain this with changed algal and bacterial activities, which correspond to pollution and have many implications for the river and adjacent ecosystems.
Katie A. Wampler, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 21, 3093–3120, https://doi.org/10.5194/bg-21-3093-2024, https://doi.org/10.5194/bg-21-3093-2024, 2024
Short summary
Short summary
Following a high-severity wildfire, we sampled 129 sites during four different times of the year across a stream network to quantify dissolved organic carbon. The results from our study suggested that dissolved organic carbon may decrease with increasing burn severity. They also suggest that landscape characteristics can override wildfire impacts, with the seasonal timing of sampling influencing the observed response of dissolved organic carbon concentrations to wildfire.
Eva L. Doting, Ian T. Stevens, Anne M. Kellerman, Pamela E. Rossel, Runa Antony, Amy M. McKenna, Martyn Tranter, Liane G. Benning, Robert G. M. Spencer, Jon R. Hawkings, and Alexandre M. Anesio
EGUsphere, https://doi.org/10.5194/egusphere-2024-492, https://doi.org/10.5194/egusphere-2024-492, 2024
Short summary
Short summary
This study provides new insights into the transformation of dissolved organic matter (DOM) that takes place as meltwater flows through the porous crust of weathering ice that covers glacier ice surfaces during the melt season. Movement of water through the weathering crust is slow, allowing microorganisms and sunlight to alter the DOM in glacial meltwater. This is important as supraglacial meltwaters deliver DOM and nutrients to microorganisms living in downstream receiving aquatic environments.
Artem V. Chupakov, Anna Chupakova, Svetlana A. Zabelina, Liudmila S. Shirokova, and Oleg S. Pokrovsky
EGUsphere, https://doi.org/10.5194/egusphere-2024-233, https://doi.org/10.5194/egusphere-2024-233, 2024
Short summary
Short summary
In boreal (non-permafrost) humic (>15 mg DOC/L) waters of a forest lake and a bog, the experimentally measured rate of photodegradation is 4 times higher than that of biodegradation. However, given the shallow (0.5 m) light-penetrating layer versus the full depth of water column (2–10 m), the biodegradation may provide the largest contribution to CO2 emission from the water surfaces
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Shuai Chen, Jun Zhong, Lishan Ran, Yuanbi Yi, Wanfa Wang, Zelong Yan, Si-liang Li, and Khan M. G. Mostofa
Biogeosciences, 20, 4949–4967, https://doi.org/10.5194/bg-20-4949-2023, https://doi.org/10.5194/bg-20-4949-2023, 2023
Short summary
Short summary
This study found the source of dissolved organic carbon and its optical properties (e.g., aromaticity, humification) are related to human land use and catchment slope in anthropogenically impacted subtropical mountainous rivers. The study highlights that the combination of dual carbon isotopes and optical properties represents a useful tool in tracing the origin of dissolved organic carbon and its in-stream processes.
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023, https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Short summary
Riverine alkalinity in the silicate-dominated headwater catchment at subarctic Iskorasfjellet, northern Norway, was almost entirely derived from weathering of minor carbonate occurrences in the riparian zone. The uphill catchment appeared limited by insufficient contact time of weathering agents and weatherable material. Further, alkalinity increased with decreasing permafrost extent. Thus, with climate change, alkalinity generation is expected to increase in this permafrost-degrading landscape.
Jancoba Dorley, Joel Singley, Tim Covino, Kamini Singha, Michael Gooseff, David Van Horn, and Ricardo González-Pinzón
Biogeosciences, 20, 3353–3366, https://doi.org/10.5194/bg-20-3353-2023, https://doi.org/10.5194/bg-20-3353-2023, 2023
Short summary
Short summary
We quantified how microbial respiration is controlled by discharge and the supply of C, N, and P in a stream. We ran two rounds of experiments adding a conservative tracer, an indicator of aerobic respiration, and nutrient treatments: a) N, b) N+C, c) N+P, and d) C+N+P. Microbial respiration remained similar between rounds and across nutrient treatments. This suggests that complex interactions between hydrology, resource supply, and biological community drive in-stream respiration.
Paolo Peruzzo, Matteo Cappozzo, Nicola Durighetto, and Gianluca Botter
Biogeosciences, 20, 3261–3271, https://doi.org/10.5194/bg-20-3261-2023, https://doi.org/10.5194/bg-20-3261-2023, 2023
Short summary
Short summary
Small cascades greatly enhance mountain stream gas emissions through the turbulent energy dissipation rate and air bubbles entrained into the water. We numerically studied the local contribution of these mechanisms driving gas transfer velocity used to quantify the outgassing. The gas evasion is primarily due to bubbles concentrated in irregular spots of limited area. Consequently, the gas exchange velocity is scale-dependent and unpredictable, posing concerns about its use in similar scenarios.
Philipp Maurischat, Michael Seidel, Thorsten Dittmar, and Georg Guggenberger
Biogeosciences, 20, 3011–3026, https://doi.org/10.5194/bg-20-3011-2023, https://doi.org/10.5194/bg-20-3011-2023, 2023
Short summary
Short summary
Production and consumption of organic matter (OM) on the Tibetan Plateau are important for this sensitive ecosystem. We investigated the chemical composition of dissolved organic matter and the most mobile fraction of OM in glaciers, wetlands, and groundwater as well as in the rivers and a large terminal lake. Our data show that the sources differ in the molecular composition of OM, that the stream is influenced by agriculture, and that the lake strongly changes the inflowing organic matter.
James C. Stegen, Vanessa A. Garayburu-Caruso, Robert E. Danczak, Amy E. Goldman, Lupita Renteria, Joshua M. Torgeson, and Jacqueline Hager
Biogeosciences, 20, 2857–2867, https://doi.org/10.5194/bg-20-2857-2023, https://doi.org/10.5194/bg-20-2857-2023, 2023
Short summary
Short summary
Chemical reactions in river sediments influence how clean the water is and how much greenhouse gas comes out of a river. Our study investigates why some sediments have higher rates of chemical reactions than others. We find that to achieve high rates, sediments need to have two things: only a few different kinds of molecules, but a lot of them. This result spans about 80 rivers such that it could be a general rule, helpful for predicting the future of rivers and our planet.
Andrew L. Robison, Nicola Deluigi, Camille Rolland, Nicolas Manetti, and Tom Battin
Biogeosciences, 20, 2301–2316, https://doi.org/10.5194/bg-20-2301-2023, https://doi.org/10.5194/bg-20-2301-2023, 2023
Short summary
Short summary
Climate change is affecting mountain ecosystems intensely, including the loss of glaciers and the uphill migration of plants. How these changes will affect the streams draining these landscapes is unclear. We sampled streams across a gradient of glacier and vegetation cover in Switzerland and found glacier loss reduced the carbon dioxide sink from weathering, while vegetation cover increased dissolved organic carbon in the stream. These changes are important to consider for mountains globally.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Weitian Ding, Urumu Tsunogai, Fumiko Nakagawa, Takashi Sambuichi, Masaaki Chiwa, Tamao Kasahara, and Ken'ichi Shinozuka
Biogeosciences, 20, 753–766, https://doi.org/10.5194/bg-20-753-2023, https://doi.org/10.5194/bg-20-753-2023, 2023
Short summary
Short summary
By monitoring the concentration and Δ17O of stream nitrate in three forested streams, the new nitrogen saturation index of forested catchments (Matm/Datm ratio) was estimated. We found that (1) the unprocessed atmospheric nitrate in our studied forested stream (FK1 catchment) was the highest ever reported in forested streams; (2) the Matm/Datm ratio can be used as a robust index for evaluating nitrogen saturation in forested catchments as the Matm/Datm ratio is independent of the precipitation.
Kirstin Dähnke, Tina Sanders, Yoana Voynova, and Scott D. Wankel
Biogeosciences, 19, 5879–5891, https://doi.org/10.5194/bg-19-5879-2022, https://doi.org/10.5194/bg-19-5879-2022, 2022
Short summary
Short summary
Nitrogen is an important macronutrient that fuels algal production in rivers and coastal regions. We investigated the production and removal of nitrogen-bearing compounds in the freshwater section of the tidal Elbe Estuary and found that particles in the water column are key for the production and removal of water column nitrate. Using a stable isotope approach, we pinpointed regions where additional removal of nitrate or input from sediments plays an important role in estuarine biogeochemistry.
Tamara Michaelis, Anja Wunderlich, Ömer K. Coskun, William Orsi, Thomas Baumann, and Florian Einsiedl
Biogeosciences, 19, 4551–4569, https://doi.org/10.5194/bg-19-4551-2022, https://doi.org/10.5194/bg-19-4551-2022, 2022
Short summary
Short summary
The greenhouse gas methane (CH4) drives climate change. Microorganisms in river sediments produce CH4 when degrading organic matter, but the contribution of rivers to atmospheric CH4 concentrations is uncertain. To better understand riverine CH4 cycling, we measured concentration profiles of CH4 and relevant reactants that might influence the CH4 cycle. We found substantial CH4 production, especially in fine, organic-rich sediments during summer and signs of microbial CH4 consumption.
James C. Stegen, Sarah J. Fansler, Malak M. Tfaily, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Robert E. Danczak, Rosalie K. Chu, Lupita Renteria, Jerry Tagestad, and Jason Toyoda
Biogeosciences, 19, 3099–3110, https://doi.org/10.5194/bg-19-3099-2022, https://doi.org/10.5194/bg-19-3099-2022, 2022
Short summary
Short summary
Rivers are vital to Earth, and in rivers, organic matter (OM) is an energy source for microbes that make greenhouse gas and remove contaminants. Predicting Earth’s future requires understanding how and why river OM is transformed. Our results help meet this need. We found that the processes influencing OM transformations diverge between river water and riverbed sediments. This can be used to build new models for predicting the future of rivers and, in turn, the Earth system.
Alexandra Klemme, Tim Rixen, Denise Müller-Dum, Moritz Müller, Justus Notholt, and Thorsten Warneke
Biogeosciences, 19, 2855–2880, https://doi.org/10.5194/bg-19-2855-2022, https://doi.org/10.5194/bg-19-2855-2022, 2022
Short summary
Short summary
Tropical peat-draining rivers contain high amounts of carbon. Surprisingly, measured carbon dioxide (CO2) emissions from those rivers are comparatively moderate. We compiled data from 10 Southeast Asian rivers and found that CO2 production within these rivers is hampered by low water pH, providing a natural threshold for CO2 emissions. Furthermore, we find that enhanced carbonate input, e.g. caused by human activities, suspends this natural threshold and causes increased CO2 emissions.
Amy E. Pickard, Marcella Branagan, Mike F. Billett, Roxane Andersen, and Kerry J. Dinsmore
Biogeosciences, 19, 1321–1334, https://doi.org/10.5194/bg-19-1321-2022, https://doi.org/10.5194/bg-19-1321-2022, 2022
Short summary
Short summary
Peatlands have been subject to a range of land management regimes over the past century. This has affected the amount of carbon that drains into surrounding streams and rivers. In our study, we measured carbon concentrations in streams draining from drained, non-drained, and restored areas of the Flow Country blanket bog in N Scotland. We found that drained peatland had higher concentrations and fluxes of carbon relative to non-drained areas. Restored peatland areas were highly variable.
Brynn O'Donnell and Erin R. Hotchkiss
Biogeosciences, 19, 1111–1134, https://doi.org/10.5194/bg-19-1111-2022, https://doi.org/10.5194/bg-19-1111-2022, 2022
Short summary
Short summary
A stream is defined by flowing water, but higher flow from storms is also a frequent disturbance. This paper tests how higher flow changes stream metabolism (respiration and photosynthesis, R and P). P was less resistant to changes in flow compared to R, and P took longer to recover from storms than R (2.2 versus 0.6 d). Further work on metabolic responses to flow disturbance is critical given projected increases in storms and the influence of higher flows on ecosystem health and functioning.
Thibault Lambert, Pascal Perolo, Nicolas Escoffier, and Marie-Elodie Perga
Biogeosciences, 19, 187–200, https://doi.org/10.5194/bg-19-187-2022, https://doi.org/10.5194/bg-19-187-2022, 2022
Short summary
Short summary
The bacterial mineralization of dissolved organic matter (DOM) in inland waters contributes to CO2 emissions to the atmosphere. Human activities affect DOM sources. However, the implications on DOM mineralization are poorly known. Combining sampling and incubations, we showed that higher bacterial respiration in agro-urban streams related to a labile pool from aquatic origin. Therefore, human activities may have a limited impact on the net carbon exchanges between inland waters and atmosphere.
Boyi Liu, Mingyang Tian, Kaimin Shih, Chun Ngai Chan, Xiankun Yang, and Lishan Ran
Biogeosciences, 18, 5231–5245, https://doi.org/10.5194/bg-18-5231-2021, https://doi.org/10.5194/bg-18-5231-2021, 2021
Short summary
Short summary
Spatial and temporal patterns of pCO2 in the subtropical Dong River basin were mainly affected by C inputs and in-stream metabolism, both of which varied due to differential catchment settings, land cover, and hydrological conditions. CO2 fluxes in the wet season were 2-fold larger than in the dry season due to high pCO2 and turbulence caused by high flow velocity. The absence of high CO2 fluxes in small rivers could be associated with the depletion effect caused by abundant precipitation.
Sergey N. Vorobyev, Jan Karlsson, Yuri Y. Kolesnichenko, Mikhail A. Korets, and Oleg S. Pokrovsky
Biogeosciences, 18, 4919–4936, https://doi.org/10.5194/bg-18-4919-2021, https://doi.org/10.5194/bg-18-4919-2021, 2021
Short summary
Short summary
In order to quantify riverine carbon (C) exchange with the atmosphere in permafrost regions, we report a first assessment of CO2 and CH4 concentration and fluxes of the largest permafrost-affected river, the Lena River, during the peak of spring flow. The results allowed identification of environmental factors controlling GHG concentrations and emission in the Lena River watershed; this new knowledge can be used for foreseeing future changes in C balance in permafrost-affected Arctic rivers.
Jan Greiwe, Markus Weiler, and Jens Lange
Biogeosciences, 18, 4705–4715, https://doi.org/10.5194/bg-18-4705-2021, https://doi.org/10.5194/bg-18-4705-2021, 2021
Short summary
Short summary
We analyzed variability in diel nitrate patterns at three locations in a lowland stream. Comparison of time lags between monitoring sites with water travel time indicated that diel patterns were created by in-stream processes rather than transported downstream from an upstream point of origin. Most of the patterns (70 %) could be explained by assimilatory nitrate uptake. The remaining patterns suggest seasonally varying dominance and synchronicity of different biochemical processes.
Matthias Pucher, Peter Flödl, Daniel Graeber, Klaus Felsenstein, Thomas Hein, and Gabriele Weigelhofer
Biogeosciences, 18, 3103–3122, https://doi.org/10.5194/bg-18-3103-2021, https://doi.org/10.5194/bg-18-3103-2021, 2021
Short summary
Short summary
Dissolved organic matter is an important carbon source in aquatic ecosystems, yet the uptake processes are not totally understood. We found evidence for the release of degradation products, efficiency loss in the uptake with higher concentrations, stimulating effects, and quality-dependent influences from the benthic zone. To conduct this analysis, we included interactions in the equations of the nutrient spiralling concept and solve it with a Bayesian non-linear fitting algorithm.
Xin Wang, Ting Liu, Liang Wang, Zongguang Liu, Erxiong Zhu, Simin Wang, Yue Cai, Shanshan Zhu, and Xiaojuan Feng
Biogeosciences, 18, 3015–3028, https://doi.org/10.5194/bg-18-3015-2021, https://doi.org/10.5194/bg-18-3015-2021, 2021
Short summary
Short summary
We show a comprehensive monitoring dataset on the discharge and carbon transport in a small alpine river on the Qinghai–Tibetan Plateau, where riverine carbon increased downstream in the pre-monsoon season due to an increasing contribution of organic matter derived from seasonal permafrost thaw while it fluctuated in the monsoon season induced by sporadic precipitation. These results indicate a high sensitivity of riverine carbon in alpine headwater catchments to local hydrological events.
Man Zhao, Liesbet Jacobs, Steven Bouillon, and Gerard Govers
Biogeosciences, 18, 1511–1523, https://doi.org/10.5194/bg-18-1511-2021, https://doi.org/10.5194/bg-18-1511-2021, 2021
Short summary
Short summary
We investigate the relative importance of two individual factors (hydrodynamical disturbance and aquatic microbial community) that possibly control SOC decomposition rates in river systems. We found aquatic microbial organisms led to rapid SOC decomposition, while effect of mechanical disturbance is relative minor. We propose a simple conceptual model: hydrodynamic disturbance is only important when soil aggregates are strong enough to withstand the disruptive forces imposed by water immersions.
Lyla L. Taylor, Charles T. Driscoll, Peter M. Groffman, Greg H. Rau, Joel D. Blum, and David J. Beerling
Biogeosciences, 18, 169–188, https://doi.org/10.5194/bg-18-169-2021, https://doi.org/10.5194/bg-18-169-2021, 2021
Short summary
Short summary
Enhanced rock weathering (ERW) is a carbon dioxide removal (CDR) strategy involving soil amendments with silicate rock dust. Over 15 years, a small silicate application led to net CDR of 8.5–11.5 t CO2/ha in an acid-rain-impacted New Hampshire forest. We accounted for the total carbon cost of treatment and compared effects with an adjacent, untreated forest. Our results suggest ERW can improve the greenhouse gas balance of similar forests in addition to mitigating acid rain effects.
Scott Zolkos, Suzanne E. Tank, Robert G. Striegl, Steven V. Kokelj, Justin Kokoszka, Cristian Estop-Aragonés, and David Olefeldt
Biogeosciences, 17, 5163–5182, https://doi.org/10.5194/bg-17-5163-2020, https://doi.org/10.5194/bg-17-5163-2020, 2020
Short summary
Short summary
High-latitude warming thaws permafrost, exposing minerals to weathering and fluvial transport. We studied the effects of abrupt thaw and associated weathering on carbon cycling in western Canada. Permafrost collapse affected < 1 % of the landscape yet enabled carbonate weathering associated with CO2 degassing in headwaters and increased bicarbonate export across watershed scales. Weathering may become a driver of carbon cycling in ice- and mineral-rich permafrost terrain across the Arctic.
Yingjie Cao, Yingxue Xuan, Changyuan Tang, Shuai Guan, and Yisheng Peng
Biogeosciences, 17, 3875–3890, https://doi.org/10.5194/bg-17-3875-2020, https://doi.org/10.5194/bg-17-3875-2020, 2020
Short summary
Short summary
About half of the global CO2 sequestration due to chemical weathering occurs in warm and high-runoff regions. To evaluate the temporary and net sinks of atmospheric CO2 due to chemical weathering, we selected a typical subtropical catchment as our study area and did fieldwork to sample surface water along the main channel and major tributaries in 1 hydrological year. The result of mass balance calculation showed that human activities dramatically decreased the CO2 net sink.
Laure Gandois, Alison M. Hoyt, Stéphane Mounier, Gaël Le Roux, Charles F. Harvey, Adrien Claustres, Mohammed Nuriman, and Gusti Anshari
Biogeosciences, 17, 1897–1909, https://doi.org/10.5194/bg-17-1897-2020, https://doi.org/10.5194/bg-17-1897-2020, 2020
Short summary
Short summary
Worldwide, peatlands are important sources of dissolved organic matter (DOM) and trace metals (TMs) to surface waters, and these fluxes may increase with peatland degradation. In Southeast Asia, tropical peatlands are being rapidly deforested and drained. This work aims to address the fate of organic carbon and its role as a trace metal carrier in drained peatlands of Indonesia.
Xiaohui Zhang, Moritz Müller, Shan Jiang, Ying Wu, Xunchi Zhu, Aazani Mujahid, Zhuoyi Zhu, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 17, 1805–1819, https://doi.org/10.5194/bg-17-1805-2020, https://doi.org/10.5194/bg-17-1805-2020, 2020
Short summary
Short summary
This study offered detailed information on dFe concentrations, distribution and the magnitude of yield in the Rajang River, the largest river in Malaysia. Three blackwater rivers, draining from peatlands, were also included in our study. Compared with the Rajang River, the dFe concentrations and yield from three blackwater rivers were much higher. The precipitation and agricultural activities, such as palm oil plantations, may markedly increase the concentration dFe in these tropical rivers.
Caroline Coch, Bennet Juhls, Scott F. Lamoureux, Melissa J. Lafrenière, Michael Fritz, Birgit Heim, and Hugues Lantuit
Biogeosciences, 16, 4535–4553, https://doi.org/10.5194/bg-16-4535-2019, https://doi.org/10.5194/bg-16-4535-2019, 2019
Short summary
Short summary
Climate change affects Arctic ecosystems. This includes thawing of permafrost (ground below 0 °C) and an increase in rainfall. Both have substantial impacts on the chemical composition of river water. We compared the composition of small rivers in the low and high Arctic with the large Arctic rivers. In comparison, dissolved organic matter in the small rivers is more susceptible to degradation; thus, it could potentially increase carbon dioxide emissions. Rainfall events have a similar effect.
Benedikt J. Werner, Andreas Musolff, Oliver J. Lechtenfeld, Gerrit H. de Rooij, Marieke R. Oosterwoud, and Jan H. Fleckenstein
Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019, https://doi.org/10.5194/bg-16-4497-2019, 2019
Short summary
Short summary
Increased dissolved organic carbon (DOC) concentration in streams can pose a threat to downstream water resources. Analyzing data from an in-stream probe we found that hydroclimatic and hydrological drivers can describe up to 72 % of the observed DOC concentration and composition variability. Variability was found to be highest during discharge events with warm and dry preconditions. The findings suggest an impact of climate change on DOC exports and thus also on downstream water quality.
Shan Jiang, Moritz Müller, Jie Jin, Ying Wu, Kun Zhu, Guosen Zhang, Aazani Mujahid, Tim Rixen, Mohd Fakharuddin Muhamad, Edwin Sien Aun Sia, Faddrine Holt Ajon Jang, and Jing Zhang
Biogeosciences, 16, 2821–2836, https://doi.org/10.5194/bg-16-2821-2019, https://doi.org/10.5194/bg-16-2821-2019, 2019
Short summary
Short summary
Three cruises were conducted in the Rajang River estuary, Malaysia. The results revealed that the decomposition of terrestrial organic matter and the subsequent soil leaching were the main sources of dissolved inorganic nitrogen (DIN) in the fresh river water. Porewater exchange and ammonification enhanced DIN concentrations in the estuary water, while intensities of DIN addition varied between seasons. The riverine DIN flux could reach 101.5 ton(N) / d, supporting the coastal primary producers.
Edwin Sien Aun Sia, Jing Zhang, Shan Jiang, Zhuoyi Zhu, Gonzalo Carrasco, Faddrine Holt Jang, Aazani Mujahid, and Moritz Müller
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-219, https://doi.org/10.5194/bg-2019-219, 2019
Revised manuscript not accepted
Short summary
Short summary
Nutrient loads carried by large rivers and discharged into the continental shelf and coastal waters are vital to support primary production. Our knowledge of tropical river systems is fragmented with very few seasonal studies available for Southeast Asia (SEA). We present data from three sampling campaigns on the longest river in Malaysia, the Rajang river. Our results show the generalization of SEA as a nutrient hotspot might not hold true for all regions and requires further investigation.
Brian C. Doyle, Elvira de Eyto, Mary Dillane, Russell Poole, Valerie McCarthy, Elizabeth Ryder, and Eleanor Jennings
Biogeosciences, 16, 1053–1071, https://doi.org/10.5194/bg-16-1053-2019, https://doi.org/10.5194/bg-16-1053-2019, 2019
Short summary
Short summary
This study explores the drivers of variation in the water colour of rivers, and hence organic carbon export, in a blanket peatland catchment. We used 6 years of weekly river water colour data (2011 to 2016) from three proximate river sub-catchments in western Ireland. in tandem with a range of topographical, hydrological and climate data, to discover the principle environmental drivers controlling changes in colour concentration in the rivers.
Manab Kumar Dutta, Sanjeev Kumar, Rupa Mukherjee, Prasun Sanyal, and Sandip Kumar Mukhopadhyay
Biogeosciences, 16, 289–307, https://doi.org/10.5194/bg-16-289-2019, https://doi.org/10.5194/bg-16-289-2019, 2019
Short summary
Short summary
The study focused on understanding C biogeochemistry of two adjacently located estuaries undergoing different levels of anthropogenic stresses. Different parameters related to C cycling were measured in an anthropogenically influenced and a mangrove-dominated estuary. Although the entire estuarine system acted as a source of carbon dioxide to the regional atmosphere, emission approximately 17 times higher was noticed from the anthropogenically affected estuary compared to mangrove-dominated one.
Ivan V. Krickov, Artem G. Lim, Rinat M. Manasypov, Sergey V. Loiko, Liudmila S. Shirokova, Sergey N. Kirpotin, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 15, 6867–6884, https://doi.org/10.5194/bg-15-6867-2018, https://doi.org/10.5194/bg-15-6867-2018, 2018
Short summary
Short summary
We tested the effect of climate, permafrost and physio-geographical landscape parameters on particulate C, N and P concentrations in small- and medium- sized rivers in the Western Siberian Lowland (WSL). We discovered a maximum of particulate C and N concentrations at the beginning of the permafrost appearance. A northward shift of permafrost boundaries may increase the particulate C and N export by WSL rivers to the Arctic Ocean by a factor of 2.
Wenjing Liu, Zhifang Xu, Huiguo Sun, Tong Zhao, Chao Shi, and Taoze Liu
Biogeosciences, 15, 4955–4971, https://doi.org/10.5194/bg-15-4955-2018, https://doi.org/10.5194/bg-15-4955-2018, 2018
Short summary
Short summary
The southeastern coastal region is the top acid-rain-impacted area in China. It is worth evaluating the acid deposition impacts on chemical weathering and CO2 consumption there. River water geochemistry evidenced an overestimation of CO2 sequestration if H2SO4/HNO3 involvement was ignored, which accounted for 33.6 % of the total flux by silicate weathering in this area. This study quantitatively highlights the anthropogenic acid effects on chemical weathering and associated CO2 consumption.
Thi Phuong Quynh Le, Cyril Marchand, Cuong Tu Ho, Nhu Da Le, Thi Thuy Duong, XiXi Lu, Phuong Kieu Doan, Trung Kien Nguyen, Thi Mai Huong Nguyen, and Duy An Vu
Biogeosciences, 15, 4799–4814, https://doi.org/10.5194/bg-15-4799-2018, https://doi.org/10.5194/bg-15-4799-2018, 2018
Short summary
Short summary
The Red River is a typical south-east Asian river, strongly affected by climate and human activity. This study showed the spatial and seasonal variability of CO2 emissions at the water–air interface of the lower part of this river due to natural conditions (meteo-hydrological-geomorphological characteristics) and human activities (dam impoundment, population, land use). The Red River water was supersaturated with CO2, providing a mean water–air CO2 flux of 530 ± 17 mmol m−2 d−1.
Wei Wen Wong, Jesse Pottage, Fiona Y. Warry, Paul Reich, Keryn L. Roberts, Michael R. Grace, and Perran L. M. Cook
Biogeosciences, 15, 3953–3965, https://doi.org/10.5194/bg-15-3953-2018, https://doi.org/10.5194/bg-15-3953-2018, 2018
Short summary
Short summary
Over-enrichment of nitrate can pose substantial risk to the quality of freshwater ecosystems. Hence, understanding the dynamics of nitrate is the key to better management of waterways. This study evaluates the relationship between the effects of land use and rainfall on the major sources and processing of nitrate within and between five streams in five catchments spanning an agricultural land use gradient. We found that rainfall exerted significant control over the fate of nitrate.
Lishan Ran, Mingyang Tian, Nufang Fang, Suiji Wang, Xixi Lu, Xiankun Yang, and Frankie Cho
Biogeosciences, 15, 3857–3871, https://doi.org/10.5194/bg-15-3857-2018, https://doi.org/10.5194/bg-15-3857-2018, 2018
Short summary
Short summary
We systematically assessed the transport and fate of riverine carbon in the moderate-sized Wuding catchment on the Chinese Loess Plateau by constructing a riverine carbon budget and further relating it to terrestrial ecosystem productivity. The riverine carbon export accounted for 16 % of the catchment's net ecosystem production (NEP). It seems that a significant fraction of terrestrial NEP in this catchment is laterally transported from the terrestrial biosphere to the drainage network.
Robert O. Hall Jr. and Hilary L. Madinger
Biogeosciences, 15, 3085–3092, https://doi.org/10.5194/bg-15-3085-2018, https://doi.org/10.5194/bg-15-3085-2018, 2018
Short summary
Short summary
Streams exchange oxygen with the atmosphere, but this rate is difficult to measure. We added argon to small mountain streams to estimate gas exchange. We compared these rates with sulfur hexafluoride, an intense greenhouse gas. Argon worked well to measure gas exchange, but had higher-than-predicted rates than sulfur hexafluoride. Argon exchange is more likely to represent that for oxygen because they share similar physical properties. We suggest argon to measure gas exchange in small streams.
Chung-Te Chang, Jr-Chuan Huang, Lixin Wang, Yu-Ting Shih, and Teng-Chiu Lin
Biogeosciences, 15, 2379–2391, https://doi.org/10.5194/bg-15-2379-2018, https://doi.org/10.5194/bg-15-2379-2018, 2018
Short summary
Short summary
Our analysis of ion input–output budget illustrates that hydrochemical responses to typhoon storms are distinctly different from those of regular storms. In addition, even mild land use change may have large impacts on nutrient exports/losses. We propose that hydrological models should separate hydrochemical processes into regular and extreme conditions to better capture the whole spectrum of hydrochemical responses to a variety of climate conditions.
Camille Minaudo, Florence Curie, Yann Jullian, Nathalie Gassama, and Florentina Moatar
Biogeosciences, 15, 2251–2269, https://doi.org/10.5194/bg-15-2251-2018, https://doi.org/10.5194/bg-15-2251-2018, 2018
Short summary
Short summary
We developed the model QUALity-NETwork (QUAL-NET) to simulate water quality variations in large drainage networks. This model is accurate enough to represent processes occurring over short periods of time such as storm events and helps to fully understand water quality variations in stream networks in the context of climate change and varying human pressures. It was tested on the Loire River and provided good performances and a new understanding of the functioning of the river.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Biogeosciences, 15, 2177–2188, https://doi.org/10.5194/bg-15-2177-2018, https://doi.org/10.5194/bg-15-2177-2018, 2018
Short summary
Short summary
We studied the diel fluctuations of dissolved organic carbon (DOC) concentrations in a small stream in Luxembourg. We identified an increased proportion of DOC from terrestrial sources as responsible for the peaks in DOC in the afternoon. Warmer water temperatures in the riparian zone in the afternoon increased the amount of water flowing towards the stream. Consequently, an increased amount of DOC-rich water from the riparian zone was entering the stream.
Trent R. Marwick, Fredrick Tamooh, Bernard Ogwoka, Alberto V. Borges, François Darchambeau, and Steven Bouillon
Biogeosciences, 15, 1683–1700, https://doi.org/10.5194/bg-15-1683-2018, https://doi.org/10.5194/bg-15-1683-2018, 2018
Short summary
Short summary
A 2-year biogeochemical record provides annual sediment and element flux estimates for the non-dammed Sabaki River, Kenya, establishing a baseline for future research in light of impending construction of the first major upstream reservoir. Over 80 % of material fluxes occur across the wet season, with annual yields comparable to the adjacent, and dammed, Tana River. Observations at low-flow periods suggest large mammalian herbivores may be vectors of terrestrial subsidies to the water column.
Loris Deirmendjian, Denis Loustau, Laurent Augusto, Sébastien Lafont, Christophe Chipeaux, Dominique Poirier, and Gwenaël Abril
Biogeosciences, 15, 669–691, https://doi.org/10.5194/bg-15-669-2018, https://doi.org/10.5194/bg-15-669-2018, 2018
Short summary
Short summary
Carbon leaching to streams represents a very small (~ 2 %) fraction of forest net ecosystem exchange (NEE). Such weak export of carbon from forest ecosystems, at least in temperate regions, is at odds with recent studies that attempt to integrate the contribution of inland waters in the continent carbon budget. Understanding why local and global carbon mass balances strongly diverge on the proportion of land NEE exported to aquatic systems is a major challenge for research in this field.
Cited articles
Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse,
P., Tremblay, A., Varfalvy, L., Dos Santos, M. A., and Matvienko, B.: Carbon
dioxide and methane emissions and the carbon budget of a 10-year old tropical
reservoir (Petit Saut, French Guiana), Global Biogeochem. Cy., 19, GB4007,
https://doi.org/10.1029/2005GB002457, 2005.
Abril, G., Martinez, J.-M., Artigas L. F., Moreira-Turcq P., Benedetti M.
F., Vidal L., Meziane T., Kim J.-H., Bernardes M. C., Savoye N., Deborde J.,
Albéric P., Souza M. F. L., Souza E. L., and Roland F.: Amazon River
carbon dioxide outgassing fuelled by wetlands, Nature, 505, 395–398,
https://doi.org/10.1038/nature12797, 2014.
Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R.,
Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere,
P., and Borges, A. V.: Technical Note: Large overestimation of pCO2
calculated from pH and alkalinity in acidic, organic-rich freshwaters,
Biogeosciences, 12, 67–78, https://doi.org/10.5194/bg-12-67-2015, 2015.
Alin, S. R., Rasera, M. F. F. L., Salimon, C. I., Richey, J. E., Holtgrieve,
G. W., Krusche, A. V., and Snidvongs, A.: Physical controls on carbon dioxide
transfer velocity and flux in low-gradient river systems and implications for
regional carbon budgets, J. Geophys. Res., 116, G01009,
https://doi.org/10.1029/2010JG001398, 2011.
Allan, J. D.: Landscapes and riverscapes: The influence of land use on stream
ecosystems, Annu. Rev. Ecol. Evol. S., 35, 257–284,
https://doi.org/10.1146/annurev.ecolsys.35.120202.110122, 2004.
Amann, T., Weiss, A., and Hartmann, J.: Carbon dynamics in the freshwater
part of the Elbe estuary, Germany: Implications of improving water quality,
Estuar. Coast. Shelf S., 107, 112–121, https://doi.org/10.1016/j.ecss.2012.05.012, 2012.
Barros, N., Cole, J. J., Tranvik, L. J., Prairie, Y. T., Bastviken, D.,
Huszar, V. L. M., del Giorgio, P., and Roland, F.: Carbon emission from
hydroelectric reservoirs linked to reservoir age and latitude, Nat. Geosci.,
4, 593–596, https://doi.org/10.1038/ngeo1211, 2011.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A.,
and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598–600,
https://doi.org/10.1038/ngeo618, 2009.
Baum, A., Rixen, T., and Samiaji, J.: Relevance of peat draining rivers in
central Sumatra for the riverine input of dissolved organic carbon into the
ocean, Estuar. Coast. Shelf S., 73, 563–570, https://doi.org/10.1016/j.ecss.2007.02.012,
2007.
Bhatt, M. P., McDowell, W. H., Gardner, K. H., and Hartmann, J.: Chemistry
of the heavily urbanized Bagmati River system in Kathmandu Valley, Nepal:
export of organic matter, nutrients, major ions, silica, and metals,
Environ. Earth Sci., 71, 911–922, https://doi.org/10.1007/s12665-013-2494-9, 2014.
Bickle, M. J., Bunbury, J., Chapman, H. J., Harris, N. B. W., Fairchild, I.
J., and Ahmed, T.: Fluxes of Sr into the headwaters of the Ganges, Geochim.
Cosmochim. Ac., 67, 2567–2584, https://doi.org/10.1016/S0016-7037(03)00029-2, 2003.
Biswas, H., Mukhopadhyay, S. K., De, T. K., Sen, S., and Jana, T. K.:
Biogenic controls on the air-water carbon dioxide exchange in the Sundarban
mangrove environment, northeast coast of Bay of Bengal, India, Limnol.
Oceanogr., 49, 95–101, https://doi.org/10.4319/lo.2004.49.1.0095, 2004.
Borges, A. V. and Abril, G.: Carbon dioxide and methane dynamics in
estuaries, in: Treatise on Estuarine and Coastal Science, Volume 5, edited
by: Wolanski, E. and McLusky, D., Academic Press, Waltham, 119–161,
https://doi.org/10.1016/B978-0-12-374711-2.00504-0, 2011.
Borges, A. V., Schiettecatte, L.-S., Abril, G., Delille, B., and Gazeau, F.:
Carbon dioxide in European coastal waters, Estuar. Coast. Shelf S., 70,
375–387, https://doi.org/10.1016/j.ecss.2006.05.046, 2006.
Borges, A. V., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F.,
Geeraert, N., Omengo, F. O., Guérin, F., Lambert, T., Morana, C., Okuku,
E., and Bouillon, S.: Globally significant greenhouse gas emissions from
African inland waters, Nat. Geosci., 8, 637–642, https://doi.org/10.1038/NGEO2486,
2015.
Borges, A. V., Abril, G., and Bouillon, S.: Carbon dynamics in the Mekong
Delta, Biogeosciences, 15, 1093–1114, https://doi.org/10.5194/bg-15-1093-2018, 2018.
Butman, D. E., Wilson, H. F., Barnes, R. T., Xenopoulos, M. A., and Raymond,
P. A.: Increased mobilization of aged carbon to rivers by human disturbance,
Nat. Geosci., 8, 112–116, https://doi.org/10.1038/ngeo2322, 2015.
Cadenasso, M. L., Pickett, S. T., Groffman, P. M., Band, L. E., Brush, G.
S., Galvin, M. F., Grove, J. M., Hagar, G., Marshall, V., McGrath, B. P.,
O'Neil-Dunne, J. P., Stack, W. P., and Troy, A. R.: Exchanges across
land-water-scape boundaries in urban systems: strategies for reducing
nitrate pollution, Ann. N. Y. Acad. Sci., 1134, 213–232,
https://doi.org/10.1196/annals.1439.012, 2008.
Cai, W. J., Guo, X. H., Chen, C.-T. A., Dai, M. H., Zhang, L. J., Zhai, W.
D., Lohrenz, S. E., Yin, K., Harrison, P. J., and Wang, Y. C.: A comparative
overview of weathering intensity and HCO3 flux in the world's largest
rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and
Mississippi Rivers, Cont. Shelf Res., 28, 1538–1549,
https://doi.org/10.1016/j.csr.2007.10.014, 2008.
Casas-Ruiz, J. P., Tittel, J., von Schiller, D., Catalán, N., Obrador,
B., Gómez-Gener, L., Zwirnmann, E., Sabater, S., and Marce, R.:
Drought-induced discontinuities in the source and degradation of dissolved
organic matter in a Mediterranean river, Biogeochemistry, 127, 125–139,
https://doi.org/10.1007/s10533-015-0173-5, 2016.
Catalán, N., Marcé R., Kothawala, D. N., and Tranvik, L. J.: Organic
carbon decomposition rates controlled by water retention time across inland
waters, Nat. Geosci., 9, 501–504, https://doi.org/10.1038/ngeo2720, 2016.
Chakrapani, G. J. and Veizer, J.: Dissolved inorganic carbon isotopic
compositions in the Upstream Ganga river in the Himalayas, Curr. Sci., 89,
553–556, 2005.
Chen, H., Wu, Y., Yuan, X., Gao, Y., Wu, N., and Zhu, D.: Methane emissions
from newly created marshes in the drawdown area of the Three Gorges
Reservoir, J. Geophys. Res., 114, D18301, https://doi.org/10.1029/2009JD012410, 2009.
Chen, Y., Wang, K., Lin, Y., Shi, W., Song, Y., and He, X.: Balancing green
and grain trade, Nat. Geosci., 8, 739–741, https://doi.org/10.1038/ngeo2544, 2015.
Chou, W.-C., Gong, G.-C., Cai, W.-J., and Tseng, C.-M.: Seasonality of
CO2 in coastal oceans altered by increasing anthropogenic nutrient
delivery from large rivers: evidence from the Changjiang–East China Sea
system, Biogeosciences, 10, 3889–3899, https://doi.org/10.5194/bg-10-3889-2013, 2013.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the global carbon cycle: Integrating inland
waters into the terrestrial carbon budget, Ecosystems, 10, 171–184,
https://doi.org/10.1007/s10021-006-9013-8, 2007.
Crawford, J. T., Loken, L. C., Stanley, E. H., Stets, E. G., Dornblaser, M.
M., and Striegl, R. G.: Basin scale controls on CO2 and CH4
emissions from the Upper Mississippi River, Geophys. Res. Lett. 43,
1973–1979. https://doi.org/10.1002/2015GL067599, 2016.
Dai, M., Yin, Z., Meng, F., Liu, Q., and Cai, W.-J.: Spatial distribution of
riverine DOC inputs to the ocean: an updated global synthesis, Curr. Opin.
Environ. Sustain., 4, 170–178, https://doi.org/10.1016/j.cosust.2012.03.003, 2012.
Das, A. K.: Limno-chemistry of some Andhra Pradesh reservoirs, J. Inland
Fish. Soc. India, 32, 37–44, 2000.
Degens, E. T., Kempe, S., and Richey, J. E.: Summary: biogeochemistry of
major world river, in: Biogeochemistry of Major World Rivers, SCOPE Volume
42, edited by: Degens, E. T., Kempe, S., and Richey, J. E., 323–347, 1991.
Deshmukh, C., Serça, D., Delon, C., Tardif, R., Demarty, M., Jarnot, C.,
Meyerfeld, Y., Chanudet, V., Guédant, P., Rode, W., Descloux, S., and
Guérin, F.: Physical controls on CH4 emissions from a newly flooded
subtropical freshwater hydroelectric reservoir: Nam Theun 2, Biogeosciences,
11, 4251–4269, https://doi.org/10.5194/bg-11-4251-2014, 2016.
Deshmukh, C., Guérin, F., Vongkhamsao, A., Pighini, S., Oudone, P.,
Sopraseuth, S., Godon, A., Rode, W., Guédant, P., Oliva, P., Audry, S.,
Zouiten, C., Galy-Lacaux, C., Robain, H., Ribolzi, O., Kansal, A., Chanudet,
V., Descloux, S., and Serça, D.: Carbon dioxide emissions from the flat
bottom and shallow Nam Theun 2 Reservoir: drawdown area as a neglected
pathway to the atmosphere, Biogeosciences, 15, 1775–1794,
https://doi.org/10.5194/bg-15-1775-2018, 2018.
Dutta, M. K., Mukherjee, R., Jana, T. K., and Mukhopadhyay, S. K.:
Biogeochemical dynamics of exogenous methane in an estuary associated to a
mangrove biosphere; the Sundarbans, NE coast of India, Mar. Chem., 170,
1–10, https://doi.org/10.1016/j.marchem.2014.12.006, 2015.
Ellis, E. E., Keil, R. G., Ingalls, A. E., and Richey, J. E.: Seasonal
variability in the sources of particulate organic matter of the Mekong River
as discerned by elemental and lignin analyses, J. Geophys. Res., 117,
G01038, https://doi.org/10.1029/2011JG001816, 2012.
Evans, A. E. V., Hanjra, M. A., Jiang, Y., Qadir, M., and Drechsel, P.:
Water quality: Assessment of the current situation in Asia, Int. J. Water
Resour. Dev., 28, 195–216, https://doi.org/10.1080/07900627.2012.669520, 2012.
FAO (Food and Agriculture Organization): AQUASTAT
http://www.fao.org/nr/water/aquastat/sets/index.stm, last access:
15 December 2017.
Feng, X., Fu, B., Lu, N., Zeng, Y., and Wu, B.: How ecological restoration
alters ecosystem services: an analysis of carbon sequestration in China's
Loess Plateau, Sci. Rep., 3, 2846, https://doi.org/10.1038/srep02846, 2013.
Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille,
B., Libert, E., and Théate, J.-M.: Carbon dioxide emission from European
estuaries, Science, 282, 434–436, https://doi.org/10.1126/science.282.5388.434, 1998.
Galy, V., Peucker-Ehrenbrink, B., and Eglinton, T.: Global carbon export
from the terrestrial biosphere controlled by erosion, Nature, 521, 204–207,
https://doi.org/10.1038/nature14400, 2015.
Garnier, J. and Billen, G.: Autotrophy and heterotrophy of aquatic
communities in the Seine river system, Sci. Total Environ., 375, 110–124,
2007.
Griffith, D. R. and Raymond, P. A.: Multiple-source heterotrophy fueled by
aged organic carbon in an urbanized estuary, Mar. Chem., 124, 14–22,
https://doi.org/10.1016/j.marchem.2010.11.003, 2011.
Griffith, D. R., Barnes, R. T., and Raymond, P. A.: Inputs of fossil carbon
from wastewater treatment plants to U.S. rivers and oceans, Environ. Sci.
Technol., 43, 5647–5651, https://doi.org/10.1021/es9004043, 2009.
Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai,
X., and Briggs, J. M.: Global change and the ecology of cities, Science,
319, 756–760, https://doi.org/10.1126/science.1150195, 2008.
Grumbine, R. E., Dore, J., and Xu, J.: Mekong hydropower: drivers of change
and governance challenges, Front. Ecol. Environ., 10, 91–98,
https://doi.org/10.1890/110146, 2012.
Guo, W., Yang, L., Zhai, W., Chen, W., Osburn, C. L., Huang, X., and Li, Y.:
Runoff-mediated seasonal oscillation in the dynamics of dissolved organic
matter in different branches of a large bifurcated estuary – The Changjiang
Estuary, J. Geophys. Res.-Biogeo., 119, 776–793, https://doi.org/10.1002/2013JG002540,
2014.
Gupta, G. V. M., Thottathil, S. D., Balachandran, K. K., Madhu, N. V.,
Madeswaran, P., and Nair, S.: CO2 supersaturation and net heterotrophy
in a tropical estuary (Cochin, India): Influence of anthropogenic effect,
Ecosystems, 12, 1145–1157, https://doi.org/10.1007/s10021-009-9280-2, 2009.
Hartmann, J., Jansen, N., Kempe, S., and Dürr, H.: Geochemistry of
the river Rhine and the upper Danube: Recent trends and lithological
influence on baselines, J. Environ. Sci. Sustain. Soc., 1, 39–46, 2007.
Hartmann, J., Lauerwald, R., and Moosdorf, N.: A Brief Overview of the GLObal
RIver Chemistry Database, GLORICH, Procedia Earth Planet. Sci., 10, 23–27,
https://doi.org/10.1016/j.proeps.2014.08.005, 2014.
Hilton, J., O'Hare, M., Bowes, M. J., and Jones, J. I.: How green is my
river? A new paradigm of eutrophication in rivers, Sci. Total Environ., 365,
66–83, https://doi.org/10.1016/j.scitotenv.2006.02.055, 2006.
Hosen, J. D., McDonough, O. T., Febria, C. M., and Palmer, M. A.: Dissolved
organic matter quality and bioavailability changes across an urbanization
gradient in headwater streams, Environ. Sci. Technol., 48, 7817–7824,
https://doi.org/10.1021/es501422z, 2014.
Hotchkiss, E. R., Hall Jr., R. O., Sponseller, R. A., Butman, D., Klaminder,
J., Laudon, H., Rosvall, M., and Karlsson, J.: Sources of and processes
controlling CO2 emissions change with the size of streams and rivers,
Nat. Geosci., 8, 696–699, https://doi.org/10.1038/ngeo2507, 2015.
Hu, Y. and Cheng, H.: The urgency of assessing the greenhouse gas budgets of
hydroelectric reservoirs in China, Nature Climate Change, 3, 708–712,
https://doi.org/10.1038/nclimate1831, 2013.
Huang, X., Sillanpaa, M., Gjessing, E. T., Peraniemi, S., and Vogt, R. D.:
Water quality in the southern Tibetan Plateau: chemical evaluation of the
Yarlung Tsangpo (Brahmaputra), River Res. Applic., 27, 113–121,
https://doi.org/10.1002/rra.1332, 2011.
Huang, T.-H., Fu, Y.-H., Pan, P.-Y., and Chen, C.-T. A.: Fluvial carbon
fluxes in tropical rivers, Curr. Opin. Sust., 4, 162–169,
https://doi.org/10.1016/j.cosust.2012.02.004, 2012.
Hynes, H. B. N.: The stream and its valley, Verh. Int. Ver. Theor. Angew.
Limnol., 19, 1–15, https://doi.org/10.1080/03680770.1974.11896033, 1975.
Irvine, K. N, Murphy, T., Sampson, M., Dany, V., Vermette, S. J., and Tang,
T.: An overview of water quality issues in Cambodia, Journal of Water
Management Modeling R225-02,
https://doi.org/10.14796/JWMM.R225-02, 2006.
Ittekkot, V.: Global trends in the nature of organic matter in river
suspensions, Nature, 332, 436–438, https://doi.org/10.1038/332436a0, 1988.
Ittekkot, V., Safiullah, S., Mycke, B., and Seifert, R.: Seasonal
variability and geochemical significance of organic matter in the River
Ganges, Bangladesh, Nature, 317, 800–802, https://doi.org/10.1038/317800a0, 1985.
Jin, H., Yoon, T. K., Lee, S.-H., Kang, H., Im, J., and Park, J.-H.: Enhanced
greenhouse gas emission from exposed sediments along a hydroelectric
reservoir during an extreme drought event, Environ. Res. Lett., 11, 124003,
https://doi.org/10.1088/1748-9326/11/12/124003, 2016.
Joesoef, A., Huang, W.-J., Gao, Y., and Cai, W.-J.: Air–water fluxes and
sources of carbon dioxide in the Delaware Estuary: spatial and seasonal
variability, Biogeosciences, 12, 6085–6101, https://doi.org/10.5194/bg-12-6085-2015,
2015.
Jung, B.-J., Lee, H.-J., Jeong, J.-J., Owen, J., Kim, B., Meusburger, K.,
Alewell, C., Gebauer, G., Shope, C., and Park, J.-H.: Storm pulses and
varying sources of hydrologic carbon export from a mountainous watershed, J.
Hydrol., 440/441, 90–101, https://doi.org/10.1016/j.jhydrol.2012.03.030, 2012.
Kaushal, S. S. and Belt, K. T.: The urban watershed continuum: evolving
spatial and temporal dimensions, Urban Ecosyst., 15, 409–435,
https://doi.org/10.1007/s11252-012-0226-7, 2012.
Kaushal, S. S., McDowell, W. H., and Wollheim, W. M.: Tracking evolution of
urban biogeochemical cycles: past, present, and future, Biogeochemistry,
121, 1–21, https://doi.org/10.1007/s10533-014-0014-y, 2014.
Kempe, S.: Long-term records of CO2 pressure fluctuations in fresh
water, in: Transport of Carbon and Minerals in Major World Rivers Part 1,
edited by: Degens, E. T., SCOPE/UNEP Sonderband 52, Mitt. Geol.-Paläont.
Inst. Univ. Hamburg, Hamburg, 91–332, 1982.
Kempe, S.: Sinks of the anthropogenically enhanced carbon-cycle in surface
fresh waters, J. Geophys. Res., 89, 4657–4676, https://doi.org/10.1029/JD089iD03p04657,
1984.
Koehler, B., von Wachenfeldt, E., Kothawala, D., and Tranvik, L. J.:
Reactivity continuum of dissolved organic carbon decomposition in lake water,
J. Geophys. Res., 117, G01024, https://doi.org/10.1029/2011JG001793, 2012.
Krishna, M. S., Prasad, M. H. K., Rao, D. B., Viswanadham, R., Sarma, V. V.
S. S., and Reddy, N. P. C.: Export of dissolved inorganic nutrients to the
northern Indian Ocean from the Indian monsoonal rivers during discharge
period, Geochim. Cosmochim. Ac., 172, 430–443,
https://doi.org/10.1016/j.gca.2015.10.013, 2015.
Labat, D., Goddéris, Y., Probst, J. L., and Guyot, J. L.: Evidence for
global runoff increase related to climate warming, Adv. Water Resour., 27,
631–642, https://doi.org/10.1016/j.advwatres.2004.02.020, 2004.
Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P., and Regnier, P. A.
G.: Spatial patterns in CO2 evasion from the global river network,
Global Biogeochem. Cy., 29, 534–554, https://doi.org/10.1002/2014GB004941, 2015.
Le, T. P. Q., Marchand, C., Ho, C. T., Duong, T. T., Nguyen, H. T. M., XiXi,
L., Vu, D. A., Doan, P. K., and Le, N. D.: CO2 partial pressure and
CO2 emissions from the lower Red River (Vietnam), Biogeosciences
Discuss., https://doi.org/10.5194/bg-2017-505, in review, 2017.
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete,
B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J.,
Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N., and Wisser, D.:
High-resolution mapping of the world's reservoirs and dams for sustainable
river-flow management, Front. Ecol. Environ., 9, 494–502,
https://doi.org/10.1890/100125, 2011.
Li, G., Xia, X., Yang, Z., Wang, R., and Voulvoulis, N.: Distribution and
sources of polycyclic aromatic hydrocarbons in the middle and lower reaches
of the Yellow River, China, Environ. Pollut., 144, 985–993,
https://doi.org/10.1016/j.envpol.2006.01.047, 2006.
Li, S. and Bush, R. T.: Changing fluxes of carbon and other solutes from the
Mekong River, Sci. Rep., 5, 16005, https://doi.org/10.1038/srep16005, 2015a.
Li, S. and Bush, R. T.: Revision of methane and carbon dioxide emissions from
inland waters in India, Glob. Change Biol., 21, 6–8,
https://doi.org/10.1111/gcb.12705, 2015b.
Li, S. Y., Lu, X. X., He, M., Zhou, Y., Li, L., and Ziegler, A. D.: Daily
CO2 partial pressure and CO2 outgassing in the upper Yangtze River
basin: a case study of the Longchuan River, China J. Hydrol., 466/467,
141–150, https://doi.org/10.1016/j.jhydrol.2012.08.011, 2012.
Li, J., Dong, S., Liu, S., Yang, Z., Peng, M., and Zhao, C.: Effects of
cascading hydropower dams on the composition, biomass and biological
integrity of phytoplankton assemblages in the middle Lancang-Mekong River,
Ecol. Eng., 60, 316–324, https://doi.org/10.1016/j.ecoleng.2013.07.029, 2013a.
Li, S., Lu, X. X., and Bush, R. T.: CO2 partial pressure and CO2
emission in the Lower Mekong River, J. Hydrol., 504, 40–56,
https://doi.org/10.1016/j.jhydrol.2013.09.024, 2013b.
Liu, S., Lu, X. X., Xia, X., Zhang, S., Ran, L., Yang, X., and Liu, T.:
Dynamic biogeochemical controls on river pCO2 and recent changes under
aggravating river impoundment: An example of the subtropical Yangtze River,
Global Biogeochem. Cy., 30, 880–897, https://doi.org/10.1002/2016GB005388, 2016.
Lookingbill, T. R., Kaushal, S. S., Elmore, A. J., Gardner, R., Eshleman, K.
N., Hilderbrand, R. H., Morgan, R. P., Boynton, W. R., Palmer, M. A., and
Dennison, W. C.: Altered ecological flows blur boundaries in urbanizing
watersheds, Ecol. Soc. 14, 10,
https://doi.org/10.5751/ES-02989-140210, 2009.
Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., Jenkins, A.,
Ferrier, R. C., Li, H., and Luo, W.: Impacts of soil and water pollution on
food safety and health risks in China, Environ. Int., 77, 5–15,
https://doi.org/10.1016/j.envint.2014.12.010, 2015.
Ludwig, W., Probst, J.-L., and Kempe, S.: Predicting the oceanic input of
organic carbon by continental erosion, Global Biogeochem. Cy., 10, 23–41,
https://doi.org/10.1029/95GB02925, 1996.
Luthy, R. G., Sedlak, D. L., Plumlee, M. H., Austin, D., and Resh, V. H.:
Wastewater-effluent-dominated streams as ecosystem-management tools in a
drier climate, Front. Ecol. Environ., 13, 477–485, https://doi.org/10.1890/150038, 2015.
Maavara, T., Lauerwald, R., Regnier, P., and Van Cappellen, P.: Global
perturbation of organic carbon cycling by river damming, Nat.
Commun., 8, 15347, https://doi.org/10.1038/ncomms15347,
2017.
Manaka, T., Otani, S., Inamura, A., Suzuki, A., Aung, T., Roachanakanan, R.,
Ishiwa, T., and Kawahata, H.: Chemical weathering and long-term CO2
consumption in the Ayeyarwady and Mekong river basins in the Himalayas, J.
Geophys. Res.-Biogeo., 120, 1165–1175, https://doi.org/10.1002/2015JG002932, 2015a.
Manaka, T., Ushie, H., Araoka, D., Otani, S., Inamura, A., Suzuki, A., Zakir
Hossain, H. M., and Kawahata, H.: Spatial and Seasonal Variation in Surface
Water pCO2 in the Ganges, Brahmaputra, and Meghna Rivers on the Indian
Subcontinent, Aquat. Geochem., 21, 437–458, https://doi.org/10.1007/s10498-015-9262-2,
2015b.
Martin, E. E., Ingalls, A. E., Richey, J. E., Keil, R. G., Santos, G. M.,
Truxal, L. T., Alin, S. R., and Druffel, E. R. M.: Age of riverine carbon
suggests rapid export of terrestrial primary production in tropics, Geophys.
Res. Lett., 40, 5687–5691, https://doi.org/10.1002/2013GL057450, 2013.
Marx, A., Dusek, J., Jankovec, J., Sanda, M., Vogel, T., van Geldern, R.,
Hartmann, J., and Barth, J. A. C.: A review of CO2 and associated
carbon dynamics in headwater streams: A global perspective, Rev. Geophys.,
55, 560–585, https://doi.org/10.1002/2016RG000547, 2017.
Mateo-Sagasta, J., Raschid-Sally, L., and Thebo, A.: Global wastewater and
sludge production, treatment and use, in: Wastewater–Economic Asset in an
Urbanizing World, edited by: Drechsel, P., Qadir, M., and Wichelns, D.,
Springer, Dordrecht, 15–38, https://doi.org/10.1007/978-94-017-9545-6_2, 2015.
McCluney, K. E., Poff, N. L., Palmer, M. A., Thorp, J. H., Poole, G. C.,
Williams, B. S., Williams, M. R., and Baron, J. S.: Riverine macrosystems
ecology: sensitivity, resistance, and resilience of whole river basins with
human alterations, Front. Ecol. Environ., 12, 48–5, https://doi.org/10.1890/120367,
2014.
Meybeck, M. and Helmer, R.: The quality of rivers: From pristine stage to
global pollution, Glob. Planet. Change, 1, 283–309,
https://doi.org/10.1016/0921-8181(89)90007-6, 1989.
Milliman, J. D. and Farnsworth, K. L.: River Discharge to the Coastal Ocean:
A Global Synthesis, Cambridge University Press, Cambridge, UK, 2011.
Milliman, J. D., Farnsworth, K. L., Jones, P. D., Xu, K. H., and Smith, L.
C.: Climatic and anthropogenic factors affecting river discharge to the
global ocean, 1951–2000, Glob. Planet. Change, 62, 187–194,
https://doi.org/10.1016/j.gloplacha.2008.03.001, 2008.
Milly, P. C. D., Dunne, K. A., and Vecchia, A. V.: Global pattern of trends
in streamflow and water availability in a changing climate, Nature, 438,
347–350, https://doi.org/10.1038/nature04312, 2005.
Min, S.-K., Zhang, X., Zwiers, F. W., and Hegerl, G. C.: Human contribution
to more-intense precipitation extremes, Nature, 470, 378–381,
https://doi.org/10.1038/nature09763, 2011.
Mosher, J. J., Kaplan, L. A., Podgorski, D. C., McKenna, A. M., and Marshall,
A. G.: Longitudinal shifts in dissolved organic matter chemogeography and
chemodiversity within headwater streams: a river continuum reprise,
Biogeochemistry, 124, 371–385, https://doi.org/10.1007/s10533-015-0103-6, 2015.
Mukhopadhyay, S. K., Biswas, H., De, T. K., Sen, S., and Jana, T. K.:
Seasonal effects on the air–water carbon dioxide exchange in the Hooghly
estuary, NE coast of Bay of Bengal, India, J. Environ. Monit., 4, 549–552,
https://doi.org/10.1039/B201614A, 2002.
Palmer, M. A., Liermann, C. A. R., Nilsson, C., Flörke, M., Alcamo, J.,
Lake, P. S., and Bond, N.: Climate change and the world's river basins:
anticipating management options, Front. Ecol. Environ., 6, 81–89,
https://doi.org/10.1890/060148, 2008.
Panneer Selvam, B., Natchimuthu, S., Arunachalam, L., and Bastviken, D.:
Methane and carbon dioxide emissions from inland waters in India –
implications for large scale greenhouse gas balances, Glob. Change Biol., 20,
3397–3407, https://doi.org/10.1111/gcb.12575, 2014.
Park, J.-H., Duan, L., Kim, B., Mitchell, M. J., and Shibata, H.: Potential
effects of climate change and variability on watershed biogeochemical
processes and water quality in Northeast Asia, Environ. Int., 36, 212–225,
https://doi.org/10.1016/j.envint.2009.10.008, 2010.
Park, J.-H., Inam, E., Abdullah, M. H., Agustiyani, D., Duan, L., Hoang, T.
T., Kim, K.-W., Kim, S. D., Nguyen, M. H., Pekthong, T., Sao, V., Sarjiya,
A., Savathvong, S., Sthiannopkao, S., Syers, J. K., and Wirojanagud, W.:
Implications of rainfall variability for seasonality and climate-induced
risks concerning surface water quality in East Asia, J. Hydrol., 400,
323–332, https://doi.org/10.1016/j.jhydrol.2011.01.050, 2011.
Paul, M. J. and Meyer, J. L.: Streams in the urban landscape, Annu. Rev.
Ecol. Syst., 32, 333–365, https://doi.org/10.1146/annurev.ecolsys.32.081501.114040,
2001.
Pierrot, D., Lewis, E., and Wallace, D. W. R.: MS Excel Program developed for
CO2 system calculations, ORNL/CDIAC-105a, Carbon dioxide Information
Analysis Center, Oak Ridge National Laboratory, US Department of Energy,
Oak Ridge, Tennessee, https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a, 2006.
Poole, G. C.: Fluvial landscape ecology: addressing uniqueness within the
river discontinuum, Freshwater Biol., 47, 641–660,
https://doi.org/10.1046/j.1365-2427.2002.00922.x, 2002.
Poole, G. C.: Stream hydrogeomorphology as a physical science basis for
advances in stream ecology, J. North Am. Benthol. Soc., 29, 12–25,
https://doi.org/10.1899/08-070.1, 2010.
Pradhan, U. K., Wu, Y., Shirodkar, P. V., Zhang, J., and Zhang, G.:
Multi-proxy evidence for compositional change of organic matter in the
largest tropical (peninsular) river basin of India, J. Hydrol., 519,
999–1009, https://doi.org/10.1016/j.jhydrol.2014.08.018, 2014.
Prasad, M. H. K., Sarma, V. V. S. S., Sarma, V. V., Krishna, M. S., and
Reddy, N. P. C.: Carbon Dioxide Emissions from the Tropical Dowleiswaram
Reservoir on the Godavari River, Southeast of India, J. Water Res. Prot., 5,
534–545, https://doi.org/10.4236/jwarp.2013, 2013.
Qu, B., Sillanpaa, M., Zhang, Y., Guo, J., Wahed, M. S. M. A., and Kang, S.:
Water chemistry of the headwaters of the Yangtze River, Environ. Earth Sci.,
74, 6443–6458, https://doi.org/10.1007/s12665-015-4174-4, 2015.
Qu, B., Zhang, Y., Kang, S., and Sillanpaa, M.: Water chemistry of the
southern Tibetan Plateau: an assessment of the Yarlung Tsangpo river basin,
Environ. Earth Sci., 76, 74,
https://doi.org/10.1007/s12665-017-6393-3, 2017.
Ramesh, R. and Subramanian, V.: Temporal, spatial and size variation in
sediment transport in the Krishna River Basin, India, J. Hydrol., 98, 53–65,
https://doi.org/10.1016/0022-1694(88)90205-3, 1988.
Ramesh, R., Robin, R. S., and Purvaja, R.: An inventory on the phosphorus
flux of major Indian rivers, Curr. Sci., 108, 1294–1299, 2015.
Ran, L., Lu, X. X., Sun, H., Han, J., Li, R., and Zhang, J.: Spatial and
seasonal variability of organic carbon transport in the Yellow River, China,
J. Hydrol., 498, 76–88, https://doi.org/10.1016/j.jhydrol.2013.06.018, 2013a.
Ran, L., Lu, X. X., Xin, Z., and Yang, X.: Cumulative sediment trapping by
reservoirs in large river basins: A case study of the Yellow River basin,
Glob. Planet. Change, 100, 308–319, https://doi.org/10.1016/j.gloplacha.2012.11.001,
2013b.
Ran, L., Lu, X. X., and Xin, Z.: Erosion-induced massive organic carbon
burial and carbon emission in the Yellow River basin China, Biogeosciences,
11, 945–959, https://doi.org/10.5194/bg-11-945-2014, 2014.
Ran, L., Lu, X. X., Richey, J. E., Sun, H., Han, J., Liao, S., and Yi, Q.:
Long-term spatial and temporal variation of CO2 partial pressure in the
Yellow River, China, Biogeosciences, 12, 921–932,
https://doi.org/10.5194/bg-12-921-2015, 2015a.
Ran, L., Lu, X. X., Yang, H., Li, L., Yu, R., Sun, H., and Han, J.: CO2
outgassing from the Yellow River network and its implications for riverine
carbon cycle, J. Geophys. Res.-Biogeo., 120, 1334–1347,
https://doi.org/10.1002/2015JG002982, 2015b.
Ran, L., Li, L., Tian, M., Yang, X., Yu, R., Zhao, J., Wang, L., and Lu, X.
X.: Riverine CO2 emissions in the Wuding River catchment on the Loess
Plateau: Environmental controls and dam impoundment impact, J. Geophys.
Res.-Biogeo., 122, 1439–1455, https://doi.org/10.1002/2016JG003713, 2017a.
Ran, L., Lu, X. X., and Liu, S.: Dynamics of riverine CO2 in the Yangtze
River fluvial network and their implications for carbon evasion,
Biogeosciences, 14, 2183–2198, https://doi.org/10.5194/bg-14-2183-2017, 2017b.
Raymond, P. A. and Spencer, R. G. M.: Riverine DOM, in: Biogeochemistry of
Marine Dissolved Organic Matter, 2nd Edn., edited by: Hansell, D. A. and
Carlson, C. A., Academic Press, Boston, 509–533,
https://doi.org/10.1016/B978-0-12-405940-5.00011-X, 2015.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C.,
Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen,
P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon
dioxide emissions from inland waters, Nature, 503, 355–359,
https://doi.org/10.1038/nature12760, 2013.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N.,
Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson,
A. J., Arndt, S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A.,
Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos,
F., LaRowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P.
A., Spahni, R., Suntharalingam, P., and Thullner, M.: Anthropogenic
perturbation of the carbon fluxes from land to ocean, Nat. Geosci., 6,
597–607, https://doi.org/10.1038/ngeo1830, 2013.
Samanta, S., Dalai, T. K., Pattanaik, J. K., Rai, S. K., and Mazumdar, A.:
Dissolved inorganic carbon (DIC) and its δ13C in the Ganga
(Hooghly) River estuary, India: Evidence of DIC generation via organic carbon
degradation and carbonate dissolution, Geochim. Cosmochim. Ac., 165,
226–248, https://doi.org/10.1016/j.gca.2015.05.040, 2015.
Sarin, M. M., Krishnaswaswami, S., Dilli, K., Somayajulu, B. L. K., and Moore
W. S.: Major ion chemistry of the Ganga-Brahmaputra river system: Weathering
processes and fluxes to the Bay of Bengal, Geochim. Cosmochim. Ac., 53,
997–1009, https://doi.org/10.1016/0016-7037(89)90205-6, 1989.
Sarma, V. V. S. S., Kumar, N. A., Prasad, V. R., Venkataramana, V.,
Appalanaidu, S., Sridevi, B., Kumar, B. S. K., Bharati, M. D., Subbaiah, C.
V., Acharyya, T., Rao, G. D., Viswanadham, R., Gawade, L., Manjary, D. T.,
Kumar, P. P., Rajeev, K., Reddy, N. P. C., Sarma, V. V., Kumar, M. D.,
Sadhuram, Y., and Murty, T. V. R.: High CO2 emissions from the tropical
Godavari estuary (India) associated with monsoon river discharges, Geophys.
Res. Lett., 38, L08601, https://doi.org/10.1029/2011GL046928, 2011.
Sarma, V. V. S. S., Viswanadham, R., Rao, G. D., Prasad, V. R., Kumar, B. S.
K., Naidu, S. A., Kumar, N. A., Rao, D. B., Sridevi, T., Krishna, M. S. R.,
Reddy, N. P. C., Sadhuram, Y., and Murty, T. V. R.: Carbon dioxide emissions
from Indian monsoonal estuaries, Geophys. Res. Lett., 39, L03602,
https://doi.org/10.1029/2011GL050709, 2012.
Schlünz, B. and Schneider, R. R.: Transport of terrestrial organic carbon
to the oceans by rivers: re-estimating flux- and burial rates, Int. J. Earth
Sci., 88, 599–606, https://doi.org/10.1007/s005310050290, 2000.
Schmidt, C., Krauth, T., and Wagner, S.: Export of plastic debris by rivers
into the sea, Environ. Sci. Technol., 51, 12246–12253,
https://doi.org/10.1021/acs.est.7b02368, 2017.
Shi, W., Chen, Q., Yi, Q., Yu, J., Ji, Y., Hu, L., and Chen, Y.: Carbon
emission from cascade reservoirs: Spatial heterogeneity and mechanisms,
Environ. Sci. Technol., 51, 12175–12181, https://doi.org/10.1021/acs.est.7b03590, 2017.
Stanford, J. A. and Ward, J. V.: Revisiting the serial discontinuity concept,
River Res. Appl., 17, 303–310, https://doi.org/10.1002/rrr.659, 2001.
Stanley, E. H., Powers, S. M., Lottig, N. R., Buffam, I., and Crawford, J.
T.: Contemporary changes in dissolved organic carbon (DOC) in
human-dominated rivers: is there a role for DOC management?, Freshwater
Biol., 57, 26–42, https://doi.org/10.1111/j.1365-2427.2011.02613.x, 2011.
Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J., and Green, P.:
Impact of humans on the flux of terrestrial sediment to the global coastal
ocean, Science, 308, 376–380, https://doi.org/10.1126/science.1109454, 2005.
Townsend, C. R.: Concepts in river ecology: pattern and process in the
catchment hierarchy, Arch. Hydrobiol., 113, 3–21, https://doi.org/10.1127/lr/10/1996/3,
1996.
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., and Cushing,
C. E.: The river continuum concept, Can. J. Fish. Aquat. Sci., 37, 130–137,
https://doi.org/10.1139/f80-017, 1980.
Wang, S., Fu, B., Piao, S., Lü, Y., Ciais, P., Feng, X., and Wang, W.:
Reduced sediment transport in the Yellow River due to anthropogenic changes,
Nat. Geosci., 9, 38–41, https://doi.org/10.1038/ngeo2602, 2015.
Wang, X., He, Y., Yuan, X., Chen, H., Peng, C., Zhu, Q., Yue, J., Ren, H.,
Deng, W., and Liu, H.: pCO2 and CO2 fluxes of the metropolitan
river network in relation to the urbanization of Chongqing, China, J.
Geophys. Res.-Biogeo., 122, 470–486, https://doi.org/10.1002/2016JG003494, 2017.
Ward, J. V. and Stanford, J. A.: Serial discontinuity concept of lotic
ecosystems, in: Dynamics of Lotic Systems, edited by: Fontaine, T. D. and
Bartell, S. M., Ann Arbor Science, Ann Arbor, 29–42, 1983.
Ward, N. D., Bianchi, T. S., Medeiros, P. M., Seidel, M., Richey, J. E.,
Keil, R. G., and Sawakuchi, H. O.: Where Carbon Goes When Water Flows: Carbon
Cycling across the Aquatic Continuum, Front. Mar. Sci., 4, 7,
https://doi.org/10.3389/fmars.2017.00007, 2017.
Webster, J. R.: Spiraling down the river continuum: stream ecology and the
U-shaped curve, J. N. Am. Benthol. Soc., 26, 375–389, https://doi.org/10.1899/06-095.1,
2007.
Wehrli, B.: Conduits of the carbon cycle, Nature, 503, 346–347,
https://doi.org/10.1038/503346a, 2013.
Weyhenmeyer, G. A., Fröberg, M., Karltun, E., Khalili, M., Kothawala,
D., Temnerud, J., and Tranvik, L. J.: Selective decay of terrestrial organic
carbon during transport from land to sea, Glob. Change Biol., 18, 349–355,
https://doi.org/10.1111/j.1365-2486.2011.02544.x, 2012.
Winemiller, K. O., McIntyre, P. B., Castello, L., Fluet-Chouinard, E.,
Giarrizzo, T., Nam, S., Baird, I. G., Darwall, W., Lujan, N. K., Harrison,
I., Stiassny, M. L. J., Silvano, R. A. M., Fitzgerald, D. B., Pelicice, F.
M., Agostinho, A. A., Gomes, L. C., Albert, J. S., Baran, E., Petrere Jr.,
M., Zarfl, C., Mulligan, M., Sullivan, J. P., Arantes, C. C., Sousa, L. M.,
Koning, A. A., Hoeinghaus, D. J., Sabaj, M., Lundberg, J. G., Armbruster,
J., Thieme, M. L., Petry, P., Zuanon, J., Torrente Vilara, G., Snoeks, J.,
Ou, C., Rainboth, W., Pavanelli, C. S., Akama, A., van Soesbergen, A., and
Sáenz, L.: Balancing hydropower and biodiversity in the Amazon, Congo,
and Mekong, Science, 351, 128–129, https://doi.org/10.1126/science.aac7082, 2016.
Wit, F., Muller, D., Baum, A., Warneke, T., Pranowo, W. S., Muller, M., and
Rixen, T.: The impact of disturbed peatlands on river outgassing in
Southeast Asia, Nat. Commun., 6, 10155, https://doi.org/10.1038/ncomms10155, 2015.
Yao, G., Gao, Q., Wang, Z., Huang, X., He, T., Zhang, Y., Jiao, S., and Ding,
J.: Dynamics of CO2 partial pressure and CO2 outgassing in the
lower reaches of the Xijiang River, a subtropical monsoon river in China,
Sci. Total Environ., 376, 255–266, https://doi.org/10.1016/j.scitotenv.2007.01.080,
2007.
Yoon, T. K., Jin, H., Oh, N.-H., and Park, J.-H.: Technical note: Assessing
gas equilibration systems for continuous pCO2 measurements in
inland waters, Biogeosciences, 13, 3915–3930, https://doi.org/10.5194/bg-13-3915-2016,
2016.
Yoon, T. K., Jin, H., Begum, M. S., Kang, N., and Park, J.-H.: CO2
outgassing from an urbanized river system fueled by wastewater treatment
plant effluents, Environ. Sci. Technol., 51, 10459–10467,
https://doi.org/10.1021/acs.est.7b02344, 2017.
Zhai, W., Dai, M., Cai, W. J., Wang, Y., and Wang, Z.: High partial pressure
of CO2 and its maintaining mechanism in a subtropical estuary: The
Pearl River estuary, China, Mar. Chem., 93, 21–32,
https://doi.org/10.1016/j.marchem.2004.07.003, 2005.
Zhang, H., Liu, S., Yuan, W., Dong, W., Xia, J., Cao, Y., and Jia, Y.: Loess
Plateau check dams can potentially sequester eroded soil organic carbon, J.
Geophys. Res.-Biogeo., 121, 1449–1455, https://doi.org/10.1002/2016JG003348, 2016.
Zhang, S., Lu, X. X., Sun, H., Han, J., and Higgitt, D. L.: Major ion
chemistry and dissolved inorganic carbon cycling in a human-disturbed
mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River),
China, Sci. Tot. Environ., 407, 2796–2807,
https://doi.org/10.1016/j.scitotenv.2008.12.036, 2009.
Zhang, S. R., Lu, X. X., Higgitt, D. L., Chen, C. T. A., Sun, H. G., and Han,
J. T.: Water chemistry of the Zhujiang (Pearl River): Natural processes and
anthropogenic influences, J. Geophys. Res.-Earth, 112, F01011,
https://doi.org/10.1029/2006JF000493, 2007.
Zhang, L. J., Wang, L., Cai, W.-J., Liu, D. M., and Yu, Z. G.: Impact of
human activities on organic carbon transport in the Yellow River,
Biogeosciences, 10, 2513–2524, https://doi.org/10.5194/bg-10-2513-2013, 2013.
Zou, J.: Sources and dynamics of inorganic carbon within the upper reaches of
the Xi River basin, Southwest China, PLoS ONE, 11, e0160964,
https://doi.org/10.1371/journal.pone.0160964, 2016.
Short summary
Human activities are drastically altering water and material flows in river systems across Asia. This review provides a conceptual framework for assessing the human impacts on Asian river C fluxes and an update on anthropogenic alterations of riverine C fluxes, focusing on the impacts of water pollution and river impoundments on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia.
Human activities are drastically altering water and material flows in river systems across Asia....
Special issue
Altmetrics
Final-revised paper
Preprint