Articles | Volume 15, issue 13
https://doi.org/10.5194/bg-15-4215-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-4215-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
In-depth characterization of diazotroph activity across the western tropical South Pacific hotspot of N2 fixation (OUTPACE cruise)
Sophie Bonnet
CORRESPONDING AUTHOR
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Noumea, New Caledonia
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Mathieu Caffin
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Hugo Berthelot
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Laboratoire des sciences de l'énvironnement marin, IUEM, Université de
Brest-UMR 6539 CNRS/UBO/IRD/Ifremer, Plouzané, France
Olivier Grosso
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Mar Benavides
Marine Biology Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark
Sandra Helias-Nunige
Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France
Cécile Guieu
Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), 06230 Villefranche-sur-Mer, France
Center for Prototype Climate Modeling, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
Marcus Stenegren
Department of Ecology, Environment, and Plant Sciences, Stockholm University, Stockholm, 10690, Sweden
Rachel Ann Foster
Department of Ecology, Environment, and Plant Sciences, Stockholm University, Stockholm, 10690, Sweden
Related authors
Siqi Wu, Moge Du, Xianhui Sean Wan, Corday Selden, Mar Benavides, Sophie Bonnet, Robert Hamersley, Carolin R. Löscher, Margaret R. Mulholland, Xiuli Yan, and Shuh-Ji Kao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-104, https://doi.org/10.5194/bg-2021-104, 2021
Preprint withdrawn
Short summary
Short summary
Nitrogen (N2) fixation is one of the most important nutrient sources to the ocean. Here, we report N2 fixation in the deep, dark ocean in the South China Sea via a highly sensitive new method and elaborate controls, showing the overlooked importance of N2 fixation in the deep ocean. By global data compilation, we also provide an easy measured basic parameter to estimate deep N2 fixation. Our study may help to expand the area limit of N2 fixation studies and better constrain global N2 fixation.
Dina Spungin, Natalia Belkin, Rachel A. Foster, Marcus Stenegren, Andrea Caputo, Mireille Pujo-Pay, Nathalie Leblond, Cécile Dupouy, Sophie Bonnet, and Ilana Berman-Frank
Biogeosciences, 15, 3893–3908, https://doi.org/10.5194/bg-15-3893-2018, https://doi.org/10.5194/bg-15-3893-2018, 2018
Short summary
Short summary
The way marine organisms die can determine the fate of organic matter (OM) in the ocean. We investigated whether a form of auto-induced programmed cell death (PCD) influenced phytoplankton mortality and fate of OM. Our results from high biomass blooms of the cyanobacterium Trichodesmium show evidence for PCD and high production of sticky carbon material termed transparent exopolymeric particles (TEP) that facilitates cellular aggregation and enhances the vertical flux of OM to depth.
Mathieu Caffin, Hugo Berthelot, Véronique Cornet-Barthaux, Aude Barani, and Sophie Bonnet
Biogeosciences, 15, 3795–3810, https://doi.org/10.5194/bg-15-3795-2018, https://doi.org/10.5194/bg-15-3795-2018, 2018
Mar Benavides, Katyanne M. Shoemaker, Pia H. Moisander, Jutta Niggemann, Thorsten Dittmar, Solange Duhamel, Olivier Grosso, Mireille Pujo-Pay, Sandra Hélias-Nunige, Alain Fumenia, and Sophie Bonnet
Biogeosciences, 15, 3107–3119, https://doi.org/10.5194/bg-15-3107-2018, https://doi.org/10.5194/bg-15-3107-2018, 2018
Short summary
Short summary
We measured N2 fixation rates and identified diazotrophic phylotypes in the mesopelagic layer along a transect spanning from New Caledonia to French Polynesia. N2 fixation rates were low but consistently detected across all depths and stations. A distinct diazotrophic phylotype dominated at 650 dbar, coinciding with the oxygenated Subantarctic Mode Water (SAMW) and suggesting that the distribution of aphotic diazotroph communities is to some extent controlled by water mass structure.
Angela N. Knapp, Kelly M. McCabe, Olivier Grosso, Nathalie Leblond, Thierry Moutin, and Sophie Bonnet
Biogeosciences, 15, 2619–2628, https://doi.org/10.5194/bg-15-2619-2018, https://doi.org/10.5194/bg-15-2619-2018, 2018
Short summary
Short summary
The spatial distribution of biological N2 fixation fluxes to the ocean remains poorly constrained. Here we use nitrogen isotope budgets to identify significant N2 fixation inputs to the western tropical South Pacific (WTSP), where N2 fixation supports > 50 % of export production at stations proximal to iron sources. The significant N2 fixation inputs in the WTSP may offset nitrogen loss in the oxygen-deficient zones of the eastern tropical South Pacific.
Mathieu Caffin, Thierry Moutin, Rachel Ann Foster, Pascale Bouruet-Aubertot, Andrea Michelangelo Doglioli, Hugo Berthelot, Cécile Guieu, Olivier Grosso, Sandra Helias-Nunige, Nathalie Leblond, Audrey Gimenez, Anne Alexandra Petrenko, Alain de Verneil, and Sophie Bonnet
Biogeosciences, 15, 2565–2585, https://doi.org/10.5194/bg-15-2565-2018, https://doi.org/10.5194/bg-15-2565-2018, 2018
Short summary
Short summary
We performed N budgets to assess the role of N2 fixation on production and export in the western tropical South Pacific Ocean. We deployed a combination of techniques including high-sensitivity measurements of N input and sediment traps deployment. We demonstrated that N2 fixation was the major source of new N before atmospheric deposition and upward nitrate fluxes. It contributed significantly to organic matter export, indicating a high efficiency of this region to export carbon.
Marcus Stenegren, Andrea Caputo, Carlo Berg, Sophie Bonnet, and Rachel A. Foster
Biogeosciences, 15, 1559–1578, https://doi.org/10.5194/bg-15-1559-2018, https://doi.org/10.5194/bg-15-1559-2018, 2018
Short summary
Short summary
We successfully performed quantitative PCR at sea. The qPCR data were procured within 3 h and used in decisions on further sampling on site. We designed and applied a new primer and probe set for quantifying the UCYN-A1 host and observed discrepancies between host and symbiont, which contradict previous studies. Lastly, we observed a clear vertical separation between a subsurface group (UCYN-A with hosts) and a surface group (remaining diazotrophs), mainly separated by temperature.
Yangyang Lu, Zuozhu Wen, Dalin Shi, Mingming Chen, Yao Zhang, Sophie Bonnet, Yuhang Li, Jiwei Tian, and Shuh-Ji Kao
Biogeosciences, 15, 1–12, https://doi.org/10.5194/bg-15-1-2018, https://doi.org/10.5194/bg-15-1-2018, 2018
Short summary
Short summary
We investigated the light response of field Trichodesmium N2 fixation and net dissolved nitrogen release behavior. Our results suggest that N2 fixation was a function of light intensity, and the light requirement of Trichodesmium nitrogen fixation was high relative to its photosynthetic light demand. Meanwhile, light is a crucial parameter driving the physiological state of Trichodesmium, which subsequently determined the C / N metabolism and net dissolved nitrogen release.
Thierry Moutin, Andrea Michelangelo Doglioli, Alain de Verneil, and Sophie Bonnet
Biogeosciences, 14, 3207–3220, https://doi.org/10.5194/bg-14-3207-2017, https://doi.org/10.5194/bg-14-3207-2017, 2017
Short summary
Short summary
The overall goal of OUTPACE was to obtain a successful representation of the interactions between planktonic organisms and the cycle of biogenic elements in the western tropical South Pacific Ocean across trophic and N2 fixation gradients. The international OUTPACE cruise took place between 18 February and 3 April 2015 aboard the RV L’Atalante and involved 60 scientists. The transect covered ~4 000 km from the western part of the Melanesian archipelago to the western boundary of the gyre.
Audrey Gimenez, Melika Baklouti, Sophie Bonnet, and Thierry Moutin
Biogeosciences, 13, 5103–5120, https://doi.org/10.5194/bg-13-5103-2016, https://doi.org/10.5194/bg-13-5103-2016, 2016
Short summary
Short summary
In the context of the VAHINE mesocosm experiment in the Nouméa lagoon (New Caledonia), a 1-D vertical biogeochemical mechanistic model was used together with the in situ experiment to complement our comprehension of the planktonic ecosystem dynamics and the main biogeochemical carbon, nitrogen and phosphate fluxes. The model also showed the fate of fixed N2 by providing, over time, the proportion of diazotroph-derived nitrogen (DDN) in each compartment (mineral and organic) of the model.
Angela N. Knapp, Sarah E. Fawcett, Alfredo Martínez-Garcia, Nathalie Leblond, Thierry Moutin, and Sophie Bonnet
Biogeosciences, 13, 4645–4657, https://doi.org/10.5194/bg-13-4645-2016, https://doi.org/10.5194/bg-13-4645-2016, 2016
Short summary
Short summary
The goal of this manuscript was to track the fate of newly fixed nitrogen (N) in large volume mesocosms in the coastal waters of New Caledonia. We used a N isotope ("δ15N") budget and found a shift in the δ15N of sinking particulate N over the 23-day experiment, indicating that nitrate supported export production at the beginning of the experiment, but that nitrogen fixation supported export at the end. We infer that nitrogen fixation supported export production by a release of dissolved N.
Sophie Bonnet, Melika Baklouti, Audrey Gimenez, Hugo Berthelot, and Ilana Berman-Frank
Biogeosciences, 13, 4461–4479, https://doi.org/10.5194/bg-13-4461-2016, https://doi.org/10.5194/bg-13-4461-2016, 2016
Dina Spungin, Ulrike Pfreundt, Hugo Berthelot, Sophie Bonnet, Dina AlRoumi, Frank Natale, Wolfgang R. Hess, Kay D. Bidle, and Ilana Berman-Frank
Biogeosciences, 13, 4187–4203, https://doi.org/10.5194/bg-13-4187-2016, https://doi.org/10.5194/bg-13-4187-2016, 2016
Short summary
Short summary
The marine cyanobacterium Trichodesmium spp. forms massive blooms important to carbon and nitrogen cycling in the oceans that often collapse abruptly. We investigated a Trichodesmium bloom in the lagoon waters of New Caledonia to specifically elucidate the cellular processes mediating the bloom decline. We demonstrate physiological, biochemical, and genetic evidence for nutrient and oxidative stress that induced a genetically controlled programmed cell death (PCD) pathway leading to bloom demise.
Ulrike Pfreundt, Dina Spungin, Sophie Bonnet, Ilana Berman-Frank, and Wolfgang R. Hess
Biogeosciences, 13, 4135–4149, https://doi.org/10.5194/bg-13-4135-2016, https://doi.org/10.5194/bg-13-4135-2016, 2016
Short summary
Short summary
The VAHINE experiment in the New Caledonia lagoon (SW Pacific) targeted the dynamics of nutrient pools and fluxes, N2 fixation, and the composition and productivity of the microbial communities. To connect this information to the actual activities of diverse microbial taxa, we present the analysis of the community-wide gene expression for 23 days. The results from this experiment provide insight into the microbial activities in a low-nutrient, low-chlorophyll ecosystem and within a mesocosm.
Hugo Berthelot, Sophie Bonnet, Olivier Grosso, Véronique Cornet, and Aude Barani
Biogeosciences, 13, 4005–4021, https://doi.org/10.5194/bg-13-4005-2016, https://doi.org/10.5194/bg-13-4005-2016, 2016
France Van Wambeke, Ulrike Pfreundt, Aude Barani, Hugo Berthelot, Thierry Moutin, Martine Rodier, Wolfgang R. Hess, and Sophie Bonnet
Biogeosciences, 13, 3187–3202, https://doi.org/10.5194/bg-13-3187-2016, https://doi.org/10.5194/bg-13-3187-2016, 2016
Short summary
Short summary
The phytoplankton is at the base of the plankton food web in large parts of oceanic "deserts" such as the South Pacific Ocean, where nitrogen sources limit activity. Mesocosms were fertilized with phosphorus to stimulate diazotrophy (atmospheric N2 fixation). Mostly diazotroph-derived nitrogen fuelled the heterotrophic bacterial community through indirect processes generating dissolved organic matter and detritus, such as mortality, lysis and grazing of both diazotrophs and non-diazotrophs.
Brian P. V. Hunt, Sophie Bonnet, Hugo Berthelot, Brandon J. Conroy, Rachel A. Foster, and Marc Pagano
Biogeosciences, 13, 3131–3145, https://doi.org/10.5194/bg-13-3131-2016, https://doi.org/10.5194/bg-13-3131-2016, 2016
Short summary
Short summary
Biological nitrogen (N) fixation is an important source of N for food webs in tropical and subtropical oceans. However, uptake pathways remain poorly understood. This study found that fixed N contributed a third of total zooplankton N in the New Caledonia lagoon. Fixed N reached the zooplankton through 1) direct grazing on N fixers and 2) grazing on phytoplankton that had taken up N released by fixers. We report the first record of direct zooplankton grazing on the unicellular N fixer UCYN-C.
Sophie Bonnet, Thierry Moutin, Martine Rodier, Jean-Michel Grisoni, Francis Louis, Eric Folcher, Bertrand Bourgeois, Jean-Michel Boré, and Armelle Renaud
Biogeosciences, 13, 2803–2814, https://doi.org/10.5194/bg-13-2803-2016, https://doi.org/10.5194/bg-13-2803-2016, 2016
Short summary
Short summary
e main goal of the VAHINE project was to study the fate of N2 fixation in the ocean. Three large-volume (~ 50 m3) mesocosms were deployed in a tropical oligotrophic ecosystem (the New Caledonia lagoon, south-eastern Pacific). This introductory paper describes the scientific objectives of the project in detail as well as the implementation plan: the mesocosm description and deployment, the selection of the study site, and the logistical and sampling strategy.
Sophie Bonnet, Hugo Berthelot, Kendra Turk-Kubo, Sarah Fawcett, Eyal Rahav, Stéphane L'Helguen, and Ilana Berman-Frank
Biogeosciences, 13, 2653–2673, https://doi.org/10.5194/bg-13-2653-2016, https://doi.org/10.5194/bg-13-2653-2016, 2016
Short summary
Short summary
N2 fixation rates were measured daily in ~ 50 m3 mesocosms deployed in New Caledonia to investigate the high-frequency dynamics of diazotrophy and the fate of diazotroph-derived nitrogen (DDN) oligotrophic ecosystems. ~ 10 % of UCYN-C from the water column were exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. 16 ± 6 % of the DDN was released to the dissolved pool and 21 ± 4 % was transferred to non-diazotrophic plankton.
Ulrike Pfreundt, France Van Wambeke, Mathieu Caffin, Sophie Bonnet, and Wolfgang R. Hess
Biogeosciences, 13, 2319–2337, https://doi.org/10.5194/bg-13-2319-2016, https://doi.org/10.5194/bg-13-2319-2016, 2016
Short summary
Short summary
The Southwest Pacific has one of the highest N2 fixation rates in the global ocean, yet information is scarce on the bacterioplankton interrelationships. We detected high microbial diversity in the New Caledonia lagoon and inside a 50 000 L experimental enclosure of the same water mass over 3 weeks and give evidence for previously unknown niche partitioning. Phosphate fertilization promoted the growth of efficient N2 fixing cyanobacteria triggering the growth of most heterotrophic bacteria.
K. A. Turk-Kubo, I. E. Frank, M. E. Hogan, A. Desnues, S. Bonnet, and J. P. Zehr
Biogeosciences, 12, 7435–7452, https://doi.org/10.5194/bg-12-7435-2015, https://doi.org/10.5194/bg-12-7435-2015, 2015
Short summary
Short summary
-A shift from diatom-associated diazotrophs (DDAs) to unicellular cyanobacterial group C (UCYN-C) in response to DIP fertilization was captured in a large-scale mesocosm experiment in the Noumea lagoon (NL), a low-nutrient low-chlorophyll coastal environment. -First report of in situ net growth and mortality rates for unicellular diazotrophs UCYN-A2, and UCYN-C. -First quantitative abundance data for diazotrophs in NL indicate that DDAs and UCYN-A1/A2 may be important N2 fixers in this region.
H. Berthelot, T. Moutin, S. L'Helguen, K. Leblanc, S. Hélias, O. Grosso, N. Leblond, B. Charrière, and S. Bonnet
Biogeosciences, 12, 4099–4112, https://doi.org/10.5194/bg-12-4099-2015, https://doi.org/10.5194/bg-12-4099-2015, 2015
C. Ridame, J. Dekaezemacker, C. Guieu, S. Bonnet, S. L'Helguen, and F. Malien
Biogeosciences, 11, 4783–4800, https://doi.org/10.5194/bg-11-4783-2014, https://doi.org/10.5194/bg-11-4783-2014, 2014
Julika Zinke, Gabriel Pereira Freitas, Rachel Ann Foster, Paul Zieger, Ernst Douglas Nilsson, Piotr Markuszewski, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 13413–13428, https://doi.org/10.5194/acp-24-13413-2024, https://doi.org/10.5194/acp-24-13413-2024, 2024
Short summary
Short summary
Bioaerosols, which can influence climate and human health, were studied in the Baltic Sea. In May and August 2021, we used a sea spray simulation chamber during two ship-based campaigns to collect and measure these aerosols. We found that microbes were enriched in air compared to seawater. Bacterial diversity was analysed using DNA sequencing. Our methods provided consistent estimates of microbial emission fluxes, aligning with previous studies.
France Van Wambeke, Pascal Conan, Mireille Pujo-Pay, Vincent Taillandier, Olivier Crispi, Alexandra Pavlidou, Sandra Nunige, Morgane Didry, Christophe Salmeron, and Elvira Pulido-Villena
Biogeosciences, 21, 2621–2640, https://doi.org/10.5194/bg-21-2621-2024, https://doi.org/10.5194/bg-21-2621-2024, 2024
Short summary
Short summary
Phosphomonoesterase (PME) and phosphodiesterase (PDE) activities over the epipelagic zone are described in the eastern Mediterranean Sea in winter and autumn. The types of concentration kinetics obtained for PDE (saturation at 50 µM, high Km, high turnover times) compared to those of PME (saturation at 1 µM, low Km, low turnover times) are discussed in regard to the possible inequal distribution of PDE and PME in the size continuum of organic material and accessibility to phosphodiesters.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Julie Dinasquet, Estelle Bigeard, Frédéric Gazeau, Farooq Azam, Cécile Guieu, Emilio Marañón, Céline Ridame, France Van Wambeke, Ingrid Obernosterer, and Anne-Claire Baudoux
Biogeosciences, 19, 1303–1319, https://doi.org/10.5194/bg-19-1303-2022, https://doi.org/10.5194/bg-19-1303-2022, 2022
Short summary
Short summary
Saharan dust deposition of nutrients and trace metals is crucial to microbes in the Mediterranean Sea. Here, we tested the response of microbial and viral communities to simulated dust deposition under present and future conditions of temperature and pH. Overall, the effect of the deposition was dependent on the initial microbial assemblage, and future conditions will intensify microbial responses. We observed effects on trophic interactions, cascading all the way down to viral processes.
Céline Ridame, Julie Dinasquet, Søren Hallstrøm, Estelle Bigeard, Lasse Riemann, France Van Wambeke, Matthieu Bressac, Elvira Pulido-Villena, Vincent Taillandier, Fréderic Gazeau, Antonio Tovar-Sanchez, Anne-Claire Baudoux, and Cécile Guieu
Biogeosciences, 19, 415–435, https://doi.org/10.5194/bg-19-415-2022, https://doi.org/10.5194/bg-19-415-2022, 2022
Short summary
Short summary
We show that in the Mediterranean Sea spatial variability in N2 fixation is related to the diazotrophic community composition reflecting different nutrient requirements among species. Nutrient supply by Saharan dust is of great importance to diazotrophs, as shown by the strong stimulation of N2 fixation after a simulated dust event under present and future climate conditions; the magnitude of stimulation depends on the degree of limitation related to the diazotrophic community composition.
Matthieu Bressac, Thibaut Wagener, Nathalie Leblond, Antonio Tovar-Sánchez, Céline Ridame, Vincent Taillandier, Samuel Albani, Sophie Guasco, Aurélie Dufour, Stéphanie H. M. Jacquet, François Dulac, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 6435–6453, https://doi.org/10.5194/bg-18-6435-2021, https://doi.org/10.5194/bg-18-6435-2021, 2021
Short summary
Short summary
Phytoplankton growth is limited by the availability of iron in about 50 % of the ocean. Atmospheric deposition of desert dust represents a key source of iron. Here, we present direct observations of dust deposition in the Mediterranean Sea. A key finding is that the input of iron from dust primarily occurred in the deep ocean, while previous studies mainly focused on the ocean surface. This new insight will enable us to better represent controls on global marine productivity in models.
Elvira Pulido-Villena, Karine Desboeufs, Kahina Djaoudi, France Van Wambeke, Stéphanie Barrillon, Andrea Doglioli, Anne Petrenko, Vincent Taillandier, Franck Fu, Tiphanie Gaillard, Sophie Guasco, Sandra Nunige, Sylvain Triquet, and Cécile Guieu
Biogeosciences, 18, 5871–5889, https://doi.org/10.5194/bg-18-5871-2021, https://doi.org/10.5194/bg-18-5871-2021, 2021
Short summary
Short summary
We report on phosphorus dynamics in the surface layer of the Mediterranean Sea. Highly sensitive phosphate measurements revealed vertical gradients above the phosphacline. The relative contribution of diapycnal fluxes to total external supply of phosphate to the mixed layer decreased towards the east, where atmospheric deposition dominated. Taken together, external sources of phosphate contributed little to total supply, which was mainly sustained by enzymatic hydrolysis of organic phosphorus.
Frédéric Gazeau, France Van Wambeke, Emilio Marañón, Maria Pérez-Lorenzo, Samir Alliouane, Christian Stolpe, Thierry Blasco, Nathalie Leblond, Birthe Zäncker, Anja Engel, Barbara Marie, Julie Dinasquet, and Cécile Guieu
Biogeosciences, 18, 5423–5446, https://doi.org/10.5194/bg-18-5423-2021, https://doi.org/10.5194/bg-18-5423-2021, 2021
Short summary
Short summary
Our study shows that the impact of dust deposition on primary production depends on the initial composition and metabolic state of the tested community and is constrained by the amount of nutrients added, to sustain both the fast response of heterotrophic prokaryotes and the delayed one of phytoplankton. Under future environmental conditions, heterotrophic metabolism will be more impacted than primary production, therefore reducing the capacity of surface waters to sequester anthropogenic CO2.
Frédéric Gazeau, Céline Ridame, France Van Wambeke, Samir Alliouane, Christian Stolpe, Jean-Olivier Irisson, Sophie Marro, Jean-Michel Grisoni, Guillaume De Liège, Sandra Nunige, Kahina Djaoudi, Elvira Pulido-Villena, Julie Dinasquet, Ingrid Obernosterer, Philippe Catala, and Cécile Guieu
Biogeosciences, 18, 5011–5034, https://doi.org/10.5194/bg-18-5011-2021, https://doi.org/10.5194/bg-18-5011-2021, 2021
Short summary
Short summary
This paper shows that the impacts of Saharan dust deposition in different Mediterranean basins are as strong as those observed in coastal waters but differed substantially between the three tested stations, differences attributed to variable initial metabolic states. A stronger impact of warming and acidification on mineralization suggests a decreased capacity of Mediterranean surface communities to sequester CO2 following the deposition of atmospheric particles in the coming decades.
Evelyn Freney, Karine Sellegri, Alessia Nicosia, Leah R. Williams, Matteo Rinaldi, Jonathan T. Trueblood, André S. H. Prévôt, Melilotus Thyssen, Gérald Grégori, Nils Haëntjens, Julie Dinasquet, Ingrid Obernosterer, France Van Wambeke, Anja Engel, Birthe Zäncker, Karine Desboeufs, Eija Asmi, Hilkka Timonen, and Cécile Guieu
Atmos. Chem. Phys., 21, 10625–10641, https://doi.org/10.5194/acp-21-10625-2021, https://doi.org/10.5194/acp-21-10625-2021, 2021
Short summary
Short summary
In this work, we present observations of the organic aerosol content in primary sea spray aerosols (SSAs) continuously generated along a 5-week cruise in the Mediterranean. This information is combined with seawater biogeochemical properties also measured continuously along the ship track to develop a number of parametrizations that can be used in models to determine SSA organic content in oligotrophic waters that represent 60 % of the oceans from commonly measured seawater variables.
Matthieu Roy-Barman, Lorna Foliot, Eric Douville, Nathalie Leblond, Fréderic Gazeau, Matthieu Bressac, Thibaut Wagener, Céline Ridame, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 2663–2678, https://doi.org/10.5194/bg-18-2663-2021, https://doi.org/10.5194/bg-18-2663-2021, 2021
Short summary
Short summary
The release of insoluble elements such as aluminum (Al), iron (Fe), rare earth elements (REEs), thorium (Th) and protactinium (Pa) when Saharan dust falls over the Mediterranean Sea was studied during tank experiments under present and future climate conditions. Each element exhibited different dissolution kinetics and dissolution fractions (always lower than a few percent). Changes in temperature and/or pH under greenhouse conditions lead to a lower Th release and a higher light REE release.
Siqi Wu, Moge Du, Xianhui Sean Wan, Corday Selden, Mar Benavides, Sophie Bonnet, Robert Hamersley, Carolin R. Löscher, Margaret R. Mulholland, Xiuli Yan, and Shuh-Ji Kao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-104, https://doi.org/10.5194/bg-2021-104, 2021
Preprint withdrawn
Short summary
Short summary
Nitrogen (N2) fixation is one of the most important nutrient sources to the ocean. Here, we report N2 fixation in the deep, dark ocean in the South China Sea via a highly sensitive new method and elaborate controls, showing the overlooked importance of N2 fixation in the deep ocean. By global data compilation, we also provide an easy measured basic parameter to estimate deep N2 fixation. Our study may help to expand the area limit of N2 fixation studies and better constrain global N2 fixation.
Jonathan V. Trueblood, Alessia Nicosia, Anja Engel, Birthe Zäncker, Matteo Rinaldi, Evelyn Freney, Melilotus Thyssen, Ingrid Obernosterer, Julie Dinasquet, Franco Belosi, Antonio Tovar-Sánchez, Araceli Rodriguez-Romero, Gianni Santachiara, Cécile Guieu, and Karine Sellegri
Atmos. Chem. Phys., 21, 4659–4676, https://doi.org/10.5194/acp-21-4659-2021, https://doi.org/10.5194/acp-21-4659-2021, 2021
Short summary
Short summary
Sea spray aerosols (SSAs) can be an important source of ice-nucleating particles (INPs) that impact cloud properties over the oceans. In the Mediterranean Sea, we found that the INPs in the seawater surface microlayer increased by an order of magnitude after a rain dust event that impacted iron and bacterial abundances. The INP properties of SSA (INPSSA) increased after a 3 d delay. Outside this event, INPSSA could be parameterized as a function of the seawater biogeochemistry.
Kahina Djaoudi, France Van Wambeke, Aude Barani, Nagib Bhairy, Servanne Chevaillier, Karine Desboeufs, Sandra Nunige, Mohamed Labiadh, Thierry Henry des Tureaux, Dominique Lefèvre, Amel Nouara, Christos Panagiotopoulos, Marc Tedetti, and Elvira Pulido-Villena
Biogeosciences, 17, 6271–6285, https://doi.org/10.5194/bg-17-6271-2020, https://doi.org/10.5194/bg-17-6271-2020, 2020
Cécile Guieu, Fabrizio D'Ortenzio, François Dulac, Vincent Taillandier, Andrea Doglioli, Anne Petrenko, Stéphanie Barrillon, Marc Mallet, Pierre Nabat, and Karine Desboeufs
Biogeosciences, 17, 5563–5585, https://doi.org/10.5194/bg-17-5563-2020, https://doi.org/10.5194/bg-17-5563-2020, 2020
Short summary
Short summary
We describe here the objectives and strategy of the PEACETIME project and cruise, dedicated to dust deposition and its impacts in the Mediterranean Sea. Our strategy to go a step further forward than in previous approaches in understanding these impacts by catching a real deposition event at sea is detailed. We summarize the work performed at sea, the type of data acquired and their valorization in the papers published in the special issue.
Antonio Tovar-Sánchez, Araceli Rodríguez-Romero, Anja Engel, Birthe Zäncker, Franck Fu, Emilio Marañón, María Pérez-Lorenzo, Matthieu Bressac, Thibaut Wagener, Sylvain Triquet, Guillaume Siour, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 17, 2349–2364, https://doi.org/10.5194/bg-17-2349-2020, https://doi.org/10.5194/bg-17-2349-2020, 2020
Short summary
Short summary
Residence times of particulate metals derived from aerosol deposition in the Sea Surface Microlayer of the Mediterranean Sea ranged from a couple of minutes (e.g., for Fe) to a few hours (e.g., for Cu). Microbial activity seems to play an important role in in this process and in the concentration and distribution of metals between diferent water layers.
Christos Panagiotopoulos, Mireille Pujo-Pay, Mar Benavides, France Van Wambeke, and Richard Sempéré
Biogeosciences, 16, 105–116, https://doi.org/10.5194/bg-16-105-2019, https://doi.org/10.5194/bg-16-105-2019, 2019
Pascale Bouruet-Aubertot, Yannis Cuypers, Andrea Doglioli, Mathieu Caffin, Christophe Yohia, Alain de Verneil, Anne Petrenko, Dominique Lefèvre, Hervé Le Goff, Gilles Rougier, Marc Picheral, and Thierry Moutin
Biogeosciences, 15, 7485–7504, https://doi.org/10.5194/bg-15-7485-2018, https://doi.org/10.5194/bg-15-7485-2018, 2018
Short summary
Short summary
The OUTPACE cruise took place between New Caledonia and French Polynesia. The main purpose was to understand how micro-organisms can survive in a very poor environment. One main source of nutrients is at depth, below the euphotic layer where micro-organisms live. The purpose of the turbulence measurements was to determine to which extent turbulence may
upliftnutrients into the euphotic layer. The origin of the turbulence that was found contrasted along the transect was also determined.
François Carlotti, Marc Pagano, Loïc Guilloux, Katty Donoso, Valentina Valdés, Olivier Grosso, and Brian P. V. Hunt
Biogeosciences, 15, 7273–7297, https://doi.org/10.5194/bg-15-7273-2018, https://doi.org/10.5194/bg-15-7273-2018, 2018
Short summary
Short summary
The paper characterizes the zooplankton community and plankton food web processes between New Caledonia and Tahiti (tropical South Pacific) during the austral summer 2015. In this region, the pelagic production depends on N2 fixation by diazotroph microorganisms on which the zooplankton community feeds, supporting a pelagic food chain ending with valuable tuna fisheries. We estimated a contribution of up to 75 % of diazotroph‐derived nitrogen to zooplankton biomass in the Melanesian archipelago.
Stelios Myriokefalitakis, Akinori Ito, Maria Kanakidou, Athanasios Nenes, Maarten C. Krol, Natalie M. Mahowald, Rachel A. Scanza, Douglas S. Hamilton, Matthew S. Johnson, Nicholas Meskhidze, Jasper F. Kok, Cecile Guieu, Alex R. Baker, Timothy D. Jickells, Manmohan M. Sarin, Srinivas Bikkina, Rachel Shelley, Andrew Bowie, Morgane M. G. Perron, and Robert A. Duce
Biogeosciences, 15, 6659–6684, https://doi.org/10.5194/bg-15-6659-2018, https://doi.org/10.5194/bg-15-6659-2018, 2018
Short summary
Short summary
The first atmospheric iron (Fe) deposition model intercomparison is presented in this study, as a result of the deliberations of the United Nations Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP; http://www.gesamp.org/) Working Group 38. We conclude that model diversity over remote oceans reflects uncertainty in the Fe content parameterizations of dust aerosols, combustion aerosol emissions and the size distribution of transported aerosol Fe.
Kyle R. Frischkorn, Andreas Krupke, Cécile Guieu, Justine Louis, Mónica Rouco, Andrés E. Salazar Estrada, Benjamin A. S. Van Mooy, and Sonya T. Dyhrman
Biogeosciences, 15, 5761–5778, https://doi.org/10.5194/bg-15-5761-2018, https://doi.org/10.5194/bg-15-5761-2018, 2018
Short summary
Short summary
Trichodesmium is a keystone genus of marine cyanobacteria that is estimated to supply nearly half of the ocean’s fixed nitrogen, fuelling primary productivity and the cycling of carbon and nitrogen in the ocean. In our study we characterize Trichodesmium ecology across the western tropical South Pacific using gene and genome sequencing and geochemistry. We detected genes for phosphorus reduction, providing a mechanism for the noted importance of this organism in the ocean's phosphorus cycle.
Karine Leblanc, Véronique Cornet, Peggy Rimmelin-Maury, Olivier Grosso, Sandra Hélias-Nunige, Camille Brunet, Hervé Claustre, Joséphine Ras, Nathalie Leblond, and Bernard Quéguiner
Biogeosciences, 15, 5595–5620, https://doi.org/10.5194/bg-15-5595-2018, https://doi.org/10.5194/bg-15-5595-2018, 2018
Short summary
Short summary
The Si biogeochemical cycle was studied during two oceanographic cruises in the tropical South Pacific in 2005 and 2015, between New Caledonia and the Chilean upwelling (8–34° S). Some of the lowest levels of biogenic silica stocks were found in the southern Pacific gyre, where Chlorophyll a concentrations are most depleted worldwide. Size-fractionated biogenic silica concentrations as well as Si kinetic uptake experiments revealed biological Si uptake by the picoplanktonic size fraction.
Thibaut Wagener, Nicolas Metzl, Mathieu Caffin, Jonathan Fin, Sandra Helias Nunige, Dominique Lefevre, Claire Lo Monaco, Gilles Rougier, and Thierry Moutin
Biogeosciences, 15, 5221–5236, https://doi.org/10.5194/bg-15-5221-2018, https://doi.org/10.5194/bg-15-5221-2018, 2018
Short summary
Short summary
The western tropical South Pacific was sampled along a longitudinal 4000 km transect (OUTPACE cruise) for the measurement of carbonate parameters (total alkalinity and total inorganic carbon) between the Melanesian Archipelago and the western part of the South Pacific gyre. This paper reports this new dataset and derived properties. We also estimate anthropogenic carbon distribution in the water column using the TrOCA method.
Dina Spungin, Natalia Belkin, Rachel A. Foster, Marcus Stenegren, Andrea Caputo, Mireille Pujo-Pay, Nathalie Leblond, Cécile Dupouy, Sophie Bonnet, and Ilana Berman-Frank
Biogeosciences, 15, 3893–3908, https://doi.org/10.5194/bg-15-3893-2018, https://doi.org/10.5194/bg-15-3893-2018, 2018
Short summary
Short summary
The way marine organisms die can determine the fate of organic matter (OM) in the ocean. We investigated whether a form of auto-induced programmed cell death (PCD) influenced phytoplankton mortality and fate of OM. Our results from high biomass blooms of the cyanobacterium Trichodesmium show evidence for PCD and high production of sticky carbon material termed transparent exopolymeric particles (TEP) that facilitates cellular aggregation and enhances the vertical flux of OM to depth.
Mathieu Caffin, Hugo Berthelot, Véronique Cornet-Barthaux, Aude Barani, and Sophie Bonnet
Biogeosciences, 15, 3795–3810, https://doi.org/10.5194/bg-15-3795-2018, https://doi.org/10.5194/bg-15-3795-2018, 2018
Mar Benavides, Katyanne M. Shoemaker, Pia H. Moisander, Jutta Niggemann, Thorsten Dittmar, Solange Duhamel, Olivier Grosso, Mireille Pujo-Pay, Sandra Hélias-Nunige, Alain Fumenia, and Sophie Bonnet
Biogeosciences, 15, 3107–3119, https://doi.org/10.5194/bg-15-3107-2018, https://doi.org/10.5194/bg-15-3107-2018, 2018
Short summary
Short summary
We measured N2 fixation rates and identified diazotrophic phylotypes in the mesopelagic layer along a transect spanning from New Caledonia to French Polynesia. N2 fixation rates were low but consistently detected across all depths and stations. A distinct diazotrophic phylotype dominated at 650 dbar, coinciding with the oxygenated Subantarctic Mode Water (SAMW) and suggesting that the distribution of aphotic diazotroph communities is to some extent controlled by water mass structure.
Thierry Moutin, Thibaut Wagener, Mathieu Caffin, Alain Fumenia, Audrey Gimenez, Melika Baklouti, Pascale Bouruet-Aubertot, Mireille Pujo-Pay, Karine Leblanc, Dominique Lefevre, Sandra Helias Nunige, Nathalie Leblond, Olivier Grosso, and Alain de Verneil
Biogeosciences, 15, 2961–2989, https://doi.org/10.5194/bg-15-2961-2018, https://doi.org/10.5194/bg-15-2961-2018, 2018
Short summary
Short summary
Surface waters of the western tropical South Pacific were sampled along a longitudinal 4000 km transect during the stratified period between the Melanesian Archipelago and the western part of the South Pacific gyre. We found a significant biological carbon pump sustained almost exclusively by N2 fixation and essentially controlled by phosphate availability in the iron-rich Melanesian Archipelago waters which appears to be a net sink for atmospheric CO2 while the gyre is in a quasi-steady state.
Angela N. Knapp, Kelly M. McCabe, Olivier Grosso, Nathalie Leblond, Thierry Moutin, and Sophie Bonnet
Biogeosciences, 15, 2619–2628, https://doi.org/10.5194/bg-15-2619-2018, https://doi.org/10.5194/bg-15-2619-2018, 2018
Short summary
Short summary
The spatial distribution of biological N2 fixation fluxes to the ocean remains poorly constrained. Here we use nitrogen isotope budgets to identify significant N2 fixation inputs to the western tropical South Pacific (WTSP), where N2 fixation supports > 50 % of export production at stations proximal to iron sources. The significant N2 fixation inputs in the WTSP may offset nitrogen loss in the oxygen-deficient zones of the eastern tropical South Pacific.
Mathieu Caffin, Thierry Moutin, Rachel Ann Foster, Pascale Bouruet-Aubertot, Andrea Michelangelo Doglioli, Hugo Berthelot, Cécile Guieu, Olivier Grosso, Sandra Helias-Nunige, Nathalie Leblond, Audrey Gimenez, Anne Alexandra Petrenko, Alain de Verneil, and Sophie Bonnet
Biogeosciences, 15, 2565–2585, https://doi.org/10.5194/bg-15-2565-2018, https://doi.org/10.5194/bg-15-2565-2018, 2018
Short summary
Short summary
We performed N budgets to assess the role of N2 fixation on production and export in the western tropical South Pacific Ocean. We deployed a combination of techniques including high-sensitivity measurements of N input and sediment traps deployment. We demonstrated that N2 fixation was the major source of new N before atmospheric deposition and upward nitrate fluxes. It contributed significantly to organic matter export, indicating a high efficiency of this region to export carbon.
Marcus Stenegren, Andrea Caputo, Carlo Berg, Sophie Bonnet, and Rachel A. Foster
Biogeosciences, 15, 1559–1578, https://doi.org/10.5194/bg-15-1559-2018, https://doi.org/10.5194/bg-15-1559-2018, 2018
Short summary
Short summary
We successfully performed quantitative PCR at sea. The qPCR data were procured within 3 h and used in decisions on further sampling on site. We designed and applied a new primer and probe set for quantifying the UCYN-A1 host and observed discrepancies between host and symbiont, which contradict previous studies. Lastly, we observed a clear vertical separation between a subsurface group (UCYN-A with hosts) and a surface group (remaining diazotrophs), mainly separated by temperature.
Pierre Marrec, Gérald Grégori, Andrea M. Doglioli, Mathilde Dugenne, Alice Della Penna, Nagib Bhairy, Thierry Cariou, Sandra Hélias Nunige, Soumaya Lahbib, Gilles Rougier, Thibaut Wagener, and Melilotus Thyssen
Biogeosciences, 15, 1579–1606, https://doi.org/10.5194/bg-15-1579-2018, https://doi.org/10.5194/bg-15-1579-2018, 2018
Short summary
Short summary
The objective of this study was to better understand the variability of the phytoplankton community structure in small physical structures at the surface of the ocean. After identifying such a structure in the Mediterranean Sea, we deployed cutting-edge physical and biological sensors in order to observe at a high frequency the dynamics of this structure. From these observations we described the variations of the phytoplankton community structure and how the physics controls this variability.
Alain Fumenia, Thierry Moutin, Sophie Bonnet, Mar Benavides, Anne Petrenko, Sandra Helias Nunige, and Christophe Maes
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-557, https://doi.org/10.5194/bg-2017-557, 2018
Revised manuscript not accepted
Short summary
Short summary
The Melanesian archipelago waters between 160° E and 170° W are characterized by a significant N2 fixation rates and an excess of particulate organic nitrogen compared to the canonical ratio of Redfield and a positive N*. We hypothesize that the southern branch of the subtropical gyre is probably the main vector of excess nitrogen transport in the thermocline waters showing an influence of nitrogen fixation occurring in the western tropical in a large part of the South Pacific.
Yangyang Lu, Zuozhu Wen, Dalin Shi, Mingming Chen, Yao Zhang, Sophie Bonnet, Yuhang Li, Jiwei Tian, and Shuh-Ji Kao
Biogeosciences, 15, 1–12, https://doi.org/10.5194/bg-15-1-2018, https://doi.org/10.5194/bg-15-1-2018, 2018
Short summary
Short summary
We investigated the light response of field Trichodesmium N2 fixation and net dissolved nitrogen release behavior. Our results suggest that N2 fixation was a function of light intensity, and the light requirement of Trichodesmium nitrogen fixation was high relative to its photosynthetic light demand. Meanwhile, light is a crucial parameter driving the physiological state of Trichodesmium, which subsequently determined the C / N metabolism and net dissolved nitrogen release.
Thierry Moutin, Andrea Michelangelo Doglioli, Alain de Verneil, and Sophie Bonnet
Biogeosciences, 14, 3207–3220, https://doi.org/10.5194/bg-14-3207-2017, https://doi.org/10.5194/bg-14-3207-2017, 2017
Short summary
Short summary
The overall goal of OUTPACE was to obtain a successful representation of the interactions between planktonic organisms and the cycle of biogenic elements in the western tropical South Pacific Ocean across trophic and N2 fixation gradients. The international OUTPACE cruise took place between 18 February and 3 April 2015 aboard the RV L’Atalante and involved 60 scientists. The transect covered ~4 000 km from the western part of the Melanesian archipelago to the western boundary of the gyre.
Karine Leblanc, Véronique Cornet, Mathieu Caffin, Martine Rodier, Anne Desnues, Hugo Berthelot, Kendra Turk-Kubo, and Jules Heliou
Biogeosciences, 13, 5205–5219, https://doi.org/10.5194/bg-13-5205-2016, https://doi.org/10.5194/bg-13-5205-2016, 2016
Audrey Gimenez, Melika Baklouti, Sophie Bonnet, and Thierry Moutin
Biogeosciences, 13, 5103–5120, https://doi.org/10.5194/bg-13-5103-2016, https://doi.org/10.5194/bg-13-5103-2016, 2016
Short summary
Short summary
In the context of the VAHINE mesocosm experiment in the Nouméa lagoon (New Caledonia), a 1-D vertical biogeochemical mechanistic model was used together with the in situ experiment to complement our comprehension of the planktonic ecosystem dynamics and the main biogeochemical carbon, nitrogen and phosphate fluxes. The model also showed the fate of fixed N2 by providing, over time, the proportion of diazotroph-derived nitrogen (DDN) in each compartment (mineral and organic) of the model.
Angela N. Knapp, Sarah E. Fawcett, Alfredo Martínez-Garcia, Nathalie Leblond, Thierry Moutin, and Sophie Bonnet
Biogeosciences, 13, 4645–4657, https://doi.org/10.5194/bg-13-4645-2016, https://doi.org/10.5194/bg-13-4645-2016, 2016
Short summary
Short summary
The goal of this manuscript was to track the fate of newly fixed nitrogen (N) in large volume mesocosms in the coastal waters of New Caledonia. We used a N isotope ("δ15N") budget and found a shift in the δ15N of sinking particulate N over the 23-day experiment, indicating that nitrate supported export production at the beginning of the experiment, but that nitrogen fixation supported export at the end. We infer that nitrogen fixation supported export production by a release of dissolved N.
Sophie Bonnet, Melika Baklouti, Audrey Gimenez, Hugo Berthelot, and Ilana Berman-Frank
Biogeosciences, 13, 4461–4479, https://doi.org/10.5194/bg-13-4461-2016, https://doi.org/10.5194/bg-13-4461-2016, 2016
Dina Spungin, Ulrike Pfreundt, Hugo Berthelot, Sophie Bonnet, Dina AlRoumi, Frank Natale, Wolfgang R. Hess, Kay D. Bidle, and Ilana Berman-Frank
Biogeosciences, 13, 4187–4203, https://doi.org/10.5194/bg-13-4187-2016, https://doi.org/10.5194/bg-13-4187-2016, 2016
Short summary
Short summary
The marine cyanobacterium Trichodesmium spp. forms massive blooms important to carbon and nitrogen cycling in the oceans that often collapse abruptly. We investigated a Trichodesmium bloom in the lagoon waters of New Caledonia to specifically elucidate the cellular processes mediating the bloom decline. We demonstrate physiological, biochemical, and genetic evidence for nutrient and oxidative stress that induced a genetically controlled programmed cell death (PCD) pathway leading to bloom demise.
Ulrike Pfreundt, Dina Spungin, Sophie Bonnet, Ilana Berman-Frank, and Wolfgang R. Hess
Biogeosciences, 13, 4135–4149, https://doi.org/10.5194/bg-13-4135-2016, https://doi.org/10.5194/bg-13-4135-2016, 2016
Short summary
Short summary
The VAHINE experiment in the New Caledonia lagoon (SW Pacific) targeted the dynamics of nutrient pools and fluxes, N2 fixation, and the composition and productivity of the microbial communities. To connect this information to the actual activities of diverse microbial taxa, we present the analysis of the community-wide gene expression for 23 days. The results from this experiment provide insight into the microbial activities in a low-nutrient, low-chlorophyll ecosystem and within a mesocosm.
Hugo Berthelot, Sophie Bonnet, Olivier Grosso, Véronique Cornet, and Aude Barani
Biogeosciences, 13, 4005–4021, https://doi.org/10.5194/bg-13-4005-2016, https://doi.org/10.5194/bg-13-4005-2016, 2016
France Van Wambeke, Ulrike Pfreundt, Aude Barani, Hugo Berthelot, Thierry Moutin, Martine Rodier, Wolfgang R. Hess, and Sophie Bonnet
Biogeosciences, 13, 3187–3202, https://doi.org/10.5194/bg-13-3187-2016, https://doi.org/10.5194/bg-13-3187-2016, 2016
Short summary
Short summary
The phytoplankton is at the base of the plankton food web in large parts of oceanic "deserts" such as the South Pacific Ocean, where nitrogen sources limit activity. Mesocosms were fertilized with phosphorus to stimulate diazotrophy (atmospheric N2 fixation). Mostly diazotroph-derived nitrogen fuelled the heterotrophic bacterial community through indirect processes generating dissolved organic matter and detritus, such as mortality, lysis and grazing of both diazotrophs and non-diazotrophs.
Brian P. V. Hunt, Sophie Bonnet, Hugo Berthelot, Brandon J. Conroy, Rachel A. Foster, and Marc Pagano
Biogeosciences, 13, 3131–3145, https://doi.org/10.5194/bg-13-3131-2016, https://doi.org/10.5194/bg-13-3131-2016, 2016
Short summary
Short summary
Biological nitrogen (N) fixation is an important source of N for food webs in tropical and subtropical oceans. However, uptake pathways remain poorly understood. This study found that fixed N contributed a third of total zooplankton N in the New Caledonia lagoon. Fixed N reached the zooplankton through 1) direct grazing on N fixers and 2) grazing on phytoplankton that had taken up N released by fixers. We report the first record of direct zooplankton grazing on the unicellular N fixer UCYN-C.
Sophie Bonnet, Thierry Moutin, Martine Rodier, Jean-Michel Grisoni, Francis Louis, Eric Folcher, Bertrand Bourgeois, Jean-Michel Boré, and Armelle Renaud
Biogeosciences, 13, 2803–2814, https://doi.org/10.5194/bg-13-2803-2016, https://doi.org/10.5194/bg-13-2803-2016, 2016
Short summary
Short summary
e main goal of the VAHINE project was to study the fate of N2 fixation in the ocean. Three large-volume (~ 50 m3) mesocosms were deployed in a tropical oligotrophic ecosystem (the New Caledonia lagoon, south-eastern Pacific). This introductory paper describes the scientific objectives of the project in detail as well as the implementation plan: the mesocosm description and deployment, the selection of the study site, and the logistical and sampling strategy.
Sophie Bonnet, Hugo Berthelot, Kendra Turk-Kubo, Sarah Fawcett, Eyal Rahav, Stéphane L'Helguen, and Ilana Berman-Frank
Biogeosciences, 13, 2653–2673, https://doi.org/10.5194/bg-13-2653-2016, https://doi.org/10.5194/bg-13-2653-2016, 2016
Short summary
Short summary
N2 fixation rates were measured daily in ~ 50 m3 mesocosms deployed in New Caledonia to investigate the high-frequency dynamics of diazotrophy and the fate of diazotroph-derived nitrogen (DDN) oligotrophic ecosystems. ~ 10 % of UCYN-C from the water column were exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. 16 ± 6 % of the DDN was released to the dissolved pool and 21 ± 4 % was transferred to non-diazotrophic plankton.
Ulrike Pfreundt, France Van Wambeke, Mathieu Caffin, Sophie Bonnet, and Wolfgang R. Hess
Biogeosciences, 13, 2319–2337, https://doi.org/10.5194/bg-13-2319-2016, https://doi.org/10.5194/bg-13-2319-2016, 2016
Short summary
Short summary
The Southwest Pacific has one of the highest N2 fixation rates in the global ocean, yet information is scarce on the bacterioplankton interrelationships. We detected high microbial diversity in the New Caledonia lagoon and inside a 50 000 L experimental enclosure of the same water mass over 3 weeks and give evidence for previously unknown niche partitioning. Phosphate fertilization promoted the growth of efficient N2 fixing cyanobacteria triggering the growth of most heterotrophic bacteria.
K. A. Turk-Kubo, I. E. Frank, M. E. Hogan, A. Desnues, S. Bonnet, and J. P. Zehr
Biogeosciences, 12, 7435–7452, https://doi.org/10.5194/bg-12-7435-2015, https://doi.org/10.5194/bg-12-7435-2015, 2015
Short summary
Short summary
-A shift from diatom-associated diazotrophs (DDAs) to unicellular cyanobacterial group C (UCYN-C) in response to DIP fertilization was captured in a large-scale mesocosm experiment in the Noumea lagoon (NL), a low-nutrient low-chlorophyll coastal environment. -First report of in situ net growth and mortality rates for unicellular diazotrophs UCYN-A2, and UCYN-C. -First quantitative abundance data for diazotrophs in NL indicate that DDAs and UCYN-A1/A2 may be important N2 fixers in this region.
A. N. Schwier, C. Rose, E. Asmi, A. M. Ebling, W. M. Landing, S. Marro, M.-L. Pedrotti, A. Sallon, F. Iuculano, S. Agusti, A. Tsiola, P. Pitta, J. Louis, C. Guieu, F. Gazeau, and K. Sellegri
Atmos. Chem. Phys., 15, 7961–7976, https://doi.org/10.5194/acp-15-7961-2015, https://doi.org/10.5194/acp-15-7961-2015, 2015
Short summary
Short summary
The effect of ocean acidification and changing water conditions on primary (and secondary) marine aerosol emissions is not well understood on a regional or a global scale. To investigate this effect, we deployed mesocosms in the Mediterranean Sea for several weeks during both winter pre-bloom and summer oligotrophic conditions and subjected them to various levels of CO2. We observed larger effects due to the differences between a pre-bloom and oligotrophic environment than due to CO2 levels.
H. Berthelot, T. Moutin, S. L'Helguen, K. Leblanc, S. Hélias, O. Grosso, N. Leblond, B. Charrière, and S. Bonnet
Biogeosciences, 12, 4099–4112, https://doi.org/10.5194/bg-12-4099-2015, https://doi.org/10.5194/bg-12-4099-2015, 2015
E. Pulido-Villena, A.-C. Baudoux, I. Obernosterer, M. Landa, J. Caparros, P. Catala, C. Georges, J. Harmand, and C. Guieu
Biogeosciences, 11, 5607–5619, https://doi.org/10.5194/bg-11-5607-2014, https://doi.org/10.5194/bg-11-5607-2014, 2014
C. Guieu, C. Ridame, E. Pulido-Villena, M. Bressac, K. Desboeufs, and F. Dulac
Biogeosciences, 11, 5621–5635, https://doi.org/10.5194/bg-11-5621-2014, https://doi.org/10.5194/bg-11-5621-2014, 2014
K. Desboeufs, N. Leblond, T. Wagener, E. Bon Nguyen, and C. Guieu
Biogeosciences, 11, 5581–5594, https://doi.org/10.5194/bg-11-5581-2014, https://doi.org/10.5194/bg-11-5581-2014, 2014
C. Ridame, J. Dekaezemacker, C. Guieu, S. Bonnet, S. L'Helguen, and F. Malien
Biogeosciences, 11, 4783–4800, https://doi.org/10.5194/bg-11-4783-2014, https://doi.org/10.5194/bg-11-4783-2014, 2014
M. Bressac, C. Guieu, D. Doxaran, F. Bourrin, K. Desboeufs, N. Leblond, and C. Ridame
Biogeosciences, 11, 1007–1020, https://doi.org/10.5194/bg-11-1007-2014, https://doi.org/10.5194/bg-11-1007-2014, 2014
C. Guieu, F. Dulac, C. Ridame, and P. Pondaven
Biogeosciences, 11, 425–442, https://doi.org/10.5194/bg-11-425-2014, https://doi.org/10.5194/bg-11-425-2014, 2014
C. Ridame, C. Guieu, and S. L'Helguen
Biogeosciences, 10, 7333–7346, https://doi.org/10.5194/bg-10-7333-2013, https://doi.org/10.5194/bg-10-7333-2013, 2013
V. Giovagnetti, C. Brunet, F. Conversano, F. Tramontano, I. Obernosterer, C. Ridame, and C. Guieu
Biogeosciences, 10, 2973–2991, https://doi.org/10.5194/bg-10-2973-2013, https://doi.org/10.5194/bg-10-2973-2013, 2013
K. Wuttig, T. Wagener, M. Bressac, A. Dammshäuser, P. Streu, C. Guieu, and P. L. Croot
Biogeosciences, 10, 2583–2600, https://doi.org/10.5194/bg-10-2583-2013, https://doi.org/10.5194/bg-10-2583-2013, 2013
Related subject area
Biogeochemistry: Environmental Microbiology
Effects of surface water interactions with karst groundwater on microbial biomass, metabolism, and production
Overview: Global change effects on terrestrial biogeochemistry at the plant–soil interface
Ideas and perspectives: Microorganisms in the air through the lenses of atmospheric chemistry and microphysics
Grazing mortality as a controlling factor in the uncultured non-cyanobacterial diazotroph (Gamma A) around the Kuroshio region
Changes in diazotrophic community structure associated with Kuroshio succession in the northern South China Sea
Technical note: A comparison of methods for estimating coccolith mass
Fractionation of stable carbon isotopes during formate consumption in anoxic rice paddy soils and lake sediments
Characteristics of bacterial and fungal communities and their associations with sugar compounds in atmospheric aerosols at a rural site in northern China
Responses of globally important phytoplankton species to olivine dissolution products and implications for carbon dioxide removal via ocean alkalinity enhancement
Differentiation of cognate bacterial communities in thermokarst landscapes: implications for ecological consequences of permafrost degradation
A multi-phase biogeochemical model for mitigating earthquake-induced liquefaction via microbially induced desaturation and calcium carbonate precipitation
Phosphorus regulates ectomycorrhizal fungi biomass production in a Norway spruce forest
Reallocation of elemental content and macromolecules in the coccolithophore Emiliania huxleyi to acclimate to climate change
Abrasion of sedimentary rocks as a source of hydrogen peroxide and nutrients to subglacial ecosystems
Nitrous oxide (N2O) synthesis by the freshwater cyanobacterium Microcystis aeruginosa
Interdisciplinary strategy to assess the impact of meteorological variables on the biochemical composition of the rain and the dynamics of a small eutrophic lake under rain forcing
Depth-related patterns in microbial community responses to complex organic matter in the western North Atlantic Ocean
Assessing the influence of ocean alkalinity enhancement on a coastal phytoplankton community
Eddy-enhanced primary production sustains heterotrophic microbial activities in the Eastern Tropical North Atlantic
Composition and niche-specific characteristics of microbial consortia colonizing Marsberg copper mine in the Rhenish Massif
Diversity and assembly processes of microbial eukaryotic communities in Fildes Peninsula Lakes (West Antarctica)
Nitrophobic ectomycorrhizal fungi are associated with enhanced hydrophobicity of soil organic matter in a Norway spruce forest
Physiological control on carbon isotope fractionation in marine phytoplankton
Implementation of mycorrhizal mechanisms into soil carbon model improves the prediction of long-term processes of plant litter decomposition
Impact of dust addition on the microbial food web under present and future conditions of pH and temperature
Fractionation of stable carbon isotopes during acetate consumption by methanogenic and sulfidogenic microbial communities in rice paddy soils and lake sediments
Hydrothermal trace metal release and microbial metabolism in the northeastern Lau Basin of the South Pacific Ocean
Sedimentation rate and organic matter dynamics shape microbiomes across a continental margin
Disturbance triggers non-linear microbe–environment feedbacks
Hydrographic fronts shape productivity, nitrogen fixation, and microbial community composition in the southern Indian Ocean and the Southern Ocean
Microbial and geo-archaeological records reveal the growth rate, origin and composition of desert rock surface communities
Metagenomic insights into the metabolism of microbial communities that mediate iron and methane cycling in Lake Kinneret iron-rich methanic sediments
Spatiotemporal patterns of N2 fixation in coastal waters derived from rate measurements and remote sensing
Biotic and abiotic transformation of amino acids in cloud water: experimental studies and atmospheric implications
Potential bioavailability of organic matter from atmospheric particles to marine heterotrophic bacteria
Microbial functional signature in the atmospheric boundary layer
New insight to niche partitioning and ecological function of ammonia oxidizing archaea in subtropical estuarine ecosystem
Impact of reactive surfaces on the abiotic reaction between nitrite and ferrous iron and associated nitrogen and oxygen isotope dynamics
Reviews and syntheses: Bacterial bioluminescence – ecology and impact in the biological carbon pump
Salinity-dependent algae uptake and subsequent carbon and nitrogen metabolisms of two intertidal foraminifera (Ammonia tepida and Haynesina germanica)
On giant shoulders: how a seamount affects the microbial community composition of seawater and sponges
Spatial variations in sedimentary N-transformation rates in the North Sea (German Bight)
Patterns of (trace) metals and microorganisms in the Rainbow hydrothermal vent plume at the Mid-Atlantic Ridge
Co-occurrence of Fe and P stress in natural populations of the marine diazotroph Trichodesmium
Senescence as the main driver of iodide release from a diverse range of marine phytoplankton
Reviews and syntheses: Biological weathering and its consequences at different spatial levels – from nanoscale to global scale
Deep-sea sponge grounds as nutrient sinks: denitrification is common in boreo-Arctic sponges
Inducing the attachment of cable bacteria on oxidizing electrodes
Bacterial degradation activity in the eastern tropical South Pacific oxygen minimum zone
Macromolecular fungal ice nuclei in Fusarium: effects of physical and chemical processing
Adrian Barry-Sosa, Madison K. Flint, Justin C. Ellena, Jonathan B. Martin, and Brent C. Christner
Biogeosciences, 21, 3965–3984, https://doi.org/10.5194/bg-21-3965-2024, https://doi.org/10.5194/bg-21-3965-2024, 2024
Short summary
Short summary
This study examined springs in north central Florida focusing on how interactions between the surface and subsurface affected the properties of groundwater microbes. We found that microbes reproduced at rates that greatly exceed those documented for any other aquifer. Although the groundwater discharged to spring runs contains low concentrations of nutrients, our results indicate that microbes have access to sources of energy and produce new cells at rates similar to surface waterbodies.
Lucia Fuchslueger, Emily Francesca Solly, Alberto Canarini, and Albert Carles Brangarí
Biogeosciences, 21, 3959–3964, https://doi.org/10.5194/bg-21-3959-2024, https://doi.org/10.5194/bg-21-3959-2024, 2024
Short summary
Short summary
This overview of the special issue “Global change effects on terrestrial biogeochemistry at the plant–soil interface” features empirical, conceptual and modelling-based studies and outlines key findings on plant responses to elevated CO2; soil organism responses to warming; impacts on soil organic carbon, nitrogen and mineral nutrient cycling; and water level changes affecting greenhouse gas emissions, from the Arctic to the tropics, which are crucial for deciphering feedbacks to global change.
Barbara Ervens, Pierre Amato, Kifle Aregahegn, Muriel Joly, Amina Khaled, Tiphaine Labed-Veydert, Frédéric Mathonat, Leslie Nuñez López, Raphaëlle Péguilhan, and Minghui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2377, https://doi.org/10.5194/egusphere-2024-2377, 2024
Short summary
Short summary
Atmospheric microorganisms are a small fraction of Earth's microbiome, with bacteria being a significant part. Aerosolized bacteria are airborne for a few days encountering unique chemical and physical conditions affecting stress levels and survival. We explore chemical and microphysical conditions bacteria encounter, highlighting potential nutrient and oxidant limitations and diverse effects by pollutants, which may ultimately impact the microbiome's role in global ecosystems and biodiversity.
Takuya Sato, Tamaha Yamaguchi, Kiyotaka Hidataka, Sayaka Sogawa, Takashi Setou, Taketoshi Kodama, Takuhei Shiozaki, and Kazutaka Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1294, https://doi.org/10.5194/egusphere-2024-1294, 2024
Short summary
Short summary
Gamma A is a widespread non-cyanobacterial diazotroph and plays a crucial role for marine ecosystems, but its controlling factors are still largely unknown. This study, for the first time, quantified microzooplankton grazing on Gamma A and revealed significance of grazing pressure on Gamma A distribution around the Kuroshio region. It highlights the importance of top-down controls on Gamma A abundance and the associated nitrogen cycle.
Han Zhang, Guangming Mai, Weicheng Luo, Meng Chen, Ran Duan, and Tuo Shi
Biogeosciences, 21, 2529–2546, https://doi.org/10.5194/bg-21-2529-2024, https://doi.org/10.5194/bg-21-2529-2024, 2024
Short summary
Short summary
We report taxon-specific biogeography of N2-fixing microbes (diazotrophs) driven by Kuroshio intrusion (Kl) into the South China Sea. We show that the composition and distribution of distinct diazotrophic taxa shift with Kl-induced variations in physicochemical parameters of seawater and that Kl shapes diazotrophic community primarily as a stochastic process. This study thus has implications for the distribution of diazotrophs in a future warming ocean, as Kls are projected to intensify.
Celina Rebeca Valença, Luc Beaufort, Gustaaf Marinus Hallegraeff, and Marius Nils Müller
Biogeosciences, 21, 1601–1611, https://doi.org/10.5194/bg-21-1601-2024, https://doi.org/10.5194/bg-21-1601-2024, 2024
Short summary
Short summary
Coccolithophores contribute to the global carbon cycle and their calcite structures (coccoliths) are used as a palaeoproxy to understand past oceanographic conditions. Here, we compared three frequently used methods to estimate coccolith mass from the model species Emiliania huxleyi and the results allow for a high level of comparability between the methods, facilitating future comparisons and consolidation of mass changes observed from ecophysiological and biogeochemical studies.
Ralf Conrad and Peter Claus
Biogeosciences, 21, 1161–1172, https://doi.org/10.5194/bg-21-1161-2024, https://doi.org/10.5194/bg-21-1161-2024, 2024
Short summary
Short summary
Knowledge of carbon isotope fractionation is important for the assessment of the pathways involved in the degradation of organic matter. Formate is an important intermediate during this process. It was mainly converted to carbon dioxide and acetate both in the presence and absence of sulfate. Methane was only a minor product and was mainly formed from the acetate. The acetate was depleted in the heavy carbon atom relative to formate, while the carbon dioxide was enriched.
Mutong Niu, Shu Huang, Wei Hu, Yajie Wang, Wanyun Xu, Wan Wei, Qiang Zhang, Zihan Wang, Donghuan Zhang, Rui Jin, Libin Wu, Junjun Deng, Fangxia Shen, and Pingqing Fu
Biogeosciences, 20, 4915–4930, https://doi.org/10.5194/bg-20-4915-2023, https://doi.org/10.5194/bg-20-4915-2023, 2023
Short summary
Short summary
Sugar compounds in air can trace the source of bioaerosols that affect public health and climate. In rural north China, we observed increased fungal activity at night and less variable bacterial community diversity. Certain night-increasing sugar compounds were more closely related to fungi than bacteria. The fungal community greatly influenced sugar compounds, while bacteria played a limited role. Caution is advised when using sugar compounds to trace airborne microbes, particularly bacteria.
David A. Hutchins, Fei-Xue Fu, Shun-Chung Yang, Seth G. John, Stephen J. Romaniello, M. Grace Andrews, and Nathan G. Walworth
Biogeosciences, 20, 4669–4682, https://doi.org/10.5194/bg-20-4669-2023, https://doi.org/10.5194/bg-20-4669-2023, 2023
Short summary
Short summary
Applications of the mineral olivine are a promising means to capture carbon dioxide via coastal enhanced weathering, but little is known about the impacts on important marine phytoplankton. We examined the effects of olivine dissolution products on species from three major phytoplankton groups: diatoms, coccolithophores, and cyanobacteria. Growth and productivity were generally either unaffected or stimulated, suggesting the effects of olivine on key phytoplankton are negligible or positive.
Ze Ren, Shudan Ye, Hongxuan Li, Xilei Huang, and Luyao Chen
Biogeosciences, 20, 4241–4258, https://doi.org/10.5194/bg-20-4241-2023, https://doi.org/10.5194/bg-20-4241-2023, 2023
Short summary
Short summary
Permafrost thaw initiates thermokarst landscape formation, resulting in distinct new habitats, including degraded permafrost soil, thermokarst lake sediments, and lake water. These distinct habitats harbored differentiated bacterial communities that originated from the same source, differing in diversity, assembly mechanisms, and environmental influences. The results imply ecological consequences of permafrost degradation in the face of further climate change.
Caitlyn A. Hall, Andre van Turnhout, Edward Kavazanjian Jr., Leon A. van Paassen, and Bruce Rittmann
Biogeosciences, 20, 2903–2917, https://doi.org/10.5194/bg-20-2903-2023, https://doi.org/10.5194/bg-20-2903-2023, 2023
Short summary
Short summary
Earthquake-induced soil liquefaction poses a significant global threat. Microbially induced desaturation and precipitation (MIDP) via denitrification is a potentially sustainable, non-disruptive bacteria-driven ground improvement technique under existing structures. We developed a next-generation biogeochemical model to understand and predict the behavior of MIDP in the natural environment to design field-based hazard mitigation treatments.
Juan Pablo Almeida, Lorenzo Menichetti, Alf Ekblad, Nicholas P. Rosenstock, and Håkan Wallander
Biogeosciences, 20, 1443–1458, https://doi.org/10.5194/bg-20-1443-2023, https://doi.org/10.5194/bg-20-1443-2023, 2023
Short summary
Short summary
In forests, trees allocate a significant amount of carbon belowground to support mycorrhizal symbiosis. In northern forests nitrogen normally regulates this allocation and consequently mycorrhizal fungi growth. In this study we demonstrate that in a conifer forest from Sweden, fungal growth is regulated by phosphorus instead of nitrogen. This is probably due to an increase in nitrogen deposition to soils caused by decades of human pollution that has altered the ecosystem nutrient regime.
Yong Zhang, Yong Zhang, Shuai Ma, Hanbing Chen, Jiabing Li, Zhengke Li, Kui Xu, Ruiping Huang, Hong Zhang, Yonghe Han, and Jun Sun
Biogeosciences, 20, 1299–1312, https://doi.org/10.5194/bg-20-1299-2023, https://doi.org/10.5194/bg-20-1299-2023, 2023
Short summary
Short summary
We found that increasing light intensity compensates for the negative effects of low phosphorus (P) availability on cellular protein and nitrogen contents. Reduced P availability, increasing light intensity, and ocean acidification act synergistically to increase cellular contents of carbohydrate and POC and the allocation of POC to carbohydrate. These regulation mechanisms in Emiliania huxleyi could provide vital information for evaluating carbon cycle in marine ecosystems under global change.
Beatriz Gill-Olivas, Jon Telling, Mark Skidmore, and Martyn Tranter
Biogeosciences, 20, 929–943, https://doi.org/10.5194/bg-20-929-2023, https://doi.org/10.5194/bg-20-929-2023, 2023
Short summary
Short summary
Microbial ecosystems have been found in all subglacial environments sampled to date. Yet, little is known of the sources of energy and nutrients that sustain these microbial populations. This study shows that crushing of sedimentary rocks, which contain organic carbon, carbonate and sulfide minerals, along with previously weathered silicate minerals, produces a range of compounds and nutrients which can be utilised by the diverse suite of microbes that inhabit glacier beds.
Federico Fabisik, Benoit Guieysse, Jonathan Procter, and Maxence Plouviez
Biogeosciences, 20, 687–693, https://doi.org/10.5194/bg-20-687-2023, https://doi.org/10.5194/bg-20-687-2023, 2023
Short summary
Short summary
We show, for the first time, that pure cultures of the cyanobacterium Microcystis aeruginosa can synthesize the potent greenhouse gas N2O using nitrite as substrate. Our findings have broad environmental implications because M. aeruginosa is globally found in freshwater ecosystems and is often the dominant species found in algae blooms. Further research is now needed to determine the occurrence and significance of N2O emissions from ecosystems rich with M. aeruginosa.
Fanny Noirmain, Jean-Luc Baray, Frédéric Tridon, Philippe Cacault, Hermine Billard, Guillaume Voyard, Joël Van Baelen, and Delphine Latour
Biogeosciences, 19, 5729–5749, https://doi.org/10.5194/bg-19-5729-2022, https://doi.org/10.5194/bg-19-5729-2022, 2022
Short summary
Short summary
We present a study linking rain, meteorology, and mountain lake phytoplankton dynamics on the basis of a case study at Aydat (France) in September 2020. The air mass origin mainly influences the rain chemical composition, which depends on the type of rain, convective or stratiform. Our results also highlighted a non-negligible presence of photosynthetic cells in rainwater. The impact of the atmospheric forcing on the lake could play a key role in phytoplankton dynamics in the temperate zone.
Sarah A. Brown, John Paul Balmonte, Adrienne Hoarfrost, Sherif Ghobrial, and Carol Arnosti
Biogeosciences, 19, 5617–5631, https://doi.org/10.5194/bg-19-5617-2022, https://doi.org/10.5194/bg-19-5617-2022, 2022
Short summary
Short summary
Bacteria use extracellular enzymes to cut large organic matter to sizes small enough for uptake. We compared the enzymatic response of surface, mid-water, and deep-ocean bacteria to complex natural substrates. Bacteria in surface and mid-depth waters produced a much wider range of enzymes than those in the deep ocean and may therefore consume a broader range of organic matter. The extent to which organic matter is recycled by bacteria depends in part on its residence time at different depths.
Aaron Ferderer, Zanna Chase, Fraser Kennedy, Kai G. Schulz, and Lennart T. Bach
Biogeosciences, 19, 5375–5399, https://doi.org/10.5194/bg-19-5375-2022, https://doi.org/10.5194/bg-19-5375-2022, 2022
Short summary
Short summary
Ocean alkalinity enhancement has the capacity to remove vast quantities of carbon from the atmosphere, but its effect on marine ecosystems is largely unknown. We assessed the effect of increased alkalinity on a coastal phytoplankton community when seawater was equilibrated and not equilibrated with atmospheric CO2. We found that the phytoplankton community was moderately affected by increased alkalinity and equilibration with atmospheric CO2 had little influence on this effect.
Quentin Devresse, Kevin W. Becker, Arne Bendinger, Johannes Hahn, and Anja Engel
Biogeosciences, 19, 5199–5219, https://doi.org/10.5194/bg-19-5199-2022, https://doi.org/10.5194/bg-19-5199-2022, 2022
Short summary
Short summary
Eddies are ubiquitous in the ocean and alter physical, chemical, and biological processes. However, how they affect organic carbon production and consumption is largely unknown. Here we show how an eddy triggers a cascade effect on biomass production and metabolic activities of phyto- and bacterioplankton. Our results may contribute to the improvement of biogeochemical models used to estimate carbon fluxes in the ocean.
Sania Arif, Heiko Nacke, Elias Schliekmann, Andreas Reimer, Gernot Arp, and Michael Hoppert
Biogeosciences, 19, 4883–4902, https://doi.org/10.5194/bg-19-4883-2022, https://doi.org/10.5194/bg-19-4883-2022, 2022
Short summary
Short summary
The natural enrichment of Chloroflexi (Ktedonobacteria) at the Kilianstollen Marsberg copper mine rocks being exposed to the acidic sulfate-rich leachate led to an investigation of eight metagenomically assembled genomes (MAGs) involved in copper and other transition heavy metal resistance in addition to low pH resistance and aromatic compounds degradation. The present study offers functional insights about a novel cold-adapted Ktedonobacteria MAG extremophily along with other phyla MAGs.
Chunmei Zhang, Huirong Li, Yinxin Zeng, Haitao Ding, Bin Wang, Yangjie Li, Zhongqiang Ji, Yonghong Bi, and Wei Luo
Biogeosciences, 19, 4639–4654, https://doi.org/10.5194/bg-19-4639-2022, https://doi.org/10.5194/bg-19-4639-2022, 2022
Short summary
Short summary
The unique microbial eukaryotic community structure and lower diversity have been demonstrated in five freshwater lakes of the Fildes Peninsula, Antarctica. Stochastic processes and biotic co-occurrence patterns were shown to be important in shaping microbial eukaryotic communities in the area. Our study provides a better understanding of the dynamic patterns and ecological assembly processes of microbial eukaryotic communities in Antarctic oligotrophic lakes (Fildes Peninsula).
Juan Pablo Almeida, Nicholas P. Rosenstock, Susanne K. Woche, Georg Guggenberger, and Håkan Wallander
Biogeosciences, 19, 3713–3726, https://doi.org/10.5194/bg-19-3713-2022, https://doi.org/10.5194/bg-19-3713-2022, 2022
Short summary
Short summary
Fungi living in symbiosis with tree roots can accumulate belowground, forming special tissues than can repel water. We measured the water repellency of organic material incubated belowground and correlated it with fungal growth. We found a positive association between water repellency and root symbiotic fungi. These results are important because an increase in soil water repellency can reduce the release of CO2 from soils into the atmosphere and mitigate the effects of greenhouse gasses.
Karen M. Brandenburg, Björn Rost, Dedmer B. Van de Waal, Mirja Hoins, and Appy Sluijs
Biogeosciences, 19, 3305–3315, https://doi.org/10.5194/bg-19-3305-2022, https://doi.org/10.5194/bg-19-3305-2022, 2022
Short summary
Short summary
Reconstructions of past CO2 concentrations rely on proxy estimates, with one line of proxies relying on the CO2-dependence of stable carbon isotope fractionation in marine phytoplankton. Culturing experiments provide insights into which processes may impact this. We found, however, that the methods with which these culturing experiments are performed also influence 13C fractionation. Caution should therefore be taken when extrapolating results from these experiments to proxy applications.
Weilin Huang, Peter M. van Bodegom, Toni Viskari, Jari Liski, and Nadejda A. Soudzilovskaia
Biogeosciences, 19, 1469–1490, https://doi.org/10.5194/bg-19-1469-2022, https://doi.org/10.5194/bg-19-1469-2022, 2022
Short summary
Short summary
This work focuses on one of the essential pathways of mycorrhizal impact on C cycles: the mediation of plant litter decomposition. We present a model based on litter chemical quality which precludes a conclusive examination of mycorrhizal impacts on soil C. It improves long-term decomposition predictions and advances our understanding of litter decomposition dynamics. It creates a benchmark in quantitatively examining the impacts of plant–microbe interactions on soil C dynamics.
Julie Dinasquet, Estelle Bigeard, Frédéric Gazeau, Farooq Azam, Cécile Guieu, Emilio Marañón, Céline Ridame, France Van Wambeke, Ingrid Obernosterer, and Anne-Claire Baudoux
Biogeosciences, 19, 1303–1319, https://doi.org/10.5194/bg-19-1303-2022, https://doi.org/10.5194/bg-19-1303-2022, 2022
Short summary
Short summary
Saharan dust deposition of nutrients and trace metals is crucial to microbes in the Mediterranean Sea. Here, we tested the response of microbial and viral communities to simulated dust deposition under present and future conditions of temperature and pH. Overall, the effect of the deposition was dependent on the initial microbial assemblage, and future conditions will intensify microbial responses. We observed effects on trophic interactions, cascading all the way down to viral processes.
Ralf Conrad, Pengfei Liu, and Peter Claus
Biogeosciences, 18, 6533–6546, https://doi.org/10.5194/bg-18-6533-2021, https://doi.org/10.5194/bg-18-6533-2021, 2021
Short summary
Short summary
Acetate is an important intermediate during the anaerobic degradation of organic matter. It is consumed by methanogenic and sulfidogenic microorganisms accompanied by stable carbon isotope fractionation. We determined isotope fractionation under different conditions in two paddy soils and two lake sediments and also determined the composition of the microbial communities. Despite a relatively wide range of experimental conditions, the range of fractionation factors was quite moderate.
Natalie R. Cohen, Abigail E. Noble, Dawn M. Moran, Matthew R. McIlvin, Tyler J. Goepfert, Nicholas J. Hawco, Christopher R. German, Tristan J. Horner, Carl H. Lamborg, John P. McCrow, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 18, 5397–5422, https://doi.org/10.5194/bg-18-5397-2021, https://doi.org/10.5194/bg-18-5397-2021, 2021
Short summary
Short summary
A previous study documented an intense hydrothermal plume in the South Pacific Ocean; however, the iron release associated with this plume and the impact on microbiology were unclear. We describe metal concentrations associated with multiple hydrothermal plumes in this region and protein signatures of plume-influenced microbes. Our findings demonstrate that resources released from these systems can be transported away from their source and may alter the physiology of surrounding microbes.
Sabyasachi Bhattacharya, Tarunendu Mapder, Svetlana Fernandes, Chayan Roy, Jagannath Sarkar, Moidu Jameela Rameez, Subhrangshu Mandal, Abhijit Sar, Amit Kumar Chakraborty, Nibendu Mondal, Sumit Chatterjee, Bomba Dam, Aditya Peketi, Ranadhir Chakraborty, Aninda Mazumdar, and Wriddhiman Ghosh
Biogeosciences, 18, 5203–5222, https://doi.org/10.5194/bg-18-5203-2021, https://doi.org/10.5194/bg-18-5203-2021, 2021
Short summary
Short summary
Physicochemical determinants of microbiome architecture across continental shelves–slopes are unknown, so we explored the geomicrobiology along 3 m sediment horizons of seasonal (shallow coastal) and perennial (deep sea) hypoxic zones of the Arabian Sea. Nature, concentration, and fate of the organic matter delivered to the sea floor were found to shape the microbiome across the western Indian margin, under direct–indirect influence of sedimentation rate and water column O2 level.
Aditi Sengupta, Sarah J. Fansler, Rosalie K. Chu, Robert E. Danczak, Vanessa A. Garayburu-Caruso, Lupita Renteria, Hyun-Seob Song, Jason Toyoda, Jacqueline Hager, and James C. Stegen
Biogeosciences, 18, 4773–4789, https://doi.org/10.5194/bg-18-4773-2021, https://doi.org/10.5194/bg-18-4773-2021, 2021
Short summary
Short summary
Conceptual models link microbes with the environment but are untested. We test a recent model using riverbed sediments. We exposed sediments to disturbances, going dry and becoming wet again. As the length of dry conditions got longer, there was a sudden shift in the ecology of microbes, chemistry of organic matter, and rates of microbial metabolism. We propose a new model based on feedbacks initiated by disturbance that cascade across biological, chemical, and functional aspects of the system.
Cora Hörstmann, Eric J. Raes, Pier Luigi Buttigieg, Claire Lo Monaco, Uwe John, and Anya M. Waite
Biogeosciences, 18, 3733–3749, https://doi.org/10.5194/bg-18-3733-2021, https://doi.org/10.5194/bg-18-3733-2021, 2021
Short summary
Short summary
Microbes are the main drivers of productivity and nutrient cycling in the ocean. We present a combined approach assessing C and N uptake and microbial community diversity across ecological provinces in the Southern Ocean and southern Indian Ocean. Provinces showed distinct genetic fingerprints, but microbial activity varied gradually across regions, correlating with nutrient concentrations. Our study advances the biogeographic understanding of microbial diversity across C and N uptake regimes.
Nimrod Wieler, Tali Erickson Gini, Osnat Gillor, and Roey Angel
Biogeosciences, 18, 3331–3342, https://doi.org/10.5194/bg-18-3331-2021, https://doi.org/10.5194/bg-18-3331-2021, 2021
Short summary
Short summary
Biological rock crusts (BRCs) are common microbial-based assemblages covering rocks in drylands. BRCs play a crucial role in arid environments because of the limited activity of plants and soil. Nevertheless, BRC development rates have never been dated. Here we integrated archaeological, microbiological and geological methods to provide a first estimation of the growth rate of BRCs under natural conditions. This can serve as an affordable dating tool in archaeological sites in arid regions.
Michal Elul, Maxim Rubin-Blum, Zeev Ronen, Itay Bar-Or, Werner Eckert, and Orit Sivan
Biogeosciences, 18, 2091–2106, https://doi.org/10.5194/bg-18-2091-2021, https://doi.org/10.5194/bg-18-2091-2021, 2021
Mindaugas Zilius, Irma Vybernaite-Lubiene, Diana Vaiciute, Donata Overlingė, Evelina Grinienė, Anastasija Zaiko, Stefano Bonaglia, Iris Liskow, Maren Voss, Agneta Andersson, Sonia Brugel, Tobia Politi, and Paul A. Bukaveckas
Biogeosciences, 18, 1857–1871, https://doi.org/10.5194/bg-18-1857-2021, https://doi.org/10.5194/bg-18-1857-2021, 2021
Short summary
Short summary
In fresh and brackish waters, algal blooms are often dominated by cyanobacteria, which have the ability to utilize atmospheric nitrogen. Cyanobacteria are also unusual in that they float to the surface and are dispersed by wind-driven currents. Their patchy and dynamic distribution makes it difficult to track their abundance and quantify their effects on nutrient cycling. We used remote sensing to map the distribution of cyanobacteria in a large Baltic lagoon and quantify their contributions.
Saly Jaber, Muriel Joly, Maxence Brissy, Martin Leremboure, Amina Khaled, Barbara Ervens, and Anne-Marie Delort
Biogeosciences, 18, 1067–1080, https://doi.org/10.5194/bg-18-1067-2021, https://doi.org/10.5194/bg-18-1067-2021, 2021
Short summary
Short summary
Our study is of interest to atmospheric scientists and environmental microbiologists, as we show that clouds can be considered a medium where bacteria efficiently degrade and transform amino acids, in competition with chemical processes. As current atmospheric multiphase models are restricted to chemical degradation of organic compounds, our conclusions motivate further model development.
Kahina Djaoudi, France Van Wambeke, Aude Barani, Nagib Bhairy, Servanne Chevaillier, Karine Desboeufs, Sandra Nunige, Mohamed Labiadh, Thierry Henry des Tureaux, Dominique Lefèvre, Amel Nouara, Christos Panagiotopoulos, Marc Tedetti, and Elvira Pulido-Villena
Biogeosciences, 17, 6271–6285, https://doi.org/10.5194/bg-17-6271-2020, https://doi.org/10.5194/bg-17-6271-2020, 2020
Romie Tignat-Perrier, Aurélien Dommergue, Alban Thollot, Olivier Magand, Timothy M. Vogel, and Catherine Larose
Biogeosciences, 17, 6081–6095, https://doi.org/10.5194/bg-17-6081-2020, https://doi.org/10.5194/bg-17-6081-2020, 2020
Short summary
Short summary
The adverse atmospheric environmental conditions do not appear suited for microbial life. We conducted the first global comparative metagenomic analysis to find out if airborne microbial communities might be selected by their ability to resist these adverse conditions. The relatively higher concentration of fungi led to the observation of higher proportions of stress-related functions in air. Fungi might likely resist and survive atmospheric physical stress better than bacteria.
Yanhong Lu, Shunyan Cheung, Ling Chen, Shuh-Ji Kao, Xiaomin Xia, Jianping Gan, Minhan Dai, and Hongbin Liu
Biogeosciences, 17, 6017–6032, https://doi.org/10.5194/bg-17-6017-2020, https://doi.org/10.5194/bg-17-6017-2020, 2020
Short summary
Short summary
Through a comprehensive investigation, we observed differential niche partitioning among diverse ammonia-oxidizing archaea (AOA) sublineages in a typical subtropical estuary. Distinct AOA communities observed at DNA and RNA levels suggested that a strong divergence in ammonia-oxidizing activity among different AOA groups occurs. Our result highlights the importance of identifying major ammonia oxidizers at RNA level in future studies.
Anna-Neva Visser, Scott D. Wankel, Pascal A. Niklaus, James M. Byrne, Andreas A. Kappler, and Moritz F. Lehmann
Biogeosciences, 17, 4355–4374, https://doi.org/10.5194/bg-17-4355-2020, https://doi.org/10.5194/bg-17-4355-2020, 2020
Short summary
Short summary
This study focuses on the chemical reaction between Fe(II) and nitrite, which has been reported to produce high levels of the greenhouse gas N2O. We investigated the extent to which dead biomass and Fe(II) minerals might enhance this reaction. Here, nitrite reduction was highest when both additives were present but less pronounced if only Fe(II) minerals were added. Both reaction systems show distinct differences, rather low N2O levels, and indicated the abiotic production of N2.
Lisa Tanet, Séverine Martini, Laurie Casalot, and Christian Tamburini
Biogeosciences, 17, 3757–3778, https://doi.org/10.5194/bg-17-3757-2020, https://doi.org/10.5194/bg-17-3757-2020, 2020
Short summary
Short summary
Bioluminescent bacteria, the most abundant light-emitting organisms in the ocean, can be free-living, be symbiotic or colonize organic particles. This review suggests that they act as a visual target and may indirectly influence the sequestration of biogenic carbon in oceans by increasing the attraction rate for consumers. We summarize the instrumentation available to quantify this impact in future studies and propose synthetic figures integrating these ecological and biogeochemical concepts.
Michael Lintner, Bianca Biedrawa, Julia Wukovits, Wolfgang Wanek, and Petra Heinz
Biogeosciences, 17, 3723–3732, https://doi.org/10.5194/bg-17-3723-2020, https://doi.org/10.5194/bg-17-3723-2020, 2020
Short summary
Short summary
Foraminifera are unicellular marine organisms that play an important role in the marine element cycle. Changes of environmental parameters such as salinity or temperature have a significant impact on the faunal assemblages. Our experiments show that changing salinity in the German Wadden Sea immediately influences the foraminiferal community. It seems that A. tepida is better adapted to salinity fluctuations than H. germanica.
Kathrin Busch, Ulrike Hanz, Furu Mienis, Benjamin Mueller, Andre Franke, Emyr Martyn Roberts, Hans Tore Rapp, and Ute Hentschel
Biogeosciences, 17, 3471–3486, https://doi.org/10.5194/bg-17-3471-2020, https://doi.org/10.5194/bg-17-3471-2020, 2020
Short summary
Short summary
Seamounts are globally abundant submarine structures that offer great potential to study the impacts and interactions of environmental gradients at a single geographic location. In an exemplary way, we describe potential mechanisms by which a seamount can affect the structure of pelagic and benthic (sponge-)associated microbial communities. We conclude that the geology, physical oceanography, biogeochemistry, and microbiology of seamounts are even more closely linked than currently appreciated.
Alexander Bratek, Justus E. E. van
Beusekom, Andreas Neumann, Tina Sanders, Jana Friedrich, Kay-Christian Emeis, and Kirstin Dähnke
Biogeosciences, 17, 2839–2851, https://doi.org/10.5194/bg-17-2839-2020, https://doi.org/10.5194/bg-17-2839-2020, 2020
Short summary
Short summary
The following paper highlights the importance of benthic N-transformation rates in different sediment types in the southern North Sea as a source of fixed nitrogen for primary producers and also as a sink of fixed nitrogen. Sedimentary fluxes of dissolved inorganic nitrogen support ∼7 to 59 % of the average annual primary production. Semi-permeable and permeable sediments contribute ∼68 % of the total benthic N2 production rates, counteracting eutrophication in the southern North Sea.
Sabine Haalboom, David M. Price, Furu Mienis, Judith D. L. van Bleijswijk, Henko C. de Stigter, Harry J. Witte, Gert-Jan Reichart, and Gerard C. A. Duineveld
Biogeosciences, 17, 2499–2519, https://doi.org/10.5194/bg-17-2499-2020, https://doi.org/10.5194/bg-17-2499-2020, 2020
Short summary
Short summary
Mineral mining in deep-sea hydrothermal settings will lead to the formation of plumes of fine-grained, chemically reactive, suspended matter. Understanding how natural hydrothermal plumes evolve as they disperse from their source, and how they affect their surrounding environment, may help in characterising the behaviour of the diluted part of mining plumes. The natural plume provided a heterogeneous, geochemically enriched habitat conducive to the development of a distinct microbial ecology.
Noelle A. Held, Eric A. Webb, Matthew M. McIlvin, David A. Hutchins, Natalie R. Cohen, Dawn M. Moran, Korinna Kunde, Maeve C. Lohan, Claire Mahaffey, E. Malcolm S. Woodward, and Mak A. Saito
Biogeosciences, 17, 2537–2551, https://doi.org/10.5194/bg-17-2537-2020, https://doi.org/10.5194/bg-17-2537-2020, 2020
Short summary
Short summary
Trichodesmium is a globally important marine nitrogen fixer that stimulates primary production in the surface ocean. We surveyed metaproteomes of Trichodesmium populations across the North Atlantic and other oceans, and we found that they experience simultaneous phosphate and iron stress because of the biophysical limits of nutrient uptake. Importantly, nitrogenase was most abundant during co-stress, indicating the potential importance of this phenotype to global nitrogen and carbon cycling.
Helmke Hepach, Claire Hughes, Karen Hogg, Susannah Collings, and Rosie Chance
Biogeosciences, 17, 2453–2471, https://doi.org/10.5194/bg-17-2453-2020, https://doi.org/10.5194/bg-17-2453-2020, 2020
Short summary
Short summary
Tropospheric iodine takes part in numerous atmospheric chemical cycles, including tropospheric ozone destruction and aerosol formation. Due to its significance for atmospheric processes, it is crucial to constrain its sources and sinks. This paper aims at investigating and understanding features of biogenic iodate-to-iodide reduction in microalgal monocultures. We find that phytoplankton senescence may play a crucial role in the release of iodide to the marine environment.
Roger D. Finlay, Shahid Mahmood, Nicholas Rosenstock, Emile B. Bolou-Bi, Stephan J. Köhler, Zaenab Fahad, Anna Rosling, Håkan Wallander, Salim Belyazid, Kevin Bishop, and Bin Lian
Biogeosciences, 17, 1507–1533, https://doi.org/10.5194/bg-17-1507-2020, https://doi.org/10.5194/bg-17-1507-2020, 2020
Short summary
Short summary
Effects of biological activity on mineral weathering operate at scales ranging from short-term, microscopic interactions to global, evolutionary timescale processes. Microorganisms have had well-documented effects at large spatio-temporal scales, but to establish the quantitative significance of microscopic measurements for field-scale processes, higher-resolution studies of liquid chemistry at local weathering sites and improved upscaling to soil-scale dissolution rates are still required.
Christine Rooks, James Kar-Hei Fang, Pål Tore Mørkved, Rui Zhao, Hans Tore Rapp, Joana R. Xavier, and Friederike Hoffmann
Biogeosciences, 17, 1231–1245, https://doi.org/10.5194/bg-17-1231-2020, https://doi.org/10.5194/bg-17-1231-2020, 2020
Short summary
Short summary
Sponge grounds are known as nutrient sources, providing nitrate and ammonium to the ocean. We found that they also can do the opposite: in six species from Arctic and North Atlantic sponge grounds, we measured high rates of denitrification, which remove these nutrients from the sea. Rates were highest when the sponge tissue got low in oxygen, which happens when sponges stop pumping because of stress. Sponge grounds may become nutrient sinks when exposed to stress.
Cheng Li, Clare E. Reimers, and Yvan Alleau
Biogeosciences, 17, 597–607, https://doi.org/10.5194/bg-17-597-2020, https://doi.org/10.5194/bg-17-597-2020, 2020
Short summary
Short summary
Novel filamentous cable bacteria that grow in the top layer of intertidal mudflat sediment were attracted to electrodes poised at a positive electrical potential. Several diverse morphologies of Desulfobulbaceae filaments, cells, and colonies were observed on the electrode surface. These observations provide information to suggest conditions that will induce cable bacteria to perform electron donation to an electrode, informing future experiments that culture cable bacteria outside of sediment.
Marie Maßmig, Jan Lüdke, Gerd Krahmann, and Anja Engel
Biogeosciences, 17, 215–230, https://doi.org/10.5194/bg-17-215-2020, https://doi.org/10.5194/bg-17-215-2020, 2020
Short summary
Short summary
Little is known about the rates of bacterial element cycling in oxygen minimum zones (OMZs). We measured bacterial production and rates of extracellular hydrolytic enzymes at various in situ oxygen concentrations in the OMZ off Peru. Our field data show unhampered bacterial activity at low oxygen concentrations. Meanwhile bacterial degradation of organic matter substantially contributed to the formation of the OMZ.
Anna T. Kunert, Mira L. Pöhlker, Kai Tang, Carola S. Krevert, Carsten Wieder, Kai R. Speth, Linda E. Hanson, Cindy E. Morris, David G. Schmale III, Ulrich Pöschl, and Janine Fröhlich-Nowoisky
Biogeosciences, 16, 4647–4659, https://doi.org/10.5194/bg-16-4647-2019, https://doi.org/10.5194/bg-16-4647-2019, 2019
Short summary
Short summary
A screening of more than 100 strains from 65 different species revealed that the ice nucleation activity within the fungal genus Fusarium is more widespread than previously assumed. Filtration experiments suggest that the single cell-free Fusarium IN is smaller than 100 kDa (~ 6 nm) and that aggregates can be formed in solution. Exposure experiments, freeze–thaw cycles, and long-term storage tests demonstrate a high stability of Fusarium IN under atmospherically relevant conditions.
Cited articles
Aminot, A. and Kérouel, R.: Dosage automatique des nutriments dans les
eaux marines: méthodes en flux continu, Editions Quae,
2007. a
Benavides, M. and Voss, M.: Five decades of N2 fixation research
in the
North Atlantic Ocean, Frontiers in Marine Science, 2, 1–20,
https://doi.org/10.3389/fmars.2015.00040, 2015. a
Benavides, M., Bronk, D. A., Agawin, N. S., Pérez-Hernández, M. D.,
Hernández-Guerra, A., and Arístegui, J.: Longitudinal variability of
size-fractionated N2 fixation and DON release rates along 24.5∘ N in the
subtropical North Atlantic, J. Geophys. Res.-Oceans, 118,
3406–3415, 2013. a
Benavides, M., Moisander, P. H., Berthelot, H., Dittmar, T., and Grosso, O.:
Mesopelagic N2 fixation related to organic matter composition in the Solomon
and Bismarck Seas (Southwest Pacific), PLoS One, 10, 12,
https://doi.org/10.1371/journal.pone.0143775, 2015. a
Benavides, M., Moisander, P. H., Daley, M. C., Bode, A., and Arístegui,
J.: Longitudinal variability of diazotroph abundances in the subtropical
North Atlantic Ocean, J. Plankton Res., 38, 662–672, 2016. a
Benavides, M., Berthelot, H., Duhamel, S., Raimbault, P., and Bonnet, S.:
Dissolved organic matter uptake by Trichodesmium in the Southwest Pacific,
Sci. Rep.-UK, 7, 41315, https://doi.org/10.1038/srep41315, 2017. a
Berthelot, H., Bonnet, S., Grosso, O., Cornet, V., and Barani, A.: Transfer
of diazotroph-derived nitrogen towards non-diazotrophic planktonic
communities: a comparative study between Trichodesmium erythraeum,
Crocosphaera watsonii and Cyanothece sp., Biogeosciences,
13, 4005–4021, https://doi.org/10.5194/bg-13-4005-2016, 2016. a, b, c, d
Berthelot, H., Benavides, M., Moisander, P. H., Grosso, O., and Bonnet, S.:
High-nitrogen fixation rates in the particulate and dissolved pools in the
Western Tropical Pacific (Solomon and Bismarck Seas), Geophys. Res.
Lett., 2, 1–10, https://doi.org/10.1002/2017GL073856, 2017. a, b, c, d
Blain, S., Bonnet, S., and Guieu, C.: Dissolved iron distribution in the
tropical and sub tropical South Eastern Pacific, Biogeosciences, 5, 269–280,
https://doi.org/10.5194/bg-5-269-2008, 2008. a
Bock, N., Van Wambeke, F., Dion, M., and Duhamel, S.: Microbial community
structure in the Western Tropical South Pacific, Biogeosciences Discuss.,
https://doi.org/10.5194/bg-2017-562, in review, 2018. a
Bonnet, S. and Guieu, C.: Atmospheric forcing on the annual iron cycle in the
Mediterranean Sea. A one-year survey, J. Geophys. Res., 111, C9,
https://doi.org/10.1029/2005JC003213, 2006. a
Bonnet, S., Guieu, C., Bruyant, F., Prášil, O., Van Wambeke, F.,
Raimbault, P., Moutin, T., Grob, C., Gorbunov, M. Y., Zehr, J. P.,
Masquelier, S. M., Garczarek, L., and Claustre, H.: Nutrient limitation of
primary productivity in the Southeast Pacific (BIOSOPE cruise),
Biogeosciences, 5, 215–225, https://doi.org/10.5194/bg-5-215-2008, 2008. a, b
Bonnet, S., Biegala, I. C., Dutrieux, P., Slemons, L. O., and Capone, D. G.:
Nitrogen fixation in the western equatorial Pacific: Rates, diazotrophic
cyanobacterial size class distribution, and biogeochemical significance,
Global Biogeochem. Cy., 23, 1–13, https://doi.org/10.1029/2008gb003439,
2009. a, b, c
Bonnet, S., Grosso, O., and Moutin, T.: Planktonic dinitrogen fixation along
a longitudinal gradient across the Mediterranean Sea during the stratified
period (BOUM cruise), Biogeosciences, 8, 2257–2267,
https://doi.org/10.5194/bg-8-2257-2011, 2011. a, b
Bonnet, S., Rodier, M., Turk-Kubo, K., Germineaud, C., Menkes, C., Ganachaud,
A., Cravatte, S., Raimbault, P., Campbell, E., Quéroué, F.,
Sarthou, G., Desnues, A., Maes, C., and Eldin, G.: Contrasted geographical
distribution of N2 fixation rates and nifH phylotypes in the Coral and
Solomon Seas (South-Western Pacific) during austral winter conditions,
Global Biogeochem. Cy., 29, 11, https://doi.org/10.1002/2015GB005117, 2015. a, b, c, d
Bonnet, S., Berthelot, H., Turk-Kubo, K. A., Cornet-Barthaux, V., Fawcett, S.,
Berman-Frank, I., Barani, A., Grégori, G., Dekaezemacker, J.,
Benavides, M., and Capone, D. G.: Diazotroph derived nitrogen supports
diatom growth in the South West Pacific: A quantitative study using
nanoSIMS, Limnol. Oceanogr., 61, 1549–1562,
https://doi.org/10.1002/lno.10300, 2016a. a, b, c, d, e, f
Bonnet, S., Berthelot, H., Turk-Kubo, K., Fawcett, S., Rahav, E., L'Helguen,
S., and Berman-Frank, I.: Dynamics of N2 fixation and fate of
diazotroph-derived nitrogen in a low-nutrient, low-chlorophyll ecosystem:
results from the VAHINE mesocosm experiment (New Caledonia), Biogeosciences,
13, 2653–2673, https://doi.org/10.5194/bg-13-2653-2016, 2016b. a, b, c
Bonnet, S., Caffin, M., Berthelot, H., and Moutin, T.: Hot spot of
N2
fixation in the western tropical South Pacific pleads for a spatial
decoupling between N2 fixation and denitrification, P. Natl. Acad.
Sci.
USA, 114, E2800–E2801, https://doi.org/10.1073/pnas.1619514114, 2017. a, b, c, d
Böttjer, D., Dore, J. E., Karl, D. M., Letelier, R. M., Mahaffey, C.,
Wilson, S. T., Zehr, J. P., and Church, M. J.: Temporal variability of
nitrogen fixation and particulate nitrogen export at Station ALOHA,
Limnol. Oceanogr., 62, 200–216, https://doi.org/10.1002/lno.10386, 2017. a
Breitbarth, E., Oschlies, A., and LaRoche, J.: Physiological constraints on
the global distribution of Trichodesmium – effect of temperature on
diazotrophy, Biogeosciences, 4, 53–61, https://doi.org/10.5194/bg-4-53-2007,
2007. a
Boutrif, M., Garel, M., Cottrell, M. T., and Tamburini, C.: Assimilation of marine
extracellular polymeric substances by deep-sea prokaryotes in the NW
Mediterranean Sea, Environmental microbiology reports, 3, 705–709, https://doi.org/10.1111/j.1758-2229.2011.00285.x, 2011.
Caffin, M., Berthelot, H., Cornet-Barthaux, V., Barani, A., and Bonnet, S.: Transfer of
diazotroph-derived nitrogen to the planktonic food web across gradients of N2
fixation activity and diversity in the western tropical South Pacific Ocean, Biogeosciences, 15, 3795–3810, https://doi.org/10.5194/bg-15-3795-2018, 2018a. a, b
Caffin, M., Moutin, T., Foster, R. A., Bouruet-Aubertot, P., Doglioli, A. M.,
Berthelot, H., Guieu, C., Grosso, O., Helias-Nunige, S., Leblond, N.,
Gimenez, A., Petrenko, A. A., de Verneil, A., and Bonnet, S.: N2
fixation as a dominant new N source in the western tropical South Pacific
Ocean (OUTPACE cruise), Biogeosciences, 15, 2565–2585,
https://doi.org/10.5194/bg-15-2565-2018, 2018b. a, b, c, d
Carpenter, E. J., Subramaniam, A., and Capone, D. G.: Biomass and primary
productivity of the cyanobacterium Trichodesmium spp. in the tropical N
Atlantic ocean, Deep-Sea Res. Pt. I, 51, 173–203, 2004. a
Church, M. J., Short, C. M., Jenkins, B. D., Karl, D. M., and Zehr, J. P.:
Temporal patterns of nitrogenase gene (nifH) expression in the oligotrophic
North Pacific Ocean, Appl. Environ. Microb., 71, 5362–5370,
https://doi.org/10.1128/aem.71.9.5362-5370.2005, 2005. a
Cook, J.: The Voyages of Captain James Cook, vol. 2, William Smith, 1842. a
Dabundo, R., Lehmann, M. F., Treibergs, L., Tobias, C. R., Altabet, M. A.,
Moisander, A. M., and Granger, J.: The contamination of commercial
15N2 gas stocks with 15N labeled nitrate and ammonium and
consequences for nitrogen fixation measurements, PLoS One, 9, e110335,
https://doi.org/10.1371/journal.pone.0110335,
2014. a
Dandonneau, Y., Vega, A., Loisel, H., du Penhoat, Y., and Menkes, C.: Oceanic
Rossby waves acting as a “hay rake” for ecosystem floating by-products,
Science, 302, 1548–1551, https://doi.org/10.1126/science.1090729, 2003. a
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicone,
D.: Mixed layer depth over the global ocean: An examination of profile data
and a profile-based climatology, J. Geophys. Res.-Oceans,
109, C12, https://doi.org/10.1029/2004JC002378, 2004. a
Dekaezemacker, J. and Bonnet, S.: Sensitivity of N2 fixation to
combined
nitrogen forms ( and ) in two strains of the marine
diazotroph Crocosphaera watsonii (Cyanobacteria), Mar. Ecol.
Prog. Ser., 438, 33–46, https://doi.org/10.3354/meps09297, 2011. a
Dekaezemacker, J., Bonnet, S., Grosso, O., Moutin, T., Bressac, M., and Capone,
D. G.: Evidence of active dinitrogen fixation in surface waters of the
Eastern Tropical South Pacific during El Nino and La Nina events and
evaluation of its potential nutrient controls, Global Biogeochem. Cy.,
27, 1–12, https://doi.org/10.1002/gbc.20063, 2013. a, b
Deutsch, C. A., Sarmiento, J. L., Sigman, D. M., Gruber, N., and Dunne, J. P.:
Spatial coupling of nitrogen inputs and losses in the ocean, Nature, 445,
163–167, https://doi.org/10.1038/nature05392, 2007. a
de Verneil, A., Rousselet, L., Doglioli, A. M., Petrenko, A. A., and Moutin,
T.: The fate of a southwest Pacific bloom: gauging the impact of submesoscale
vs. mesoscale circulation on biological gradients in the subtropics,
Biogeosciences, 14, 3471–3486, https://doi.org/10.5194/bg-14-3471-2017,
2017. a, b
Dugdale, R. C. and Goering, J. J.: Uptake of new and regenerated forms of
nitrogen in primary productivity, Limnol. Oceanogr., 12, 196–206,
https://doi.org/10.4319/lo.1967.12.2.0196, 1967. a
Dupouy, C., Neveux, J., Subramaniam, A., Mulholland, M. R., Montoya, J. P.,
Campbell, L., Carpenter, E. J., and Capone, D. G.: Satellite captures
Trichodesmium blooms in the southwestern tropical Pacific, EOS Transactions
American Geophysical Union, 81, 13–16, 2000. a
Dupouy, C., Benielli-Gary, D., Neveux, J., Dandonneau, Y., and Westberry, T.
K.: An algorithm for detecting Trichodesmium surface blooms in the
South Western Tropical Pacific, Biogeosciences, 8, 3631–3647,
https://doi.org/10.5194/bg-8-3631-2011, 2011. a
Dutheil, C., Aumont, O., Gorguès, T., Lorrain, A., Bonnet, S., Rodier, M.,
Dupouy, C., Shiozaki, T., and Menkes, C.: Modelling the processes driving
Trichodesmium sp. spatial distribution and biogeochemical impact in
the tropical Pacific Ocean, Biogeosciences Discuss.,
https://doi.org/10.5194/bg-2017-559, in review, 2018.
Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and
planktonic new production in the deep ocean, Nature, 282, 677–680,
https://doi.org/10.1038/282677a0, 1979. a
Falkowski, P. G.: Light-shade adaptation and vertical mixing of marine phytoplankton:
a comparative field study, J. Mar. Res., 41, 215–237, 1983.
Fernández, C., Farías, L., and Ulloa, O.: Nitrogen Fixation in
Denitrified Marine Waters, PLoS One, 6, e20539, https://doi.org/10.1371/journal.pone.0020539, 2011. a
Fernández, C., González, M. L., Muñoz, C., Molina, V., and Farias,
L.: Temporal and spatial variability of biological nitrogen fixation off the
upwelling system of central Chile (35–38.5∘ S), J. Geophys.
Res.-Oceans, 120, 3330–3349, 2015. a
Fitzsimmons, J. N., Boyle, E. A., and Jenkins, W. J.: Distal transport of
dissolved hydrothermal iron in the deep South Pacific Ocean, P.
Natl. Acad. Sci. USA, 111, 16654–16661, 2014. a
Fumenia, A., Moutin, T., Bonnet, S., Benavides, M., Petrenko, A., Helias
Nunige, S., and Maes, C.: Excess nitrogen as a marker of intense dinitrogen
fixation in the Western Tropical South Pacific Ocean: impact on the
thermocline waters of the South Pacific, Biogeosciences Discuss.,
https://doi.org/10.5194/bg-2017-557, in review, 2018. a, b
Gradoville, M. R., Bombar, D., Crump, B. C., Letelier, R. M., Zehr, J. P., and
White, A. E.: Diversity and activity of nitrogen-fixing communities across
ocean basins, Limnol. Oceanogr., 62, 1895–1909, 2017. a
Gruber, N.: The marine nitrogen cycle: Overview and challenges. Nitrogen in the Marine Environment, edited by:
Capone, D. G., Bronk, D. A., Mulholland, M. R., and Carpenter, E. J., Academic, San Diego, 1–50, 2008. a
Johnson, K. S., Elrod, V., Fitzwater, S., Plant, J., Boyle, E., Bergquist, B., Bruland, K.,
Aguilar-Islas, A., Buck, K., Lohan, M., Smith, G. J., Sohst, B., Coale, K., Gordon, M., Tanner, S.,
Measures, C., Moffett, J., Barbeau, K., King, A., Bowie, A., Chase, Z., Cullen, J., Laan, P., Landing, W.,
Mendez, J., Milne, A., Obata, H., Doi, T., Ossiander, L., Sarthou, G., Sedwick, P., Van den Berg, S., Laglera-Baquer, L., Wu, J.-F., and Cai, Y.: Developing
standards for dissolved iron in seawater, Eos, Transactions American
Geophysical Union, 88, 131–132, 2007. a, b
Kana, T. M., Darkangelo, C., Hunt, M. D., Oldham, J. B., Bennett, G. E., and
Cornwell, J. C.: A membrane inlet mass spectrometer for rapid high precision
determination of N2, O2, and Ar in environmental water samples, Anal.
Chem., 66, 4166–4170, 1994. a
Karl, D. M., Bates, N. R., Emerson, S., Harrison, P. J., del Octavio Llinâs, C. J., Liu, K.-K.,
Marty, J.-C., Michaels, A. F., Miquel, J. C., Neuer, S., Nojiri, Y., and Wong, C. S.:
Temporal studies of biogeochemical processes determined from ocean time-series observations
during the JGOFS era, in: Ocean Biogeochemistry, Springer, Berlin, Heidelberg, 239–267, 2003. a
Karl, D. M., Church, M. J., Dore, J. E., Letelier, R. M., and Mahaffey, C.:
Predictable and efficient carbon sequestration in the North Pacific Ocean
supported by symbiotic nitrogen fixation, P. Natl.
Acad. Sci. USA, 109, 1842–1849, https://doi.org/10.1073/pnas.1120312109, 2012. a, b, c
Klawonn, I., Lavik, G., Böning, P., Marchant, H., Dekaezemacker, J., Mohr,
W., and Ploug, H.: Simple approach for the preparation of
15-15N2-enriched water for nitrogen fixation assessments:
evaluation, application and recommendations, Front. Microbiol., 6, https://doi.org/10.3389/fmicb.2015.00769,
2015. a, b
Knap, A. H., Michaels, A., Close, H., Ducklow, H. W., and Dickson, A. G.
(Eds.): Protocols for the Joint Global Ocean Flux Study (JGOFS)
core measurements, JGOFS Rep. 19, 170 p., Carbon Dioxide Inf. Anal.
Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn., 1994. a
Knapp, A. N., Dekaezemacker, J., Bonnet, S., Sohm, J. A., and Capone, D. G.:
Sensitivity of Trichodesmium erythraeum and Crocosphaera watsonii abundance and N2 fixation rates to varying and
concentrations in batch cultures, Aquat. Microb. Ecol.,
66, 223–236, 2012. a
Knapp, A. N., Casciotti, K. L., Berelson, W. M., Prokopenko, M. G., and Capone,
D. G.: Low rates of nitrogen fixation in eastern tropical South Pacific
surface waters, P. Natl. Acad. Sci. USA, 113,
4398–4403, 2016. a
Knapp, A. N., McCabe, K. M., Grosso, O., Leblond, N., Moutin, T., and Bonnet,
S.: Distribution and rates of nitrogen fixation in the western tropical South
Pacific Ocean constrained by nitrogen isotope budgets, Biogeosciences, 15,
2619–2628, https://doi.org/10.5194/bg-15-2619-2018, 2018. a
Labatut, M., Lacan, F., Pradoux, C., Chmeleff, J., Radic, A., Murray, J. W.,
Poitrasson, F., Johansen, A. M., and Thil, F.: Iron sources and
dissolved-particulate interactions in the seawater of the Western Equatorial
Pacific, iron isotope perspectives, Global Biogeochem. Cy., 28,
1044–1065,
https://doi.org/10.1002/2014GB004928, 2014. a
Loescher, C. R., Großkopf, T., Desai, F. D., Gill, D., Schunck, H., Croot, P. L., and Kuypers, M. M.:
Facets of diazotrophy in the oxygen minimum zone waters off Peru, The ISME journal, 8, 2180, https://doi.org/10.1038/ismej.2014.71, 2014. a
Luo, Y.-W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I.,
Bode, A., Bonnet, S., Boström, K. H., Böttjer, D., Capone, D. G.,
Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J. E., Falcón, L. I.,
Fernández, A., Foster, R. A., Furuya, K., Gómez, F., Gundersen, K., Hynes,
A. M., Karl, D. M., Kitajima, S., Langlois, R. J., LaRoche, J., Letelier, R.
M., Marañón, E., McGillicuddy Jr., D. J., Moisander, P. H., Moore, C. M.,
Mouriño-Carballido, B., Mulholland, M. R., Needoba, J. A., Orcutt, K. M.,
Poulton, A. J., Rahav, E., Raimbault, P., Rees, A. P., Riemann, L., Shiozaki,
T., Subramaniam, A., Tyrrell, T., Turk-Kubo, K. A., Varela, M., Villareal, T.
A., Webb, E. A., White, A. E., Wu, J., and Zehr, J. P.: Database of
diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates,
Earth Syst. Sci. Data, 4, 47–73, https://doi.org/10.5194/essd-4-47-2012,
2012. a, b, c, d, e
Luo, Y.-W., Lima, I. D., Karl, D. M., Deutsch, C. A., and Doney, S. C.:
Data-based assessment of environmental controls on global marine nitrogen
fixation, Biogeosciences, 11, 691–708,
https://doi.org/10.5194/bg-11-691-2014, 2014. a
Massoth, G., Baker, E., Worthington, T., Lupton, J., de Ronde, C., Arculus, R., Walker, S.,
Nakamura, K. I., Ishibashi, J. I., and Stoffers, P.: Multiple hydrothermal sources
along the south Tonga arc and Valu Fa Ridge, Geochem. Geophys. Geosyst., 8, https://doi.org/10.1029/2007GC001675, 2007. a
Messer, L. F., Mahaffey, C., M Robinson, C., Jeffries, T. C., Baker, K. G.,
Bibiloni Isaksson, J., Ostrowski, M., Doblin, M. A., Brown, M. V., and
Seymour, J. R.: High levels of heterogeneity in diazotroph diversity and
activity within a putative hotspot for marine nitrogen fixation, ISME J., 10,
1499,
https://doi.org/10.1038/ismej.2015.205, 2015. a, b
Mohr, W., Großkopf, T., Wallace, D. W. R., and LaRoche, J.: Methodological
underestimation of oceanic nitrogen fixation rates, PLoS ONE, 5, 1–7,
https://doi.org/10.1371/journal.pone.0012583, 2010. a
Moisander, P. H., Beinart, R. A., Hewson, I., White, A. E., Johnson, K. S.,
Carlson, C. A., Montoya, J. P., and Zehr, J. P.: Unicellular Cyanobacterial
Distributions Broaden the Oceanic N2 Fixation Domain, Science, 327,
1512–1514, https://doi.org/10.1126/science.1185468, 2010. a, b
Moisander, P. H., Zhang, R. F., Boyle, E. A., Hewson, I., Montoya, J. P., and
Zehr, J. P.: Analogous nutrient limitations in unicellular diazotrophs and
Prochlorococcus in the South Pacific Ocean, ISME J., 6, 733–744,
https://doi.org/10.1038/ismej.2011.152, 2011. a
Montoya, J. P., Holl, C. M., Zehr, J. P., Hansen, A., Villareal, T. A., and
Capone, D. G.: High rates of N2 fixation by unicellular diazotrophs in
the oligotrophic Pacific Ocean, Nature, 430, 1027–1031,
https://doi.org/10.1038/nature02824, 2004. a, b
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Marañón,
E., Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of
oceanic nutrient limitation, Nat. Geosci., 6, 701–710,
https://doi.org/10.1038/ngeo1765, 2013. a
Moutin, T., Van Den Broeck, N., Beker, B., Dupouy, C., Rimmelin, P., and Le
Bouteiller, A.: Phosphate availability controls Trichodesmium spp. biomass
in the SW Pacific Ocean, Mar. Ecol. Prog. Ser., 297, 15–21,
https://doi.org/10.3354/meps297015, 2005. a
Moutin, T., Karl, D. M., Duhamel, S., Rimmelin, P., Raimbault, P., Van Mooy,
B. A. S., and Claustre, H.: Phosphate availability and the ultimate control
of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean,
Biogeosciences, 5, 95–109, https://doi.org/10.5194/bg-5-95-2008, 2008. a, b, c, d
Moutin, T., Doglioli, A. M., de Verneil, A., and Bonnet, S.: Preface: The
Oligotrophy to the UlTra-oligotrophy PACific Experiment (OUTPACE cruise, 18
February to 3 April 2015), Biogeosciences, 14, 3207–3220,
https://doi.org/10.5194/bg-14-3207-2017, 2017. a
Moutin, T., Wagener, T., Caffin, M., Fumenia, A., Gimenez, A., Baklouti, M.,
Bouruet-Aubertot, P., Pujo-Pay, M., Leblanc, K., Lefevre, D., Helias Nunige,
S., Leblond, N., Grosso, O., and de Verneil, A.: Nutrient availability and
the ultimate control of the biological carbon pump in the western tropical
South Pacific Ocean, Biogeosciences, 15, 2961–2989,
https://doi.org/10.5194/bg-15-2961-2018, 2018. a, b
Nübel, U., Garcia-Pichel, F., and Muyzer, G.: PCR primers to amplify 16S
rRNA genes from cyanobacteria, Appl. Environ. Microb., 63,
3327–3332, 1997. a
Radic, A., Lacan, F., and Murray, J. W.: Iron isotopes in the seawater of the
equatorial Pacific Ocean: New constraints for the oceanic iron cycle, Earth
Planet. Sc. Lett., 306, 1–10, 2011. a
Raimbault, P. and Garcia, N.: Evidence for efficient regenerated production
and dinitrogen fixation in nitrogen-deficient waters of the South Pacific
Ocean: impact on new and export production estimates, Biogeosciences, 5,
323–338, https://doi.org/10.5194/bg-5-323-2008, 2008. a, b
Raven, J. A.: The iron and molybdenum use efficiencies of plant growth with
different energy, carbon and nitrogen source, New Phytol., 109,
279–287, 1988. a
Ridame, C., Dekaezemacker, J., Guieu, C., Bonnet, S., L'Helguen, S., and
Malien, F.: Contrasted Saharan dust events in LNLC environments: impact on
nutrient dynamics and primary production, Biogeosciences, 11, 4783–4800,
https://doi.org/10.5194/bg-11-4783-2014, 2014. a
Shiozaki, T., Kodama, T., Kitajima, S., Sato, M., and Furuya, K.: Advective
transport of diazotrophs and importance of their nitrogen fixation on new and
primary production in the western Pacific warm pool, Limnol.
Oceanogr., 58, 49–60, https://doi.org/10.4319/lo.2013.58.1.0049, 2013. a
Sohm, J. A. and Capone, D. G.: Phosphorus dynamics of the tropical and
subtropical north Atlantic: Trichodesmium spp. versus bulk plankton, Mar.
Ecol. Prog. Ser., 317, 21–28, 2006. a
Stenegren, M., Caputo, A., Berg, C., Bonnet, S., and Foster, R. A.:
Distribution and drivers of symbiotic and free-living diazotrophic
cyanobacteria in the western tropical South Pacific, Biogeosciences, 15,
1559–1578, https://doi.org/10.5194/bg-15-1559-2018, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m
Tenório, M. M. B., Dupouy, C., Rodier, M., and Neveux, J.: Trichodesmium
and other planktonic cyanobacteria in New Caledonian waters (SW tropical
Pacific) during an El Niño episode, Aquat. Microb. Ecol., 81,
219–241, 2018. a
Thompson, A. W., Foster, R. A., Krupke, A., Carter, B. J., Musat, N., Vaulot,
D., Kuypers, M. M. M., and Zehr, J. P.: Unicellular cyanobacterium symbiotic
with a single-celled eukaryotic alga, Science, 337, 1546–1550,
https://doi.org/10.1126/science.1222700, 2012. a
Van Wambeke, F., Gimenez, A., Duhamel, S., Dupouy, C., Lefevre, D., Pujo-Pay,
M., and Moutin, T.: Dynamics and controls of heterotrophic prokaryotic
production in the western tropical South Pacific Ocean: links with
diazotrophic and photosynthetic activity, Biogeosciences, 15, 2669–2689,
https://doi.org/10.5194/bg-15-2669-2018, 2018. a, b
Verity, P. G., Robertson, C. Y., Tronzo, C. R., Andrews, M. G., Nelson, J. R.,
and Sieracki, M. E.: Relationships between cell volume and the carbon and
nitrogen content of marine photosynthetic nanoplankton, Limnol.
Oceanogr., 37, 1434–1446, https://doi.org/10.4319/lo.1992.37.7.1434, 1992,
1992.
a
Wannicke, N., Benavides, M., Dalsgaard, T., Dippner, J. W., Montoya, J. P., and
Voss, M.: New Perspectives on Nitrogen Fixation Measurements Using 15N2 Gas,
Frontiers in Marine Science, 5, 120, 2018. a
Weiss, R. F.: The solubility of nitrogen, oxygen and argon in water and
seawater, Deep-Sea Res., 17, 721–735, 1970. a
Wilson, S. T., Böttjer, D., Church, M. J., and Karl, D. M.: Comparative
assessment of nitrogen fixation methodologies conducted in the oligotrophic
Noth Pacific Ocean, Appl. Environ. Microb., 78, 6516–6523,
https://doi.org/10.1128/aem.01146-12, 2012. a
Zehr, J. P. and Turner, P. J.: Nitrogen fixation: Nitrogenase genes and gene
expression, in: Methods in Marine Microbiology, Academic Press, New York,
2001. a
Altmetrics
Final-revised paper
Preprint