Articles | Volume 15, issue 18
https://doi.org/10.5194/bg-15-5545-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/bg-15-5545-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tracing water masses with 129I and 236U in the subpolar North Atlantic along the GEOTRACES GA01 section
Laboratory of Ion Beam Physics, ETH Zurich, Otto Stern Weg 5, Zurich,
8093, Switzerland
Institut de Ciència i Tecnologia Ambientals, Universitat
Autònoma de Barcelona, Bellaterra, 08193, Spain
Núria Casacuberta
Laboratory of Ion Beam Physics, ETH Zurich, Otto Stern Weg 5, Zurich,
8093, Switzerland
Institute of Biogeochemistry and Pollutant Dynamics, Environmental
Physics, ETH Zurich, Universitätstrasse 16, Zurich, 8092, Switzerland
Marcus Christl
Laboratory of Ion Beam Physics, ETH Zurich, Otto Stern Weg 5, Zurich,
8093, Switzerland
Christof Vockenhuber
Laboratory of Ion Beam Physics, ETH Zurich, Otto Stern Weg 5, Zurich,
8093, Switzerland
Hans-Arno Synal
Laboratory of Ion Beam Physics, ETH Zurich, Otto Stern Weg 5, Zurich,
8093, Switzerland
Maribel I. García-Ibáñez
Uni Research Climate, Bjerknes Centre for Climate Research, Bergen
5008, Norway
Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6,
36208 Vigo, Spain
Pascale Lherminier
Ifremer, Univ. Brest, CNRS, IRD, Laboratoire d' Océanographie
Physique et Spatiale, IUEM, Plouzané, France
Géraldine Sarthou
Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD Ifremer, IUEM, Technopôle Brest Iroise, 29280 Plouzané, France
Jordi Garcia-Orellana
Institut de Ciència i Tecnologia Ambientals, Universitat
Autònoma de Barcelona, Bellaterra, 08193, Spain
Departament de Fisica, Universitat Autònoma de Barcelona,
Bellaterra, 08193, Spain
Pere Masqué
Institut de Ciència i Tecnologia Ambientals, Universitat
Autònoma de Barcelona, Bellaterra, 08193, Spain
Departament de Fisica, Universitat Autònoma de Barcelona,
Bellaterra, 08193, Spain
School of Science, Centre for Marine Ecosystems Research, Edith Cowan
University, Joondalup, WA 6027, Australia
Related authors
No articles found.
Lukas Rettig, Sandro Rossato, Sarah Kamleitner, Paolo Mozzi, Susan Ivy-Ochs, Enrico Marcato, Marcus Christl, Silvana Martin, and Giovanni Monegato
E&G Quaternary Sci. J., 74, 151–168, https://doi.org/10.5194/egqsj-74-151-2025, https://doi.org/10.5194/egqsj-74-151-2025, 2025
Short summary
Short summary
The work shows detailed reconstructions of the glaciers in the Valsugana area (south-eastern Alps) during the Last Glacial Maximum (LGM) and is supported by robust evidence and new exposure datings. These are the first ages for the internal sector of the south-eastern Alps. Local glaciers not connected with the major ice network were used for the calculation of their equilibrium line altitude. This let us estimate LGM palaeoprecipitation and compare it to Alpine palaeoclimatological models.
Alexandre Heumann, Félix Margirier, Emmanuel Rinnert, Pascale Lherminier, Carla Scalabrin, Louis Géli, Orens Pasqueron de Fommervault, and Laurent Béguery
Earth Syst. Sci. Data, 17, 4535–4554, https://doi.org/10.5194/essd-17-4535-2025, https://doi.org/10.5194/essd-17-4535-2025, 2025
Short summary
Short summary
Following a seismic crisis in May 2018 in Mayotte, an observation network has been created with the given objective of monitoring the volcanic phenomena. A SeaExplorer glider has been deployed to supplement the data obtained during a series of oceanographic surveys. The glider performed a continuous monitoring over 30 months of the water column from the sea surface to 1250 m water depth, with the objective of acquiring the hydrological properties, water currents and dissolved gas concentrations.
Niklas Kappelt, Eric Wolff, Marcus Christl, Christof Vockenhuber, Philip Gautschi, and Raimund Muscheler
Clim. Past, 21, 1585–1594, https://doi.org/10.5194/cp-21-1585-2025, https://doi.org/10.5194/cp-21-1585-2025, 2025
Short summary
Short summary
By measuring the radioactive decay of atmospherically produced 36Cl and 10Be in an ice core drilled in West Antarctica, we were able to determine the age of the deepest sample close to bedrock to be about 550 thousand years old. This means that the ice in this location, known as Skytrain Ice Rise, has survived several warm periods in the past, at least since marine isotope stage 11.
Lisa G. T. Leist, Maxi Castrillejo, Kumiko Azetsu-Scott, Craig Lee, Jed Lenetsky, Marc Ringuette, Christof Vockenhuber, Habacuc Pérez-Tribouilier, and Núria Casacuberta
EGUsphere, https://doi.org/10.5194/egusphere-2025-4178, https://doi.org/10.5194/egusphere-2025-4178, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
The Arctic and Atlantic Oceans are connected by narrow passages, and the exchange of waters affect global climate. Using artificial radionuclides from nuclear reprocessing discharges, we traced the origin of water masses from the Arctic to the Labrador Sea. Results show that waters from Canadian Arctic origin entering via Lancaster Sound are a key freshwater source to the Labrador Sea. These flows strongly influence the formation of deep waters in the Atlantic, vital for the global circulation.
Chantal Schmidt, David Mair, Naki Akçar, Marcus Christl, Negar Haghipour, Christof Vockenhuber, Philip Gautschi, Brian McArdell, and Fritz Schlunegger
EGUsphere, https://doi.org/10.5194/egusphere-2025-3055, https://doi.org/10.5194/egusphere-2025-3055, 2025
Short summary
Short summary
Our study examines erosion in a small, pre-Alpine basin by using cosmogenic nuclides in river sediments. Based on a dense measuring network we were able to distinguish two main zones: an upper zone with slow erosion of surface material, and a steeper, lower zone where faster erosion is driven by landslides. The data suggests that sediment has been constantly produced over thousands of years, indicating a stable, long-term balance between contrasting erosion processes.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
Earth Surf. Dynam., 13, 315–339, https://doi.org/10.5194/esurf-13-315-2025, https://doi.org/10.5194/esurf-13-315-2025, 2025
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains; within South Africa they are regarded as ancient landforms that can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Anne-Marie Wefing, Annabel Payne, Marcel Scheiwiller, Christof Vockenhuber, Marcus Christl, Toste Tanhua, and Núria Casacuberta
EGUsphere, https://doi.org/10.5194/egusphere-2025-1322, https://doi.org/10.5194/egusphere-2025-1322, 2025
Short summary
Short summary
Here we used the anthropogenic radionuclides I-129 and U-236 as tracers for Atlantic Water circulation in the Arctic Ocean. New data collected in 2021 allowed to assess the distribution of Atlantic Water and mixing with Pacific-origin water in the surface layer in that year. By using historical tracer data from 2011 to 2021, we looked into temporal changes of the circulation and found slightly older waters in the central Arctic Ocean in 2021 compared to 2015.
Herlé Mercier, Damien Desbruyères, Pascale Lherminier, Antón Velo, Lidia Carracedo, Marcos Fontela, and Fiz F. Pérez
Ocean Sci., 20, 779–797, https://doi.org/10.5194/os-20-779-2024, https://doi.org/10.5194/os-20-779-2024, 2024
Short summary
Short summary
We study the Atlantic Meridional Overturning Circulation (AMOC) measured between Greenland and Portugal between 1993–2021. We identify changes in AMOC limb volume and velocity as two major drivers of AMOC variability at subpolar latitudes. Volume variations dominate on the seasonal timescale, while velocity variations are more important on the decadal timescale. This decomposition proves useful for understanding the origin of the differences between AMOC time series from different analyses.
Chiara I. Paleari, Florian Mekhaldi, Tobias Erhardt, Minjie Zheng, Marcus Christl, Florian Adolphi, Maria Hörhold, and Raimund Muscheler
Clim. Past, 19, 2409–2422, https://doi.org/10.5194/cp-19-2409-2023, https://doi.org/10.5194/cp-19-2409-2023, 2023
Short summary
Short summary
In this study, we test the use of excess meltwater from continuous flow analysis from a firn core from Greenland for the measurement of 10Be for solar activity reconstructions. We show that the quality of results is similar to the measurements on clean firn, which opens the possibility to obtain continuous 10Be records without requiring large amounts of clean ice. Furthermore, we investigate the possibility of identifying solar storm signals in 10Be records from Greenland and Antarctica.
Catharina Dieleman, Philip Deline, Susan Ivy Ochs, Patricia Hug, Jordan Aaron, Marcus Christl, and Naki Akçar
EGUsphere, https://doi.org/10.5194/egusphere-2023-1873, https://doi.org/10.5194/egusphere-2023-1873, 2023
Preprint withdrawn
Short summary
Short summary
Valleys in the Alps are shaped by glaciers, rivers, mass movements, and slope processes. An understanding of such processes is of great importance in hazard mitigation. We focused on the evolution of the Frébouge cone, which is composed of glacial, debris flow, rock avalanche, and snow avalanche deposits. Debris flows started to form the cone prior to ca. 2 ka ago. In addition, the cone was overrun by a 10 Mm3 large rock avalanche at 1.3 ± 0.1 ka and by the Frébouge glacier at 300 ± 40 a.
Giulia Sinnl, Florian Adolphi, Marcus Christl, Kees C. Welten, Thomas Woodruff, Marc Caffee, Anders Svensson, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 19, 1153–1175, https://doi.org/10.5194/cp-19-1153-2023, https://doi.org/10.5194/cp-19-1153-2023, 2023
Short summary
Short summary
The record of past climate is preserved by several archives from different regions, such as ice cores from Greenland or Antarctica or speleothems from caves such as the Hulu Cave in China. In this study, these archives are aligned by taking advantage of the globally synchronous production of cosmogenic radionuclides. This produces a new perspective on the global climate in the period between 20 000 and 25 000 years ago.
Robert Mulvaney, Eric W. Wolff, Mackenzie M. Grieman, Helene H. Hoffmann, Jack D. Humby, Christoph Nehrbass-Ahles, Rachael H. Rhodes, Isobel F. Rowell, Frédéric Parrenin, Loïc Schmidely, Hubertus Fischer, Thomas F. Stocker, Marcus Christl, Raimund Muscheler, Amaelle Landais, and Frédéric Prié
Clim. Past, 19, 851–864, https://doi.org/10.5194/cp-19-851-2023, https://doi.org/10.5194/cp-19-851-2023, 2023
Short summary
Short summary
We present an age scale for a new ice core drilled at Skytrain Ice Rise, an ice rise facing the Ronne Ice Shelf in Antarctica. Various measurements in the ice and air phases are used to match the ice core to other Antarctic cores that have already been dated, and a new age scale is constructed. The 651 m ice core includes ice that is confidently dated to 117 000–126 000 years ago, in the last interglacial. Older ice is found deeper down, but there are flow disturbances in the deeper ice.
Nathan Vandermaelen, Koen Beerten, François Clapuyt, Marcus Christl, and Veerle Vanacker
Geochronology, 4, 713–730, https://doi.org/10.5194/gchron-4-713-2022, https://doi.org/10.5194/gchron-4-713-2022, 2022
Short summary
Short summary
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with analysis and modelling of rare isotopes accumulation within sediments, occurring as a function of time and inverse function of depth. They allowed the determination of three superposed deposition phases and intercalated non-deposition periods of ~ 40 kyr each. These phases correspond to 20 % of the sediment age, which highlights the importance of considering deposition phase when dating fluvial sediments.
Marc Diego-Feliu, Valentí Rodellas, Aaron Alorda-Kleinglass, Maarten Saaltink, Albert Folch, and Jordi Garcia-Orellana
Hydrol. Earth Syst. Sci., 26, 4619–4635, https://doi.org/10.5194/hess-26-4619-2022, https://doi.org/10.5194/hess-26-4619-2022, 2022
Short summary
Short summary
Rainwater infiltrates aquifers and travels a long subsurface journey towards the ocean where it eventually enters below sea level. In its path towards the sea, water becomes enriched in many compounds that are naturally or artificially present within soils and sediments. We demonstrate that extreme rainfall events may significantly increase the inflow of water to the ocean, thereby increasing the supply of these compounds that are fundamental for the sustainability of coastal ecosystems.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
Natasha René van Horsten, Hélène Planquette, Géraldine Sarthou, Thomas James Ryan-Keogh, Nolwenn Lemaitre, Thato Nicholas Mtshali, Alakendra Roychoudhury, and Eva Bucciarelli
Biogeosciences, 19, 3209–3224, https://doi.org/10.5194/bg-19-3209-2022, https://doi.org/10.5194/bg-19-3209-2022, 2022
Short summary
Short summary
The remineralisation proxy, barite, was measured along 30°E in the southern Indian Ocean during early austral winter. To our knowledge this is the first reported Southern Ocean winter study. Concentrations throughout the water column were comparable to observations during spring to autumn. By linking satellite primary production to this proxy a possible annual timescale is proposed. These findings also suggest possible carbon remineralisation from satellite data on a basin scale.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Elena Serra, Pierre G. Valla, Romain Delunel, Natacha Gribenski, Marcus Christl, and Naki Akçar
Earth Surf. Dynam., 10, 493–512, https://doi.org/10.5194/esurf-10-493-2022, https://doi.org/10.5194/esurf-10-493-2022, 2022
Short summary
Short summary
Alpine landscapes are transformed by several erosion processes. 10Be concentrations measured in river sediments at the outlet of a basin represent a powerful tool to quantify how fast the catchment erodes. We measured erosion rates within the Dora Baltea catchments (western Italian Alps). Our results show that erosion is governed by topography, bedrock resistance and glacial imprint. The Mont Blanc massif has the highest erosion and therefore dominates the sediment flux of the Dora Baltea river.
Sònia Jou-Claus, Albert Folch, and Jordi Garcia-Orellana
Hydrol. Earth Syst. Sci., 25, 4789–4805, https://doi.org/10.5194/hess-25-4789-2021, https://doi.org/10.5194/hess-25-4789-2021, 2021
Short summary
Short summary
Satellite thermal infrared (TIR) remote sensing is a useful method for identifying coastal springs in karst aquifers both locally and regionally. The limiting factors include technical limitations, geological and hydrogeological characteristics, environmental and marine conditions, and coastal geomorphology. Also, it can serve as a tool to use for a first screening of the coastal water surface temperature to identify possible thermal anomalies that will help narrow the sampling survey.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Anne-Marie Wefing, Núria Casacuberta, Marcus Christl, Nicolas Gruber, and John N. Smith
Ocean Sci., 17, 111–129, https://doi.org/10.5194/os-17-111-2021, https://doi.org/10.5194/os-17-111-2021, 2021
Short summary
Short summary
Atlantic Water that carries heat and anthropogenic carbon into the Arctic Ocean plays an important role in the Arctic sea-ice cover decline, but its pathways and travel times remain unclear. Here we used two radionuclides of anthropogenic origin (129I and 236U) to track Atlantic-derived waters along their way through the Arctic Ocean, estimating their travel times and mixing properties. Results help to understand how future changes in Atlantic Water properties will spread through the Arctic.
Leonie Peti, Kathryn E. Fitzsimmons, Jenni L. Hopkins, Andreas Nilsson, Toshiyuki Fujioka, David Fink, Charles Mifsud, Marcus Christl, Raimund Muscheler, and Paul C. Augustinus
Geochronology, 2, 367–410, https://doi.org/10.5194/gchron-2-367-2020, https://doi.org/10.5194/gchron-2-367-2020, 2020
Short summary
Short summary
Orakei Basin – a former maar lake in Auckland, New Zealand – provides an outstanding sediment record over the last ca. 130 000 years, but an age model is required to allow the reconstruction of climate change and volcanic eruptions contained in the sequence. To construct a relationship between depth in the sediment core and age of deposition, we combined tephrochronology, radiocarbon dating, luminescence dating, and the relative intensity of the paleomagnetic field in a Bayesian age–depth model.
Marion Lagarde, Nolwenn Lemaitre, Hélène Planquette, Mélanie Grenier, Moustafa Belhadj, Pascale Lherminier, and Catherine Jeandel
Biogeosciences, 17, 5539–5561, https://doi.org/10.5194/bg-17-5539-2020, https://doi.org/10.5194/bg-17-5539-2020, 2020
Cited articles
Aarkrog, A., Dahlgaard, H., Hallstadius, L., Hansen, H., and Holm, E.:
Radiocaesium from Sellafield effluents in Greenland waters, Nature, 304,
49–51, 1983.
Aarkrog, A., Boelskifte, S., Dahlgard, H., Duniec, S., Hallstadius, L., Holm,
E., and Smith, J. N.: Technetium-99 and Cesium-134 as long distance tracers
in Arctic Waters, Estuar. Coast. Shelf S., 24, 637–647, 1987.
Alfimov, V., Aldahan, A., Possnert, G., and Winsor, P.: Tracing water masses
with 129I in the western Nordic Seas in early Spring 2002, Geophys.
Res. Lett., 31, L19305, https://doi.org/10.1029/2004GL020863, 2004.
Alfimov, V., Aldahan, A., and Possnert, G.: Water masses and 129I
distribution in the Nordic Seas, Nucl. Instrum. Meth. B, 294, 542–546,
https://doi.org/10.1016/j.nimb.2012.07.042, 2013.
Arhan, M.: The North Atlantic Current and the subarctic intermediate water,
J. Mar. Res., 48, 109–144, 1990.
Beasley, T., Cooper, L. W., Grebmeier, J. M., Aagaard, K., Kelley, J. M., and
Kilius, L. R.: 237Np/129I Atom Ratios in the Arctic
Ocean: Has 237Np from Western European and Russian Fuel
Reprocessing Facilities Entered the Arctic Ocean?, J. Environ. Radioactiv.,
39, 255–277, 1998.
Bersch, M., Yashayaev, I., and Koltermann, K. P.: Recent changes of the
thermohaline circulation in the subpolar North Atlantic, Ocean Dynam., 57,
223–235, https://doi.org/10.1007/s10236-007-0104-7, 2007.
Casacuberta, N., Christl, M., Lachner, J., van der Loeff, M. R., Masqué,
P., and Synal, H.-A.: A first transect of 236U in the North
Atlantic Ocean, Geochim. Cosmochim. Ac., 133, 34–46,
https://doi.org/10.1016/j.gca.2014.02.012, 2014.
Casacuberta, N., Masqué, P., Henderson, G., Rutgers van-der-Loeff, M.,
Bauch, D., Vockenhuber, C., Daraoui, A., Walther, C., Synal, H.-A., and
Christl, M.: First 236U data from the Arctic Ocean and use of
236U∕238U and 129I∕236U as a new dual tracer, Earth
Planet. Sc. Lett., 440, 127–134, https://doi.org/10.1016/j.epsl.2016.02.020, 2016.
Casacuberta, N., Christl, M., Vockenhuber, C., Wefing, A.-M., Wacker, L.,
Masqué, P., Synal, H.-A., and Rutgers van der Loeff, M.: Tracing the
three Atlantic branches entering the Arctic Ocean with 129I and
236U, J. Geophys, Res.-Oceans, https://doi.org/10.1029/2018JC014168, online
first, 2018.
Castrillejo, M., Casacuberta, N., Christl, M., Garcia-Orellana, J.,
Vockenhuber, C., Synal, H.-A., and Masqué, P.: Anthropogenic
236U and 129I in the Mediterranean Sea: First
comprehensive distribution and constrain of their sources, Sci. Total
Environ., 593–594, 745–759, https://doi.org/10.1016/j.scitotenv.2017.03.201, 2017.
Christl, M., Lachner, J., Vockenhuber, C., Lechtenfeld, O., Stimac, I., van
der Loeff, M. R., and Synal, H.-A.: A depth profile of uranium-236 in the
Atlantic Ocean, Geochim. Cosmochim. Ac., 77, 98–107,
https://doi.org/10.1016/j.gca.2011.11.009, 2012.
Christl, M., Lachner, J., Vockenhuber, C., Goroncy, I., Herrmann, J., and
Synal, H. A.: First data of Uranium-236 in the North Sea, Nucl. Instrum.
Meth. B, 294, 530–536, https://doi.org/10.1016/j.nimb.2012.07.043, 2013a.
Christl, M., Vockenhuber, C., Kubik, P. W., Wacker, L., Lachner, J.,
Alfimov, V., and Synal, H.: The ETH Zurich AMS facilities?: Performance
parameters and reference materials, Nucl. Instrum. Meth. B, 294, 29–38,
https://doi.org/10.1016/j.nimb.2012.03.004, 2013b.
Christl, M., Casacuberta, N., Lachner, J., Maxeiner, S., Vockenhuber, C.,
Synal, H. A., Goroncy, I., Herrmann, J., Daraoui, A., Walther, C., and
Michel, R.: Status of 236U analyses at ETH Zurich and the
distribution of 236U and 129I in the North Sea in 2009,
Nucl. Instrum. Meth. B, 361, 510–516, https://doi.org/10.1016/j.nimb.2015.01.005, 2015a.
Christl, M., Casacuberta, N., Vockenhuber, C., Elsässer, C., Bailly du
Bois, P., Herrmann, J. jürgen and Synal, H.-A.: Reconstruction of the
236U input function for the Northeast Atlantic Ocean: Implications
for 129I∕236U and 236U∕238U-based tracer ages, J.
Geophys. Res.-Oceans, 120, 11 https://doi.org/10.1002/2015JC011116, 2015b.
Christl, M., Casacuberta, N., Lachner, J., Herrmann, J., and Synal, H. A.:
Anthropogenic 236U in the North Sea – A Closer Look into a Source
Region, Environ. Sci. Technol., 51, 12146–12153,
https://doi.org/10.1021/acs.est.7b03168, 2017.
Cuny, J. and Rhines, P.-B.: Labrador Sea Boundary currents and the Fate of
the Irminger Sea Water, Am. Met. Soc., 32, 627–647, 2002.
Curry, B., Lee, C. M., Petrie, B., Moritz, R. E., and Kwok, R.: Multiyear
Volume, Liquid Freshwater, and Sea Ice Transports through Davis Strait,
2004-10, J. Phys. Oceanogr., 44, 1244–1266, 2014.
Dahlgaard, H.: Transfer of European Coastal Pollution to the Arctic?:
Radioactive Tracers, Mar. Pollut. Bull., 31, 3–7, 1995.
Daniault, N., Mercier, H., Lherminier, P., Sarafanov, A., Falina, A.,
Zunino, P., Pérez, F. F., Ríos, A. F., Ferron, B., Huck, T., and
Thierry, V.: The northern North Atlantic Ocean mean circulation in the early
21st century, Prog. Oceanogr., 146, 142–158,
https://doi.org/10.1016/j.pocean.2016.06.007, 2016.
Doney, S. C. and Jenkins, W. J.: Ventilation of the deep western boundary
current and abyssal western North Atlantic: Estimates from tritium and
3He distributions, J. Phys. Oceanogr., 24, 638–659, 1994.
Edmonds, H. N., Smith, J. N., Livingston, H. D., Kilius, L. R., and Edmond,
J. M.: 129I in archived seawater samples, Deep-Sea Res. Pt. I, 45,
1111–1125, https://doi.org/10.1016/S0967-0637(98)00007-7, 1998.
Edmonds, H. N., Zhou, Z. Q., Raisbeck, G. M., Yiou, F., Kilius, L., and
Edmond, J. M.: Distribution and behavior of anthropogenic 129I in
water masses ventilating the North Atlantic Ocean, J. Geophys. Res., 106,
6881–6894, 2001.
Ellis, K. M. and Smith, J. N.: The flow of radionuclides through the
Canadian Archipelago, Proc. IAEA Mainre Pollut. Symp. IAEA Tech. Doc., 1094,
462–464, Monaco, 1999.
Falina, A., Sarafanov, A., Mercier, H., Lherminier, P., Sokov, A., and
Daniault, N.: On the cascading of dense shelf waters in the Irminger Sea, J.
Phys. Oceanogr., 42, 2254–2267, 2012.
Fleischmann, U., Hildebrandt, H., Putzka, A., and Bayer, R.: Transport of
newly ventilated deep water from the Iceland Basin to the West European
Basin, Deep-Sea Res., 48B, 1793–1819, 2001.
Fogelqvist, E. J., Blindheim, J., Tanhua, T. T., Osterhus, S., Buch, E., and
Rey, F.: Greenland-Scotland overflow studied by hydro-chemical multivariate
analysis, Deep-Sea Res. Pt. I, 50, 73–102, 2003.
García-Ibáñez, M. I., Pérez, F. F., Lherminier, P., Zunino, P.,
Mercier, H., and Tréguer, P.: Water mass distributions and transports for
the 2014 GEOVIDE cruise in the North Atlantic, Biogeosciences, 15,
2075–2090, https://doi.org/10.5194/bg-15-2075-2018, 2018.
Gascard, J., Watson, A. J., Messias, M.-J., Olsson, K. A., Johannessen,
T., and Simonsen, K.: Long-lived vortices as a mode of deep ventilation in
the Greenland Sea, Nature, 416, 525–527, 2002.
Gascard, J. C., Raisbeck, G., Sequeira, S., Yiou, F., and Mork, K. A.: The
Norwegian Atlantic Current in the Lofoten Basin inferred from hydrological
and tracer data (129I) and its interaction with the Norwegian
Coastal Current, Geophys. Res. Lett., 31, L01308, https://doi.org/10.1029/2003GL018303,
2004.
Gómez-guzmán, J. M., Villa, M., Le Moigne, F.,
López-gutiérrez, J. M., and García-león, M.: AMS
measurements of 129I in seawater around Iceland and the Irminger
Sea, Nucl. Instrum. Meth. B, 294, 547–551, https://doi.org/10.1016/j.nimb.2012.07.045,
2013.
Hansen, B. and Osterhus, S.: North Atlantic – Nordic Sea exchanges,
Prog. Oceanogr., 45, 109–208, 2000.
Harden, B. E., Pickart, R. S., and Benfrew, I. A.: Offshore Transport of
Dense Water from the East Greenland Shelf, J. Phys. Oceanogr., 44, 229–245,
https://doi.org/10.1175/JPO-D-12-0218.1, 2014.
He, P., Aldahan, a., Possnert, G., and Hou, X. L.: A summary of global
129I in marine waters, Nucl. Instrum. Meth. B, 294, 537–541,
https://doi.org/10.1016/j.nimb.2012.08.036, 2013a.
He, P., Hou, X., Aldahan, A., Possnert, G., and Yi, P.: Iodine isotopes
species fingerprinting environmental conditions in surface water along the
northeastern Atlantic Ocean, Sci. Rep.-UK, 3, 2685, https://doi.org/10.1038/srep02685,
2013b.
Holm, E., Persson, B. R. R., Hallstadius, L., Aarkrog, A., and Dahlgaard, H.:
Radio-cesium and transuranium elements in the Greenland and Barents Seas,
Oceanol. Acta, 6, 457–462, 1983.
Hou, X.: Application of 129I as an Environmental Tracer, J. Radioanal. Nucl. Ch., 262, 67–75,
2004.
Jong, M. F. and Steur, L.: Strong winter cooling over the Irminger Sea in
winter 2014–2015, exceptional deep convection, and the emergence of
anomalously low SST, Geophy. Res. Lett., 43, 7106–7113,
https://doi.org/10.1002/2016GL069596, 2016.
Karcher, M., Smith, J. N., Kauker, F., Gerdes, R., and Smethie, W. M.: Recent
changes in Arctic Ocean circulation revealed by iodine-129 observations and
modeling, J. Geophys. Res.-Oceans, 117, 1–17, https://doi.org/10.1029/2011JC007513,
2012.
Kershaw, P. and Baxter, A.: The transfer of reprocessing wastes from
north-west Europe to the Arctic, Deep-Sea Res. Pt. II, 42, 1413–1448, 1995.
Koszalka, I. M. and Haine, T. W. N.: Fates and Travel Times of Denmark
Strait Overflow Water in the Irminger Basin, J. Phys. Oceanogr., 43,
2611–2628, https://doi.org/10.1175/JPO-D-13-023.1, 2013.
Lambelet, M., van de Flierdt, T., Crocket, K., Rehkämper, M., Kreissig,
K., Coles, B., Rijkenberg, M. J. A., Gerringa, L. J. A., de Baar, H. J. W.,
and Steinfeldt, R.: Neodymium isotopic composition and concentration in the
western North Atlantic Ocean: results from the GEOTRACES GA02 section,
Geochim. Cosmochim. Ac., 177, 1–29, https://doi.org/10.1016/j.gca.2015.12.019, 2016.
Lherminier, P., Mercier, H., Huck, T., Gourcuff, C., Perez, F. F., Morin,
P., Sarafanov, A., and Falina, A.: The Atlantic Meridional Overturning
Circulation and the subpolar gyre observed at the A25-OVIDE section in June
2002 and 2004, Deep-Sea Res. Pt. I., 57, 1374–1391,
https://doi.org/10.1016/j.dsr.2010.07.009, 2010.
McCartney, M. and Talley, L. D.: The Subpolar Mode Water of the North
Atlantic Ocean, J. Phys. Oceanogr., 12, 1169–1188, 1982.
Mercier, H., Lherminier, P., Sarafanov, A., Gaillard, F., Daniault, N.,
Desbruyères, D., Falina, A., Ferron, B., Gourcuff, C., Huck, T., and
Thierry, V.: Variability of the meridional overturning circulation at the
Greenland–Portugal OVIDE section from 1993 to 2010, Prog. Oceanogr., 132,
250–261, https://doi.org/10.1016/j.pocean.2013.11.001, 2013.
Michel, R., Daraoui, A., Gorny, M., Jakob, D., Sachse, R., Tosch, L., Nies,
H., Goroncy, I., Herrmann, J., Synal, H. A., Stocker, M., and Alfimov, V.:
Iodine-129 and iodine-127 in European seawaters and in precipitation from
Northern Germany, Sci. Total Environ., 419, 151–169,
https://doi.org/10.1016/j.scitotenv.2012.01.009, 2012.
Orre, S., Smith, J. N., Alfimov, V., and Bentsen, M.: Simulating transport of
129I and idealized tracers in the northern North Atlantic Ocean,
Environ. Fluid Mech., 10, 213–233, 2010.
Pérez, F. F., Mercier, H., Vázquez-rodríguez, M., Lherminier,
P., Velo, A., Pardo, P. C., Rosón, G., and Ríos, A. F.: Atlantic
Ocean CO2 uptake reduced by weakening of the meridional overturning
circulation, Nat. Geosci., 6, 146–152, https://doi.org/10.1038/ngeo1680, 2013.
Pickart, R. S., Torres, D. J., and Fratantoni, P. S.: The East Greenland
Spill Jet, J. Phys. Oceanogr., 58, 1037–1053, 2005.
Raisbeck, G. M. and Yiou, F.: 129I in the oceans: origins and
applications, Sci. Total Environ., 237–238, 31–41, 1999.
Raisbeck, G. M. and Yiou, F.: Use of 129I as an oceanographic tracer in
the Nordic Seas, Pap. Present. 5th Int. Conf. Environ. Radioact. Arct.
Antarct., St. Petersburg, Russ., 127–130, 2002.
Raisbeck, G. M., Yiou, F., Zhou, Z. Q., and Kilius, L. R.: 129I from
nuclear fuel reprocessing facilities at Sellafield (U.K.) and La Hague
(France); potential as an oceanographie tracer, J. Marine Syst., 6, 561–570,
https://doi.org/10.1016/0924-7963(95)00024-J, 1995.
Read, J. F.: CONVEX-91: water masses and circulation of the Northeast
Atlantic subpolar gyre, Prog. Oceanogr., 48, 461–510,
https://doi.org/10.1016/S0079-6611(01)00011-8, 2000.
Ríos, A. F., Pérez, F. F., and Fraga, F.: Water masses in the upper
and middle North Atlantic Ocean east of the Azores, Deep-Sea Res., 39,
645–658, 1992.
Rudels, B.: Arctic Ocean circulation, processes and water masses: A
description of observations and ideas with focus on the period prior to the
International Polar Year 2007–2009, Prog. Oceanogr., 132, 22–67,
https://doi.org/10.1016/j.pocean.2013.11.006, 2015.
Rudels, B., Eriksson, P., Gronvall, H., Hietala, R., and Launiainen, J.:
Hydrographic Observations in Denmark Strait in Fall 1997, and their
Implications for the Entrainment into the Overflow Plume, Geophys. Res.
Lett., 26, 1325–1328, 1999a.
Rudels, B., Friedrich, H. J., and Quadfasel, D.: The Arctic Circumpolar
Boundary Current, Deep-Sea Res. Pt. II, 46, 1023–1062,
https://doi.org/10.1016/S0967-0645(99)00015-6, 1999b.
Sakaguchi, A., Kawai, K., Steier, P., Quinto, F., Mino, K., Tomita, J.,
Hoshi, M., Whitehead, N., and Yamamoto, M.: First results on 236U
levels in global fallout, Sci. Total Environ., 407, 4238–4242, 2009.
Sakaguchi, A., Kadokura, A., Steier, P., Takahashi, Y., Shizuma, K., Hoshi,
M., Nakakuki, T., and Yamamoto, M.: Uranium-236 as a new oceanic tracer: a
first depth profile in the Japan Sea and comparison with caesium-137, Earth
Planet. Sc. Lett., 333–334, 165–170, 2012.
Schlitzer, R.: Ocean Data View, available at: http://odv.awi.de (last access: September 2018),
2017.
Smith, J. N., Ellis, K. M., and Kilius, L. R.: 129I and
137Cs tracer measurements in the Arctic Ocean, Deep-Sea Res. Pt. I,
45, 959–984, https://doi.org/10.1016/S0967-0637(97)00107-6, 1998.
Smith, J. N., Jones, E. P., Moran, S. B., Smethie Jr., W. M., and Kieser, W. E.:
Iodine-129/CFC-11 transit times for Denmark Strait Overflow Water in the
Labrador and Irminger Seas, J. Geophys. Res., 110, 1–16,
https://doi.org/10.1029/2004JC002516, 2005.
Smith, J. N., Mclaughlin, F. A., Smethie Jr., W. M., Moran, S. B., and Lepore,
K.: Iodine-129, 137Cs, and CFC-11 tracer transit time distributions
in the Arctic Ocean, J. Geophys. Res., 116, 1–19, https://doi.org/10.1029/2010JC006471,
2011.
Smith, J. N., Smethie Jr., W. M., Yashayev, I., Curry, R., and Aztsu-Scott,
K.: Time series measurements of transient tracers and tracer-derived
transport in the Deep Western Boundary Current between the Labrador Sea and
the subtropical Atlantic Ocean at line W, J. Geophys. Res.-Oceans, 121,
1–24, https://doi.org/10.1002/2016JC011759, 2016.
Snyder, G., Aldahan, A., and Possnert, G.: Global distribution and long-term
fate of anthropogenic I-129 in marine and surface water reservoirs, Geochem.
Geophys. Geosy., 11, Q04010, https://doi.org/10.1029/2009GC002910, 2010.
Steier, P., Bichler, M., Keith Fifield, L., Golser, R., Kutschera, W.,
Priller, A., Quinto, F., Richter, S., Srncik, M., Terrasi, P., Wacker, L.,
Wallner, A., Wallner, G., Wilcken, K. M. and Maria Wild, E.: Natural and
anthropogenic 236U in environmental samples, Nucl. Instrum. Meth.
B, 266, 2246–2250, https://doi.org/10.1016/j.nimb.2008.03.002, 2008.
Sy, A., Rhein, M., Lazier, J., Koltermann, K., Meincke, J., Putzka, A., and
Bersch, M.: Surprisingly rapid spreading of newly formed intermediate waters
across the North Atlantic Ocean, Nature, 386, 675–679, 1997.
Tanhua, T., Bulsiewicz, K., and Rhein, M.: Spreading of overflow water from
the Greenland to the Labrador Sea, Geophys. Res. Lett., 32, L10605,
https://doi.org/10.1029/2005GL022700, 2005.
van Aken, H. M. and Becker, G.: Hydrography and through-flow in the
northeastern North Atlantic Ocean: the NANSEN project, Prog. Oceanogr., 38,
297–346, 1996.
van Aken, H. M. and De Boer, C. J.: On the synoptic hydrography of
intermediate and deep water masses in the Iceland Basin, Deep-Sea Res. Pt. I,
42, 165–189, https://doi.org/10.1016/0967-0637(94)00042-Q, 1995.
Villa, M., López-Gutiérrez, J. M., Suh, K.-S., Min, B.-I.,
and Periañez, R.: The behaviour of 129I released from nuclear
fuel reprocessing factories in the North Atlantic Ocean and transport to the
Arctic assessed from numerical modelling, Mar. Poll. Bull., 90, 15–24,
https://doi.org/10.1016/j.marpolbul.2014.11.039, 2015.
Vivo-Vilches, C., López-Gutiérrez, J. M., Periáñez, R.,
Marcinko, C., Le Moigne, F., Mcginnity, P., Peruchena, J. I., and
Villa-Alfageme, M.: Recent evolution of 129I levels in the Nordic
Seas and the North Atlantic Ocean, Sci. Total Environ., 621, 376–386,
https://doi.org/10.1016/j.scitotenv.2017.11.268, 2018.
Vockenhuber, C., Casacuberta, N., Christl, M., and Synal, H. A.: Accelerator
Mass Spectrometry of 129I towards its lower limits, Nucl. Instrum.
Meth. B, 361, 445–449, https://doi.org/10.1016/j.nimb.2015.01.061, 2015.
von Appen, W.-J., Koszalka, I. M., Pickart, R. S., Haine, T. W. N.,
Mastropole, D., Magaldi, M. G., Valdimarsson, H., Girton, J., Jochumsen, K.,
and Krahmann, G.: The East Greenland Spill Jet as an important component of
the Atlantic Meridional Overturning Circulation, Deep-Sea Res. Pt. I, 92,
75–84, 2014.
Wagner, M. J. M., Dittrich-Hannen, B., Synal, H. A., Suter, M., and Schotterer,
U.: Increase of 129I in the environment, Nucl. Instrum. Meth. B,
113, 490–494, 1996.
Winkler, S. R., Steier, P., and Carilli, J.: Bomb fall-out 236U as a
global oceanic tracer using an annually resolved coral core, Earth Planet.
Sc. Lett., 359–360, 124–130, https://doi.org/10.1016/j.epsl.2012.10.004, 2012.
Xu, X., Schmitz Jr., W. J., Hurlburt, H. E., Hogan, P. J., and Chassignet, E.
P.: Transport of Nordic Seas overflow water into and within the Irminger
Sea?: An eddy – resolving simulation and observations, J. Geophys. Res.,
115, C12048, https://doi.org/10.1029/2010JC006351, 2010.
Xu, X., Bower A., Furey, H., and Chassignet, E.-P.: Variability of the
Icelans-Scotland Overflow Water Transport through the Charlie-Gibbs Fracture
Zone: results from an eddying simulation and observations, J. Geophys.
Res.-Oceans, 123, https://doi.org/10.1029/2018JC013895, 2018.
Zou, S., Lozier, S., Zenk, W., Bower, A., and Johns, W.: Observed and modeled
pathways of the Iceland Scotland Over flow Water in the eastern North
Atlantic, Prog. Oceanogr., 159, 211–222, https://doi.org/10.1016/j.pocean.2017.10.003,
2017.
Zunino, P., Lherminier, P., Mercier, H., Daniault, N., García-Ibánez, M.
I., and Pérez, F. F.: The GEOVIDE cruise in May–June 2014 reveals an
intense Meridional Overturning Circulation over a cold and fresh subpolar
North Atlantic, Biogeosciences, 14, 5323–5342,
https://doi.org/10.5194/bg-14-5323-2017, 2017.
Short summary
The investigation of water mass transport pathways and timescales is important to understand the global ocean circulation. Following earlier studies, we use artificial radionuclides introduced to the oceans in the 1950s to investigate the water transport in the subpolar North Atlantic (SPNA). For the first time, we combine measurements of the long-lived iodine-129 and uranium-236 to confirm earlier findings/hypotheses and to better understand shallow and deep ventilation processes in the SPNA.
The investigation of water mass transport pathways and timescales is important to understand the...
Altmetrics
Final-revised paper
Preprint