Articles | Volume 15, issue 18
https://doi.org/10.5194/bg-15-5715-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-5715-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the formation of hydrothermal vents and cold seeps in the Guaymas Basin, Gulf of California
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße
1–3, 24148 Kiel, Germany
Christian Hensen
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße
1–3, 24148 Kiel, Germany
Mark Schmidt
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße
1–3, 24148 Kiel, Germany
Volker Liebetrau
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße
1–3, 24148 Kiel, Germany
Florian Scholz
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße
1–3, 24148 Kiel, Germany
Mechthild Doll
Faculty of Geosciences, University of Bremen, Klagenfurter-Straße 4, 28359 Bremen,
Germany
Longhui Deng
Department of Environmental Systems Science, ETH Zurich,
Universitätstrasse 16, 8092 Zurich, Switzerland
Annika Fiskal
Department of Environmental Systems Science, ETH Zurich,
Universitätstrasse 16, 8092 Zurich, Switzerland
Mark A. Lever
Department of Environmental Systems Science, ETH Zurich,
Universitätstrasse 16, 8092 Zurich, Switzerland
Chih-Chieh Su
Institute of Oceanography, National Taiwan University, No. 1, Sec. 4,
Roosevelt Road, Taipei 106, Taiwan
Stefan Schloemer
Federal Institute for Geosciences and Natural Resources, Stilleweg 2,
30655 Hannover, Germany
Sudipta Sarkar
Department of Earth and Climate Science, Indian Institute of Science
Education and Research Pune, Dr. Homi Bhabha Road, Maharashtra-411008, India
Volker Thiel
Geobiology, Geoscience Centre, University of Göttingen,
Goldschmidtstr. 3, 37077 Göttingen, Germany
Christian Berndt
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße
1–3, 24148 Kiel, Germany
Related authors
Matthew D. Eisaman, Sonja Geilert, Phil Renforth, Laura Bastianini, James Campbell, Andrew W. Dale, Spyros Foteinis, Patricia Grasse, Olivia Hawrot, Carolin R. Löscher, Greg H. Rau, and Jakob Rønning
State Planet, 2-oae2023, 3, https://doi.org/10.5194/sp-2-oae2023-3-2023, https://doi.org/10.5194/sp-2-oae2023-3-2023, 2023
Short summary
Short summary
Ocean-alkalinity-enhancement technologies refer to various methods and approaches aimed at increasing the alkalinity of seawater. This chapter explores technologies for increasing ocean alkalinity, including electrochemical-based approaches, ocean liming, accelerated weathering of limestone, hydrated carbonate addition, and coastal enhanced weathering, and suggests best practices in research and development.
Ulf Riebesell, Daniela Basso, Sonja Geilert, Andrew W. Dale, and Matthias Kreuzburg
State Planet, 2-oae2023, 6, https://doi.org/10.5194/sp-2-oae2023-6-2023, https://doi.org/10.5194/sp-2-oae2023-6-2023, 2023
Short summary
Short summary
Mesocosm experiments represent a highly valuable tool in determining the safe operating space of ocean alkalinity enhancement (OAE) applications. By combining realism and biological complexity with controllability and replication, they provide an ideal OAE test bed and a critical stepping stone towards field applications. Mesocosm approaches can also be helpful in testing the efficacy, efficiency and permanence of OAE applications.
Sebastian F. A. Jordan, Stefan Schloemer, Martin Krüger, Tanja Heffner, Marcus A. Horn, and Martin Blumenberg
Biogeosciences, 22, 809–830, https://doi.org/10.5194/bg-22-809-2025, https://doi.org/10.5194/bg-22-809-2025, 2025
Short summary
Short summary
Using a multilayer approach, we studied the methane flux, soil gas composition, and isotopic signatures of soil methane and carbon dioxide at eight cut and buried abandoned oil wells in a peat-rich area of northern Germany. The detected methane emissions were of biogenic, peat origin and were not associated with the abandoned wells. Additional microbial analysis and methane oxidation rate measurements demonstrated a high methane emission mitigation potential in the studied peat soils.
Gabrielle E. Kleber, Leonard Magerl, Alexandra V. Turchyn, Stefan Schloemer, Mark Trimmer, Yizhu Zhu, and Andrew Hodson
Biogeosciences, 22, 659–674, https://doi.org/10.5194/bg-22-659-2025, https://doi.org/10.5194/bg-22-659-2025, 2025
Short summary
Short summary
Our research on Svalbard shows that glacier melt rivers can transport large amounts of methane, a potent greenhouse gas. By studying a glacier over one summer, we found that its river was highly concentrated in methane, suggesting that rivers could provide a significant source of methane emissions as the Arctic warms and glaciers melt. This is the first time such emissions have been measured on Svalbard, indicating a wider environmental concern as such processes are occurring across the Arctic.
Matthew D. Eisaman, Sonja Geilert, Phil Renforth, Laura Bastianini, James Campbell, Andrew W. Dale, Spyros Foteinis, Patricia Grasse, Olivia Hawrot, Carolin R. Löscher, Greg H. Rau, and Jakob Rønning
State Planet, 2-oae2023, 3, https://doi.org/10.5194/sp-2-oae2023-3-2023, https://doi.org/10.5194/sp-2-oae2023-3-2023, 2023
Short summary
Short summary
Ocean-alkalinity-enhancement technologies refer to various methods and approaches aimed at increasing the alkalinity of seawater. This chapter explores technologies for increasing ocean alkalinity, including electrochemical-based approaches, ocean liming, accelerated weathering of limestone, hydrated carbonate addition, and coastal enhanced weathering, and suggests best practices in research and development.
Ulf Riebesell, Daniela Basso, Sonja Geilert, Andrew W. Dale, and Matthias Kreuzburg
State Planet, 2-oae2023, 6, https://doi.org/10.5194/sp-2-oae2023-6-2023, https://doi.org/10.5194/sp-2-oae2023-6-2023, 2023
Short summary
Short summary
Mesocosm experiments represent a highly valuable tool in determining the safe operating space of ocean alkalinity enhancement (OAE) applications. By combining realism and biological complexity with controllability and replication, they provide an ideal OAE test bed and a critical stepping stone towards field applications. Mesocosm approaches can also be helpful in testing the efficacy, efficiency and permanence of OAE applications.
Gesa Franz, Marion Jegen, Max Moorkamp, Christian Berndt, and Wolfgang Rabbel
Solid Earth, 14, 237–259, https://doi.org/10.5194/se-14-237-2023, https://doi.org/10.5194/se-14-237-2023, 2023
Short summary
Short summary
Our study focuses on the correlation of two geophysical parameters (electrical resistivity and density) with geological units. We use this computer-aided correlation to improve interpretation of the Earth’s formation history along the Namibian coast and the associated formation of the South Atlantic Ocean. It helps to distinguish different types of sediment cover and varieties of oceanic crust, as well as to identify typical features associated with the breakup of continents.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Annika Fiskal, Eva Anthamatten, Longhui Deng, Xingguo Han, Lorenzo Lagostina, Anja Michel, Rong Zhu, Nathalie Dubois, Carsten J. Schubert, Stefano M. Bernasconi, and Mark A. Lever
Biogeosciences, 18, 4369–4388, https://doi.org/10.5194/bg-18-4369-2021, https://doi.org/10.5194/bg-18-4369-2021, 2021
Short summary
Short summary
Microbially produced methane can serve as a carbon source for freshwater macrofauna most likely through grazing on methane-oxidizing bacteria. This study investigates the contributions of different carbon sources to macrofaunal biomass. Our data suggest that the average contribution of methane-derived carbon is similar between different fauna but overall remains low. This is further supported by the low abundance of methane-cycling microorganisms.
Cited articles
Aarnes, I., Svensen, H., Connolly, J. A. D., and Podladchikov, Y. Y.: How
contact metamorphism can trigger global climate changes: Modeling gas
generation around igneous sills in sedimentary basins, Geochim. Cosmochim.
Ac., 74, 7179–7195, https://doi.org/10.1016/j.gca.2010.09.011, 2010.
Aloisi, G., Drews, M., Wallmann, K., and Bohrmann, G.: Fluid expulsion from
the Dvurechenskii mud volcano (Black Sea). Part I. Fluid sources and
relevance to Li, B, Sr, I and dissolved inorganic nitrogen cycles, Earth
Planet. Sc. Lett., 225, 347–363, https://doi.org/10.1016/j.epsl.2004.07.006,
2004.
Bani-Hassan, N.: Numerical modeling of submarine hydrothermal fluid flow,
Dr. Diss., Christian-Albrechts-Universität Kiel, Germany, 2012.
Berndt, C., Hensen, C., Mortera-Gutierrez, C., Sarkar, S., Geilert, S.,
Schmidt, M., Liebetrau, V., Kipfer, R., Scholz, F., Doll, M., Muff, S.,
Karstens, J., Planke, S., Petersen, S., Böttner, C., Chi, W.-C., Moser,
M., Behrendt, R., Fiskal, A., Lever, M. A., Su, C.-C., Deng, L., Brennwald,
M. S., and Lizarralde, D.: Rifting under steam – how rift magmatism triggers
methane venting from sedimentary basins, Geology, 44, 767–770, 2016.
Biddle, J. F., Cardman, Z., Mendlovitz, H., Albert, D. B., Lloyd, K. G.,
Boetius, A., and Teske, A.: Anaerobic oxidation of methane at different
temperature regimes in Guaymas Basin hydrothermal sediments, ISME J., 6,
1018–1031, https://doi.org/10.1038/ismej.2011.164, 2012.
Blumenberg, M., Seifert, R., Reitner, J., Pape, T., and Michaelis, W.:
Membrane lipid patterns typify distinct anaerobic methanotrophic consortia,
P. Natl. Acad. Sci. USA, 101, 11111–11116, 2004.
Calvert, S. E.: Accumulation of Diatomaceous Silica in the Sediments of the
Gulf of California, Geol. Soc. Am. B., 77, 569–596, 1966.
Campbell, A. C. and Gieskes, J. M.: Water column anomalies associated with
hydrothermal activity in the Guaymas Basin, Gulf of California Andrew C.
Campbell and Joris M. Gieskes, Earth Planet. Sc. Lett., 68, 57–72, 1984.
Curray, J. R.,
Moore, D. G.,
Aguayo, J. E.,
Aubry, M.-P.,
Einsele, G.,
Fornari, D.,
Gieskes, J.,
Guerrero-Garcia, J.,
Kastner, M.,
Kelts, K.,
Lyle, M.,
Matoba, Y.,
Molina-Cruz, A.,
Niemitz, J.,
Rueda-Gaxiola, J.,
Saunders, A.,
Schrader, H.,
Simoneit, B. R. T.,
and Vacquier, V.,: Initial Reports of the Deep Sea
Drilling Project, vol. 64., U.S. Govt. Printing Office, Washington, 1982.
DeMaster, D.: The supply and accumulation of silica in the marine
environment, Geochim. Cosmochim. Ac., 5, 1715–1732, 1981.
Dickens, G. R.: Rethinking the global carbon cycle with a large, dynamic and
microbially mediated gas hydrate capacitor, Earth Planet. Sc. Lett.,
213, 169–183, https://doi.org/10.1016/S0012-821X(03)00325-X, 2003.
Dowell, F., Cardman, Z., Dasarathy, S., Kellermann, M. Y., Lipp, J. S.,
Ruff, S. E., Biddle, J. F., McKay, L. J., MacGregor, B. J., Lloyd, K. G.,
Albert, D. B., Mendlovitz, H., Hinrichs, K. U., and Teske, A.: Microbial
communities in methane- and short chain alkane-rich hydrothermal sediments
of Guaymas Basin, Front. Microbiol., 7, 17, https://doi.org/10.3389/fmicb.2016.00017,
2016.
Einsele, G., Gieskes, J. M., Curray, J., Moore, D. M., Aguayo, E., Aubry,
M.-P., Fornari, D., Guerrero, J., Kastner, M., Kelts, K., Lyle, M., Matoba,
Y., Molina-Cruz, A., Niemitz, J., Rueda, J., Saunders, A., Schrader, H.,
Simoneit, B., and Vacquier, V.: Intrusion of basaltic sills into highly
porous sediments, and resulting hydrothermal activity, Nature, 283,
441–445, https://doi.org/10.1017/CBO9781107415324.004, 1980.
Fisher, A. T. and Becker, K.: Heat flow, hydrothermal circulation and basalt
intrusions in the Guaymas Basin, Gulf of California, Earth Planet. Sc.
Lett., 103, 84–99, https://doi.org/10.1016/0012-821X(91)90152-8, 1991.
Gamo, T., Sakai, H., Kim, E.-S., Shitashima, K., and Ishibashi, J.-I.:
High-alkalinity due to sulfate reduction in the CLAM hydrothermal field,
Okinawa Trough, Earth Planet. Sc. Lett., 107, 328–338, 1991.
Gieskes, J. M., Kastner, M., Einsele, G., Kelts, K., and Niemitz, J.:
Hydrothermal Activity in the Guaymas Basin, Gulf of California: A synthesis,
in In Initial Reports of the Deep Sea Drilling Project, 64,
edited by: Blakeslee, J.,
Platt, L. W.,
and Stout, L. N., 1159–1167, 1982.
Gieskes, J. M., Gamo, T., and Brumsack, H.: Chemical methods for interstitial
water analysis aboard Joides Resolution, Ocean Drill. Prog. Tech. Note 15.
Texas A&M Univ. Coll. Stn., 1991.
Goldsmith, J. R., Graf, D. L., and Heard, H. C.: Lattice constants of the
calcium-magnesium carbonates, Am. Miner., 46, 453–457, 1961.
Grasshoff, K., Erhardt, M., and Kremling, K.: Methods of Seawater Analysis,
Wiley-VCH, Weinheim, 2002.
Gutjahr, M., Ridgwell, A., Sexton, P. F., Anagnostou, E., Pearson, P. N.,
Pälike, H., Norris, R. D., Thomas, E., and Foster, G. L.: Very large
release of mostly volcanic carbon during the Palaeocene–Eocene Thermal
Maximum, Nature, 548, 573–577, https://doi.org/10.1038/nature23646, 2017.
Hartmann, A. and Villinger, H.: Inversion of marine heat flow measurements
by expansion of the temperature decay function, Geophys. J. Int., 148,
628–636, https://doi.org/10.1046/j.1365-246X.2002.01600.x, 2002.
Henry, P., Le Pichon, X., Lallement, S., Lance, S., Martin, J. B., Foucher,
J. P., Fiala-Médioni, A., Rostek, F., Guilhaumou, N., Pranal, V., and
Castrec, M.: Fluid flow in and around a mud volcano seaward of the Barbados
accretionary wedge: Results from Manon cruise, J. Geophys. Res., 101,
20297–20323, 1996.
Hensen, C., Nuzzo, M., Hornibrook, E., Pinheiro, L. M., Bock, B.,
Magalhães, V. H., and Brückmann, W.: Sources of mud volcano fluids in
the Gulf of Cadiz-indications for hydrothermal imprint, Geochim. Cosmochim.
Ac., 71, 1232–1248, https://doi.org/10.1016/j.gca.2006.11.022, 2007.
Hinrichs, K.-U., Pancost, R. D., Summons, R. E., Sprott, G. D., Sylva, S.
P., Sinninghe Damsté, J. S., and Hayes, J. M.: Mass spectra of sn
-2-hydroxyarchaeol, a polar lipid biomarker for anaerobic methanotrophy,
Geochem. Geophy. Geosy., 1, 11–13, 2000.
Howarth, R. J. and McArthur, J. M.: Strontium isotope stratigraphy, in A
Geological Time Scale, with Look-up Table Version 4, edited by:
Gradstein, F. M. and Ogg, J. G., Cambridge University Press, Cambridge,
U.K., 96–105, 2004.
Huh, C.-A., Su, C.-C., Wang, C.-H., Lee, S.-Y., and Lin, I.-T.: Sedimentation
in the Southern Okinawa Trough – Rates, turbidites and a sediment budget,
Mar. Geol., 231, 129–139, 2006.
Ivanenkov, V. N. and Lyakhin, Y. I.: Determination of total alkalinity in
seawater, in In Methods of Hydrochemical Investigations in the Ocean, edited
by: Bordovsky, O. K. and Ivanenkov, V. N., Nauka
Publishing House, Moscow, 110–114, 1978 (in Russian).
Iyer, K., Schmid, D. W., Planke, S., and Millett, J.: Modelling hydrothermal
venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and
paleoclimate, Earth Planet. Sc. Lett., 467, 30–42,
https://doi.org/10.1016/j.epsl.2017.03.023, 2017.
Jahnke, R. A., Emerson, S. R., and Murray, J. W.: A model of oxygen
reduction, denitrification, and organic matter mineralization in marine
sediments, Limnol. Oceanogr., 27, 610–623,
https://doi.org/10.4319/lo.1982.27.4.0610, 1982.
Karaca, D., Hensen, C., and Wallmann, K.: Controls on authigenic carbonate
precipitation at cold seeps along the convergent margin off Costa Rica,
Geochem. Geophy. Geosy., 11, 1–19, https://doi.org/10.1029/2010GC003062,
2010.
Kastner, M.: Evidence for Two Distinct Hydrothermal Systems in the Guaymas
Basin, in: Initial Reports of the Deep Sea Drilling Project, vol. 64, Pt.
2, edited by: Blakeslee, J.,
Platt, L. W.,
and Stout, L. N., Moore, U.S. Govt.
Printing Office, Washington, 1143–1157, 1982.
Kastner, M. and Siever, R.: Siliceous Sediments of the Guaymas Basin: The
Effect of High Thermal Gradients on Diagenesis, J. Geol., 91, 629–641,
https://doi.org/10.1086/628816, 1983.
Kinoshita, M. and Yamano, M.: Hydrothermal regime and constraints on
reservoir depth of the Jade site in the Mid-Okinawa Trough inferred from
heat flow measurements, J. Geophys. Res., 102, 3183–3194, 1997.
Koch, S., Berndt, C., Bialas, J., Haeckel, M., Crutchley, G., Papenberg, C.,
Klaeschen, D., and Greinert, J.: Gas-controlled seafloor doming, Geology,
43, 571–574, https://doi.org/10.1130/G36596.1, 2015.
Lee, S.-Y., Huh, C.-A., Su, C.-C., and You, C.-F.: Sedimentation in the
Southern Okinawa Trough: enhanced particle scavenging and teleconnection
between the Equatorial Pacific and western Pacific margins, Deep. Res., 51,
1769–1780, 2004.
Leefmann, T., Bauermeister, J., Kronz, A., Liebetrau, V., Reitner, J., and Thiel, V.: Miniaturized biosignature analysis reveals
implications for the formation of cold seep carbonates at Hydrate Ridge (off Oregon, USA), Biogeosciences, 5, 731–738,
https://doi.org/10.5194/bg-5-731-2008, 2008.
Lizarralde, D., Soule, S. A., Seewald, J. S., and Proskurowski, G.: Carbon
release by off-axis magmatism in a young sedimented spreading centre, Nat.
Geosci., 4, 50–54, https://doi.org/10.1038/ngeo1006, 2010.
Lonsdale, P. and Becker, K.: Hydrothermal plumes, hot springs, and
conductive heat flow in the Southern Trough of Guaymas Basin, Earth Planet.
Sc. Lett., 73, 211–225, https://doi.org/10.1016/0012-821X(85)90070-6, 1985.
Lupton, J. E.: Helium-3 in the Guaymas Basin: Evidence for injection of
mantle volatiles in the Gulf of California, J. Geophys. Res., 84, 7446,
https://doi.org/10.1029/JB084iB13p07446, 1979.
McDermott, J. M., Seewald, J. S., German, C. R., and Sylva, S. P.: Pathways
for abiotic organic synthesis at submarine hydrothermal fields, P. Natl. Acad. Sci. USA,
112, 7668–7672, 2015.
Milkov, A. V., Claypool, G. E., Lee, Y. J., and Sassen, R.: Gas hydrate
systems at Hydrate Ridge offshore Oregon inferred from molecular and
isotopic properties of hydrate-bound and void gases, Geochim. Cosmochim.
Ac., 69, 1007–1026, https://doi.org/10.1016/j.gca.2004.08.021, 2005.
Nauhaus, K., Treude, T., Boetius, A., and Krüger, M.: Environmental
regulation of the anaerobic oxidation of methane: A comparison of ANME-I and
ANME-II communities, Environ. Microbiol, 7, 98–106, 2005.
Niemann, H. and Elvert, M.: Diagnostic lipid biomarker and stable isotope
signatures of microbial communities mediating the anaerobic oxidation of
methane with sulphate, Org. Geochem., 39, 1668–1677, 2008.
Peckmann, J., Birgel, D., and Kiel, S.: Molecular fossils reveal fluid
composition and flow intensity at a Cretaceous seep, Geology, 37, 847–850,
2009.
Pfender, M. and Villinger, H.: Miniaturized data loggers for deep sea
sediment temperature gradient measurements, Mar. Geol., 186, 557–570,
https://doi.org/10.1016/S0025-3227(02)00213-X, 2002.
Sahling, H., Rickert, D., Lee, R. W., Linke, P., and Suess, E.: Macrofaunal community structure and sulfide flux at gas hydrate
deposits from the Cascadia convergent margin, NE Pacific, Mar. Ecol.-Prog. Ser., 231, 121–138, 2002.
Schmidt, M., Hensen, C., Mörz, T., Müller, C., Grevemeyer, I.,
Wallmann, K., Mau, S., and Kaul, N.: Methane hydrate accumulation in “Mound
11” mud volcano, Costa Rica forearc, Mar. Geol., 216, 83–100,
https://doi.org/10.1016/j.margeo.2005.01.001, 2005.
Schmidt, M., Linke, P., Sommer, S., Esser, D., and Cherednichenko, S.:
Natural CO2 Seeps Offshore Panarea?: A Test Site for Subsea CO2 Leak
Detection Limit, Mar. Technol. Soc. J., 49, 19–30, 2015.
Scholz, F., Hensen, C., Reitz, A., Romer, R. L., Liebetrau, V., Meixner, A.,
Weise, S. M., and Haeckel, M.: Isotopic evidence (87Sr/86Sr, δ7Li)
for alteration of the oceanic crust at deep-rooted mud volcanoes in the Gulf
of Cadiz, NE Atlantic Ocean, Geochim. Cosmochim. Ac., 73, 5444–5459,
https://doi.org/10.1016/j.gca.2009.06.004, 2009.
Simoneit, B. R. T., Leif, R. N., Sturz, A. A., Sturdivant, A. E., and
Gieskes, J. M.: Geochemistry of shallow sediments in Guaymas Basin, gulf of
California: hydrothermal gas and oil migration and effects of mineralogy,
Org. Geochem., 18, 765–784, https://doi.org/10.1016/0146-6380(92)90046-Z, 1992.
Sommer, S., Linke, P., Pfannkuche, O., Schleicher, T., Deimling, J. S. V,
Reitz, A., Haeckel, M., Flögel, S., and Hensen, C.: Seabed methane
emissions and the habitat of frenulate tubeworms on the Captain Arutyunov
mud volcano (Gulf of Cadiz), Mar. Ecol.-Prog. Ser., 382, 69–86,
https://doi.org/10.3354/meps07956, 2009.
Svensen, H., Planke, S., Malthe-Sorenssen, A., Jamtveit, B., Myklebust, R.,
Eidem, T. R., and Rey, S. S.: Release of methane from a volcanic basin as a
mechanism for initial Eocene global warming, Nature, 429, 3–6,
https://doi.org/10.1038/nature02566, 2004.
Teske, A., Callaghan, A. V., and LaRowe, D. E.: Biosphere frontiers of
subsurface life in the sedimented hydrothermal system of Guaymas Basin,
Front. Microbiol., 5, 1–11, https://doi.org/10.3389/fmicb.2014.00362, 2014.
Teske, A., De Beer, D., McKay, L. J., Tivey, M. K., Biddle, J. F., Hoer, D.,
Lloyd, K. G., Lever, M. A., Røy, H., Albert, D. B., Mendlovitz, H. P., and
MacGregor, B. J.: The Guaymas Basin hiking guide to hydrothermal mounds,
chimneys, and microbial mats: Complex seafloor expressions of subsurface
hydrothermal circulation, Front. Microbiol., 7, 1–23,
https://doi.org/10.3389/fmicb.2016.00075, 2016.
Timmers, P. H., Widjaja-Greefkes, H. A. Ramiro-Garcia, J., Plugge, C. M., and
Stams, A. J.: Growth and activity of ANME clades with different sulfate and
sulfide concentrations in the presence of methane, Front. Microbiol., 6,
988, https://doi.org/10.3389/fmicb.2015.00988, 2015.
Von Damm, K.: Seafloor Hydrothermal Activity: Black Smoker Chemistry And
Chimneys, Annu. Rev. Earth Planet. Sc., 18, 173–204,
https://doi.org/10.1146/annurev.earth.18.1.173, 1990.
Von Damm, K. L., Edmond, J. M., Measures, C. I., and Grant, B.: Chemistry of
submarine hydrothermal solutions at Guaymas Basin, Gulf of California,
Geochim. Cosmochim. Ac., 49, 2221–2237, 1985.
Wallmann, K., Drews, M., Aloisi, G., and Bohrmann, G.: Methane discharge into
the Black Sea and the global ocean via fluid flow through submarine mud
volcanoes, Earth Planet. Sc. Lett., 248, 544–559,
https://doi.org/10.1016/j.epsl.2006.06.026, 2006.
Wegener, G., Krukenberg, V., Ruff, S. E., Kellermann, M. Y., and Knittel, K.:
Metabolic capabilities of microorganisms involved in and associated with the
anaerobic oxidation of methane, Front. Microbiol., 7, 46,
https://doi.org/10.3389/fmicb.2016.00046, 2016.
Welhan, J. A.: Origins of methane in hydrothermal systems, Chem. Geol.,
71, 183–198, https://doi.org/10.1016/0009-2541(88)90114-3, 1988.
Whiticar, M. J.: Carbon and hydrogen isotope systematics of bacterial
formation and oxidation of methane, Chem. Geol., 161, 291–314, 1999.
Zachos, J. C., Wara, M. W., Bohaty, S., Delaney, M. L., Petrizzo, M. R.,
Brill, A., Bralower, T. J., and Premoli-Silva, I.: A transient rise in
tropical sea surface temperature during the Paleocene-Eocene thermal
maximum, Science, 302, 1551–1554, https://doi.org/10.1126/science.1090110, 2003.
Short summary
Abrupt climate changes in Earth’s history might have been triggered by magmatic intrusions into organic-rich sediments, which can potentially release large amounts of greenhouse gases. In the Guaymas Basin, vigorous hydrothermal venting at the ridge axis and off-axis inactive vents show that magmatic intrusions are an effective way to release carbon but must be considered as very short-lived processes in a geological sense. These results need to be taken into account in future climate models.
Abrupt climate changes in Earth’s history might have been triggered by magmatic intrusions...
Altmetrics
Final-revised paper
Preprint