Articles | Volume 15, issue 20
https://doi.org/10.5194/bg-15-6297-2018
https://doi.org/10.5194/bg-15-6297-2018
Research article
 | 
26 Oct 2018
Research article |  | 26 Oct 2018

A model of mercury cycling and isotopic fractionation in the ocean

David E. Archer and Joel D. Blum

Related authors

A stochastic, Lagrangian model of sinking biogenic aggregates in the ocean (SLAMS 1.0): model formulation, validation and sensitivity
Tinna Jokulsdottir and David Archer
Geosci. Model Dev., 9, 1455–1476, https://doi.org/10.5194/gmd-9-1455-2016,https://doi.org/10.5194/gmd-9-1455-2016, 2016
Short summary
A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin
D. Archer
Biogeosciences, 12, 2953–2974, https://doi.org/10.5194/bg-12-2953-2015,https://doi.org/10.5194/bg-12-2953-2015, 2015
Short summary
Modeling the impediment of methane ebullition bubbles by seasonal lake ice
S. Greene, K. M. Walter Anthony, D. Archer, A. Sepulveda-Jauregui, and K. Martinez-Cruz
Biogeosciences, 11, 6791–6811, https://doi.org/10.5194/bg-11-6791-2014,https://doi.org/10.5194/bg-11-6791-2014, 2014
Short summary

Related subject area

Biogeochemistry: Open Ocean
Seasonal cycles of biogeochemical fluxes in the Scotia Sea, Southern Ocean: a stable isotope approach
Anna Belcher, Sian F. Henley, Katharine Hendry, Marianne Wootton, Lisa Friberg, Ursula Dallman, Tong Wang, Christopher Coath, and Clara Manno
Biogeosciences, 20, 3573–3591, https://doi.org/10.5194/bg-20-3573-2023,https://doi.org/10.5194/bg-20-3573-2023, 2023
Short summary
Absence of photophysiological response to iron addition in autumn phytoplankton in the Antarctic sea-ice zone
Asmita Singh, Susanne Fietz, Sandy J. Thomalla, Nicolas Sanchez, Murat V. Ardelan, Sébastien Moreau, Hanna M. Kauko, Agneta Fransson, Melissa Chierici, Saumik Samanta, Thato N. Mtshali, Alakendra N. Roychoudhury, and Thomas J. Ryan-Keogh
Biogeosciences, 20, 3073–3091, https://doi.org/10.5194/bg-20-3073-2023,https://doi.org/10.5194/bg-20-3073-2023, 2023
Short summary
Optimal parameters for the ocean's nutrient, carbon, and oxygen cycles compensate for circulation biases but replumb the biological pump
Benoît Pasquier, Mark Holzer, Matthew A. Chamberlain, Richard J. Matear, Nathaniel L. Bindoff, and François W. Primeau
Biogeosciences, 20, 2985–3009, https://doi.org/10.5194/bg-20-2985-2023,https://doi.org/10.5194/bg-20-2985-2023, 2023
Short summary
Importance of multiple sources of iron for the upper-ocean biogeochemistry over the northern Indian Ocean
Priyanka Banerjee
Biogeosciences, 20, 2613–2643, https://doi.org/10.5194/bg-20-2613-2023,https://doi.org/10.5194/bg-20-2613-2023, 2023
Short summary
Exploring the role of different data types and timescales in the quality of marine biogeochemical model calibration
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences, 20, 2645–2669, https://doi.org/10.5194/bg-20-2645-2023,https://doi.org/10.5194/bg-20-2645-2023, 2023
Short summary

Cited articles

Amos, H. M., Jacob, D. J., Streets, D. G., and Sunderland, E. M.: Legacy impacts of all-time anthropogenic emissions on the global mercury cycle, Global Biogeochem. Cy., 27, 410–421, https://doi.org/10.1002/gbc.20040, 2013. 
Archer, D. E. and Blum, J.: A model of mercury cycling and isotopic fractionation in the ocean, https://doi.org/10.6082/ngqr-zf89, 2018. 
Archer, D. E., Eby, M., Brovkin, V., Ridgewell, A. J., Cao, L., Mikolajewicz, U., Caldeira, K., Matsueda, H., Munhoven, G., Montenegro, A., and Tokos, K.: Atmospheric lifetime of fossil fuel carbon dioxide, Ann. Rev. Earth Planet Sci., 37, 117–134, 2009. 
Balogh, S. J., Tsui, M. T. K., Blum, J. D., Matsuyama, A., Woerndle, G. E., Yano, S., and Tada, A.: Tracking the Fate of Mercury in the Fish and Bottom Sediments of Minamata Bay, Japan, Using Stable Mercury Isotopes, Environ. Sci. Technol., 49, 5399–5406, https://doi.org/10.1021/acs.est.5b00631, 2015. 
Download
Short summary
Humans have had a huge impact on the mercury cycle in the biosphere, but it is difficult to follow the mercury cycle because mercury has so many mobile forms, as gases in the atmosphere and solutes in water. Mercury isotopes constrain mercury fluxes and sources, because mercury has many stable isotopes, and different fractionation mechanisms have different fingerprints in those isotopic compositions. We present the first model of mercury isotopic composition in the ocean.
Altmetrics
Final-revised paper
Preprint