Articles | Volume 15, issue 22
https://doi.org/10.5194/bg-15-6927-2018
https://doi.org/10.5194/bg-15-6927-2018
Research article
 | 
20 Nov 2018
Research article |  | 20 Nov 2018

Effects of elevated CO2 and phytoplankton-derived organic matter on the metabolism of bacterial communities from coastal waters

Antonio Fuentes-Lema, Henar Sanleón-Bartolomé, Luis M. Lubián, and Cristina Sobrino

Related subject area

Biogeochemistry: Coastal Ocean
Technical note: Ocean Alkalinity Enhancement Pelagic Impact Intercomparison Project (OAEPIIP)
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024,https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Estimates of carbon sequestration potential in an expanding Arctic fjord (Hornsund, Svalbard) affected by dark plumes of glacial meltwater
Marlena Szeligowska, Déborah Benkort, Anna Przyborska, Mateusz Moskalik, Bernabé Moreno, Emilia Trudnowska, and Katarzyna Błachowiak-Samołyk
Biogeosciences, 21, 3617–3639, https://doi.org/10.5194/bg-21-3617-2024,https://doi.org/10.5194/bg-21-3617-2024, 2024
Short summary
An assessment of ocean alkalinity enhancement using aqueous hydroxides: kinetics, efficiency, and precipitation thresholds
Mallory C. Ringham, Nathan Hirtle, Cody Shaw, Xi Lu, Julian Herndon, Brendan R. Carter, and Matthew D. Eisaman
Biogeosciences, 21, 3551–3570, https://doi.org/10.5194/bg-21-3551-2024,https://doi.org/10.5194/bg-21-3551-2024, 2024
Short summary
Dissolved nitric oxide in the lower Elbe Estuary and the Port of Hamburg area
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024,https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Variable contribution of wastewater treatment plant effluents to downstream nitrous oxide concentrations and emissions
Weiyi Tang, Jeff Talbott, Timothy Jones, and Bess B. Ward
Biogeosciences, 21, 3239–3250, https://doi.org/10.5194/bg-21-3239-2024,https://doi.org/10.5194/bg-21-3239-2024, 2024
Short summary

Cited articles

Allgaier, M., Riebesell, U., Vogt, M., Thyrhaug, R., and Grossart, H.-P.: Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study, Biogeosciences, 5, 1007–1022, https://doi.org/10.5194/bg-5-1007-2008, 2008. 
Alvarez, M., Fernandez, E., and Perez, F. F.: Air-sea CO2 fluxes in a coastal embayment affected by upwelling: Physical versus biological control, Oceanol. Acta, 22, 499–515, https://doi.org/10.1016/S0399-1784(00)87683-5, 1999. 
Álvarez-Salgado, X. A. and Miller, A. E. J.: Simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation: Conditions for precise shipboard measurements, Mar. Chem., 62, 325–333, https://doi.org/10.1016/S0304-4203(98)00037-1, 1998. 
Arnosti, C., Durkin, S., and Jeffrey, W.: Patterns of extracellular enzyme activities among pelagic marine microbial communities: implications for cycling of dissolved organic carbon, Aquat. Microb. Ecol., 38, 135–145, https://doi.org/10.3354/ame038135, 2005. 
Azam, F. and Malfatti, F.: Microbial structuring of marine ecosystems, Nat. Rev. Microbiol., 5, 782–791, https://doi.org/10.1038/nrmicro1747, 2007. 
Download
Short summary
In contrast to phytoplankton, ocean acidification's (OA's) effects on bacterioplankton are poorly understood. Microcosm experiments to assess bacterioplankton's response to organic matter obtained under current and future CO2 levels were performed. An analysis of bacterial abundance, production, respiration, viability and changes in DOM concentration showed that OA affects bacterial metabolism through changes in the organic matter more than directly affecting future CO2 concentration.
Altmetrics
Final-revised paper
Preprint