Articles | Volume 15, issue 23
https://doi.org/10.5194/bg-15-7177-2018
https://doi.org/10.5194/bg-15-7177-2018
Research article
 | 
03 Dec 2018
Research article |  | 03 Dec 2018

The number of past and future regenerations of iron in the ocean
and its intrinsic fertilization efficiency

Benoît Pasquier and Mark Holzer

Related authors

The ocean's biological and preformed carbon pumps in future steady-state climate scenarios
Benoît Pasquier, Mark Holzer, and Matthew A. Chamberlain
EGUsphere, https://doi.org/10.5194/egusphere-2023-2525,https://doi.org/10.5194/egusphere-2023-2525, 2023
Short summary
Optimal parameters for the ocean's nutrient, carbon, and oxygen cycles compensate for circulation biases but replumb the biological pump
Benoît Pasquier, Mark Holzer, Matthew A. Chamberlain, Richard J. Matear, Nathaniel L. Bindoff, and François W. Primeau
Biogeosciences, 20, 2985–3009, https://doi.org/10.5194/bg-20-2985-2023,https://doi.org/10.5194/bg-20-2985-2023, 2023
Short summary
GNOM v1.0: an optimized steady-state model of the modern marine neodymium cycle
Benoît Pasquier, Sophia K. V. Hines, Hengdi Liang, Yingzhe Wu, Steven L. Goldstein, and Seth G. John
Geosci. Model Dev., 15, 4625–4656, https://doi.org/10.5194/gmd-15-4625-2022,https://doi.org/10.5194/gmd-15-4625-2022, 2022
Short summary
Inverse-model estimates of the ocean's coupled phosphorus, silicon, and iron cycles
Benoît Pasquier and Mark Holzer
Biogeosciences, 14, 4125–4159, https://doi.org/10.5194/bg-14-4125-2017,https://doi.org/10.5194/bg-14-4125-2017, 2017
Short summary

Related subject area

Biogeochemistry: Open Ocean
Technical note: Assessment of float pH data quality control methods – a case study in the subpolar northwest Atlantic Ocean
Cathy Wimart-Rousseau, Tobias Steinhoff, Birgit Klein, Henry Bittig, and Arne Körtzinger
Biogeosciences, 21, 1191–1211, https://doi.org/10.5194/bg-21-1191-2024,https://doi.org/10.5194/bg-21-1191-2024, 2024
Short summary
Linking northeastern North Pacific oxygen changes to upstream surface outcrop variations
Sabine Mecking and Kyla Drushka
Biogeosciences, 21, 1117–1133, https://doi.org/10.5194/bg-21-1117-2024,https://doi.org/10.5194/bg-21-1117-2024, 2024
Short summary
Underestimation of multi-decadal global O2 loss due to an optimal interpolation method
Takamitsu Ito, Hernan E. Garcia, Zhankun Wang, Shoshiro Minobe, Matthew C. Long, Just Cebrian, James Reagan, Tim Boyer, Christopher Paver, Courtney Bouchard, Yohei Takano, Seth Bushinsky, Ahron Cervania, and Curtis A. Deutsch
Biogeosciences, 21, 747–759, https://doi.org/10.5194/bg-21-747-2024,https://doi.org/10.5194/bg-21-747-2024, 2024
Short summary
Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats
Robert W. Izett, Katja Fennel, Adam C. Stoer, and David P. Nicholson
Biogeosciences, 21, 13–47, https://doi.org/10.5194/bg-21-13-2024,https://doi.org/10.5194/bg-21-13-2024, 2024
Short summary
Loss of nitrogen via anaerobic ammonium oxidation (anammox) in the California current system during the Quaternary
Zoë Rebecca van Kemenade, Zeynep Erdem, Ellen C. Hopmans, Jaap S. Sinninghe Damsté, and Darci Rush
EGUsphere, https://doi.org/10.5194/egusphere-2023-2915,https://doi.org/10.5194/egusphere-2023-2915, 2023
Short summary

Cited articles

Achterberg, E. P., Steigenberger, S., Marsay, C. M., LeMoigne, F. A. C., Painter, S. C., Baker, A. R., Connelly, D. P., Moore, C. M., Tagliabue, A., and Tanhua, T.: Iron Biogeochemistry in the High Latitude North Atlantic Ocean, Sci. Rep. UK, 8, 1283, https://doi.org/10.1038/s41598-018-19472-1, 2018. a
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron fertilization studies, Global Biogeochem. Cy., 20, GB2017, https://doi.org/10.1029/2005GB002591, 2006. a, b, c
Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler, K. O., Coale, K. H., Cullen, J. J., de Baar, H. J. W., Follows, M., Harvey, M., Lancelot, C., Levasseur, M., Owens, N. P. J., Pollard, R., Rivkin, R. B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A., Turner, S., and Watson, A. J.: Mesoscale Iron Enrichment Experiments 1993–2005: Synthesis and Future Directions, Science, 315, 612–617, https://doi.org/10.1126/science.1131669, 2007. a, b
Boyd, P. W., Ellwood, M. J., Tagliabue, A., and Twining, B. S.: Biotic and abiotic retention, recycling and remineralization of metals in the ocean, Nat. Geosci., 10, 167–173, https://doi.org/10.1038/ngeo2876, 2017. a
Boyer, T. P., Antonov, J. I., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Johnson, D. R., Locarnini, R. A., Mishonov, A. V., O'Brien, T. D., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., and Zweng, M. M.: World Ocean Database 2013, NOAA Atlas NESDIS 72, edited by: Levitus, S., A. Mishonov, Technical Ed., Silver Spring, MD, 209 pp., https://doi.org/10.7289/V5NZ85MT, 2013. 
Download
Short summary
We analyze data-constrained state estimates of the global marine iron cycle, a key control on the ocean's biological carbon pump. We develop new techniques for counting the iron's number of passages through the biological pump and link this number to the ocean's natural iron fertilization efficiency. We find that the majority of iron is not biologically utilized before being scavenged, and we identify the central equatorial Pacific as having the highest iron fertilization efficiency.
Altmetrics
Final-revised paper
Preprint