Articles | Volume 16, issue 11
https://doi.org/10.5194/bg-16-2369-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-2369-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: influences of landscape structure and land uses on local to regional climate and air quality
Raia Silvia Massad
CORRESPONDING AUTHOR
UMR ECOSYS, INRA AgroParisTech, Université Paris Saclay, 78850,
Thiverval-Grignon, France
Juliette Lathière
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
Susanna Strada
The Abdus Salam International Centre for Theoretical Physics – Earth
System Physics Section, 34151 Trieste, Italy
Mathieu Perrin
UMR SAD-APT, AgroParisTech, INRA, Université Paris-Saclay, 75005,
Paris, France
Erwan Personne
UMR ECOSYS, INRA AgroParisTech, Université Paris Saclay, 78850,
Thiverval-Grignon, France
Marc Stéfanon
Laboratoire de Météorologie Dynamique, Ecole Polytechnique, IPSL Research University, Ecole Normale Supérieure, Université Paris-Saclay, Sorbonne Universités, CNRS, Route de Saclay, 91128 Palaiseau, France
Patrick Stella
UMR SAD-APT, AgroParisTech, INRA, Université Paris-Saclay, 75005,
Paris, France
Sophie Szopa
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
Nathalie de Noblet-Ducoudré
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
Related authors
Yang Liu, Raluca Ciuraru, Letizia Abis, Crist Amelynck, Pauline Buysse, Alex Guenther, Bernard Heinesch, Florence Lafouge, Florent Levavasseur, Benjamin Loubet, Auriane Voyard, and Raia-Silvia Massad
EGUsphere, https://doi.org/10.5194/egusphere-2024-530, https://doi.org/10.5194/egusphere-2024-530, 2024
Short summary
Short summary
This paper reviews the emission and emission processes of biogenic volatile organic compounds (BVOCs) from various crops and soil under different management practices, highlighting challenges in modeling the emissions and proposing a conceptual model for estimation. The aim of this paper is to present agricultural BVOC data and related mechanistic processes to enhance model accuracy and reduce uncertainties in estimating BVOC emissions from agriculture.
Marco Carozzi, Raphaël Martin, Katja Klumpp, and Raia Silvia Massad
Biogeosciences, 19, 3021–3050, https://doi.org/10.5194/bg-19-3021-2022, https://doi.org/10.5194/bg-19-3021-2022, 2022
Short summary
Short summary
Crop and grassland production indicates a strong reduction due to the shortening of the length of the growing cycle associated with rising temperatures. Greenhouse gas emissions will increase exponentially over the century, often exceeding the CO2 accumulation of agro-ecosystems. Water demand will double in the next few decades, whereas the benefits in terms of yield will not fill the gap of C losses due to climate perturbation. Climate change will have a regionally distributed effect in the EU.
C. R. Flechard, R.-S. Massad, B. Loubet, E. Personne, D. Simpson, J. O. Bash, E. J. Cooter, E. Nemitz, and M. A. Sutton
Biogeosciences, 10, 5183–5225, https://doi.org/10.5194/bg-10-5183-2013, https://doi.org/10.5194/bg-10-5183-2013, 2013
Maureen Beaudor, Didier Hauglustaine, Juliette Lathière, Martin Van Damme, Lieven Clarisse, and Nicolas Vuichard
EGUsphere, https://doi.org/10.5194/egusphere-2024-2022, https://doi.org/10.5194/egusphere-2024-2022, 2024
Short summary
Short summary
Agriculture is the biggest ammonia (NH3) source, impacting air quality, climate, and ecosystems. Because of food demand, NH3 emissions are projected to rise by 2100. Using a global model, we analyzed the impact of present and future NH3 emissions generated from a land model. Our results show improved ammonia patterns compared to a reference inventory. Future scenarios predict up to 70 % increase in global NH3 burden, significant changes in radiative forcing, and could significantly elevate N2O.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Xavier Faïn, Sophie Szopa, Vaishali Naïk, Patricia Martinerie, David M. Etheridge, Rachael H. Rhodes, Cathy M. Trudinger, Vasilii V. Petrenko, Kévin Fourteau, and Phillip Place
EGUsphere, https://doi.org/10.5194/egusphere-2024-653, https://doi.org/10.5194/egusphere-2024-653, 2024
Short summary
Short summary
Carbon monoxide (CO) plays a crucial role in the atmosphere's oxidizing capacity. In this study, we analyse how historical (1850–2014) [CO] outputs from state-of-the-art global chemistry-climate models over Greenland and Antarctica are able to capture both absolute values and trends recorded in multi-site ice archives. A disparity in [CO] growth rates emerges in the Northern Hemisphere between models and observations from 1920–1975 CE, possibly linked to uncertainties in CO emission factors.
Yang Liu, Raluca Ciuraru, Letizia Abis, Crist Amelynck, Pauline Buysse, Alex Guenther, Bernard Heinesch, Florence Lafouge, Florent Levavasseur, Benjamin Loubet, Auriane Voyard, and Raia-Silvia Massad
EGUsphere, https://doi.org/10.5194/egusphere-2024-530, https://doi.org/10.5194/egusphere-2024-530, 2024
Short summary
Short summary
This paper reviews the emission and emission processes of biogenic volatile organic compounds (BVOCs) from various crops and soil under different management practices, highlighting challenges in modeling the emissions and proposing a conceptual model for estimation. The aim of this paper is to present agricultural BVOC data and related mechanistic processes to enhance model accuracy and reduce uncertainties in estimating BVOC emissions from agriculture.
Susanna Strada, Andrea Pozzer, Graziano Giuliani, Erika Coppola, Fabien Solmon, Xiaoyan Jiang, Alex Guenther, Efstratios Bourtsoukidis, Dominique Serça, Jonathan Williams, and Filippo Giorgi
Atmos. Chem. Phys., 23, 13301–13327, https://doi.org/10.5194/acp-23-13301-2023, https://doi.org/10.5194/acp-23-13301-2023, 2023
Short summary
Short summary
Water deficit modifies emissions of isoprene, an aromatic compound released by plants that influences the production of an air pollutant such as ozone. Numerical modelling shows that, during the warmest and driest summers, isoprene decreases between −20 and −60 % over the Euro-Mediterranean region, while near-surface ozone only diminishes by a few percent. Decreases in isoprene emissions not only happen under dry conditions, but also could occur after prolonged or repeated water deficits.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data, 15, 3819–3852, https://doi.org/10.5194/essd-15-3819-2023, https://doi.org/10.5194/essd-15-3819-2023, 2023
Short summary
Short summary
This paper introduces the new high-resolution land use and land cover change dataset LUCAS LUC for Europe (version 1.1), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Cyril Caram, Sophie Szopa, Anne Cozic, Slimane Bekki, Carlos A. Cuevas, and Alfonso Saiz-Lopez
Geosci. Model Dev., 16, 4041–4062, https://doi.org/10.5194/gmd-16-4041-2023, https://doi.org/10.5194/gmd-16-4041-2023, 2023
Short summary
Short summary
We studied the role of halogenated compounds (containing chlorine, bromine and iodine), emitted by natural processes (mainly above the oceans), in the chemistry of the lower layers of the atmosphere. We introduced this relatively new chemistry in a three-dimensional climate–chemistry model and looked at how this chemistry will disrupt the ozone. We showed that the concentration of ozone decreases by 22 % worldwide and that of the atmospheric detergent, OH, by 8 %.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Maureen Beaudor, Nicolas Vuichard, Juliette Lathière, Nikolaos Evangeliou, Martin Van Damme, Lieven Clarisse, and Didier Hauglustaine
Geosci. Model Dev., 16, 1053–1081, https://doi.org/10.5194/gmd-16-1053-2023, https://doi.org/10.5194/gmd-16-1053-2023, 2023
Short summary
Short summary
Ammonia mainly comes from the agricultural sector, and its volatilization relies on environmental variables. Our approach aims at benefiting from an Earth system model framework to estimate it. By doing so, we represent a consistent spatial distribution of the emissions' response to environmental changes.
We greatly improved the seasonal cycle of emissions compared with previous work. In addition, our model includes natural soil emissions (that are rarely represented in modeling approaches).
Antoine Guion, Solène Turquety, Arineh Cholakian, Jan Polcher, Antoine Ehret, and Juliette Lathière
Atmos. Chem. Phys., 23, 1043–1071, https://doi.org/10.5194/acp-23-1043-2023, https://doi.org/10.5194/acp-23-1043-2023, 2023
Short summary
Short summary
At high concentrations, tropospheric ozone (O3) deteriorates air quality. Weather conditions are key to understanding the variability in O3 concentration, especially during extremes. We suggest that identifying the presence of combined heatwaves is essential to the study of droughts in canopy–troposphere interactions and O3 concentration. Even so, they are associated, on average, with an increase in O3, partly explained by an increase in precursor emissions and a decrease in dry deposition.
Marco Carozzi, Raphaël Martin, Katja Klumpp, and Raia Silvia Massad
Biogeosciences, 19, 3021–3050, https://doi.org/10.5194/bg-19-3021-2022, https://doi.org/10.5194/bg-19-3021-2022, 2022
Short summary
Short summary
Crop and grassland production indicates a strong reduction due to the shortening of the length of the growing cycle associated with rising temperatures. Greenhouse gas emissions will increase exponentially over the century, often exceeding the CO2 accumulation of agro-ecosystems. Water demand will double in the next few decades, whereas the benefits in terms of yield will not fill the gap of C losses due to climate perturbation. Climate change will have a regionally distributed effect in the EU.
Anne Sophie Daloz, Clemens Schwingshackl, Priscilla Mooney, Susanna Strada, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Michal Belda, Tomas Halenka, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 2403–2419, https://doi.org/10.5194/tc-16-2403-2022, https://doi.org/10.5194/tc-16-2403-2022, 2022
Short summary
Short summary
Snow plays a major role in the regulation of the Earth's surface temperature. Together with climate change, rising temperatures are already altering snow in many ways. In this context, it is crucial to better understand the ability of climate models to represent snow and snow processes. This work focuses on Europe and shows that the melting season in spring still represents a challenge for climate models and that more work is needed to accurately simulate snow–atmosphere interactions.
Priscilla A. Mooney, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Natalie de Noblet-Ducoudré, Marcus Breil, Rita M. Cardoso, Anne Sophie Daloz, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 1383–1397, https://doi.org/10.5194/tc-16-1383-2022, https://doi.org/10.5194/tc-16-1383-2022, 2022
Short summary
Short summary
We use multiple regional climate models to show that afforestation in sub-polar and alpine regions reduces the radiative impact of snow albedo on the atmosphere, reduces snow cover, and delays the start of the snowmelt season. This is important for local communities that are highly reliant on snowpack for water resources and winter tourism. However, models disagree on the amount of change particularly when snow is melting. This shows that more research is needed on snow–vegetation interactions.
Giannis Sofiadis, Eleni Katragkou, Edouard L. Davin, Diana Rechid, Nathalie de Noblet-Ducoudre, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Lisa Jach, Ronny Meier, Priscilla A. Mooney, Pedro M. M. Soares, Susanna Strada, Merja H. Tölle, and Kirsten Warrach Sagi
Geosci. Model Dev., 15, 595–616, https://doi.org/10.5194/gmd-15-595-2022, https://doi.org/10.5194/gmd-15-595-2022, 2022
Short summary
Short summary
Afforestation is currently promoted as a greenhouse gas mitigation strategy. In our study, we examine the differences in soil temperature and moisture between grounds covered either by forests or grass. The main conclusion emerged is that forest-covered grounds are cooler but drier than open lands in summer. Therefore, afforestation disrupts the seasonal cycle of soil temperature, which in turn could trigger changes in crucial chemical processes such as soil carbon sequestration.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-252, https://doi.org/10.5194/essd-2021-252, 2021
Manuscript not accepted for further review
Short summary
Short summary
This paper introduces the new high-resolution land-use land-cover change dataset LUCAS LUC historical and future land use and land cover change dataset (Version 1.0), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Pierre Sepulchre, Arnaud Caubel, Jean-Baptiste Ladant, Laurent Bopp, Olivier Boucher, Pascale Braconnot, Patrick Brockmann, Anne Cozic, Yannick Donnadieu, Jean-Louis Dufresne, Victor Estella-Perez, Christian Ethé, Frédéric Fluteau, Marie-Alice Foujols, Guillaume Gastineau, Josefine Ghattas, Didier Hauglustaine, Frédéric Hourdin, Masa Kageyama, Myriam Khodri, Olivier Marti, Yann Meurdesoif, Juliette Mignot, Anta-Clarisse Sarr, Jérôme Servonnat, Didier Swingedouw, Sophie Szopa, and Delphine Tardif
Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, https://doi.org/10.5194/gmd-13-3011-2020, 2020
Short summary
Short summary
Our paper describes IPSL-CM5A2, an Earth system model that can be integrated for long (several thousands of years) climate simulations. We describe the technical aspects, assess the model computing performance and evaluate the strengths and weaknesses of the model, by comparing pre-industrial and historical runs to the previous-generation model simulations and to observations. We also present a Cretaceous simulation as a case study to show how the model simulates deep-time paleoclimates.
Edouard L. Davin, Diana Rechid, Marcus Breil, Rita M. Cardoso, Erika Coppola, Peter Hoffmann, Lisa L. Jach, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Kai Radtke, Mario Raffa, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Tölle, Kirsten Warrach-Sagi, and Volker Wulfmeyer
Earth Syst. Dynam., 11, 183–200, https://doi.org/10.5194/esd-11-183-2020, https://doi.org/10.5194/esd-11-183-2020, 2020
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Didier A. Hauglustaine, Sophie Szopa, Ann R. Stavert, Nathan Luke Abraham, Alex T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Béatrice Josse, Douglas Kinnison, Ole Kirner, Virginie Marécal, Fiona M. O'Connor, David A. Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 19, 13701–13723, https://doi.org/10.5194/acp-19-13701-2019, https://doi.org/10.5194/acp-19-13701-2019, 2019
Short summary
Short summary
The role of hydroxyl radical changes in methane trends is debated, hindering our understanding of the methane cycle. This study quantifies how uncertainties in the hydroxyl radical may influence methane abundance in the atmosphere based on the inter-model comparison of hydroxyl radical fields and model simulations of CH4 abundance with different hydroxyl radical scenarios during 2000–2016. We show that hydroxyl radical changes could contribute up to 54 % of model-simulated methane biases.
Sophie Szopa, Rémi Thiéblemont, Slimane Bekki, Svetlana Botsyun, and Pierre Sepulchre
Clim. Past, 15, 1187–1203, https://doi.org/10.5194/cp-15-1187-2019, https://doi.org/10.5194/cp-15-1187-2019, 2019
Short summary
Short summary
The stratospheric ozone layer plays a key role in atmospheric thermal structure and circulation. Here, with a chemistry–climate model, we evaluate the potential role of stratospheric ozone chemistry in the case of Eocene hot conditions. Our results suggest that using stratospheric ozone calculated by the modeled Eocene conditions instead of the commonly specified preindustrial ozone distribution could change the simulated global surface air temperature by as much as 14 %.
Claire Delon, Corinne Galy-Lacaux, Dominique Serça, Erwan Personne, Eric Mougin, Marcellin Adon, Valérie Le Dantec, Benjamin Loubet, Rasmus Fensholt, and Torbern Tagesson
Biogeosciences, 16, 2049–2077, https://doi.org/10.5194/bg-16-2049-2019, https://doi.org/10.5194/bg-16-2049-2019, 2019
Short summary
Short summary
In the Sahel region during the wet season, CO2 and NO are released to the atmosphere, and NH3 is deposited on the soil. During the dry season, processes are strongly reduced. This paper shows the temporal variation in these soil–atmosphere exchanges of trace gases for 2 years, their sharp increase when the first rains fall onto dry soils, and how microbial processes are involved. We use a modelling approach, which is necessary when continuous measurements are not possible in remote regions.
Ludivine Conte, Sophie Szopa, Roland Séférian, and Laurent Bopp
Biogeosciences, 16, 881–902, https://doi.org/10.5194/bg-16-881-2019, https://doi.org/10.5194/bg-16-881-2019, 2019
Short summary
Short summary
The ocean is a source of atmospheric carbon monoxide, a key component for the oxidizing capacity of the atmosphere. We use a global ocean biogeochemistry model to dynamically assess the oceanic CO budget and its emission to the atmosphere at the global scale. The total emissions of CO to the atmosphere are 4.0 Tg C yr−1. The oceanic CO emission maps produced are relevant for use by atmospheric chemical models, especially to study the oxidizing capacity of the atmosphere above the remote ocean.
Arlene M. Fiore, Emily V. Fischer, George P. Milly, Shubha Pandey Deolal, Oliver Wild, Daniel A. Jaffe, Johannes Staehelin, Olivia E. Clifton, Dan Bergmann, William Collins, Frank Dentener, Ruth M. Doherty, Bryan N. Duncan, Bernd Fischer, Stefan Gilge, Peter G. Hess, Larry W. Horowitz, Alexandru Lupu, Ian A. MacKenzie, Rokjin Park, Ludwig Ries, Michael G. Sanderson, Martin G. Schultz, Drew T. Shindell, Martin Steinbacher, David S. Stevenson, Sophie Szopa, Christoph Zellweger, and Guang Zeng
Atmos. Chem. Phys., 18, 15345–15361, https://doi.org/10.5194/acp-18-15345-2018, https://doi.org/10.5194/acp-18-15345-2018, 2018
Short summary
Short summary
We demonstrate a proof-of-concept approach for applying northern midlatitude mountaintop peroxy acetyl nitrate (PAN) measurements and a multi-model ensemble during April to constrain the influence of continental-scale anthropogenic precursor emissions on PAN. Our findings imply a role for carefully coordinated multi-model ensembles in helping identify observations for discriminating among widely varying (and poorly constrained) model responses of atmospheric constituents to changes in emissions.
Anne-Cyrielle Genard-Zielinski, Christophe Boissard, Elena Ormeño, Juliette Lathière, Ilja M. Reiter, Henri Wortham, Jean-Philippe Orts, Brice Temime-Roussel, Bertrand Guenet, Svenja Bartsch, Thierry Gauquelin, and Catherine Fernandez
Biogeosciences, 15, 4711–4730, https://doi.org/10.5194/bg-15-4711-2018, https://doi.org/10.5194/bg-15-4711-2018, 2018
Short summary
Short summary
From seasonal in situ observations on how a Mediterranean ecosystem responds to drought, a specific isoprene emission (ER, emission rates) algorithm was developed, upon which 2100 projections (IPCC RCP2.6 and RCP8.5 scenarios) were made. Emission rates were found to be mainly sensitive to future temperature changes and poorly represented by current empirical emission models. Drought was found to aggravate thermal stress on emission rates.
Xu Yue, Susanna Strada, Nadine Unger, and Aihui Wang
Atmos. Chem. Phys., 17, 13699–13719, https://doi.org/10.5194/acp-17-13699-2017, https://doi.org/10.5194/acp-17-13699-2017, 2017
Short summary
Short summary
Climate change will significantly increase wildfire emissions in boreal North America by the midcentury, leading to increased surface ozone and atmospheric aerosols. These air pollutants can affect vegetation photosynthesis through stomatal uptake (for ozone) and radiative and climatic perturbations (for aerosols). Using a carbon–chemistry–climate model, we estimate trivial ozone vegetation damages but significant aerosol-induced reduction in ecosystem productivity by the 2050s.
Sebastian Laufs, Mathieu Cazaunau, Patrick Stella, Ralf Kurtenbach, Pierre Cellier, Abdelwahid Mellouki, Benjamin Loubet, and Jörg Kleffmann
Atmos. Chem. Phys., 17, 6907–6923, https://doi.org/10.5194/acp-17-6907-2017, https://doi.org/10.5194/acp-17-6907-2017, 2017
Short summary
Short summary
Sources of nitrous acid (HONO), a major precursor of the OH radical, are still under controversial discussion. Since mainly ground surface sources have been proposed, HONO fluxes were measured above an agricultural field. Positive daytime fluxes were observed which showed strong correlation with the product of the NO2 concentration and J(NO2). These results indicate HONO formation by photosensitized heterogeneous conversion of NO2 on soil surfaces as observed in recent laboratory studies.
Reinhard Prestele, Almut Arneth, Alberte Bondeau, Nathalie de Noblet-Ducoudré, Thomas A. M. Pugh, Stephen Sitch, Elke Stehfest, and Peter H. Verburg
Earth Syst. Dynam., 8, 369–386, https://doi.org/10.5194/esd-8-369-2017, https://doi.org/10.5194/esd-8-369-2017, 2017
Short summary
Short summary
Land-use change is still overly simplistically implemented in global ecosystem and climate models. We identify and discuss three major challenges at the interface of land-use and climate modeling and propose ways for how to improve land-use representation in climate models. We conclude that land-use data-provider and user communities need to engage in the joint development and evaluation of enhanced land-use datasets to improve the quantification of land use–climate interactions and feedback.
Raffaella M. Vuolo, Benjamin Loubet, Nicolas Mascher, Jean-Christophe Gueudet, Brigitte Durand, Patricia Laville, Olivier Zurfluh, Raluca Ciuraru, Patrick Stella, and Ivonne Trebs
Biogeosciences, 14, 2225–2244, https://doi.org/10.5194/bg-14-2225-2017, https://doi.org/10.5194/bg-14-2225-2017, 2017
Short summary
Short summary
Atmospheric nitrogen oxides (NO and NO2) are a threat for the environment and human health. Agricultural soils are a large but uncertain source, partly due to a lack of direct fluxes measurements. We quantified NO, NO2 and ozone (O3) fluxes above an oilseed rape crop rotation. We found that 0.27 % of nitrogen applied was emitted as NO, whose emissions were favoured by fertilisation under dry and warm conditions. We found significant interactions between NO, NO2 and O3 even above bare soil.
Yi Yin, Frederic Chevallier, Philippe Ciais, Gregoire Broquet, Anne Cozic, Sophie Szopa, and Yilong Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-166, https://doi.org/10.5194/acp-2017-166, 2017
Revised manuscript not accepted
Short summary
Short summary
CO inverse modelling studies have so far reported significant discrepancies between model concentrations optimised with the Measurement of Pollution in the Troposphere (MOPITT) satellite retrievals and surface in-situ measurements. Here, we assess how well a global CTM fits a large variety of independent CO observations before and after assimilating MOPITTv6 retrievals to optimise CO sources/sink and discuss potential sources of errors and their implications for global CO modelling studies.
Sauveur Belviso, Ilja Marco Reiter, Benjamin Loubet, Valérie Gros, Juliette Lathière, David Montagne, Marc Delmotte, Michel Ramonet, Cerise Kalogridis, Benjamin Lebegue, Nicolas Bonnaire, Victor Kazan, Thierry Gauquelin, Catherine Fernandez, and Bernard Genty
Atmos. Chem. Phys., 16, 14909–14923, https://doi.org/10.5194/acp-16-14909-2016, https://doi.org/10.5194/acp-16-14909-2016, 2016
Short summary
Short summary
The role that soil, foliage, and atmospheric dynamics have on surface OCS exchange in a Mediterranean forest ecosystem in southern France (O3HP) was investigated in June of 2012 and 2013 with essentially a top-down approach. Atmospheric data suggest that the site is appropriate for estimating GPP directly from eddy covariance measurements of OCS fluxes, but it is less adequate for scaling NEE to GPP from observations of vertical gradients of OCS relative to CO2 during the daytime.
Palmira Messina, Juliette Lathière, Katerina Sindelarova, Nicolas Vuichard, Claire Granier, Josefine Ghattas, Anne Cozic, and Didier A. Hauglustaine
Atmos. Chem. Phys., 16, 14169–14202, https://doi.org/10.5194/acp-16-14169-2016, https://doi.org/10.5194/acp-16-14169-2016, 2016
Short summary
Short summary
We provide BVOC emissions for the present scenario, employing the updated ORCHIDEE emission module and the MEGAN model. The modelling community still faces the problem of emission model evaluation because of the absence of adequate observations. The accurate analysis performed, employing the two models, allowed the various processes modelled to be investigated, in order to fully understand the origin of the mismatch between the model estimates and to quantify the emission uncertainties.
Svenja Bartsch, Bertrand Guenet, Christophe Boissard, Juliette Lathière, Jean-Yves Peterschmitt, Annemiek Stegehuis, Ilja-M. Reiter, Thierry Gauquelin, Virginie Baldy, and Catherine Fernandez
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-491, https://doi.org/10.5194/bg-2016-491, 2016
Revised manuscript not accepted
Short summary
Short summary
Mediterranean ecosystems are significant carbon sinks but the carbon dynamic in such ecosystem is still not fully understood. An improved understanding of the drivers of the carbon fixation by plants is needed to better predict how such ecosystems will respond to climate change. We showed that annual precipitation was not a significant driver of annual carbon fixation by plants.
David M. Lawrence, George C. Hurtt, Almut Arneth, Victor Brovkin, Kate V. Calvin, Andrew D. Jones, Chris D. Jones, Peter J. Lawrence, Nathalie de Noblet-Ducoudré, Julia Pongratz, Sonia I. Seneviratne, and Elena Shevliakova
Geosci. Model Dev., 9, 2973–2998, https://doi.org/10.5194/gmd-9-2973-2016, https://doi.org/10.5194/gmd-9-2973-2016, 2016
Short summary
Short summary
Human land-use activities have resulted in large changes to the Earth's surface, with resulting implications for climate. In the future, land-use activities are likely to expand and intensify further to meet growing demands for food, fiber, and energy. The goal of LUMIP is to take the next steps in land-use change science, and enable, coordinate, and ultimately address the most important land-use science questions in more depth and sophistication than possible in a multi-model context to date.
Raquel A. Silva, J. Jason West, Jean-François Lamarque, Drew T. Shindell, William J. Collins, Stig Dalsoren, Greg Faluvegi, Gerd Folberth, Larry W. Horowitz, Tatsuya Nagashima, Vaishali Naik, Steven T. Rumbold, Kengo Sudo, Toshihiko Takemura, Daniel Bergmann, Philip Cameron-Smith, Irene Cionni, Ruth M. Doherty, Veronika Eyring, Beatrice Josse, Ian A. MacKenzie, David Plummer, Mattia Righi, David S. Stevenson, Sarah Strode, Sophie Szopa, and Guang Zengast
Atmos. Chem. Phys., 16, 9847–9862, https://doi.org/10.5194/acp-16-9847-2016, https://doi.org/10.5194/acp-16-9847-2016, 2016
Short summary
Short summary
Using ozone and PM2.5 concentrations from the ACCMIP ensemble of chemistry-climate models for the four Representative Concentration Pathway scenarios (RCPs), together with projections of future population and baseline mortality rates, we quantify the human premature mortality impacts of future ambient air pollution in 2030, 2050 and 2100, relative to 2000 concentrations. We also estimate the global mortality burden of ozone and PM2.5 in 2000 and each future period.
Yan Li, Nathalie De Noblet-Ducoudré, Edouard L. Davin, Safa Motesharrei, Ning Zeng, Shuangcheng Li, and Eugenia Kalnay
Earth Syst. Dynam., 7, 167–181, https://doi.org/10.5194/esd-7-167-2016, https://doi.org/10.5194/esd-7-167-2016, 2016
Short summary
Short summary
The impact of deforestation is to warm the tropics and cool the extratropics, and the magnitude of the impact depends on the spatial extent and the degree of forest loss. That also means location matters for the impact of deforestation on temperature because such an impact is largely determined by the climate condition of that region. For example, under dry and wet conditions, deforestation can have quite different climate impacts.
X. Wu, N. Vuichard, P. Ciais, N. Viovy, N. de Noblet-Ducoudré, X. Wang, V. Magliulo, M. Wattenbach, L. Vitale, P. Di Tommasi, E. J. Moors, W. Jans, J. Elbers, E. Ceschia, T. Tallec, C. Bernhofer, T. Grünwald, C. Moureaux, T. Manise, A. Ligne, P. Cellier, B. Loubet, E. Larmanou, and D. Ripoche
Geosci. Model Dev., 9, 857–873, https://doi.org/10.5194/gmd-9-857-2016, https://doi.org/10.5194/gmd-9-857-2016, 2016
Short summary
Short summary
The response of crops to changing climate and atmospheric CO2 could have large effects on food production, terrestrial carbon, water, energy fluxes and the climate feedbacks. We developed a new process-oriented terrestrial biogeochemical model named ORCHIDEE-CROP (v0), which integrates a generic crop phenology and harvest module into the land surface model ORCHIDEE. Our model has good ability to capture the spatial gradients of crop phenology, carbon and energy-related variables across Europe.
N. Zannoni, V. Gros, M. Lanza, R. Sarda, B. Bonsang, C. Kalogridis, S. Preunkert, M. Legrand, C. Jambert, C. Boissard, and J. Lathiere
Atmos. Chem. Phys., 16, 1619–1636, https://doi.org/10.5194/acp-16-1619-2016, https://doi.org/10.5194/acp-16-1619-2016, 2016
Short summary
Short summary
Our manuscript shows results of OH reactivity and Biogenic Volatile Organic Compounds (BVOCs) concentration during a field experiment conducted in late spring 2014 at the Observatoire de Haute Provence (OHP) site. We found that OH reactivity is among the highest measured in forests globally (69 s−1) and it is mainly due to isoprene. No missing reactivity was present during daytime inside or above the canopy, while 50 % missing reactivity was found by night at both heights.
T. Verbeke, J. Lathière, S. Szopa, and N. de Noblet-Ducoudré
Atmos. Chem. Phys., 15, 13555–13568, https://doi.org/10.5194/acp-15-13555-2015, https://doi.org/10.5194/acp-15-13555-2015, 2015
Short summary
Short summary
Dry deposition is a key component of surface-atmosphere exchange of compounds, acting as a sink for several chemical species and strongly driven by meteorological factors, chemical properties of the trace gas considered and land surface properties. The objective of our study is to investigate the impact of vegetation distribution change, which is still not very well quantified, on the dry deposition of key atmospheric species: ozone and nitric acid vapor.
J. G. Levine, A. R. MacKenzie, O. J. Squire, A. T. Archibald, P. T. Griffiths, N. L. Abraham, J. A. Pyle, D. E. Oram, G. Forster, J. F. Brito, J. D. Lee, J. R. Hopkins, A. C. Lewis, S. J. B. Bauguitte, C. F. Demarco, P. Artaxo, P. Messina, J. Lathière, D. A. Hauglustaine, E. House, C. N. Hewitt, and E. Nemitz
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-24251-2015, https://doi.org/10.5194/acpd-15-24251-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
This study explores our ability to simulate atmospheric chemistry stemming from isoprene emissions—a reactive gas emitted from vegetation—in pristine and polluted regions of the Amazon basin. We explore how two contrasting models fare in reproducing recent airborne measurements in the region. Their differing treatments of transport and mixing are found to: profoundly affect their performance; and yield very different pictures of the exposure of the rainforest to harmful ozone concentrations.
D. Plake, M. Sörgel, P. Stella, A. Held, and I. Trebs
Biogeosciences, 12, 945–959, https://doi.org/10.5194/bg-12-945-2015, https://doi.org/10.5194/bg-12-945-2015, 2015
Short summary
Short summary
Grasslands cover vast terrestrial areas and the main biomass is concentrated in the lowest part of the canopy. We found that measured transport times in the lowermost canopy layer are fastest during nighttime. During daytime, the reaction of NO with O3, as well as NO2 uptake by plants, was faster than transport. This suggests that grassland canopies of similar structure may exhibit a strong potential to retain soil emitted NO due to oxidation and subsequent uptake of NO2 by plants.
A. Moravek, P. Stella, T. Foken, and I. Trebs
Atmos. Chem. Phys., 15, 899–911, https://doi.org/10.5194/acp-15-899-2015, https://doi.org/10.5194/acp-15-899-2015, 2015
A.-C. Genard-Zielinski, C. Boissard, C. Fernandez, C. Kalogridis, J. Lathière, V. Gros, N. Bonnaire, and E. Ormeño
Atmos. Chem. Phys., 15, 431–446, https://doi.org/10.5194/acp-15-431-2015, https://doi.org/10.5194/acp-15-431-2015, 2015
P. Ricaud, B. Sič, L. El Amraoui, J.-L. Attié, R. Zbinden, P. Huszar, S. Szopa, J. Parmentier, N. Jaidan, M. Michou, R. Abida, F. Carminati, D. Hauglustaine, T. August, J. Warner, R. Imasu, N. Saitoh, and V.-H. Peuch
Atmos. Chem. Phys., 14, 11427–11446, https://doi.org/10.5194/acp-14-11427-2014, https://doi.org/10.5194/acp-14-11427-2014, 2014
L. R. Boysen, V. Brovkin, V. K. Arora, P. Cadule, N. de Noblet-Ducoudré, E. Kato, J. Pongratz, and V. Gayler
Earth Syst. Dynam., 5, 309–319, https://doi.org/10.5194/esd-5-309-2014, https://doi.org/10.5194/esd-5-309-2014, 2014
C. Kalogridis, V. Gros, R. Sarda-Esteve, B. Langford, B. Loubet, B. Bonsang, N. Bonnaire, E. Nemitz, A.-C. Genard, C. Boissard, C. Fernandez, E. Ormeño, D. Baisnée, I. Reiter, and J. Lathière
Atmos. Chem. Phys., 14, 10085–10102, https://doi.org/10.5194/acp-14-10085-2014, https://doi.org/10.5194/acp-14-10085-2014, 2014
J. P. Boisier, N. de Noblet-Ducoudré, and P. Ciais
Hydrol. Earth Syst. Sci., 18, 3571–3590, https://doi.org/10.5194/hess-18-3571-2014, https://doi.org/10.5194/hess-18-3571-2014, 2014
M. D. A. Rounsevell, A. Arneth, P. Alexander, D. G. Brown, N. de Noblet-Ducoudré, E. Ellis, J. Finnigan, K. Galvin, N. Grigg, I. Harman, J. Lennox, N. Magliocca, D. Parker, B. C. O'Neill, P. H. Verburg, and O. Young
Earth Syst. Dynam., 5, 117–137, https://doi.org/10.5194/esd-5-117-2014, https://doi.org/10.5194/esd-5-117-2014, 2014
O. J. Squire, A. T. Archibald, N. L. Abraham, D. J. Beerling, C. N. Hewitt, J. Lathière, R. C. Pike, P. J. Telford, and J. A. Pyle
Atmos. Chem. Phys., 14, 1011–1024, https://doi.org/10.5194/acp-14-1011-2014, https://doi.org/10.5194/acp-14-1011-2014, 2014
R. Locatelli, P. Bousquet, F. Chevallier, A. Fortems-Cheney, S. Szopa, M. Saunois, A. Agusti-Panareda, D. Bergmann, H. Bian, P. Cameron-Smith, M. P. Chipperfield, E. Gloor, S. Houweling, S. R. Kawa, M. Krol, P. K. Patra, R. G. Prinn, M. Rigby, R. Saito, and C. Wilson
Atmos. Chem. Phys., 13, 9917–9937, https://doi.org/10.5194/acp-13-9917-2013, https://doi.org/10.5194/acp-13-9917-2013, 2013
P. Stella, M. Kortner, C. Ammann, T. Foken, F. X. Meixner, and I. Trebs
Biogeosciences, 10, 5997–6017, https://doi.org/10.5194/bg-10-5997-2013, https://doi.org/10.5194/bg-10-5997-2013, 2013
A. Colette, B. Bessagnet, R. Vautard, S. Szopa, S. Rao, S. Schucht, Z. Klimont, L. Menut, G. Clain, F. Meleux, G. Curci, and L. Rouïl
Atmos. Chem. Phys., 13, 7451–7471, https://doi.org/10.5194/acp-13-7451-2013, https://doi.org/10.5194/acp-13-7451-2013, 2013
C. R. Flechard, R.-S. Massad, B. Loubet, E. Personne, D. Simpson, J. O. Bash, E. J. Cooter, E. Nemitz, and M. A. Sutton
Biogeosciences, 10, 5183–5225, https://doi.org/10.5194/bg-10-5183-2013, https://doi.org/10.5194/bg-10-5183-2013, 2013
V. Naik, A. Voulgarakis, A. M. Fiore, L. W. Horowitz, J.-F. Lamarque, M. Lin, M. J. Prather, P. J. Young, D. Bergmann, P. J. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. Doherty, V. Eyring, G. Faluvegi, G. A. Folberth, B. Josse, Y. H. Lee, I. A. MacKenzie, T. Nagashima, T. P. C. van Noije, D. A. Plummer, M. Righi, S. T. Rumbold, R. Skeie, D. T. Shindell, D. S. Stevenson, S. Strode, K. Sudo, S. Szopa, and G. Zeng
Atmos. Chem. Phys., 13, 5277–5298, https://doi.org/10.5194/acp-13-5277-2013, https://doi.org/10.5194/acp-13-5277-2013, 2013
P. Nabat, S. Somot, M. Mallet, I. Chiapello, J. J. Morcrette, F. Solmon, S. Szopa, F. Dulac, W. Collins, S. Ghan, L. W. Horowitz, J. F. Lamarque, Y. H. Lee, V. Naik, T. Nagashima, D. Shindell, and R. Skeie
Atmos. Meas. Tech., 6, 1287–1314, https://doi.org/10.5194/amt-6-1287-2013, https://doi.org/10.5194/amt-6-1287-2013, 2013
K. W. Bowman, D. T. Shindell, H. M. Worden, J.F. Lamarque, P. J. Young, D. S. Stevenson, Z. Qu, M. de la Torre, D. Bergmann, P. J. Cameron-Smith, W. J. Collins, R. Doherty, S. B. Dalsøren, G. Faluvegi, G. Folberth, L. W. Horowitz, B. M. Josse, Y. H. Lee, I. A. MacKenzie, G. Myhre, T. Nagashima, V. Naik, D. A. Plummer, S. T. Rumbold, R. B. Skeie, S. A. Strode, K. Sudo, S. Szopa, A. Voulgarakis, G. Zeng, S. S. Kulawik, A. M. Aghedo, and J. R. Worden
Atmos. Chem. Phys., 13, 4057–4072, https://doi.org/10.5194/acp-13-4057-2013, https://doi.org/10.5194/acp-13-4057-2013, 2013
D. T. Shindell, J.-F. Lamarque, M. Schulz, M. Flanner, C. Jiao, M. Chin, P. J. Young, Y. H. Lee, L. Rotstayn, N. Mahowald, G. Milly, G. Faluvegi, Y. Balkanski, W. J. Collins, A. J. Conley, S. Dalsoren, R. Easter, S. Ghan, L. Horowitz, X. Liu, G. Myhre, T. Nagashima, V. Naik, S. T. Rumbold, R. Skeie, K. Sudo, S. Szopa, T. Takemura, A. Voulgarakis, J.-H. Yoon, and F. Lo
Atmos. Chem. Phys., 13, 2939–2974, https://doi.org/10.5194/acp-13-2939-2013, https://doi.org/10.5194/acp-13-2939-2013, 2013
D. S. Stevenson, P. J. Young, V. Naik, J.-F. Lamarque, D. T. Shindell, A. Voulgarakis, R. B. Skeie, S. B. Dalsoren, G. Myhre, T. K. Berntsen, G. A. Folberth, S. T. Rumbold, W. J. Collins, I. A. MacKenzie, R. M. Doherty, G. Zeng, T. P. C. van Noije, A. Strunk, D. Bergmann, P. Cameron-Smith, D. A. Plummer, S. A. Strode, L. Horowitz, Y. H. Lee, S. Szopa, K. Sudo, T. Nagashima, B. Josse, I. Cionni, M. Righi, V. Eyring, A. Conley, K. W. Bowman, O. Wild, and A. Archibald
Atmos. Chem. Phys., 13, 3063–3085, https://doi.org/10.5194/acp-13-3063-2013, https://doi.org/10.5194/acp-13-3063-2013, 2013
J. P. Boisier, N. de Noblet-Ducoudré, and P. Ciais
Biogeosciences, 10, 1501–1516, https://doi.org/10.5194/bg-10-1501-2013, https://doi.org/10.5194/bg-10-1501-2013, 2013
A. Voulgarakis, V. Naik, J.-F. Lamarque, D. T. Shindell, P. J. Young, M. J. Prather, O. Wild, R. D. Field, D. Bergmann, P. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. M. Doherty, V. Eyring, G. Faluvegi, G. A. Folberth, L. W. Horowitz, B. Josse, I. A. MacKenzie, T. Nagashima, D. A. Plummer, M. Righi, S. T. Rumbold, D. S. Stevenson, S. A. Strode, K. Sudo, S. Szopa, and G. Zeng
Atmos. Chem. Phys., 13, 2563–2587, https://doi.org/10.5194/acp-13-2563-2013, https://doi.org/10.5194/acp-13-2563-2013, 2013
P. J. Young, A. T. Archibald, K. W. Bowman, J.-F. Lamarque, V. Naik, D. S. Stevenson, S. Tilmes, A. Voulgarakis, O. Wild, D. Bergmann, P. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. M. Doherty, V. Eyring, G. Faluvegi, L. W. Horowitz, B. Josse, Y. H. Lee, I. A. MacKenzie, T. Nagashima, D. A. Plummer, M. Righi, S. T. Rumbold, R. B. Skeie, D. T. Shindell, S. A. Strode, K. Sudo, S. Szopa, and G. Zeng
Atmos. Chem. Phys., 13, 2063–2090, https://doi.org/10.5194/acp-13-2063-2013, https://doi.org/10.5194/acp-13-2063-2013, 2013
J.-F. Lamarque, D. T. Shindell, B. Josse, P. J. Young, I. Cionni, V. Eyring, D. Bergmann, P. Cameron-Smith, W. J. Collins, R. Doherty, S. Dalsoren, G. Faluvegi, G. Folberth, S. J. Ghan, L. W. Horowitz, Y. H. Lee, I. A. MacKenzie, T. Nagashima, V. Naik, D. Plummer, M. Righi, S. T. Rumbold, M. Schulz, R. B. Skeie, D. S. Stevenson, S. Strode, K. Sudo, S. Szopa, A. Voulgarakis, and G. Zeng
Geosci. Model Dev., 6, 179–206, https://doi.org/10.5194/gmd-6-179-2013, https://doi.org/10.5194/gmd-6-179-2013, 2013
Ø. Hodnebrog, T. K. Berntsen, O. Dessens, M. Gauss, V. Grewe, I. S. A. Isaksen, B. Koffi, G. Myhre, D. Olivié, M. J. Prather, F. Stordal, S. Szopa, Q. Tang, P. van Velthoven, and J. E. Williams
Atmos. Chem. Phys., 12, 12211–12225, https://doi.org/10.5194/acp-12-12211-2012, https://doi.org/10.5194/acp-12-12211-2012, 2012
Related subject area
Biogeochemistry: Air - Land Exchange
Aggregation of ice-nucleating macromolecules from Betula pendula pollen determines ice nucleation efficiency
Evaluating adsorption isotherm models for determining the partitioning of ammonium between soil and soil pore water in environmental soil samples
Similar freezing spectra of particles in plant canopies and in the air at a high-altitude site
Anticorrelation of net uptake of atmospheric CO2 by the world ocean and terrestrial biosphere in current carbon cycle models
Impact of meteorological conditions on the biogenic volatile organic compound (BVOC) emission rate from eastern Mediterranean vegetation under drought
Monitoring cropland daily carbon dioxide exchange at field scales with Sentinel-2 satellite imagery
Compound soil and atmospheric drought (CSAD) events and CO2 fluxes of a mixed deciduous forest: the occurrence, impact, and temporal contribution of main drivers
The influence of plant water stress on vegetation–atmosphere exchanges: implications for ozone modelling
An elucidatory model of oxygen’s partial pressure inside substomatal cavities
High interspecific variability in ice nucleation activity suggests pollen ice nucleators are incidental
Using automated machine learning for the upscaling of gross primary productivity
Interpretability of negative latent heat fluxes from eddy covariance measurements in dry conditions
Forest-floor respiration, N2O fluxes, and CH4 fluxes in a subalpine spruce forest: drivers and annual budgets
Constraining 2010–2020 Amazonian carbon flux estimates with satellite solar-induced fluorescence (SIF)
Enhanced net CO2 exchange of a semideciduous forest in the southern Amazon due to diffuse radiation from biomass burning
Observational relationships between ammonia, carbon dioxide and water vapor under a wide range of meteorological and turbulent conditions: RITA-2021 campaign
Environmental controls of winter soil carbon dioxide fluxes in boreal and tundra environments
Origin of secondary fatty alcohols in atmospheric aerosols in a cool–temperate forest based on their mass size distributions
Sap flow and leaf gas exchange response to a drought and heatwave in urban green spaces in a Nordic city
Changes in biogenic volatile organic compound emissions in response to the El Niño–Southern Oscillation
Rethinking the deployment of static chambers for CO2 flux measurement in dry desert soils
Lichen species across Alaska produce highly active and stable ice nucleators
A differentiable, physics-informed ecosystem modeling and learning framework for large-scale inverse problems: demonstration with photosynthesis simulations
Snow–vegetation–atmosphere interactions in alpine tundra
Synergy between TROPOMI sun-induced chlorophyll fluorescence and MODIS spectral reflectance for understanding the dynamics of gross primary productivity at Integrated Carbon Observatory System (ICOS) ecosystem flux sites
Atmospheric deposition of reactive nitrogen to a deciduous forest in the southern Appalachian Mountains
Tropical cyclones facilitate recovery of forest leaf area from dry spells in East Asia
Minor contributions of daytime monoterpenes are major contributors to atmospheric reactivity
Using atmospheric observations to quantify annual biogenic carbon dioxide fluxes on the Alaska North Slope
Forest–atmosphere exchange of reactive nitrogen in a remote region – Part II: Modeling annual budgets
Growth and actual leaf temperature modulate CO2 responsiveness of monoterpene emissions from holm oak in opposite ways
Multi-year observations reveal a larger than expected autumn respiration signal across northeast Eurasia
Reviews and syntheses: VOC emissions from soil cover in boreal and temperate natural ecosystems of the Northern Hemisphere
Internal tree cycling and atmospheric archiving of mercury: examination with concentration and stable isotope analyses
Contrasting drought legacy effects on gross primary productivity in a mixed versus pure beech forest
CO2 and CH4 exchanges between moist moss tundra and atmosphere on Kapp Linné, Svalbard
Recent extreme drought events in the Amazon rainforest: assessment of different precipitation and evapotranspiration datasets and drought indicators
Variability and uncertainty in flux-site-scale net ecosystem exchange simulations based on machine learning and remote sensing: a systematic evaluation
Update of a biogeochemical model with process-based algorithms to predict ammonia volatilization from fertilized cultivated uplands and rice paddy fields
Massive warming-induced carbon loss from subalpine grassland soils in an altitudinal transplantation experiment
Climatic variation drives loss and restructuring of carbon and nitrogen in boreal forest wildfire
Gaps in network infrastructure limit our understanding of biogenic methane emissions for the United States
Changes of the aerodynamic characteristics of a flux site after an extensive windthrow
Carbon sequestration potential of street tree plantings in Helsinki
Technical note: Incorporating expert domain knowledge into causal structure discovery workflows
Sensitivity of biomass burning emissions estimates to land surface information
A convolutional neural network for spatial downscaling of satellite-based solar-induced chlorophyll fluorescence (SIFnet)
Influence of plant ecophysiology on ozone dry deposition: comparing between multiplicative and photosynthesis-based dry deposition schemes and their responses to rising CO2 level
Modeling the interinfluence of fertilizer-induced NH3 emission, nitrogen deposition, and aerosol radiative effects using modified CESM2
Physiological and climate controls on foliar mercury uptake by European tree species
Florian Wieland, Nadine Bothen, Ralph Schwidetzky, Teresa M. Seifried, Paul Bieber, Ulrich Pöschl, Konrad Meister, Mischa Bonn, Janine Fröhlich-Nowoisky, and Hinrich Grothe
Biogeosciences, 22, 103–115, https://doi.org/10.5194/bg-22-103-2025, https://doi.org/10.5194/bg-22-103-2025, 2025
Short summary
Short summary
Betula pendula is a widespread birch tree species containing ice nucleation agents that can trigger the freezing of cloud droplets and thereby alter the evolution of clouds. Our study identifies three distinct ice-nucleating macromolecule (INM) aggregates of varying size that can nucleate ice at temperatures up to –5.4°C. Our findings suggest that these vegetation-derived particles may influence atmospheric processes, weather, and climate more strongly than previously thought.
Matthew G. Davis, Kevin Yan, and Jennifer G. Murphy
Biogeosciences, 21, 5381–5392, https://doi.org/10.5194/bg-21-5381-2024, https://doi.org/10.5194/bg-21-5381-2024, 2024
Short summary
Short summary
Ammonia applied as fertilizer can volatilize into the atmosphere. This can threaten vulnerable ecosystems and human health. We investigated the partitioning of ammonia between an immobile adsorbed phase and mobile aqueous phase using several adsorption models. Using the Temkin model we determined that previous approaches to this issue may overestimate the quantity available for exchange by a factor of 5–20, suggesting that ammonia emissions from soil may be overestimated.
Annika Einbock and Franz Conen
Biogeosciences, 21, 5219–5231, https://doi.org/10.5194/bg-21-5219-2024, https://doi.org/10.5194/bg-21-5219-2024, 2024
Short summary
Short summary
A small fraction of particles found at great heights in the atmosphere can freeze cloud droplets at temperatures of ≥ −10 °C and thus influence cloud properties. We provide a novel type of evidence that plant canopies are a major source of such biological ice-nucleating particles in the air above the Alps, potentially affecting mixed-phase cloud development.
Stephen E. Schwartz
Biogeosciences, 21, 5045–5057, https://doi.org/10.5194/bg-21-5045-2024, https://doi.org/10.5194/bg-21-5045-2024, 2024
Short summary
Short summary
Anticorrelation in uptake of atmospheric CO2 following pulse emission or abrupt cessation of emissions is examined in two key model intercomparison studies. In both studies net transfer coefficients from the atmosphere to the world ocean and the terrestrial biosphere are anticorrelated across models, reducing inter-model diversity in decrease of atmospheric CO2 following the perturbation, increasing uncertainties of global warming potentials and consequences of prospective emission reductions.
Qian Li, Gil Lerner, Einat Bar, Efraim Lewinsohn, and Eran Tas
Biogeosciences, 21, 4133–4147, https://doi.org/10.5194/bg-21-4133-2024, https://doi.org/10.5194/bg-21-4133-2024, 2024
Short summary
Short summary
Our research indicates that instantaneous changes in meteorological parameters better reflect drought-induced changes in the emission rates of biogenic volatile organic compounds (BVOCs) from natural vegetation than their absolute values. However, following a small amount of irrigation, this trend became more moderate or reversed, accompanied by a dramatic increase in BVOC emission rates. These findings advance our understanding of BVOC emissions under climate change.
Pia Gottschalk, Aram Kalhori, Zhan Li, Christian Wille, and Torsten Sachs
Biogeosciences, 21, 3593–3616, https://doi.org/10.5194/bg-21-3593-2024, https://doi.org/10.5194/bg-21-3593-2024, 2024
Short summary
Short summary
To improve the accuracy of spatial carbon exchange estimates, we evaluated simple linear models for net ecosystem exchange (NEE) and gross primary productivity (GPP) and how they can be used to upscale the CO2 exchange of agricultural fields. The models are solely driven by Sentinel-2-derived vegetation indices (VIs). Evaluations show that different VIs have variable power to estimate NEE and GPP of crops in different years. The overall performance is as good as results from complex crop models.
Liliana Scapucci, Ankit Shekhar, Sergio Aranda-Barranco, Anastasiia Bolshakova, Lukas Hörtnagl, Mana Gharun, and Nina Buchmann
Biogeosciences, 21, 3571–3592, https://doi.org/10.5194/bg-21-3571-2024, https://doi.org/10.5194/bg-21-3571-2024, 2024
Short summary
Short summary
Forests face increased exposure to “compound soil and atmospheric drought” (CSAD) events due to global warming. We examined the impacts and drivers of CO2 fluxes during CSAD events at multiple layers of a deciduous forest over 18 years. Results showed reduced net ecosystem productivity and forest-floor respiration during CSAD events, mainly driven by soil and atmospheric drought. This unpredictability in forest CO2 fluxes jeopardises reforestation projects aimed at mitigating CO2 emissions.
Tamara Emmerichs, Yen-Sen Lu, and Domenico Taraborrelli
Biogeosciences, 21, 3251–3269, https://doi.org/10.5194/bg-21-3251-2024, https://doi.org/10.5194/bg-21-3251-2024, 2024
Short summary
Short summary
We assess the representation of the plant response to surface water in a global atmospheric chemistry model. This sensitivity is crucial for the return of precipitation back into the atmosphere and thus significantly impacts the representation of weather as well as air quality. The newly implemented response function reduces this process and has a better comparison with satellite observations. This yields a higher intensity of unusual warm periods and higher production of air pollutants.
Andrew S. Kowalski
EGUsphere, https://doi.org/10.5194/egusphere-2024-1966, https://doi.org/10.5194/egusphere-2024-1966, 2024
Short summary
Short summary
The laws of physics show that leaf oxygen is not photosynthetically enriched, but extremely dilute due to the overwhelming effects of humidification. This challenges the prevailing diffusion-only paradigm regarding leaf gas exchanges, requiring non-diffusive transport. Such transport also explains why fluxes of carbon dioxide and water vapour become decoupled at very high temperatures, as has been observed but not explained by plant physiologists.
Nina L. H. Kinney, Charles A. Hepburn, Matthew I. Gibson, Daniel Ballesteros, and Thomas F. Whale
Biogeosciences, 21, 3201–3214, https://doi.org/10.5194/bg-21-3201-2024, https://doi.org/10.5194/bg-21-3201-2024, 2024
Short summary
Short summary
Molecules released from plant pollen induce the formation of ice from supercooled water at temperatures warm enough to suggest an underlying function for this activity. In this study we show that ice nucleators are ubiquitous in pollen. We suggest the molecules responsible fulfil some unrelated biological function and nucleate ice incidentally. The ubiquity of ice-nucleating molecules in pollen and particularly active examples reveal a greater potential for pollen to impact weather and climate.
Max Gaber, Yanghui Kang, Guy Schurgers, and Trevor Keenan
Biogeosciences, 21, 2447–2472, https://doi.org/10.5194/bg-21-2447-2024, https://doi.org/10.5194/bg-21-2447-2024, 2024
Short summary
Short summary
Gross primary productivity (GPP) describes the photosynthetic carbon assimilation, which plays a vital role in the carbon cycle. We can measure GPP locally, but producing larger and continuous estimates is challenging. Here, we present an approach to extrapolate GPP to a global scale using satellite imagery and automated machine learning. We benchmark different models and predictor variables and achieve an estimate that can capture 75 % of the variation in GPP.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Luana Krebs, Susanne Burri, Iris Feigenwinter, Mana Gharun, Philip Meier, and Nina Buchmann
Biogeosciences, 21, 2005–2028, https://doi.org/10.5194/bg-21-2005-2024, https://doi.org/10.5194/bg-21-2005-2024, 2024
Short summary
Short summary
This study explores year-round forest-floor greenhouse gas (GHG) fluxes in a Swiss spruce forest. Soil temperature and snow depth affected forest-floor respiration, while CH4 uptake was linked to snow cover. Negligible N2O fluxes were observed. In 2022, a warm year, CO2 emissions notably increased. The study suggests rising forest-floor GHG emissions due to climate change, impacting carbon sink behavior. Thus, for future forest management, continuous year-round GHG flux measurements are crucial.
Archana Dayalu, Marikate Mountain, Bharat Rastogi, John B. Miller, and Luciana Gatti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1082, https://doi.org/10.5194/egusphere-2024-1082, 2024
Short summary
Short summary
The Amazon is facing unprecedented disturbance. Determining trends in Amazonia’s carbon balance and its sensitivity to disturbance requires reliable vegetation models that adequately capture how its ecosystems exchange carbon with the atmosphere. Our work presents novel estimates of vegetation carbon exchange with the atmosphere across the Amazon, estimated using ground- and satellite-based ecosystem measurements. Our model agrees with independent aircraft observations from discrete locations.
Simone Rodrigues, Glauber Cirino, Demerval Moreira, Andrea Pozzer, Rafael Palácios, Sung-Ching Lee, Breno Imbiriba, José Nogueira, Maria Isabel Vitorino, and George Vourlitis
Biogeosciences, 21, 843–868, https://doi.org/10.5194/bg-21-843-2024, https://doi.org/10.5194/bg-21-843-2024, 2024
Short summary
Short summary
The radiative effects of atmospheric particles are still unknown for a wide variety of species and types of vegetation present in Amazonian biomes. We examined the effects of aerosols on solar radiation and their impacts on photosynthesis in an area of semideciduous forest in the southern Amazon Basin. Under highly smoky-sky conditions, our results show substantial photosynthetic interruption (20–70 %), attributed specifically to the decrease in solar radiation and leaf canopy temperature.
Ruben B. Schulte, Jordi Vilà-Guerau de Arellano, Susanna Rutledge-Jonker, Shelley van der Graaf, Jun Zhang, and Margreet C. van Zanten
Biogeosciences, 21, 557–574, https://doi.org/10.5194/bg-21-557-2024, https://doi.org/10.5194/bg-21-557-2024, 2024
Short summary
Short summary
We analyzed measurements with the aim of finding relations between the surface atmosphere exchange of NH3 and the CO2 uptake and transpiration by vegetation. We found a high correlation of daytime NH3 emissions with both latent heat flux and photosynthetically active radiation. Very few simultaneous measurements of NH3, CO2 fluxes and meteorological variables exist at sub-diurnal timescales. This study paves the way to finding more robust relations between the NH3 exchange flux and CO2 uptake.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Carolina Voigt, Nick Rutter, Paul Mann, Jean-Daniel Sylvain, and Alexandre Roy
Biogeosciences, 20, 5087–5108, https://doi.org/10.5194/bg-20-5087-2023, https://doi.org/10.5194/bg-20-5087-2023, 2023
Short summary
Short summary
We present an analysis of soil CO2 emissions in boreal and tundra regions during the non-growing season. We show that when the soil is completely frozen, soil temperature is the main control on CO2 emissions. When the soil is around the freezing point, with a mix of liquid water and ice, the liquid water content is the main control on CO2 emissions. This study highlights that the vegetation–snow–soil interactions must be considered to understand soil CO2 emissions during the non-growing season.
Yuhao Cui, Eri Tachibana, Kimitaka Kawamura, and Yuzo Miyazaki
Biogeosciences, 20, 4969–4980, https://doi.org/10.5194/bg-20-4969-2023, https://doi.org/10.5194/bg-20-4969-2023, 2023
Short summary
Short summary
Fatty alcohols (FAs) are major components of surface lipids in plant leaves and serve as surface-active aerosols. Our study on the aerosol size distributions in a forest suggests that secondary FAs (SFAs) originated from plant waxes and that leaf senescence status is likely an important factor controlling the size distribution of SFAs. This study provides new insights into the sources of primary biological aerosol particles (PBAPs) and their effects on the aerosol ice nucleation activity.
Joyson Ahongshangbam, Liisa Kulmala, Jesse Soininen, Yasmin Frühauf, Esko Karvinen, Yann Salmon, Anna Lintunen, Anni Karvonen, and Leena Järvi
Biogeosciences, 20, 4455–4475, https://doi.org/10.5194/bg-20-4455-2023, https://doi.org/10.5194/bg-20-4455-2023, 2023
Short summary
Short summary
Urban vegetation is important for removing urban CO2 emissions and cooling. We studied the response of urban trees' functions (photosynthesis and transpiration) to a heatwave and drought at four urban green areas in the city of Helsinki. We found that tree water use was increased during heatwave and drought periods, but there was no change in the photosynthesis rates. The heat and drought conditions were severe at the local scale but were not excessive enough to restrict urban trees' functions.
Ryan Vella, Andrea Pozzer, Matthew Forrest, Jos Lelieveld, Thomas Hickler, and Holger Tost
Biogeosciences, 20, 4391–4412, https://doi.org/10.5194/bg-20-4391-2023, https://doi.org/10.5194/bg-20-4391-2023, 2023
Short summary
Short summary
We investigated the effect of the El Niño–Southern Oscillation (ENSO) on biogenic volatile organic compound (BVOC) emissions from plants. ENSO events can cause a significant increase in these emissions, which have a long-term impact on the Earth's atmosphere. Persistent ENSO conditions can cause long-term changes in vegetation, resulting in even higher BVOC emissions. We link ENSO-induced emission anomalies with driving atmospheric and vegetational variables.
Nadav Bekin and Nurit Agam
Biogeosciences, 20, 3791–3802, https://doi.org/10.5194/bg-20-3791-2023, https://doi.org/10.5194/bg-20-3791-2023, 2023
Short summary
Short summary
The mechanisms of soil CO2 flux in dry desert soils are not fully understood. Yet studies conducted in desert ecosystems rarely discuss potential errors related to using the commonly used flux chambers in dry and bare soils. In our study, the conventional deployment practice of the chambers underestimated the instantaneous CO2 flux by up to 50 % and the total daily CO2 uptake by 35 %. This suggests that desert soils are a larger carbon sink than previously reported.
Rosemary J. Eufemio, Ingrid de Almeida Ribeiro, Todd L. Sformo, Gary A. Laursen, Valeria Molinero, Janine Fröhlich-Nowoisky, Mischa Bonn, and Konrad Meister
Biogeosciences, 20, 2805–2812, https://doi.org/10.5194/bg-20-2805-2023, https://doi.org/10.5194/bg-20-2805-2023, 2023
Short summary
Short summary
Lichens, the dominant vegetation in the Arctic, contain ice nucleators (INs) that enable freezing close to 0°C. Yet the abundance, diversity, and function of lichen INs is unknown. Our screening of lichens across Alaska reveal that most species have potent INs. We find that lichens contain two IN populations which retain activity under environmentally relevant conditions. The ubiquity and stability of lichen INs suggest that they may have considerable impacts on local atmospheric patterns.
Doaa Aboelyazeed, Chonggang Xu, Forrest M. Hoffman, Jiangtao Liu, Alex W. Jones, Chris Rackauckas, Kathryn Lawson, and Chaopeng Shen
Biogeosciences, 20, 2671–2692, https://doi.org/10.5194/bg-20-2671-2023, https://doi.org/10.5194/bg-20-2671-2023, 2023
Short summary
Short summary
Photosynthesis is critical for life and has been affected by the changing climate. Many parameters come into play while modeling, but traditional calibration approaches face many issues. Our framework trains coupled neural networks to provide parameters to a photosynthesis model. Using big data, we independently found parameter values that were correlated with those in the literature while giving higher correlation and reduced biases in photosynthesis rates.
Norbert Pirk, Kristoffer Aalstad, Yeliz A. Yilmaz, Astrid Vatne, Andrea L. Popp, Peter Horvath, Anders Bryn, Ane Victoria Vollsnes, Sebastian Westermann, Terje Koren Berntsen, Frode Stordal, and Lena Merete Tallaksen
Biogeosciences, 20, 2031–2047, https://doi.org/10.5194/bg-20-2031-2023, https://doi.org/10.5194/bg-20-2031-2023, 2023
Short summary
Short summary
We measured the land–atmosphere exchange of CO2 and water vapor in alpine Norway over 3 years. The extremely snow-rich conditions in 2020 reduced the total annual evapotranspiration to 50 % and reduced the growing-season carbon assimilation to turn the ecosystem from a moderate annual carbon sink to an even stronger source. Our analysis suggests that snow cover anomalies are driving the most consequential short-term responses in this ecosystem’s functioning.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, and Kamel Soudani
Biogeosciences, 20, 1473–1490, https://doi.org/10.5194/bg-20-1473-2023, https://doi.org/10.5194/bg-20-1473-2023, 2023
Short summary
Short summary
This study focuses on the relationship between sun-induced chlorophyll fluorescence (SIF) and ecosystem gross primary productivity (GPP) across the ICOS European flux tower network. It shows that SIF, coupled with reflectance observations, explains over 80 % of the GPP variability across diverse ecosystems but fails to bring new information compared to reflectance alone at coarse spatial scales (~5 km). These findings have applications in agriculture and ecophysiological studies.
John T. Walker, Xi Chen, Zhiyong Wu, Donna Schwede, Ryan Daly, Aleksandra Djurkovic, A. Christopher Oishi, Eric Edgerton, Jesse Bash, Jennifer Knoepp, Melissa Puchalski, John Iiames, and Chelcy F. Miniat
Biogeosciences, 20, 971–995, https://doi.org/10.5194/bg-20-971-2023, https://doi.org/10.5194/bg-20-971-2023, 2023
Short summary
Short summary
Better estimates of atmospheric nitrogen (N) deposition are needed to accurately assess ecosystem risk and impacts from deposition of nutrients and acidity. Using measurements and modeling, we estimate total N deposition of 6.7 kg N ha−1 yr−1 at a forest site in the southern Appalachian Mountains, a region sensitive to atmospheric deposition. Reductions in deposition of reduced forms of N (ammonia and ammonium) will be needed to meet the lowest estimates of N critical loads for the region.
Yi-Ying Chen and Sebastiaan Luyssaert
Biogeosciences, 20, 349–363, https://doi.org/10.5194/bg-20-349-2023, https://doi.org/10.5194/bg-20-349-2023, 2023
Short summary
Short summary
Tropical cyclones are typically assumed to be associated with ecosystem damage. This study challenges this assumption and suggests that instead of reducing leaf area, cyclones in East Asia may increase leaf area by alleviating water stress.
Deborah F. McGlynn, Graham Frazier, Laura E. R. Barry, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Biogeosciences, 20, 45–55, https://doi.org/10.5194/bg-20-45-2023, https://doi.org/10.5194/bg-20-45-2023, 2023
Short summary
Short summary
Using a custom-made gas chromatography flame ionization detector, 2 years of speciated hourly biogenic volatile organic compound data were collected in a forest in central Virginia. We identify diurnal and seasonal variability in the data, which is shown to impact atmospheric oxidant budgets. A comparison with emission models identified discrepancies with implications for model outcomes. We suggest increased monitoring of speciated biogenic volatile organic compounds to improve modeled results.
Luke D. Schiferl, Jennifer D. Watts, Erik J. L. Larson, Kyle A. Arndt, Sébastien C. Biraud, Eugénie S. Euskirchen, Jordan P. Goodrich, John M. Henderson, Aram Kalhori, Kathryn McKain, Marikate E. Mountain, J. William Munger, Walter C. Oechel, Colm Sweeney, Yonghong Yi, Donatella Zona, and Róisín Commane
Biogeosciences, 19, 5953–5972, https://doi.org/10.5194/bg-19-5953-2022, https://doi.org/10.5194/bg-19-5953-2022, 2022
Short summary
Short summary
As the Arctic rapidly warms, vast stores of thawing permafrost could release carbon dioxide (CO2) into the atmosphere. We combined observations of atmospheric CO2 concentrations from aircraft and a tower with observed CO2 fluxes from tundra ecosystems and found that the Alaskan North Slope in not a consistent source nor sink of CO2. Our study shows the importance of using both site-level and atmospheric measurements to constrain regional net CO2 fluxes and improve biogenic processes in models.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, Richard Kranenburg, and Christian Brümmer
Biogeosciences, 19, 5287–5311, https://doi.org/10.5194/bg-19-5287-2022, https://doi.org/10.5194/bg-19-5287-2022, 2022
Short summary
Short summary
For the first time, we compared four methods for estimating the annual dry deposition of total reactive nitrogen into a low-polluted forest ecosystem. In our analysis, we used 2.5 years of flux measurements, an in situ modeling approach, a large-scale chemical transport model (CTM), and canopy budget models. Annual nitrogen dry deposition budgets ranged between 4.3 and 6.7 kg N ha−1 a−1, depending on the applied method.
Michael Staudt, Juliane Daussy, Joseph Ingabire, and Nafissa Dehimeche
Biogeosciences, 19, 4945–4963, https://doi.org/10.5194/bg-19-4945-2022, https://doi.org/10.5194/bg-19-4945-2022, 2022
Short summary
Short summary
We studied the short- and long-term effects of CO2 as a function of temperature on monoterpene emissions from holm oak. Similarly to isoprene, emissions decreased non-linearly with increasing CO2, with no differences among compounds and chemotypes. The CO2 response was modulated by actual leaf and growth temperature but not by growth CO2. Estimates of annual monoterpene release under double CO2 suggest that CO2 inhibition does not offset the increase in emissions due to expected warming.
Brendan Byrne, Junjie Liu, Yonghong Yi, Abhishek Chatterjee, Sourish Basu, Rui Cheng, Russell Doughty, Frédéric Chevallier, Kevin W. Bowman, Nicholas C. Parazoo, David Crisp, Xing Li, Jingfeng Xiao, Stephen Sitch, Bertrand Guenet, Feng Deng, Matthew S. Johnson, Sajeev Philip, Patrick C. McGuire, and Charles E. Miller
Biogeosciences, 19, 4779–4799, https://doi.org/10.5194/bg-19-4779-2022, https://doi.org/10.5194/bg-19-4779-2022, 2022
Short summary
Short summary
Plants draw CO2 from the atmosphere during the growing season, while respiration releases CO2 to the atmosphere throughout the year, driving seasonal variations in atmospheric CO2 that can be observed by satellites, such as the Orbiting Carbon Observatory 2 (OCO-2). Using OCO-2 XCO2 data and space-based constraints on plant growth, we show that permafrost-rich northeast Eurasia has a strong seasonal release of CO2 during the autumn, hinting at an unexpectedly large respiration signal from soils.
Valery A. Isidorov and Andrej A. Zaitsev
Biogeosciences, 19, 4715–4746, https://doi.org/10.5194/bg-19-4715-2022, https://doi.org/10.5194/bg-19-4715-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds (VOCs) play a critical role in earth-system processes: they are
main playersin the formation of tropospheric O3 and secondary aerosols, which have a significant impact on climate, human health and crops. A complex mixture of VOCs, formed as a result of physicochemical and biological processes, is released into the atmosphere from the forest floor. This review presents data on the composition of VOCs and contribution of various processes to their emissions.
David S. McLagan, Harald Biester, Tomas Navrátil, Stephan M. Kraemer, and Lorenz Schwab
Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022, https://doi.org/10.5194/bg-19-4415-2022, 2022
Short summary
Short summary
Spruce and larch trees are effective archiving species for historical atmospheric mercury using growth rings of bole wood. Mercury stable isotope analysis proved an effective tool to characterise industrial mercury signals and assess mercury uptake pathways (leaf uptake for both wood and bark) and mercury cycling within the trees. These data detail important information for understanding the mercury biogeochemical cycle particularly in forest systems.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Anders Lindroth, Norbert Pirk, Ingibjörg S. Jónsdóttir, Christian Stiegler, Leif Klemedtsson, and Mats B. Nilsson
Biogeosciences, 19, 3921–3934, https://doi.org/10.5194/bg-19-3921-2022, https://doi.org/10.5194/bg-19-3921-2022, 2022
Short summary
Short summary
We measured the fluxes of carbon dioxide and methane between a moist moss tundra and the atmosphere on Svalbard in order to better understand how such ecosystems are affecting the climate and vice versa. We found that the system was a small sink of carbon dioxide and a small source of methane. These fluxes are small in comparison with other tundra ecosystems in the high Arctic. Analysis of temperature sensitivity showed that respiration was more sensitive than photosynthesis above about 6 ℃.
Phillip Papastefanou, Christian S. Zang, Zlatan Angelov, Aline Anderson de Castro, Juan Carlos Jimenez, Luiz Felipe Campos De Rezende, Romina C. Ruscica, Boris Sakschewski, Anna A. Sörensson, Kirsten Thonicke, Carolina Vera, Nicolas Viovy, Celso Von Randow, and Anja Rammig
Biogeosciences, 19, 3843–3861, https://doi.org/10.5194/bg-19-3843-2022, https://doi.org/10.5194/bg-19-3843-2022, 2022
Short summary
Short summary
The Amazon rainforest has been hit by multiple severe drought events. In this study, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon. Using nine different precipitation datasets and three drought indicators we find large differences in drought stress across the Amazon region. We conclude that future studies should use multiple rainfall datasets and drought indicators when estimating the impact of drought stress in the Amazon region.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 19, 3739–3756, https://doi.org/10.5194/bg-19-3739-2022, https://doi.org/10.5194/bg-19-3739-2022, 2022
Short summary
Short summary
A number of studies have been conducted by using machine learning approaches to simulate carbon fluxes. We performed a meta-analysis of these net ecosystem exchange (NEE) simulations. Random forests and support vector machines performed better than other algorithms. Models with larger timescales had a lower accuracy. For different plant functional types (PFTs), there were significant differences in the predictors used and their effects on model accuracy.
Siqi Li, Wei Zhang, Xunhua Zheng, Yong Li, Shenghui Han, Rui Wang, Kai Wang, Zhisheng Yao, Chunyan Liu, and Chong Zhang
Biogeosciences, 19, 3001–3019, https://doi.org/10.5194/bg-19-3001-2022, https://doi.org/10.5194/bg-19-3001-2022, 2022
Short summary
Short summary
The CNMM–DNDC model was modified to simulate ammonia volatilization (AV) from croplands. AV from cultivated uplands followed the first-order kinetics, which was jointly regulated by the factors of soil properties and meteorological conditions. AV simulation from rice paddy fields was improved by incorporating Jayaweera–Mikkelsen mechanisms. The modified model performed well in simulating the observed cumulative AV measured from 63 fertilization events in China.
Matthias Volk, Matthias Suter, Anne-Lena Wahl, and Seraina Bassin
Biogeosciences, 19, 2921–2937, https://doi.org/10.5194/bg-19-2921-2022, https://doi.org/10.5194/bg-19-2921-2022, 2022
Short summary
Short summary
Because soils are an important sink for greenhouse gasses, we subjected sub-alpine grassland to a six-level climate change treatment.
Two independent methods showed that at warming > 1.5 °C the grassland ecosystem lost ca. 14 % or ca. 1 kg C m−2 in 5 years.
This shrinking of the terrestrial C sink implies a substantial positive feedback to the atmospheric greenhouse effect.
It is likely that this dramatic C loss is a transient effect before a new, climate-adjusted steady state is reached.
Johan A. Eckdahl, Jeppe A. Kristensen, and Daniel B. Metcalfe
Biogeosciences, 19, 2487–2506, https://doi.org/10.5194/bg-19-2487-2022, https://doi.org/10.5194/bg-19-2487-2022, 2022
Short summary
Short summary
This study found climate to be a driving force for increasing per area emissions of greenhouse gases and removal of important nutrients from high-latitude forests due to wildfire. It used detailed direct measurements over a large area to uncover patterns and mechanisms of restructuring of forest carbon and nitrogen pools that are extrapolatable to larger regions. It also takes a step forward in filling gaps in global knowledge of northern forest response to climate-change-strengthened wildfires.
Sparkle L. Malone, Youmi Oh, Kyle A. Arndt, George Burba, Roisin Commane, Alexandra R. Contosta, Jordan P. Goodrich, Henry W. Loescher, Gregory Starr, and Ruth K. Varner
Biogeosciences, 19, 2507–2522, https://doi.org/10.5194/bg-19-2507-2022, https://doi.org/10.5194/bg-19-2507-2022, 2022
Short summary
Short summary
To understand the CH4 flux potential of natural ecosystems and agricultural lands in the United States of America, a multi-scale CH4 observation network focused on CH4 flux rates, processes, and scaling methods is required. This can be achieved with a network of ground-based observations that are distributed based on climatic regions and land cover.
Bruna R. F. Oliveira, Jan J. Keizer, and Thomas Foken
Biogeosciences, 19, 2235–2243, https://doi.org/10.5194/bg-19-2235-2022, https://doi.org/10.5194/bg-19-2235-2022, 2022
Short summary
Short summary
This study analyzes the impacts of this windthrow on the aerodynamic characteristics of zero-plane displacement and roughness length and, ultimately, their implications for the turbulent fluxes. The turbulent fluxes were only affected to a minor degree by the windthrow, but the footprint area of the flux tower changed markedly so that the target area of the measurements had to be redetermined.
Minttu Havu, Liisa Kulmala, Pasi Kolari, Timo Vesala, Anu Riikonen, and Leena Järvi
Biogeosciences, 19, 2121–2143, https://doi.org/10.5194/bg-19-2121-2022, https://doi.org/10.5194/bg-19-2121-2022, 2022
Short summary
Short summary
The carbon sequestration potential of two street tree species and the soil beneath them was quantified with the urban land surface model SUEWS and the soil carbon model Yasso. The street tree plantings turned into a modest sink of carbon from the atmosphere after 14 years. Overall, the results indicate the importance of soil in urban carbon sequestration estimations, as soil respiration exceeded the carbon uptake in the early phase, due to the high initial carbon loss from the soil.
Jarmo Mäkelä, Laila Melkas, Ivan Mammarella, Tuomo Nieminen, Suyog Chandramouli, Rafael Savvides, and Kai Puolamäki
Biogeosciences, 19, 2095–2099, https://doi.org/10.5194/bg-19-2095-2022, https://doi.org/10.5194/bg-19-2095-2022, 2022
Short summary
Short summary
Causal structure discovery algorithms have been making headway into Earth system sciences, and they can be used to increase our understanding on biosphere–atmosphere interactions. In this paper we present a procedure on how to utilize prior knowledge of the domain experts together with these algorithms in order to find more robust causal structure models. We also demonstrate how to avoid pitfalls such as over-fitting and concept drift during this process.
Makoto Saito, Tomohiro Shiraishi, Ryuichi Hirata, Yosuke Niwa, Kazuyuki Saito, Martin Steinbacher, Doug Worthy, and Tsuneo Matsunaga
Biogeosciences, 19, 2059–2078, https://doi.org/10.5194/bg-19-2059-2022, https://doi.org/10.5194/bg-19-2059-2022, 2022
Short summary
Short summary
This study tested combinations of two sources of AGB data and two sources of LCC data and used the same burned area satellite data to estimate BB CO emissions. Our analysis showed large discrepancies in annual mean CO emissions and explicit differences in the simulated CO concentrations among the BB emissions estimates. This study has confirmed that BB emissions estimates are sensitive to the land surface information on which they are based.
Johannes Gensheimer, Alexander J. Turner, Philipp Köhler, Christian Frankenberg, and Jia Chen
Biogeosciences, 19, 1777–1793, https://doi.org/10.5194/bg-19-1777-2022, https://doi.org/10.5194/bg-19-1777-2022, 2022
Short summary
Short summary
We develop a convolutional neural network, named SIFnet, that increases the spatial resolution of SIF from TROPOMI by a factor of 10 to a spatial resolution of 0.005°. SIFnet utilizes coarse SIF observations, together with a broad range of high-resolution auxiliary data. The insights gained from interpretable machine learning techniques allow us to make quantitative claims about the relationships between SIF and other common parameters related to photosynthesis.
Shihan Sun, Amos P. K. Tai, David H. Y. Yung, Anthony Y. H. Wong, Jason A. Ducker, and Christopher D. Holmes
Biogeosciences, 19, 1753–1776, https://doi.org/10.5194/bg-19-1753-2022, https://doi.org/10.5194/bg-19-1753-2022, 2022
Short summary
Short summary
We developed and used a terrestrial biosphere model to compare and evaluate widely used empirical dry deposition schemes with different stomatal approaches and found that using photosynthesis-based stomatal approaches can reduce biases in modeled dry deposition velocities in current chemical transport models. Our study shows systematic errors in current dry deposition schemes and the importance of representing plant ecophysiological processes in models under a changing climate.
Ka Ming Fung, Maria Val Martin, and Amos P. K. Tai
Biogeosciences, 19, 1635–1655, https://doi.org/10.5194/bg-19-1635-2022, https://doi.org/10.5194/bg-19-1635-2022, 2022
Short summary
Short summary
Fertilizer-induced ammonia detrimentally affects the environment by not only directly damaging ecosystems but also indirectly altering climate and soil fertility. To quantify these secondary impacts, we enabled CESM to simulate ammonia emission, chemical evolution, and deposition as a continuous cycle. If synthetic fertilizer use is to soar by 30 % from today's level, we showed that the counteracting impacts will increase the global ammonia emission by 3.3 Tg N per year.
Lena Wohlgemuth, Pasi Rautio, Bernd Ahrends, Alexander Russ, Lars Vesterdal, Peter Waldner, Volkmar Timmermann, Nadine Eickenscheidt, Alfred Fürst, Martin Greve, Peter Roskams, Anne Thimonier, Manuel Nicolas, Anna Kowalska, Morten Ingerslev, Päivi Merilä, Sue Benham, Carmen Iacoban, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 19, 1335–1353, https://doi.org/10.5194/bg-19-1335-2022, https://doi.org/10.5194/bg-19-1335-2022, 2022
Short summary
Short summary
Gaseous mercury is present in the atmosphere all over the globe. During the growing season, plants take up mercury from the air in a similar way as CO2. We investigated which factors impact this vegetational mercury uptake by analyzing a large dataset of leaf mercury uptake rates of trees in Europe. As a result, we conclude that mercury uptake is foremost controlled by tree-intrinsic traits like physiological activity but also by climatic factors like dry conditions in the air and in soils.
Cited articles
Abhijith, K. V., Kumar, P., Gallagher, J., McNabola, A., Baldauf, R., Pilla,
F., Broderick, B., Di Sabatino, S., and Pulvirenti, B.: Air pollution
abatement performances of green infrastructure in open road and built-up
street canyon environments – A review, Atmos. Environ., 162, 71–86,
https://doi.org/10.1016/j.atmosenv.2017.05.014, 2017.
Adegoke, J. O., Pielke, R. A., Eastman, J., Mahmood, R., and Hubbard, K. G.:
Impact of irrigation on midsummer surface fluxes and temperature under dry
synoptic conditions: A regional atmospheric model study of the U.S. high
plains, Mon. Weather Rev., 131, 556–564,
https://doi.org/10.1175/1520-0493(2003)131<0556:IOIOMS>2.0.CO;2, 2003.
Adji, F. F., Hamada, Y., Darang, U., Limin, S. H., and Hatano, R.: Effect of
plant-mediated oxygen supply and drainage on greenhouse gas emission from a
tropical peatland in Central Kalimantan, Indonesia, Soil Sci. Plant
Nutr., 60, 216–230, https://doi.org/10.1080/00380768.2013.872019, 2014.
Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson, L.
D.: The Effects of Tropospheric Ozone on Net Primary Productivity and
Implications for Climate Change, Annu. Rev. Plant Biol., 63,
637–661, https://doi.org/10.1146/annurev-arplant-042110-103829, 2012.
Akbari, H., Pomerantz, M., and Taha, H.: Cool surfaces and shade trees to
reduce energy use and improve air quality in urban areas, Sol. Energy, 70,
295–310, 2001.
Alchapar, N. L., Correa, E. N., and Cantón, M. A.: Classification of
building materials used in the urban envelopes according to their capacity
for mitigation of the urban heat island in semiarid zones, Energ. Buildings,
69, 22–32, 2014.
Alexandri, E. and Jones, P.: Temperature decreases in an urban canyon due to
green walls and green roofs in diverse climates, Build. Environ.,
43, 480–493, 2008.
Allen, A.: Environmental planning and management of the peri-urban
interface: perspectives on an emerging field, Environ. Planning and
Management, 15, 135–148, https://doi.org/10.1177/095624780301500103, 2003.
Alletto, L., Coquet, Y., Benoit, P., Heddadj, D., and Barriuso, E.: Tillage
management effects on pesticide fate in soils. A review, Agron.
Sustain. Dev., 30, 367–400, https://doi.org/10.1051/agro/2009018, 2010.
Alpert, P. and Kishcha, P.: Quantification of the effect of urbanization on
solar dimming, Geophys. Res. Lett., 35, L08801, https://doi.org/10.1029/2007GL033012,
2008.
Alpert, P., Kishcha, P., Kaufman, Y., and Schwarzbard, R.: Global dimming or
local dimming?: Effect of urbanizationon sunlight availability, Geophys.
Res. Lett., 32, L17802, https://doi.org/10.1029/2005GL023320, 2005.
Anav, A., Ruti, P. M., Artale, V., and Valentini, R.: Modelling the effects
of land-cover changes on surface climate in the Mediterranean region, Clim.
Res., 41, 91–104, https://doi.org/10.3354/cr00841, 2010.
André, J. C., Bougeault, P., and Goutorbe, J. P.: Regional estimates of
heat and evaporation fluxes over non-homogeneous terrain. Examples from the
HAPEX-MOBILHY programme, Bound.-Lay. Meteorol., 50, 77–108, 1990.
Anthes, R. A.: Enhancement of convective precipitation by mesoscale
variations in vegetative covering in semiarid regions, J. Clim. Appl.
Meteorol., 23, 541–554, 1984.
Arneth, A., Monson, R. K., Schurgers, G., Niinemets, Ü., and Palmer, P. I.: Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)?, Atmos. Chem. Phys., 8, 4605–4620, https://doi.org/10.5194/acp-8-4605-2008, 2008.
Arneth, A., Harrison, S. P., Zaehle, S., Tsigaridis, K., Menon, S.,
Bartlein, P. J., Feichter, J., Korhola, A., Kulmala, M., O'Donnell, D.,
Schurgers, G., Sorvari, S., and Vesala, T.: Terrestrial biogeochemical
feedbacks in the climate system, Nat. Geosci., 3, 525–532, 2010.
Arneth, A., Mercado, L., Kattge, J., and Booth, B. B. B.: Future challenges of representing land-processes in studies on land-atmosphere interactions, Biogeosciences, 9, 3587–3599, https://doi.org/10.5194/bg-9-3587-2012, 2012.
Arnfield, A. J.: Two decades of urban climate research: a review of
turbulence, exchanges of energy and water, and the urban heat island, Int.
J. Climatol., 23, 1–26, 2003.
Ashworth, K., Folberth, G., Hewitt, C. N., and Wild, O.: Impacts of near-future cultivation of biofuel feedstocks on atmospheric composition and local air quality, Atmos. Chem. Phys., 12, 919–939, https://doi.org/10.5194/acp-12-919-2012, 2012.
Ashworth, K., Wild, O., and Hewitt, C. N.: Impacts of biofuel cultivation on
mortality and crop yields, Nat. Clim. Change, 3, 492–496, https://doi.org/10.1038/nclimate1788,
2013.
Avissar, R. and Liu, Y.: Three-dimensional numerical study of shallow
convective clouds and precipitation induced by land surface forcing, J.
Geophys. Res.-Atmos., 101, 7499–7518, 1996.
Avissar, R. and Pielke, A. R.: A parameterization of heterogeneous land
surfaces for atmospheric numerical models and its impact on regional
meteorology, Mon. Weather Rev., 117, 2113–2136, 1989.
Avissar, R. and Schmidt, T.: An evaluation of the scale at which
ground-surface heat flux patchiness affects the convective boundary layer
using large-eddy simulations, J. Atmos. Sci., 55, 2666–2689, 1998.
Bakker, M. M., Govers, G., Kosmas, C., Vanacker, V., van Oost, K., and
Rounsevell, M.: Soil erosion as a driver of land-use change, Agr.
Ecosys. Environ., 105, 467–481,
https://doi.org/10.1016/j.agee.2004.07.009, 2005.
Baklanov, A., Beekmann, M., Jaffrezo, J.-L., Jimenez, J.-L., Reeves, C., and Vautard, R. (Eds.): Megapoli-Paris 2009/2010 campaign, available at: https://www.atmos-chem-phys.net/special_issue248.html, 2011.
Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos, N., Rao, S. T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., and Zhang, Y.: Online coupled regional meteorology chemistry models in Europe: current status and prospects, Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, 2014.
Baklanov, A., Grimmond, C. S. B., Carlson, D., Terblanche, D., Tang, X.,
Bouchet, V., Lee, B., Langendijk, G., Kolli, R. K., and Hovsepyan, A.: From
urban meteorology, climate and environment research to integrated city
services, Urban Climate, 23, 330–341, https://doi.org/10.1016/j.uclim.2017.05.004,
2018.
Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B., Delire,
C., and Mirin, A.: Combined climate and carbon-cycle effects of large-scale
deforestation, P. Natl. Acad. Sci. USA, 114, 6550–6555, 2007.
Baró, F., Chaparro, L., Gómez-Baggethun, E., Langemeyer, J., Nowak,
D. J., and Terradas, J.: Contribution of Ecosystem Services to Air Quality
and Climate Change Mitigation Policies: The Case of Urban Forests in
Barcelona, Spain, AMBIO, 43, 466–479, https://doi.org/10.1007/s13280-014-0507-x,
2014.
Bash, J. O., Cooter, E. J., Dennis, R. L., Walker, J. T., and Pleim, J. E.: Evaluation of a regional air-quality model with bidirectional NH3 exchange coupled to an agroecosystem model, Biogeosciences, 10, 1635–1645, https://doi.org/10.5194/bg-10-1635-2013, 2013.
Baumgardner, D., Varela, S., Escobedo, F. J., Chacalo, A., and Ochoa, C.: The
role of a peri-urban forest on air quality improvement in the Mexico City
megalopolis, Environ. Pollut., 163, 174–183,
https://doi.org/10.1016/j.envpol.2011.12.016, 2012.
Baumüller, J.: Klimaatlas Region Stuttgart, Verband Region Stuttgart,
Stuttgart, 2008.
Bellassen, V. and Luyssaert, S.: Carbon sequestration: Managing forests in
uncertain times, Nature, 506, 153–155, 2014.
Beltman, J. B., Hendriks, C., Tum, M., and Schaap, M.: The impact of large
scale biomass production on ozone air pollution in Europe, Atmos. Environ.,
71, 352–363, 2013.
Beltran-Przekurat, A., Pielke Sr., R. A., Eastman, J. L., and Coughenour, M.
B.: Modelling the effects of land-use/land-cover changes on the near-surface
atmosphere in southern South America, Int. J. Climatol.,
32, 1206–1225, https://doi.org/10.1002/joc.2346, 2012.
Benjamin, M. and Winer, A. M.: Estimating the ozone-forming potential of
urban trees and shrubs, Atmos. Environ., 32, 53–56, 1998.
Benjamin, M. T., Sudol, M., Bloch, L., and Winer, A. M.: Low emitting urban
forests: a taxonomic methodology for assigning isoprene and monoterpenes
emission rates, J. Atmos. Environ., 30, 1437–1452, 1996.
Benton, T. G., Vickery, J. A., and Wilson, J. D.: Farmland biodiversity: is
habitat heterogeneity the key?, Trends Ecol. Evol., 18,
182–188, https://doi.org/10.1016/S0169-5347(03)00011-9, 2003.
Berenguer, E., Ferreira, J., Gardner, T. A., Aragão, L. E. O. C., De
Camargo, P. B., Cerri, C. E., Durigan, M., Oliveira, R. C. D., Vieira, I. C.
G., and Barlow, J.: A large-scale field assessment of carbon stocks in
human-modified tropical forests, Glob. Change Biol., 20, 3713–3726,
https://doi.org/10.1111/gcb.12627, 2014.
Bergkamp, G. and Orlando, B.: Wetlands and climate change: exploring
collaboration between the Convention on wetlands [Ramsar, Iran 1971] and the
UN Framework Convention on Climate Change, IUCN, available at: https://portals.iucn.org/library/node/12367 (last access: 22 May 2019), 1999.
Beringer, T. I. M., Lucht, W., and Schaphoff, S.: Bioenergy production
potential of global biomass plantations under environmental and agricultural
constraints, GCB Bioenergy, 3, 299–312, 2011.
Bertram, T. H., Heckel, A., Richter, A., Burrows, J. P., and Cohen, R. C.:
Satellite measurements of daily variations in soil NOx emissions,
Geophys. Res. Lett., 32, L24812, https://doi.org/10.1029/2005GL024640, 2005.
Betts, R. A.: Biogeophysical impacts of land use on present-day climate:
Near-surface temperature change and radiative forcing, Atmos. Sci. Lett., 2,
39–51, 2001.
Betts, R. A., Falloon, P. D., Klein Goldewijk, K., and Ramankutty, N.:
Biogeophysical effects of land use on climate: Model simulations of
radiative forcing and large-scale temperature change, Agr.
Forest Meteorol., 142, 216–233, 2007.
Boerner, R.: Fire and Nutrient Cycling in Temperate Ecosystems, BioScience,
32, 187–192, https://doi.org/10.2307/1308941, 1982.
Bohnenstengel, S. I., Evans, S., Clark, P. A., and Belcher, S. E.:
Simulations of the London urban heat island, Q, J. Roy. Meteor. Soc., 137,
1625–1640, 2011.
Boisier, J. P., de Noblet-Ducoudré, N., Pitman, A. J., Cruz, F. T.,
Delire, C., van den Hurk, B. J. J. M., van der Molen, M. K., Müller, C.,
and Voldoire, A.: Attributing the impacts of land-cover changes in temperate
regions on surface temperature and heat fluxes to specific causes: Results
from the first LUCID set of simulations, J. Geophys. Res.-Atmos., 117, D12116, https://doi.org/10.1029/2011jd017106, 2012.
Bonan, G. B.: Effects of land use on the climate of the United States,
Climatic Change, 37, 449–486, 1997.
Bonan, G. B.: Forests and Climate Change: Forcings, Feedbacks, and the
Climate Benefits of Forests, Science, 320, 1444–1449,
https://doi.org/10.1126/science.1155121, 2008.
Bonfils, C. and Lobell, D.: Empirical evidence for a recent slowdown in
irrigation-induced cooling, P. Natl. Acad. Sci. USA, 104, 13582–13587, 2007.
Bonn, B., von Schneidemesser, E., Butler, T., Churkina, G., Ehlers, C.,
Grote, R., Klemp, D., Nothard, R., Schäfer, K., von Stülpnagel, A.,
Kerschbaumer, A., Yousefpour, R., Fountoukis, C., and Lawrence, M. G.: Impact
of vegetative emissions on urban ozone and biogenic secondary organic
aerosol: Box model study for Berlin, Germany, J. Clean. Prod.,
176, 827–841, https://doi.org/10.1016/j.jclepro.2017.12.164, 2018.
Bormann, F. H. and Likens, G. E.: Pattern and Process of a Forested System,
Springer-Verlag, New York, 1979.
Boucher, O., Myhre, G., and Myhre, A.: Direct human influence of irrigation
on atmospheric water vapour and climate, Clim. Dynam., 22, 597–603, 2004.
Bounoua, L., DeFries, R., Collatz, G. J., Sellers, P., and Khan, H.: Effects
of land cover conversion on surface climate, Climatic Change, 52, 29–64,
2002.
Bouwman, A. F.: Exchange of greenhouse gases between terrestrial ecosystems
and the atmosphere, edited by: Bouwman, A. F., 61–127, Wiley, Chichester,
1990.
Bozzi, E., Genesio, L., Toscano, P., Pieri, M., and Miglietta, F.: Mimicking
biochar-albedo feedback in complex Mediterranean agricultural landscapes,
Environ. Res. Lett., 10, 84014, https://doi.org/10.1088/1748-9326/10/8/084014, 2015.
Brandsma, T., Können, G. P., and Wessels, H. R. A.: Empirical estimation
of the effect of urban heat advection on the temperature series of de Bilt
(The Netherlands), Int. J. Climatol., 23, 829–845, 2003.
Brazel, A., Selover, N., Vose, R., and Heisler, G.: The tale of two climates
– Baltimore and Phoenix urban LTER sites, Clim. Res., 15, 123–135,
https://doi.org/10.3354/Cr015123, 2000.
Bremner, J. M. and Blackmer, A. M.: Nitrous Oxide: Emission from Soils
During Nitrification of Fertilizer Nitrogen, Science, 199, 295–296,
https://doi.org/10.1126/science.199.4326.295, 1978.
Briggs, G. A.: Surface inhomogeneity effects on convective diffusion,
Bound.-Lay. Meteorol., 45, 117–135, 1988.
Brovkin, V., Ganopolski, A., Claussen, M., Kubatzki, C., and Petoukhov, V.:
Modelling climate response to historical land cover change, Global Ecol.
Biogeogr., 8, 509–517, 1999.
Brovkin, V., Claussen, M., Driesschaert, E., Fichefet, T., Kicklighter, D.,
Loutre, M. F., Matthews, H. D., Ramankutty, N., Schaeffer, M., and Sokolov,
A.: Biogeophysical effects of historical land cover changes simulated by six
Earth system models of intermediate complexity, Clim. Dynam., 26, 587–600,
2006.
Bulkeley, H.: A changing climate for spatial planning?, Planning Theory and
Practice, 7, 203–214, 2006.
Bytnerowicz, A., Cayan, D., Riggan, P., Schilling, S., Dawson, P., Tyree,
M., Wolden, L., Tissell, R., and Preisler, H.: Analysis of the effects of
combustion emissions and Santa Ana winds on ambient ozone during the October
2007 southern California wildfires, Atmos. Environ., 44, 678–687, 2010.
Caballero-López, B., Bommarco, R., Blanco-Moreno, J. M., Sans, F. X.,
Pujade-Villar, J., Rundlöf, M., and Smith, H. G.: Aphids and their
natural enemies are differently affected by habitat features at local and
landscape scales, Biol. Control, 63, 222–229,
https://doi.org/10.1016/j.biocontrol.2012.03.012, 2012.
Calfapietra, C., Ainsworth, E. A., Beier, C., De Angelis, P., Ellsworth, D.
S., Godbold, D. L., Hendrey, G. R., Hickler, T., Hoosbeek, M. R., and
Karnosky, D. F.: Challenges in elevated CO2 experiments on forests, Trends Plant Sci., 15, 5–10, https://doi.org/10.1016/j.tplants.2009.11.001, 2010.
Calfapietra, C., Fares, S., Manes, F., Morani, A., Sgrigna, G., and Loreto,
F.: Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban
trees on ozone concentration in cities: A review, Environ. Pollut.,
183, 71–80, https://doi.org/10.1016/j.envpol.2013.03.012, 2013.
Calfapietra, C., Peñuelas, J., and Niinemets, Ü.: Urban plant
physiology: adaptation-mitigation strategies under permanent stress, Trends
Plant Sci., 20, 72–75, https://doi.org/10.1016/j.tplants.2014.11.001, 2015.
Cardelino, C. A. and Chameides, W. L.: Natural hydrocarbons, urbanization,
and urban ozone, J. Geophys. Res., 95, 13971–13979, 1990.
Casella, E.: Long-term effects of CO2 enrichment and temperature increase on
the carbon balance of a temperate grass sward, J. Exp.
Bot., 48, 1309–1321, 1997.
Chabbi, A., Senapati, N., Giostri, A., Vertes, F., Carrozi, M., Lemaire, G.,
Gastal, F., Recous, S., Klumpp, K., Massad, R. S., and Rumpel, C.: Use of
ley-arable rotations improves greenhouse gas (GHG) emissions and carbon
balance, Fourrages, 223, 241–248, 2015.
Chagnon, F. J. F., Bras, R. L., and Wang, J.: Climatic shift in patterns of
shallow clouds over the Amazon, Geophys. Res. Lett., 31, 24212,
https://doi.org/10.1029/2004GL021188, 2004.
Chalita, S. and Le Treut, H.: The albedo of temperate and boreal forest and
the Northern Hemisphere climate: a sensitivity experiment using the LMD GCM,
Clim. Dynam., 10, 231–240, 1994.
Chameides, W. L., Lindsay, R. W., Richardsen, J., and Kiang, C. S.: The role
of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case
study, Science, 241, 1473–1475, 1988.
Chaplot, V., Bouahom, B., and Valentin, C.: Soil organic carbon stocks in
Laos: spatial variations and controlling factors, Glob. Change Biol., 16,
1380–1393, https://doi.org/10.1111/j.1365-2486.2009.02013.x, 2010.
Charney, J. G., Stone, P. H., and Quirk, W. J.: Drought in the Sahara: A
biogeophysical mechanism, Science, 187, 434–435, 1975.
Charney, J. G., Quirk, W. J., Chow, S., and Kornfield, J.: A Comparative
Study of the Effects of Albedo Change on Drought in Semi–Arid Regions, J.
Atmos. Sci., 34, 1366–1385, 1977.
Chen, J., Avise, J., Guenther, A., Wiedinmyer, C., Salathe, E., Jackson, R.
B., and Lamb, B.: Future land use and land cover influences on regional
biogenic emissions and air quality in the United States, Atmos.
Environ., 43, 5771–5780, https://doi.org/10.1016/j.atmosenv.2009.08.015, 2009.
Chen, S., Zhao, C., Qian, Y., Leung, L. R., Huang, J., Huang, Z., Bi, J.,
Zhang, W., Shi, J., Yang, L., Li, D., and Li, J.: Regional modeling of dust
mass balance and radiative forcing over East Asia using WRF-Chem, Aeolian
Res., 15, 15–30, https://doi.org/10.1016/j.aeolia.2014.02.001, 2014.
Chen, X.-L., Li, P.-X., and Yin, Z.-Y.: Remote sensing image-based analysis
of the relationship between urban heat island and land use/cover changes,
Remote Sens. Environ., 104, 133–146,
https://doi.org/10.1016/j.rse.2005.11.016, 2006.
Christen, A. and Vogt, R.: Energy and radiation balance of a central European
city, Int. J. Climatol., 43, 1395–1421, 2004.
Christensen, N. L.: Fire and soil-plant nutrient relations in a
pine-wiregrass savanna on the coastal plain of North Carolina, Oecologia,
31, 27–44, https://doi.org/10.1007/BF00348706, 1977.
Christensen, N. L. and Muller, C. H.: Effects of Fire on Factors Controlling
Plant Growth in Adenostoma Chaparral, Ecol. Monogr., 45, 29–55,
https://doi.org/10.2307/1942330, 1975.
Christy, J. R., Norris, W. B., Redmond, K., and Gallo, K. P.: Methodology and
results of calculating central California surface temperature trends:
evidence of human-induced climate change?, J. Climate, 19, 548–563, 2006.
Churkina, G., Trusilova, K., Vetter, M., and Dentener, F.: Contributions of
nitrogen deposition and forest regrowth to terrestrial carbon uptake, Carbon
Balance and Management, 2, 5, https://doi.org/10.1186/1750-0680-2-5, 2007.
Churkina, G., Grote, R., Butler, T. M., and Lawrence, M.: Natural selection?
Picking the right trees for urban greening, Environ. Sci.
Policy, 47, 12–17, https://doi.org/10.1016/j.envsci.2014.10.014, 2015.
Churkina, G., Kuik, F., Bonn, B., Lauer, A., Grote, R., Tomiak, K., and
Butler, T. M.: Effect of VOC Emissions from Vegetation on Air Quality in
Berlin during a Heatwave, Environ. Sci. Technol., 51,
6120–6130, https://doi.org/10.1021/acs.est.6b06514, 2017.
Cinnadurai, C., Gopalaswamy, G., and Balachandar, D.: Diversity of cultivable
Azotobacter in the semi-arid alfisol receiving long-term organic and
inorganic nutrient amendments, Ann. Microbiol., 63, 1397–1404,
https://doi.org/10.1007/s13213-013-0600-6, 2013.
Civerolo, K., Hogrefe, C., Lynn, B., Rosenthal, J., Ku, J. Y., and Solecki,
W., Cox, J., Small, C., Rosenzweig, C., Goldberg, R., Knowlton, K., and
Kinney, P.: Estimating the effects of increased urbanization on surface
meteorology and ozone concentrations in the New York City metropolitan
region, Atmos. Environ., 41, 1803–1818, 2007.
Civerolo, K., Sistla, G., Rao, S., and Nowak, D.: The effects of land
use in meteorological modeling: implications for assessment of future air
quality scenarios, Atmos. Environ., 34, 1615–1621,
https://doi.org/10.1016/S1352-2310(99)00393-3, 2000.
Classen, A. T., Sundqvist, M. K., Henning, J. A., Newman, G. S., Moore, J.
A. M., Cregger, M. A., Moorhead, L. C., and Patterson, C. M.: Direct and
indirect effects of climate change on soil microbial and soil
microbial-plant interactions: What lies ahead?, Ecosphere, 6, 130,
https://doi.org/10.1890/ES15-00217.1, 2015.
Claussen, M., Brovkin, V., and Ganopolski, A.: Biogeophysical versus
biogeochemical feedbacks of large-scale land cover change, Geophys. Res.
Lett., 28, 1011–1014, 2001.
Cook, B. I., Puma, M. J., and Krakauer, N. Y.: Irrigation induced surface
cooling in the context of modern and increased greenhouse gas forcing, Clim.
Dynam., 37, 1587–1600, 2011.
Cook, B. I., Shukla, S. P., Puma, M. J., and Nazarenko, L. S.: Irrigation as
an historical climate forcing, Clim. Dynam., 44, 1715–1730, 2015.
Cooter, E. J., Rea, A., Bruins, R., Schwede, D., and Dennis, R.: The role of
the atmosphere in the provision of ecosystem services, Sci. Total
Environ., 448, 197–208, https://doi.org/10.1016/j.scitotenv.2012.07.077, 2013.
Corchnoy, S. B., Arey, J., and Atkinson, R.: Hydrocarbon emissions from
twelve urban shade trees of the Los Angeles, California, air basin, Atmos.
Environ. B-Urb., 26, 339–348, 1992.
Cordeau, E.: La vulnérabilité de la ville à la chaleur par
l'approche zones climatiques locales, Note Rapide Environnement, Vol. 661, available at: https://www.iau-idf.fr/fileadmin/NewEtudes/Etude_1103/NR_661_web.pdf (last access: 22 May 2019), 2014.
Costamagna, A. C., Menalled, F. D., and Landis, D. A.: Host density
influences parasitism of the armyworm Pseudaletia unipuncta in agricultural
landscapes, Basic Appl. Ecol., 5, 347–355,
https://doi.org/10.1016/j.baae.2004.04.009, 2004.
Covington, W. W.: Secondary succession in northern hardwoods: Forest floor
organic matter and nutrients and leaf fall, Yale University, New Haven,
Conneticut, 1976.
Crutzen, P. J. and Andreae, M. O.: Biomass burning in the Tropics – impact
on atmospheric chemistry and biogeochemical cycles, Science, 250,
1669–1678, 1990.
Dale, A. G. and Frank, S. D.: The Effects of Urban Warming on Herbivore
Abundance and Street Tree Condition, Plos One,
9, e102996, https://doi.org/10.1371/journal.pone.0102996, 2014.
Davidson, N. C.: How much wetland has the world lost? Long-term and recent
trends in global wetland area, Mar. Freshwater Res., 65, 934–941, 2014.
Davin, E. L. and de Noblet-Ducoudré, N.: Climatic impact of global-scale
deforestation: Radiative versus nonradiative processes, J. Climate, 23,
97–112, 2010.
Davin, E. L., Seneviratne, S. I., Ciais, P., Olioso, A., and Wang, T.:
Preferential cooling of hot extremes from cropland albedo management, P.
Natl. Acad. Sci. USA, 111, 9757–9761, 2014.
Davoudi, S., Crawford, J., and Mehmood, A. (Eds.): Planning for climate
change: strategies for mitigation and adaptation for spatial planners,
Earthscan, London, Sterling, VA, 2009.
DeAngelis, A., Dominguez, F., Fan, Y., Robock, A., Kustu, M. D., and
Robinson, D.: Evidence of enhanced precipitation due to irrigation over the
Great Plains of the United States, J. Geophys. Res.-Atmos., 115, 15115,
https://doi.org/10.1029/2010JD013892, 2010.
Debano, L. F. and Conrad, C. E.: The Effect of Fire on Nutrients in a
Chaparral Ecosystem, Ecology, 59, 489–497, https://doi.org/10.2307/1936579, 1978.
de Blécourt, M., Brumme, R., Xu, J., Corre, M. D., and Veldkamp, E.: Soil
Carbon Stocks Decrease following Conversion of Secondary Forests to Rubber
(Hevea brasiliensis) Plantations, PLoS ONE, 8,
e69357, https://doi.org/10.1371/journal.pone.0069357, 2013.
de Noblet-Ducoudré, N., Boisier, J. P., Pitman, A., Bonan, G. B.,
Brovkin, V., Cruz, F., Delire, C., Gayler, V., Van den Hurk, B. J. J. M., and
Lawrence, P. J.: Determining robust impacts of land-use-induced land cover
changes on surface climate over North America and Eurasia: results from the
first set of LUCID experiments, J. Climate, 25, 3261–3281, 2012.
de Ruijter, F. J., Huijsmans, J. F. M., and Rutgers, B.: Ammonia
volatilization from crop residues and frozen green manure crops, Atmos.
Environ., 44, 3362–3368, https://doi.org/10.1016/j.atmosenv.2010.06.019, 2010.
Dickinson, R. E. and Kennedy, P.: Impacts on regional climate of Amazon
deforestation, Geophys. Res. Lett., 19, 1947–1950, 1992.
Dominski, A. S.: Accelerated nitrate production and loss in the northern
hardwood forest ecosystem underlain by podsol soils following clearcutting
and addition of herbicides, PhD thesis, Yale University, 1971.
Dooley, S. R. and Treseder, K. K.: The effect of fire on microbial biomass:
a meta-analysis of field studies, Biogeochemistry, 109, 49–61,
https://doi.org/10.1007/s10533-011-9633-8, 2012.
Döös, B. R.: Population growth and loss of arable land, Global
Environ. Chang., 12, 303–311, 2002.
Dou, J., Wang, Y., Bornstein, R., and Miao, S.: Observed spatial
characteristics of Beijing urban climate impacts on summer thunderstorms, J.
Appl. Meteorol. Clim., 54, 94–105, 2015.
Du, Y., Xie, Z., Zeng, Y., Yafeng, S., and Jingang, W.: Impact of urban
expansion on regional temperature change in the Yangtze River Delta, J.
Geogr. Sci., 17, 387–398, https://doi.org/10.1007/s11442-007-0387-0, 2007.
Eliasson, I.: Urban nocturnal temperatures, street geometry and land use,
Atmos. Environ., 30, 379–392, 1996.
Ellis, E. C.: Anthropogenic transformation of the terrestrial biosphere,
Philos. T. R. Soc. A, 369, 1010–1035, https://doi.org/10.1098/rsta.2010.0331,
2011.
Elmqvist, T. (Ed.): Urbanization, biodiversity and ecosystem services:
challenges and opportunities: a global assessment; a part of the cities and
biodiversity outlook project, Springer, Dordrecht, 2013.
Emmanuel, R. and Fernando, H. J. S.: Urban heat islands in humid and arid
climates: role of urban form and thermal properties in Colombo, Sri Lanka
and Phoenix, US, Clim. Res., 34, https://doi.org/10.3354/cr00694, 2007.
Erb, K.-H.: How a socio-ecological metabolism approach can help to advance
our understanding of changes in land-use intensity, Ecol. Econ.,
76, 8–14, https://doi.org/10.1016/j.ecolecon.2012.02.005, 2012.
Erb, K.-H., Gaube, V., Krausmann, F., Plutzar, C., Bondeau, A., and Haberl,
H.: A comprehensive global 5 min resolution land-use data set for the year
2000 consistent with national census data, Journal of Land Use Science, 2,
191–224, https://doi.org/10.1080/17474230701622981, 2007.
Erb, K.-H., Krausmann, F., Lucht, W., and Haberl, H.: Embodied HANPP: Mapping
the spatial disconnect between global biomass production and consumption,
Ecol. Econ., 69, 328–334, https://doi.org/10.1016/j.ecolecon.2009.06.025,
2009.
Erb, K.-H., Haberl, H., Jepsen, M. R., Kuemmerle, T., Lindner, M.,
Müller, D., Verburg, P. H., and Reenberg, A.: A conceptual framework for
analysing and measuring land-use intensity, Curr. Opin. Env.
Sust., 5, 464–470, https://doi.org/10.1016/j.cosust.2013.07.010, 2013.
Erb, K.-H., Fetzel, T., Haberl, H., Kastner, T., Kroisleitner, C., Lauk, C.,
Niedertscheider, M., and Plutzar, C.: Beyond Inputs and Outputs: Opening the
Black-Box of Land-Use Intensity, in: Social Ecology: Society-Nature Relations
across Time and Space, edited by: Haberl, H., Fischer-Kowalski, M.,
Krausmann, F., and Winiwarter, V., 93–124, Springer International Publishing, Cham., 2016.
Eriksson, E., Gillespie, A. R., Gustavsson, L., Langvall, O., Olsson, M.,
Sathre, R., and Stendahl, J.: Integrated carbon analysis of forest management
practices and wood substitution, Can. J. Forest Res., 37,
671–681, 2007.
Erisman, J. W., Bleeker, A., Galloway, J. N., and Sutton, M. S.: Reduced
nitrogen in ecology and the environment, Environ. Pollut., 150, 140–149,
2007.
Erisman, J. W., Bleeker, A., Hensen, A., and Vermeulen, A.: Agricultural air
quality in Europe and the future perspectives, Atmos. Environ., 42,
3209–3217, https://doi.org/10.1016/j.atmosenv.2007.04.004, 2008.
Ermert, V., Fink, A. H., Morse, A. P., and Paeth, H.: The Impact of Regional
Climate Change on Malaria Risk due to Greenhouse Forcing and Land-Use
Changes in Tropical Africa, Environ. Health Persp., 120,
77–84, https://doi.org/10.1289/ehp.1103681, 2012.
Escobedo, F., Kroeger, T., and Wagner, J.: Urban forests and pollution
mitigation: analyzing ecosystem services and disservices, Environ.
Pollut., 159, 2078–2087, 2011.
Fahrig, L.: Effects of Habitat Fragmentation on Biodiversity, Annu. Rev.
Ecol. Evol. S., 34, 487–515,
https://doi.org/10.1146/annurev.ecolsys.34.011802.132419, 2003.
Feddema, J., Oleson, K., Bonan, G., Mearns, L., Washington, W., Meehl, G.,
and Nychka, D.: A comparison of a GCM response to historical anthropogenic
land cover change and model sensitivity to uncertainty in present-day land
cover representations, Clim. Dynam., 25, 581–609,
https://doi.org/10.1007/s00382-005-0038-z, 2005a.
Feddema, J. J., Oleson, K. W., Bonan, G. B., Mearns, L. O., Buja, L. E.,
Meehl, G. A., and Washington, W. M.: The importance of land-cover change in
simulating future climates, Science, 310, 1674–1678, 2005b.
Feldpausch, T. R., Banin, L., Phillips, O. L., Baker, T. R., Lewis, S. L., Quesada, C. A., Affum-Baffoe, K., Arets, E. J. M. M., Berry, N. J., Bird, M., Brondizio, E. S., de Camargo, P., Chave, J., Djagbletey, G., Domingues, T. F., Drescher, M., Fearnside, P. M., França, M. B., Fyllas, N. M., Lopez-Gonzalez, G., Hladik, A., Higuchi, N., Hunter, M. O., Iida, Y., Salim, K. A., Kassim, A. R., Keller, M., Kemp, J., King, D. A., Lovett, J. C., Marimon, B. S., Marimon-Junior, B. H., Lenza, E., Marshall, A. R., Metcalfe, D. J., Mitchard, E. T. A., Moran, E. F., Nelson, B. W., Nilus, R., Nogueira, E. M., Palace, M., Patiño, S., Peh, K. S.-H., Raventos, M. T., Reitsma, J. M., Saiz, G., Schrodt, F., Sonké, B., Taedoumg, H. E., Tan, S., White, L., Wöll, H., and Lloyd, J.: Height-diameter allometry of tropical forest trees, Biogeosciences, 8, 1081–1106, https://doi.org/10.5194/bg-8-1081-2011, 2011.
Feyisa, G. L., Dons, K., and Meilby, H.: Efficiency of parks in mitigating
urban heat island effect: An example from Addis Ababa, Landscape Urban
Plan., 123, 87–95, 2014.
Fiore, A. M., Naik, V., Spracklen, D. V., Steiner, A., Unger, N., Prather,
M., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins, W. J.,
Dalsøren, S., Eyring, V., Folberth, G. A., Ginoux, P., Horowitz, L. W.,
Josse, B., Lamarque, J.-F., MacKenzie, I. A., Nagashima, T., O'Connor, F.
M., Righi, M., Rumbold, S. T., Shindell, D. T., Skeie, R. B., Sudo, K.,
Szopa, S., Takemura, T., and Zeng, G.: Global air quality and climate,
Chem. Soc. Rev., 41, 6663, https://doi.org/10.1039/c2cs35095e, 2012.
Firestone, M. K., Firestone, R. B., and Tiedje, J. M.: Nitrous Oxide from
Soil Denitrification: Factors Controlling Its Biological Production,
Science, 208, 749–751, https://doi.org/10.1126/science.208.4445.749, 1980.
Flechard, C. R., Neftel, A., Jocher, M., Ammann, C., and Fuhrer, J.:
Bi-directional soil/atmosphere N2O exchange over two mown grassland systems
with contrasting management practices, Glob. Change Biol., 11,
2114–2127, https://doi.org/10.1111/j.1365-2486.2005.01056.x, 2005.
Flynn, D. F. B., Gogol-Prokurat, M., Nogeire, T., Molinari, N., Richers, B.
T., Lin, B. B., Simpson, N., Mayfield, M. M., and DeClerck, F.: Loss of
functional diversity under land use intensification across multiple taxa,
Ecol. Lett., 12, 22–33, https://doi.org/10.1111/j.1461-0248.2008.01255.x, 2009.
Foken, T.: Micrometeorology, Springer, Verlag Berlin Heidelberg, 2008.
Foley, J. A.: Global Consequences of Land Use, Science, 309, 570–574,
https://doi.org/10.1126/science.1111772, 2005.
Forzieri, G., Alkama, R., Miralles, D. G., and Cescatti, A.: Satellites
reveal contrasting responses of regional climate to the widespread greening
of Earth, Science, 356, 6343, 1180–1184, https://doi.org/10.1126/science.aal1727, 2017.
Fowler, D., Pilegaard, K., Sutton, M., Ambus, P., Raivonen, M., Duyzer, J.,
Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J., Granier, C., Neftel,
A., Isaksen, I., Laj, P., Maione, M., Monks, P., Burkhardt, J., Daemmgen,
U., Neirynck, J., Personne, E., Wichink-Kruit, R., Butterbach-Bahl, K.,
Flechard, C., Tuovinen, J., Coyle, M., Gerosa, G., Loubet, B., Altimir, N.,
Gruenhage, L., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T.,
Ro-Poulsen, H., Cellier, P., Cape, J., Horvath, L., Loreto, F., Niinemets,
U., Palmer, P., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., Pryor, S.,
Gallagher, M., Vesala, T., Skiba, U., Brueggemann, N.,
Zechmeister-Boltenstern, S., Williams, J., O'Dowd, C., Facchini, M., de
Leeuw, G., Flossman, A., Chaumerliac, N., and Erisman, J.: Atmospheric
composition change: Ecosystems-Atmosphere interactions, Atmos. Environ., 43,
5193–5267, https://doi.org/10.1016/j.atmosenv.2009.07.068, 2009 .
Fowler, D., Nemitz, E., Misztal, P., Di Marco, C., Skiba, U., Ryder, J.,
Helfter, C., Cape, J. N., Owen, S., Dorsey, J., Gallagher, M. W., Coyle, M.,
Phillips, G., Davison, B., Langford, B., MacKenzie, R., Muller, J., Siong,
J., Dari-Salisburgo, C., Di Carlo, P., Aruffo, E., Giammaria, F., Pyle, J.
A., and Hewitt, C. N.: Effects of land use on surface-atmosphere exchanges of
trace gases and energy in Borneo: comparing fluxes over oil palm plantations
and a rainforest, Philos. T. R. Soc. B, 366, 3196–3209, https://doi.org/10.1098/rstb.2011.0055,
2011.
Fowler, D., Pyle, J. A., Raven, J. A., and Sutton, M. A.: The global nitrogen
cycle in the twenty-first century: introduction, Philos. T.
R. Soc. B, 368, 20130165,
https://doi.org/10.1098/rstb.2013.0165, 2013.
Fujisaki, K., Perrin, A.-S., Desjardins, T., Bernoux, M., Balbino, L. C., and
Brossard, M.: From forest to cropland and pasture systems: a critical review
of soil organic carbon stocks changes in Amazonia, Glob. Change Biol.,
21, 2773–2786, https://doi.org/10.1111/gcb.12906, 2015.
Furukawa, Y., Inubushi, K., Ali, M., Itang, A. M., and Tsuruta, H.: Effect of
changing groundwater levels caused by land-use changes on greenhouse gas
fluxes from tropical peat lands, Nutr. Cycl. Agroecosys., 71,
81–91, https://doi.org/10.1007/s10705-004-5286-5, 2005.
Gaertner, M. A., Christensen, O. B., Prego, J. A., Polcher, J., Gallardo, C.,
and Castro, M.: The impact of deforestation on the hydrological cycle in the
western Mediterranean: an ensemble study with two regional climate models,
Clim. Dynam., 17, 857–873, 2001.
Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R.
W., Cowling, E. B., and Cosby, B. J.: The Nitrogen Cascade, BioScience, 53,
341–356, 2003.
Gálos, B., Hagemann, S., Hänsler, A., Kindermann, G., Rechid, D.,
Sieck, K., Teichmann, C., and Jacob, D.: Case study for the assessment of the
biogeophysical effects of a potential afforestation in Europe, Carbon
Balance and Management, 8, 3, https://doi.org/10.1186/1750-0680-8-3, 2013.
Ganzeveld, L. and Lelieveld, J.: Impact of Amazonian deforestation on
atmospheric chemistry, Geophys. Res. Lett., 31, 6, https://doi.org/10.1029/2003GL019205,
2004.
Gentine, P., Holtslag, A. A., D'Andrea, F., and Ek, M.: Surface and
atmospheric controls on the onset of moist convection over land, J.
Hydrometeorol., 14, 1443–1462, 2013.
Georgescu, M., Mahalov, A., and Moustaoui, M.: Seasonal hydroclimatic impacts
of Sun Corridor expansion, Environ. Res. Lett., 7, 034026, https://doi.org/10.1088/1748-9326/7/3/034026,
2012.
Georgescu, M., Morefield, P. E., Bierwagen, B. G., and Weaver, C. P.: Urban
adaptation can roll back warming of emerging megapolitan regions, in
P. Natl. Acad. Sci. USA, 111, 2909–2914, 2014.
Ghirardo, A., Xie, J., Zheng, X., Wang, Y., Grote, R., Block, K., Wildt, J., Mentel, T., Kiendler-Scharr, A., Hallquist, M., Butterbach-Bahl, K., and Schnitzler, J.-P.: Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing, Atmos. Chem. Phys., 16, 2901–2920, https://doi.org/10.5194/acp-16-2901-2016, 2016.
Gibbard, S., Caldeira, K., Bala, G., Phillips, T. J., and Wickett, M.:
Climate effects of global land cover change, Geophys. Res. Lett., 32, 23705,
https://doi.org/10.1029/2005GL024550, 2005.
Gillner, S., Bräuning, A., and Roloff, A.: Dendrochronological analysis
of urban trees: climatic response and impact of drought on frequently used
tree species, Trees, 28, 1079–1093, https://doi.org/10.1007/s00468-014-1019-9, 2014.
Ginet, P.: Le territoire, un concept opératoire pour la Géographie
appliquée (à l'aménagement), Documentaliste – Sciences de
l'Information, 49, 26–27, 2012.
Goldammer, J. G., Statheropoulos, M., and Andreae, M. O.: Impacts of
vegetation fire emissions on the environment, human health, and security: a
global perspective, in: Wildland fires and air pollution, edited by:
Bytnerowicz, A., Arbaugh, M. J., Andersen, C., and Riebau, A. R., Elsevier Science,
Amsterdam, the Netherlands, 2009.
Govindasamy, B., Duffy, P. B., and Caldeira, K.: Land use changes and
Northern Hemisphere cooling, Geophys. Res. Lett., 28, 291–294, 2001.
Gray, C. M., Monson, R. K., and Fierer, N.: Emissions of volatile organic
compounds during the decomposition of plant litter, J. Geophys. Res., 115,
G03015, https://doi.org/10.1029/2010JG001291, 2010.
Gregg, J. W., Jones, C. G., and Dawson, T. E.: Urbanization effects on tree
growth in the vicinity of New York City, Nature, 424, 183–187,
https://doi.org/10.1038/nature01728, 2003.
Grote, R., Samson, R., Alonso, R., Amorim, J. H., Cariñanos, P.,
Churkina, G., Fares, S., Thiec, D. L., Niinemets, Ü., Mikkelsen, T. N.,
Paoletti, E., Tiwary, A., and Calfapietra, C.: Functional traits of urban
trees: air pollution mitigation potential, Front. Ecol.
Environ., 14, 543–550, https://doi.org/10.1002/fee.1426, 2016.
Gruber, N. and Galloway, J. N.: An Earth-system perspective of the global
nitrogen cycle, Nature, 451, 293–296, https://doi.org/10.1038/nature06592, 2008.
Guimarães, D. V., Gonzaga, M. I. S., da Silva, T. O., da Silva, T. L.,
da Silva Dias, N., and Matias, M. I. S.: Soil organic matter pools and carbon
fractions in soil under different land uses, Soil Till. Res., 126,
177–182, https://doi.org/10.1016/j.still.2012.07.010, 2013.
Haase, D., Frantzeskaki, N., and Elmqvist, T.: Ecosystem Services in Urban
Landscapes: Practical Applications and Governance Implications, Ambio, 43,
407–412, https://doi.org/10.1007/s13280-014-0503-1, 2014.
Haberlie, A. M., Ashley, W. S., and Pingel, T. J.: The effect of urbanisation
on the climatology of thunderstorm initiation: Urbanisation and Thunderstorm
Initiation, Q. J. Roy. Meteor. Soc., 141,
663–675, https://doi.org/10.1002/qj.2499, 2015.
Hadfield, M. G., Cotton, W. R., and Pielke, R. A.: Large-eddy simulations of
thermally forced circulations in the convective boundary layer. Part II: The
effect of changes in wavelength and wind speed, Bound.-Lay. Meteorol., 58,
307–327, 1992.
Harper, K. L. and Unger, N.: Global climate forcing driven by altered BVOC fluxes from 1990 to 2010 land cover change in maritime Southeast Asia, Atmos. Chem. Phys., 18, 16931–16952, https://doi.org/10.5194/acp-18-16931-2018, 2018.
Hart, M. A. and Sailor, J. D.: Quantifying the influence of land-use and
surface characteristics on spatial variability in the urban heat island,
Theor. Appl. Climatol., 95, 397–406, 2009.
Hastings, A.: Transients: the key to long-term ecological understanding?,
Trends Ecol. Evol., 19, 39–45,
https://doi.org/10.1016/j.tree.2003.09.007, 2004.
Hati, K. M., Swarup, A., Mishra, B., Manna, M. C., Wanjari, R. H., Mandal,
K. G., and Misra, A. K.: Impact of long-term application of fertilizer,
manure and lime under intensive cropping on physical properties and organic
carbon content of an Alfisol, Geoderma, 148, 173–179,
https://doi.org/10.1016/j.geoderma.2008.09.015, 2008.
Heald, C. L. and Spracklen, D. V.: Land Use Change Impacts on Air Quality
and Climate, Chem. Rev., 115, 4476–4496, https://doi.org/10.1021/cr500446g,
2015.
Heald, C. L., Henze, D. K., Horowitz, L. W., Feddema, J., Lamarque, J.-F.,
Guenther, A., Hess, P. G., Vitt, F., Seinfeld, J., Goldstein, A. H., and
Fung, I.: Predicted change in global secondary organic aerosol
concentrations in response to future climate, emissions, and land use
change, J. Geophys. Res.-Atmos., 113, D05211, https://doi.org/10.1029/2007JD009092, 2008.
Heaviside, C., Cai, X. M., and Vardoulakis, S.: The effects of horizontal
advection on the urban heat island in Birmingham and the West Midlands,
United Kingdom during a heatwave, Q. J. Roy.
Meteor. Soc., 141, 1429–1441, https://doi.org/10.1002/qj.2452, 2015.
Heck, P., Luthi, D., Wernli, H., and Schar, C.: Climate impacts of
European-scale anthropogenic vegetation changes: A sensitivity study using a
regional climate model, J. Geophys. Res.-Atmos., 106,
7817–7835, https://doi.org/10.1029/2000jd900673, 2001.
Hewitt, C. N., Mackenzie, R., Di Carlo, P., Di Marco, C. F., Dorsey, J. R.,
Evans, M., Fowler, D., Gallagher, M. W., Hopkins, J. R., Jones, C. E.,
Langford, B., Lee, J. D., Lewis, A. C., Lim, S. F., McQuaid, J., Misztal,
P., Moller, S. J., Monks, P. S., Nemitz, E., Oram, D. E., Owen, S. M.,
Phillips, G. J., Pugh, T., Pyle, J. A., Reeves, C. E., Ryder, J., Siong, J.,
Skiba, U., and Stewart, D. J.: Nitrogen management is essential to prevent
tropical oil palm plantations from causing ground-level ozone pollution, in
P. Natl. Acad. Sci. USA, 106, 18447–18451, 2009.
Higgins, S. I.: Ecosystem Assembly: A Mission for Terrestrial Earth System
Science, Ecosystems, 20, 69–77, https://doi.org/10.1007/s10021-016-0054-3, 2017.
Hill, A. C.: Vegetation: A Sink for Atmospheric Pollutants, JAPCA J.
Air Waste Ma., 21, 341–346, 1971.
Hole, D. G., Perkins, A. J., Wilson, J. D., Alexander, I. H., Grice, P. V.,
and Evans, A. D.: Does organic farming benefit biodiversity?, Biol.
Conserv., 122, 113–130, https://doi.org/10.1016/j.biocon.2004.07.018, 2005.
Hooijer, A., Silvius, M., Wosten, H., and Page, S.: PEAT-CO2,
Assessment of CO2 emissions from drained peatlands in SE Asia, Delft Hydraulics report
Q3943/2006, 36 pp., available at: http://peat-co2.deltares.nl (last access: 28 May 2019), 2006.
Hooke, R. L. and Martin-Duque, J. F.: Land transformation by humans: a
review, GSA Today, 22, 4–10, 2012.
Houghton, R. A., Boone, R. D., Melillo, J. M., Palm, C. A., Woodwell, G. M.,
Moore, B., and Skole, D. L.: Net flux of CO2 from tropical forests, Nature,
316, 617–620, 1985.
Houghton, R. A., Boone, R. D., Fruci, J. R., Hobbie, J. E., Melillo, J. M.,
Palm, C. A., Peterson, B. J., Shaver, G. R., Woodwell, G. M., Moore, B., and
Skole, D. L.: The flux of carbon from terrestrial ecosystems to the
atmosphere in 1980 due to changes in land use: Geographic distribution of
the global flux, Tellus, 39, 122–139, 1987.
Houghton, R. A., House, J. I., Pongratz, J., van der Werf, G. R., DeFries, R. S., Hansen, M. C., Le Quéré, C., and Ramankutty, N.: Carbon emissions from land use and land-cover change, Biogeosciences, 9, 5125–5142, https://doi.org/10.5194/bg-9-5125-2012, 2012.
Houspanossian, J., Giménez, R., Jobbágy, E., and Nosetto, M.: Surface
albedo raise in the South American Chaco: Combined effects of deforestation
and agricultural changes, Agr. Forest Meteorol., 232,
118–127, 2017.
Hu, D., Bian, Q., Li, T. W. Y., Lau, A. K. H., and Yu, J. Z.: Contributions
of isoprene, monoterpenes, β-caryophyllene, and toluene to secondary
organic aerosols in Hong Kong during the summer of 2006, J.
Geophys. Res., 113, D22206, https://doi.org/10.1029/2008JD010437, 2008.
Hu, S., Chapin, F. S., Firestone, M. K., Field, C. B., and Chiariello, N. R.:
Nitrogen limitation of microbial decomposition in a grassland under elevated
CO2, Nature, 409, 188–191, 2001.
Immirzi, C. P., Maltby, E., and Clymo, R. S.: The global status of peatlands and their role in carbon cycling: a report for Friends
of the Earth, Friends of the Earth, London, 1992.
Jackson, R. B., Randerson, J. T., Canadell, J. G., Anderson, R. G., Avissar,
R., Baldocchi, D. D., Bonan, G. B., Caldeira, K., Diffenbaugh, N. S., Field,
C. B., Hungtae, B. A., Jobbagy, E. G., Kueppers, L. M., Nosetto, M. D., and
Pataki, D. E.: Protecting climate with forests, Environ. Res. Lett., 3,
044006, https://doi.org/10.1088/1748-9326/3/4/044006, 2008.
Jackson, R. B., Cook, C. W., Pippen, J. S., and Palmer, S. M.: Increased
belowground biomass and soil CO2 fluxes after a decade of carbon dioxide
enrichment in a warm-temperate forest, Ecology, 90, 3352–3366,
https://doi.org/10.1890/08-1609.1, 2009.
Jacobson, M. Z., Nghiem, S. V., and Sorichetta, A.: Short-term impacts
of the mega-urbanizations of New Delhi and Los Angeles between 2000 and 2009, J.
Geophys Res., 124, 35–56, 2019.
Jagger, P. and Shively, G.: Land use change, fuel use and respiratory health
in Uganda, Energ. Policy, 67, 713–726, https://doi.org/10.1016/j.enpol.2013.11.068,
2014.
Jain, A. K., Meiyappan, P., and Song, Y.: CO2 emissions from land-use change
affected more by nitrogen cycle, than by the choice of land-cover data,
Glob. Change Biol., 19, 2893–2906, https://doi.org/10.1111/gcb.12207, 2013.
Jang, M., Cao, G., and Paul, J.: Colorimetric Particle Acidity Analysis of
Secondary Organic Aerosol Coating on Submicron Acidic Aerosols, Aerosol
Sci. Tech., 42, 409–420, https://doi.org/10.1080/02786820802154861,
2008.
Janhäll, S.: Review on urban vegetation and particle air pollution
deposition and dispersion, Atmos. Environ., 105, 130–137, 2015.
Jauhiainen, J., Silvennoinen, H., Könönen, M., Limin, S., and
Vasander, H.: Management driven changes in carbon mineralization dynamics of
tropical peat, Biogeochemistry, 129, 115–132,
https://doi.org/10.1007/s10533-016-0222-8, 2016.
Jauregui, E. and Luyando, E.: Global radiation attenuation by air pollution
and its effects on the thermal climate in Mexico City, Int. J. Climatol., 19,
683–694, 1999.
Jiang, X., Wiedinmyer, C., Chen, F., Yang, Z.-L., and Lo, C. F.: Predicted
impacts of climate and land use change on surface ozone in the Houston,
Texas, area, J. Geophys. Res., 113, 20312, https://doi.org/10.1029/2008JD009820, 2008.
Joergensen, R. G., Mäder, P., and Fließbach, A.: Long-term effects of
organic farming on fungal and bacterial residues in relation to microbial
energy metabolism, Biol. Fert. Soils, 46, 303–307,
https://doi.org/10.1007/s00374-009-0433-4, 2010.
Jones, C. G., Lawton, J. H., and Shachak, M.: Organisms as Ecosystem
Engineers, Oikos, 69, 373, https://doi.org/10.2307/3545850, 1994.
Jones, R., Patwardhan, A., Cohen, S., Dessai, S., Lammel, A., Lempert, R.,
Mirza, M., and von Storch, H.: Foundations for decision making, in: Climate
change 2014: impacts, adaptation, and vulnerability. Part A: global and
sectoral aspects, Contribution of Working Group II to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by:
Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E.,
Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N.,
MacCracken, S., Mastrandrea, P. R., and White, L. L., 195–228, Cambridge and New York, 2014.
Jost, C., Trentmann, J., Sprung, D., Andreae, M. O., McQuaid, J. B., and
Barjat, H.: Trace gas chemistry in a young biomass burning plume over
Namibia: Observations and model simulations, J. Geophys. Res.-Atmos., 108, 8482, https://doi.org/10.1029/2002JD002431,
2003.
Ju, X.-T., Xing, G.-X., Chen, X.-P., Zhang, S.-L., Zhang, L.-J., Liu, X.-J.,
Cui, Z.-L., Yin, B., Christie, P., Zhu, Z.-L., and Zhang, F.-S.: Reducing
environmental risk by improving N management in intensive Chinese
agricultural systems, P. Natl. Acad. Sci. USA, 106,
3041–3046, doi.org/10.1073/pnas.0813417106, 2009.
Kasimir-Klemedtsson, Å., Klemedtsson, L., Berglund, K., Martikainen, P.,
Silvola, J., and Oenema, O.: Greenhouse gas emissions from farmed organic
soils: a review, Soil Use Manage., 13, 245–250,
https://doi.org/10.1111/j.1475-2743.1997.tb00595.x, 1997.
Kato, S. and Yamaguchi, Y.: Analysis of urban heat-island effect using ASTER
and ETM+ data: separation of anthropogenic heat discharge and natural heat
radiation from sensible heat flux, Remote. Sens. Environ., 99, 44–54, 2005.
Kellner, O. and Niyogi, D.: Land Surface Heterogeneity Signature in Tornado
Climatology? An Illustrative Analysis over Indiana, 1950–2012*, Earth
Interact., 18, 1–32, https://doi.org/10.1175/2013EI000548.1, 2014.
Kim, J. J. and Baik, J. J.: A numerical study of thermal effects on flow and
pollutant dispersion in urban street canyons, J. Appl.
Meteorol., 38, 1249–1261, 1999.
Kim, Y. H. and Baik, J. J.: Maximum urban heat island intensity in Seoul, J.
Appl. Meteorol., 41, 651–659, 2002.
Klein Goldewijk, K.: Estimating Global Land Use Change over the Past 300
Years: The HYDE Database, Global Biogeochem. Cy., 15, 417–433,
2001.
Klein Goldewijk, K.: The HYDE 3.1 spatially explicit database of
human-induced global land-use change over the past 12,000 years, Global
Ecol. Biogeogr., 20, 73–86, 2011.
Klemm, O. and Mangold, A.: Ozone Deposition at a Forest Site in NE Bavaria,
Water Air Soil Poll., 1, 223–232, https://doi.org/10.1023/A:1013167408114,
2001.
Krebs, J. R., Wilson, J. D., Bradbury, R. B., and Siriwardena, G. M.: The
second silent spring?, Nature, 400, 611–612, 1999.
Kueppers, L. M. and Snyder, M. A.: Influence of irrigated agriculture on
diurnal surface energy and water fluxes, surface climate, and atmospheric
circulation in California, Clim. Dynam., 38, 1017–1029,
https://doi.org/10.1007/s00382-011-1123-0, 2012.
Kueppers, L. M., Snyder, M. A., and Sloan, L. C.: Irrigation cooling effect:
Regional climate forcing by land-use change, Geophys. Res. Lett.,
34, 03703, https://doi.org/10.1029/2006gl028679, 2007.
Kumar, R. and Kaushik, S. C.: Performance evaluation of green roof and
shading for thermal protection of buildings, Build. Environ., 40,
1505–1511, 2005.
Lai, L.-W. and Cheng, W.-L.: Air quality influenced by urban heat island
coupled with synoptic weather patterns, Sci. Total Environ., 407,
2724–2733, https://doi.org/10.1016/j.scitotenv.2008.12.002, 2009.
Lal, R.: Soil Carbon Sequestration Impacts on Global Climate Change and Food
Security, Science, 304, 1623–1627, https://doi.org/10.1126/science.1097396, 2004.
Lambin, E. F. and Geist, H.: Introduction: local processes with global
impacts, edited by: Lambin, E. F. and Geist, H., Springer Verlag, Berlin
Heidelberg, 2006.
Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A.,
Bruce, J. W., Coomes, O. T., Dirzo, R., Fischer, G., Folke, C., George, P.
S., Homewood, K., Imbernon, J., Leemans, R., Li, X., Moran, E. F.,
Mortimore, M., Ramakrishnan, P. S., Richards, J. F., Skånes, H.,
Steffen, W., Stone, G. D., Svedin, U., Veldkamp, T. A., Vogel, C., and Xu,
J.: The causes of land-use and land-cover change: moving beyond the myths,
Global Environ. Chang., 11, 261–269,
https://doi.org/10.1016/S0959-3780(01)00007-3, 2001.
Lammel, D. R., Feigl, B. J., Cerri, C. C., and Nüsslein, K.: Specific
microbial gene abundances and soil parameters contribute to C, N, and
greenhouse gas process rates after land use change in Southern Amazonian
Soils, Front. Microbiol., 6, p. 1057, https://doi.org/10.3389/fmicb.2015.01057, 2015.
Lapola, D. M., Oyama, M. D., and Nobre, C. A.: Exploring the range of climate
biome projections for tropical South America: The role of CO2 fertilization
and seasonality, Global Biogeochem. Cy., 23, GB3003,
https://doi.org/10.1029/2008GB003357, 2009.
Lathière, J., Hauglustaine, D. A., Friend, A. D., De Noblet-Ducoudré, N., Viovy, N., and Folberth, G. A.: Impact of climate variability and land use changes on global biogenic volatile organic compound emissions, Atmos. Chem. Phys., 6, 2129–2146, https://doi.org/10.5194/acp-6-2129-2006, 2006.
Lean, J. and Rowntree, R. P.: Understanding the sensitivity of a GCM
simulation of Amazonian deforestation to the specification of vegetation and
soil characteristics, J. Climate, 10, 1216–1235, 1997.
Le Berre, M.: Territoires, Encyclopédie de Géographie,
Economica, Paris, 601–622,
1992.
Lejeune, Q., Davin, E. L., Guillod, B. P., and Seneviratne, S. I.: Influence
of Amazonian deforestation on the future evolution of regional surface
fluxes, circulation, surface temperature and precipitation, Clim.
Dynam., 44, 2769–2786, https://doi.org/10.1007/s00382-014-2203-8, 2015.
Lejeune, Q., Davin, E. L., Gudmundsson, L., Winckler, J., and Seneviratne, S.
I.: Historical deforestation locally increased the intensity of hot days in
northern mid-latitudes, Nat. Clim. Change, 8, 386–390,
https://doi.org/10.1038/s41558-018-0131-z, 2018.
Le Quéré, C., Andres, R. J., Boden, T., Conway, T., Houghton, R. A., House, J. I., Marland, G., Peters, G. P., van der Werf, G. R., Ahlström, A., Andrew, R. M., Bopp, L., Canadell, J. G., Ciais, P., Doney, S. C., Enright, C., Friedlingstein, P., Huntingford, C., Jain, A. K., Jourdain, C., Kato, E., Keeling, R. F., Klein Goldewijk, K., Levis, S., Levy, P., Lomas, M., Poulter, B., Raupach, M. R., Schwinger, J., Sitch, S., Stocker, B. D., Viovy, N., Zaehle, S., and Zeng, N.: The global carbon budget 1959–2011, Earth Syst. Sci. Data, 5, 165–185, https://doi.org/10.5194/essd-5-165-2013, 2013.
Li, H., Harvey, J., and Kendall, A.: Field measurement of albedo for
different land cover materials and effect on thermal performance, Build.
Environ., 59, 536–546, 2013.
Li, H., Meier, F., Lee, X., Chakraborty, T., Liu, J., Schaap, M., and
Sodoudi, S.: Interaction between urban heat island and urban pollution
island during summer in Berlin, Sci. Total Environ., 636,
818–828, https://doi.org/10.1016/j.scitotenv.2018.04.254, 2018.
Li, J., Mahalov, A., and Hyde, P.: Impacts of agricultural irrigation on
ozone concentrations in the Central Valley of California and in the
contiguous United States based on WRF-Chem simulations, Agr.
Forest Meteorol., 221, 34–49, https://doi.org/10.1016/j.agrformet.2016.02.004, 2016.
Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E., and Li, S.: Local
cooling and warming effects of forests based on satellite observations,
Nat. Commun., 6, 6603, https://doi.org/10.1038/ncomms7603, 2015.
Lindenmayer, D., Cunningham, S., and Young, A.: Land Use Intensification:
Effects on Agriculture, Biodiversity and Ecological Processes, Perspectives
on land use intensification and biodiversity conservation, 137–149,
Lindenmayer David, Cunningham Saul and AndrewYoung, Collingwood, Australia,
https://doi.org/10.1111/aec.12174, 2012.
Liu, C., Holst, J., Brüggemann, N., Butterbach-Bahl, K., Yao, Z., Han,
S., Han, X., and Zheng, X.: Effects of irrigation on nitrous oxide, methane
and carbon dioxide fluxes in an Inner Mongolian steppe, Adv.
Atmos. Sci., 25, 748–756, https://doi.org/10.1007/s00376-008-0748-3, 2008.
Livesley, S. J., McPherson, E. G., and Calfapietra, C.: The Urban Forest and
Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at
the Tree, Street, and City Scale, J. Environ. Qual., 45, 119–124,
https://doi.org/10.2134/jeq2015.11.0567, 2016.
Llopart, M., Reboita, M., Coppola, E., Giorgi, F., da Rocha, R., and de
Souza, D.: Land Use Change over the Amazon Forest and Its Impact on the
Local Climate, Water, 10, 149, https://doi.org/10.3390/w10020149, 2018.
Lobell, D. B. and Bonfils, C.: The
Effect of Irrigation on Regional Temperatures: A Spatial and Temporal Analysis of Trends in
California, 1934–2002, J. Climate, 21, 2063–2071, https://doi.org/10.1175/2007JCLI1755.1,
2008.
Lobell, D. B., Bala, G., and Duffy, P. B.: Biogeophysical impacts of cropland
management changes on climate, Geophys. Res. Lett., 33, L06708, https://doi.org/10.1029/2005GL025492, 2006.
Lobell, D. B., Bonfils, C., and Duffy, P. B.: Climate change uncertainty for
daily minimum and maximum temperatures: a model inter-comparison, Geophys.
Res. Lett., 34, L05715, https://doi.org/10.1029/2006GL028726, 2007.
López, M. V., Gracia, R., and Arrué, J. L.: Effects of reduced tillage on
soil surface properties affecting wind erosion in semiarid fallow lands of
Central Aragon, Eur. J. Agron., 12, 191–199, 2000.
López, M. V., de Dios Herrero, J. M., Hevia, G. G., Gracia, R., and
Buschiazzo, D. E.: Determination of the wind-erodible fraction of soils
using different methodologies, Geoderma, 139, 407–411,
https://doi.org/10.1016/j.geoderma.2007.03.006, 2007.
Loreau, M., Naeem, S., and Inchausti, P. (Eds.): Biodiversity and ecosystem
functioning: synthesis and perspectives, Oxford University Press, Oxford,
2002.
Lorenz, J. M., Kronenberg, R., Bernhofer, C., and Niyogi, D.: Urban Rainfall
Modification: Observational Climatology Over Berlin, Germany, J.
Geophys. Res.-Atmos., 124, 731–746, https://doi.org/10.1029/2018JD028858,
2019.
Luyssaert, S., Jammet, M., Stoy, P. C., Estel, S., Pongratz, J., Ceschia,
E., Churkina, G., Don, A., Erb, K., Ferlicoq, M., and Gielen, B.: Land
management and land-cover change have impacts of similar magnitude on
surface temperature, Nat. Clim. Change, 4, 389–393, 2014.
MacIvor, J. S. and Lundholm, J.: Performance evaluation of native plants
suited to extensive green roof conditions in a maritime climate, Ecol.
Eng., 37, 407–417, 2011.
MacKenzie, A. R., Harrison, R. M., Colbeck, I., Clark, P. A., and Varey, R.
H.: The ozone increments in urban plumes, Sci. Total Environ.,
159, 91–99, https://doi.org/10.1016/0048-9697(95)04312-O, 1995.
Magnani, F., Mencuccini, M., Borghetti, M., Berbigier, P., Berninger, F.,
Delzon, S., Grelle, A., Hari, P., Jarvis, P. G., Kolari, P., Kowalski, A.
S., Lankreijer, H., Law, B. E., Lindroth, A., Loustau, D., Manca, G.,
Moncrieff, J. B., Rayment, M., Tedeschi, V., Valentini, R., and Grace, J.:
The human footprint in the carbon cycle of temperate and boreal forests,
Nature, 447, 849–851, https://doi.org/10.1038/nature05847, 2007.
Mahfouf, J. F., Richard, E., and Mascart, P.: The influence of soil and
vegetation on the development of mesoscale circulations, J. Clim. Appl.
Meteorol., 26, 1483–1495, 1987.
Mahmood, R., Pielke, R. A., Hubbard, K. G., Niyogi, D., Dirmeyer, P. A.,
McAlpine, C., Carleton, A. M., Hale, R., Gameda, S., Beltrán-Przekurat,
A., Baker, B., McNider, R., Legates, D. R., Shepherd, M., Du, J., Blanken,
P. D., Frauenfeld, O. W., Nair, U. S., and Fall, S.: Land cover changes and
their biogeophysical effects on climate: Land cover changes and their
biogeophysical effects on cliamte, Int. J. Climatol., 34,
929–953, https://doi.org/10.1002/joc.3736, 2014.
Mahrt, L. and Ek, M.: Spatial variability of turbulent fluxes and roughness
lengths in HAPEX-MOBILHY, Bound.-Lay. Meteorol., 65, 381–400, 1993.
Mahrt, L., Sun, J., Vickers, D., MacPherson, J. I., Pederson, J. R., and
Desjardins, R. L.: Observations of fluxes and inland breezes over a
heterogeneous surface, J. Atmos. Sci., 51, 2484–2499, 1994.
Maljanen, M., Sigurdsson, B. D., Guðmundsson, J., Óskarsson, H., Huttunen, J. T., and Martikainen, P. J.: Greenhouse gas balances of managed peatlands in the Nordic countries – present knowledge and gaps, Biogeosciences, 7, 2711–2738, https://doi.org/10.5194/bg-7-2711-2010, 2010.
Maltby, E. and Immirzi, P.: Carbon dynamics in peatlands and other wetland
soils: regional and global perspectives, Chemosphere, 27, 999–1023, 1993.
Manzoni, S., Taylor, P., Richter, A., Porporato, A., and Ågren, G. I.:
Environmental and stoichiometric controls on microbial carbon-use efficiency
in soils: Research review, New Phytol., 196, 79–91,
https://doi.org/10.1111/j.1469-8137.2012.04225.x, 2012.
Markvart, T., Castañer, L., and Castaner, L. (Eds.): Practical Handbook of Photovoltaics:
Fundamentals and Applications, Elsevier, 2003.
Marschner, P.: Structure and function of the soil microbial community in a
long-term fertilizer experiment, Soil Biol. Biochem., 35,
453–461, https://doi.org/10.1016/S0038-0717(02)00297-3, 2003.
Marshall, C. H., Pielke, R. A., and Steyaert, L. T.: Has the conversion of
natural wetlands to agricultural land increased the incidence and severity
of damaging freezes in south Florida?, Mon. Weather Rev., 132, 2243–2258, https://doi.org/10.1175/1520-0493(2004)132<2243:HTCONW>2.0.CO;2, 2004a.
Marshall, C. H., Pielke, R. A., Steyaert, L. T., and Willard, D. A.: The
impact of anthropogenic land-cover change on the Florida peninsula sea
breezes and warm season sensible weather, Mon. Weather Rev., 132, 28–52,
https://doi.org/10.1175/1520-0493(2004)132<0028:Tioalc>2.0.Co;2,
2004b.
Mason, S. A., Trentmann, J., Winterrath, T., Yokelson, R. J., Christian, T.
J., Carlson, L. J., Warner, T. R., Wolfe, L. C., and Andreae, M. O.:
Intercomparison of two box models of the chemical evolution in
biomass-burning smoke plumes, J. Atmos. Chem., 55, 273–297, 2006.
Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., and Zavala,
L. M.: Fire effects on soil aggregation: A review, Earth-Sci. Rev.,
109, 44–60, https://doi.org/10.1016/j.earscirev.2011.08.002, 2011.
Matson, P. A., Parton, W. J., Power, A. G., and Swift, M. J.: Agricultural
intensification and ecosystem properties, Science, 25, 504–509, 1997.
Matthews, H. D., Weaver, A. J., Eby, M., and Meissner, K. J.: Radiative
forcing of climate by historical land cover change, Geophys. Res. Lett., 30,
1055, https://doi.org/10.1029/2002GL016098, 2003.
Matson, P. A., Parton, W. J., Power, A. G., and Swift, M. J.:
Agricultural intensification and ecosystem properties, Science, 25, 504–509, 1997.
Medlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze, M. C.,
Hanson, P. J., Hickler, T., Jain, A. K., Luo, Y., Parton, W., Prentice, I.
C., Thornton, P. E., Wang, S., Wang, Y.-P., Weng, E., Iversen, C. M.,
McCarthy, H. R., Warren, J. M., Oren, R., and Norby, R. J.: Using ecosystem
experiments to improve vegetation models, Nat. Clim. Change, 5,
528–534, https://doi.org/10.1038/nclimate2621, 2015.
Meissner, K. J., Weaver, A. J., Matthews, H. D., and Cox, P. M.: The role of
land surface dynamics in glacial inception: a study with the UVic Earth
System Model, Clim. Dynam., 21, 515–537, 2003.
Menalled, F. D., Costamagna, A. C., Marino, P. C., and Landis, D.
A.: Temporal variation in the response of parasitoids to agricultural landscape structure,
Agr. Ecosyst. Environ., 96, 29–35, https://doi.org/10.1016/S0167-8809(03)00018-5,
2003.
Meyer, S., Bright, R. M., Fischer, D., Schulz, H., and Glaser, B.: Albedo
Impact on the Suitability of Biochar Systems To Mitigate Global Warming,
Environ. Sci. Technol., 46, 12726–12734, https://doi.org/10.1021/es302302g, 2012.
Middel, A., Häb, K., Brazel, A. J., Martin, C. A., and Guhathakurta, S.:
Impact of urban form and design on mid-afternoon microclimate in Phoenix
Local Climate Zones, Landscape Urban Plan., 122, 16–28, 2014.
Millstein, D. and Menon, S.: Regional climate consequences of large-scale
cool roof and photovoltaic array deployment, Environ. Res. Lett.,
6, 034001, https://doi.org/10.1088/1748-9326/6/3/034001, 2011.
Mimet, A., Pellissier, V., Quénol, H., Aguejdad, R., Dubreuil, V., and
Rozé, F.: Urbanisation induces early flowering: evidence from Platanus
acerifolia and Prunus cerasus, Int. J. Biometeorol., 53,
287–298, https://doi.org/10.1007/s00484-009-0214-7, 2009.
Mladenoff, D. J.: Dynamics of Nitrogen Mineralization and
Nitrification in Hemlock and Hardwood Treefall Gaps, Ecology, 68, 1171–1180,
https://doi.org/10.2307/1939201, 1987.
Mohamed, Y. A., Van den Hurk, B. J. J. M., Savenije, H. H. G., and
Bastiaanssen, W. G. M.: Impact of the Sudd wetland on the Nile
hydroclimatology, Water Resour. Res., 41, 8420, https://doi.org/10.1029/2004WR003792,
2005.
Moller, H., MacLeod, C. J., Haggerty, J., Rosin, C., Blackwell, G., Perley,
C., Meadows, S., Weller, F., and Gradwohl, M.: Intensification of New Zealand
agriculture: Implications for biodiversity, New Zeal. J.
Agr. Res., 51, 253–263, https://doi.org/10.1080/00288230809510453, 2008.
Montgomery, D. R.: Soil erosion and agricultural sustainability, P. Natl. Acad. Sci. USA, 104,
13268–13272, https://doi.org/10.1073/pnas.0611508104, 2007.
Murugan, R. and Kumar, S.: Influence of long-term fertilisation and crop
rotation on changes in fungal and bacterial residues in a tropical
rice-field soil, Biol. Fert. Soils, 49, 847–856,
https://doi.org/10.1007/s00374-013-0779-5, 2013.
Muscolo, A., Bagnato, S., Sidari, M., and Mercurio, R.: A review
of the roles of forest canopy gaps, J. Forest. Res., 25, 725–736, 2014.
Nair, U. S., Lawton, R. O., Welch, R. M., and Pielke, R. A.: Impact of land
use on Costa Rican tropical montane cloud forests: Sensitivity of cumulus
cloud field characteristics to lowland deforestation, J. Geophys.
Res.-Atmos., 108, 4206, https://doi.org/10.1029/2001JD001135, 2003.
Naudts, K., Chen, Y., McGrath, M. J., Ryder, J., Valade, A., Otto, J., and
Luyssaert, S.: Europe's forest management did not mitigate climate warming,
Science, 351, 597–600, 2016.
Neill, C., Steudler, P. A., Garcia-Montiel, D. C., Melillo, J. M., Feigl, B.
J., Piccolo, M. C., and Cerri, C. C.: Rates and controls of nitrous oxide
and nitric oxide emissions following conversion of forest to pasture in
Rondônia, Nutr. Cycl. Agroecosys., 71, 1–15, 2005.
Nogherotto, R., Coppola, E., Giorgi, F., and Mariotti, L.: Impact of Congo
Basin deforestation on the African monsoon: Impact of Congo Basin
deforestation, Atmos. Sci. Lett., 14, 45–51,
https://doi.org/10.1002/asl2.416, 2013.
Norby, R. J., De Kauwe, M. G., Domingues, T. F., Duursma, R. A., Ellsworth,
D. S., Goll, D. S., Lapola, D. M., Luus, K. A., MacKenzie, A. R., Medlyn, B.
E., Pavlick, R., Rammig, A., Smith, B., Thomas, R., Thonicke, K., Walker, A.
P., Yang, X., and Zaehle, S.: Model-data synthesis for the next generation of
forest free-air CO2 enrichment (FACE) experiments, New Phytol., 209,
17–28, https://doi.org/10.1111/nph.13593, 2016.
Novak, D. J., Crane, D. E., and Stevens, J. C.: Air pollution removal by
urban trees and shrubs, Urban Forestry and Urban Greening, 4, 115–123,
2006.
Nowak, D. J., Civerolo, K. L., Rao, S. T., Sistla, G., Luley, C. J., and
Crane, D. E.: A modeling study of the impact of urban trees on ozone, Atmos.
Environ., 34, 1601–1613, 2000.
Oberndorfer, E., Lundholm, J., Bass, B., Coffman, R. R., Doshi, H., Dunnett,
N., Gafin, S., Köhler, M., Liu, K. K. Y., and Rowe, B.: Green roofs as
urban ecosystems: ecological structures, functions, and services,
BioScience, 57, 823–833, 2007.
Oke, T. R.: The energetic basis of the urban heat island, Q. J. Roy. Meteor.
Soc., 108, 1–24, 1982.
Oke, T. R. and Fuggle, F. R.: Comparison of urban/rural counter and net
radiation at night, Bound.-Lay. Meteorol., 2, 290–308, 1972.
Ooi, M. C. G., Chan, A., Ashfold, M. J., Oozeer, M. Y., Morris, K. I., and
Kong, S. S. K.: The role of land use on the local climate and air quality
during calm inter-monsoon in a tropical city, Geosci. Front., 10,
405–415, https://doi.org/10.1016/j.gsf.2018.04.005, 2019.
Otterman, J.: Baring high-albedo soils by over grazing: A hypothesized
desertification method, Science, 186, 531–533, 1974.
Pearlmutter, D., Bitan, A., and Berliner, P.: Microclimatic analysis of
“compact” urban canyons in an arid zone, Atmos. Environ., 33, 4143–4150,
1999.
Pearlmutter, D., Krüger, E. L., and Berliner, P.: The role of
evapotranspiration in the energy balance of an open-air scaled urban
surface, Int. J. Climatol., 29, 911–920, 2009.
Pernes-Debuyser, A. and Tessier, D.: Soil physical properties affected by
long-term fertilization, Eur. J. Soil Sci., 55, 505–512,
https://doi.org/10.1111/j.1365-2389.2004.00614.x, 2004.
Perugini, L., Caporaso, L., Marconi, S., Cescatti, A., Quesada, B., de
Noblet-Ducoudré, N., House, J. I., and Arneth, A.: Biophysical effects on
temperature and precipitation due to land cover change, Environ.
Res. Lett., 12, 053002, https://doi.org/10.1088/1748-9326/aa6b3f, 2017.
Phuleria, H. C., Fine, P. M., Zhu, Y. F., and Sioutas, C.: Air quality
impacts of the October 2003 Southern California wildfires, J. Geophys. Res.-Atmos., 110, D07S20, https://doi.org/10.1029/2004JD004626, 2005.
Pielke, R. A., Avissar, S., Ron, I., Raupach, M. R., Dolman, A. J., Zeng, X.,
and Denning, A. S.: Interactions between the atmosphere and terrestrial
ecosystems: influence on weather and climate, Glob. Change Biol., 4,
461–475, https://doi.org/10.1046/j.1365-2486.1998.t01-1-00176.x, 1998.
Pielke, R. A., Adegoke, J., Beltrán-Przekurat, A., Hiemstra, C. A.,
Lin, J., Nair, U. S., Niyogi, D., and Nobis, T. E.: An overview of regional land-use and landcover impacts on rainfall, Tellus
B, 59, 587–601, https://doi.org/10.1111/j.1600-0889.2007.00251.x,
2007.
Pielke, R. A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Hossain,
F., Klein Goldewijk, K., Nair, U., Betts, R., Fall, S., Reichstein, M.,
Kabat, P., and de Noblet, N.: Land use/land cover changes and climate:
modeling analysis and observational evidence: Land use/land cover changes
and climate: modeling analysis and observational evidence, WIRES Clim. Change, 2, 828–850, https://doi.org/10.1002/wcc.144,
2011.
Pielke, S. R. A., Walko, R. L., Steyaert, L. T., Vidale, P. L., Liston, G.
E., Lyons, W. A., and Chase, T. N.: The influence of anthropogenic landscape
changes on weather in south Florida, Mon. Weather Rev., 127, 1663–1673,
1999.
Pitman, A. J., de Noblet-Ducoudré, N., Avila, F. B., Alexander, L. V., Boisier, J.-P., Brovkin, V., Delire, C., Cruz, F., Donat, M. G., Gayler, V., van den Hurk, B., Reick, C., and Voldoire, A.: Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations, Earth Syst. Dynam., 3, 213–231, https://doi.org/10.5194/esd-3-213-2012, 2012a.
Pitman, A. J., Arneth, A., and Ganzeveld, L.: Regionalizing global climate
models, Int. J. Climatol., 32, 321–337,
https://doi.org/10.1002/joc.2279, 2012b.
Pongratz, J., Reick, C., Raddatz, T., and Claussen, M.: A reconstruction of
global agricultural areas and land cover for the last millennium, Global
Biogeochem. Cy., 22, Gb3018, https://doi.org/10.1029/2007gb003153,
2008.
Powers, J. S. and Schlesinger, W. H.: Relationships among soil carbon
distributions and biophysical factors at nested spatial scales in rain
forests of northeastern Costa Rica, Geoderma, 109, 165–190,
https://doi.org/10.1016/S0016-7061(02)00147-7, 2002.
Pressler, Y., Moore, J. C., and Cotrufo, M. F.: Belowground community
responses to fire: meta-analysis reveals contrasting responses of soil
microorganisms and mesofauna, Oikos, 128, 309–327,
https://doi.org/10.1111/oik.05738, 2019.
Prior, S. A., Runion, G. B., Marble, S. C., Rogers, H. H., Gilliam, C. H.,
and Torbert, H. A.: A Review of Elevated Atmospheric CO2 Effects on Plant
Growth and Water Relations: Implications for Horticulture, HortScience, 46,
158–162, 2011.
Puma, M. J. and Cook, B. I.: Effects of irrigation on global climate during
the 20th century, J. Geophys. Res., 115, D16120, https://doi.org/10.1029/2010JD014122,
2010.
Purves, D. W., Caspersen, J. P., Moorcroft, P. R., Hurtt, G. C., and Pacala,
S. W.: Human-induced changes in US biogenic volatile organic compound
emissions: evidence from long-term forest inventory data, Glob. Change
Biol., 10, 1737–1755, https://doi.org/10.1111/j.1365-2486.2004.00844.x, 2004.
Rahdi, H., Assem, E., and Sharples, S.: On the colours and properties of
building surface materials to mitigate urban heat islands in highly
productive solar regions, Build. Environ., 72, 162–172, 2014.
Raison, R. J.: Modification of the soil environment by vegetation fires,
with particular reference to nitrogen transformations: A review, Plant
Soil, 51, 73–108, https://doi.org/10.1007/BF02205929, 1979.
Ramankutty, N. and Foley, A. J.: Estimating historical changes in global
land cover: Croplands from 1700 to 1992, Global. Biogeochem. Cy., 13,
997–1027, 1999.
Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess,
P. G., Pfister, G., Mack, M. C., Treseder, K. K., Welp, L. R., Chapin, F.
S., Harden, J. W., Goulden, M. L., Lyons, E., Neff, J. C., Schuur, E. A. G.,
and Zender, C. S.: The impact of boreal forest fire on climate warming,
Science, 314, 1130–1132, 2006.
Ray, D. K., Nair, U. S., Welch, R. M., Han, Q., Zeng, J., Su, W., Kikuchi,
T., and Lyons, T. J.: Effects of land use in Southwest Australia: 1.
Observations of cumulus cloudiness and energy fluxes, J. Geophys. Res.-Atmos., 108, 4414, https://doi.org/10.1029/2002JD002654, 2003.
Ray, D. K., Nair, U. S., Lawton, R. O., Welch, R. M., and Pielke, R. A.:
Impact of land use on Costa Rican tropical montane cloud forests:
Sensitivity of orographic cloud formation to deforestation in the plains, J.
Geophys. Res.-Atmos., 111, 2108, https://doi.org/10.1029/2005JD006096, 2006.
Ren, C., Ng, E. Y., and Katzschner, L.: Urban climatic map studies: a review,
Int. J. Climatol, 31, 2213–2233, https://doi.org/10.1002/joc.2237,
2011.
Ren, Y., Qu, Z., Du, Y., Xu, R., Ma, D., Yang, G., Shi, Y., Fan, X.,
Tani, A., and Guo, P.: Air quality and health effects of biogenic volatile organic compounds
emissions from urban green spaces and the mitigation strategies, Environ. Pollut.,
230, 849–861, 2017.
Rendón, A. M., Salazar, J. F., Palacio, C. A., Wirth, V., and Brötz,
B.: Effects of Urbanization on the Temperature Inversion Breakup in a
Mountain Valley with Implications for Air Quality, J. Appl.
Meteorol. Climatol, 53, 840–858, https://doi.org/10.1175/JAMC-D-13-0165.1,
2014.
Richards, J. F.: Land transformation, in: The Earth as Transformed by Human
Action, edited by: Turner II, N. L., Cambridge Univ. Press, New York, 1990.
Robinson, R. A. and Sutherland, W. J.: Post-war changes in arable farming
and biodiversity in Great Britain, J. Appl. Ecol., 39, 157–176,
https://doi.org/10.1046/j.1365-2664.2002.00695.x, 2002.
Roschewitz, I., Gabriel, D., Tscharntke, T., and Thies, C.: The effects of
landscape complexity on arable weed species diversity in organic and
conventional farming: Landscape complexity and weed species diversity,
J. Appl. Ecol., 42, 873–882,
https://doi.org/10.1111/j.1365-2664.2005.01072.x, 2005.
Ruysschaert, G. R., Poesen, J., Verstraeten, G., and Govers, G.: Soil loss
due to crop harvesting: significance and determining factors, Prog.
Phys. Geogr., 28, 467–501, 2004.
Sacks, W. J. and Kucharik, C. J.: Crop management and phenology trends in
the US Corn Belt: Impacts on yields, evapotranspiration and energy balance,
Agr. Forest Meteorol., 151, 882–894, 2011.
Sacks, W. J., Cook, B. I., Buenning, N., Levis, S., and Helkowski, J. H.:
Effects of global irrigation on the near-surface climate, Clim. Dynam., 33,
159–175, 2009.
Safford, R. J., Tran, T., Maltby, E., and Ni, D.: Status, biodiversity and
management of the U Minh wetlands, Vietnam, Tropical Biodiversity, 5,
217–244, 1998.
Sagan, C., Toon, O., and Pollack James, B.: Anthropogenic albedo change and
the Earths Climate, Science, 206, 1363–1368, 1979.
Salamanca, F., Georgescu, M., Mahalov, A., Moustaoui, M., and Martilli, A.:
Citywide impacts of cool roof and rooftop solar photovoltaic deployment on
near-surface air temperature and cooling energy demand, Bound.-Lay.
Meteorol., 161, 203–221, 2016.
Salazar, L. F. and Nobre, C. A.: Climate change and
thresholds of biome shifts in Amazonia, Geophys. Res. Lett., 37, L17706,
https://doi.org/10.1029/2010GL043538, 2010.
Samuelson, L. J., Butnor, J., Maier, C., Stokes, T. A., Johnsen, K., and
Kane, M.: Growth and physiology of loblolly pine in response to long-term
resource management: defining growth potential in the southern United
States, Can. J. Forest Res., 38, 721–732, 2008.
Santamouris, M.: Using cool pavements as a mitigation strategy to fight
urban heat island – A review of the actual developments, Renew. Sust.
Energ. Rev., 26, 224–240, 2013.
Sarrat, C., Lemonsu, A., Masson, V., and Guedalia, D.: Impact of urban heat
island on regional atmospheric pollution, Atmos. Environ., 40, 1743–1758,
2006.
Savadogo, P., Sawadogo, L., and Tiveau, D.: Effects of grazing intensity and
prescribed fire on soil physical and hydrological properties and pasture
yield in the savanna woodlands of Burkina Faso, Agr. Ecosyst.
Environ., 118, 80–92, https://doi.org/10.1016/j.agee.2006.05.002, 2007.
Scalenghe, R. and Marsan, F. A.: The anthropogenic sealing of soils in urban
areas, Landscape Urban Plan., 90, 1–10,
https://doi.org/10.1016/j.landurbplan.2008.10.011, 2009.
Scheiter, S., Langan, L., and Higgins, S. I.: Next-generation dynamic global
vegetation models: learning from community ecology, New Phytol., 198,
957–969, https://doi.org/10.1111/nph.12210, 2013.
Schneider, A., Friedl, M. A., and Potere, D.: A new map of global urban
extent from MODIS satellite data, Environ. Res. Lett., 4, 044003,
https://doi.org/10.1088/1748-9326/4/4/044003, 2009.
Schneider, N. and Eugster, W.: Climatic impacts of historical wetland
drainage in Switzerland, Climatic Change, 80, 301–321, 2007.
Schroth, G., D'Angelo, S. A., Teixeira, W. G., Haag, D., and
Lieberei, R.: Conversion of secondary forest into agroforestry and monoculture plantations in
Amazonia: consequences for biomass, litter and soil carbon stocks after 7 years, Forest
Ecol. Manage., 163, 131–150, https://doi.org/10.1016/S0378-1127(01)00537-0, 2002.
Segal, M. and Arritt, W. R.: Nonclassical mesoscale circulations caused by
surface sensible heat-flux gradients, B. Am. Meteorol. Soc., 73, 1593–1604,
1992.
Segal, M., Avissar, R., McCumber, M. C., and Pielke, R. A.: Evaluation of
vegetation effects on the generation and modification of mesoscale
circulations, J. Atmos. Sci., 45, 2268–2293, 1988.
Segal, M., Pan, Z., Turner, R. W., and Takle, E. S.: On the potential impact
of irrigated areas in North America on summer rainfall caused by large-scale
systems, J. Appl. Meteorol., 37, 325–331, 1998.
Selmi, W., Weber, C., Rivière, E., Blond, N., Mehdi, L., and Nowak, D.:
Air pollution removal by trees in public green spaces in Strasbourg city,
France, Urban Forestry and Urban Greening, 17, 182–201, 2016.
Senapati, N., Chabbi, A., Gastal, F., Smith, P., Mascher, N., Loubet, B.,
Cellier, P., and Naisse, C.: Net carbon storage measured in a mowed and
grazed temperate sown grassland shows potential for carbon sequestration
under grazed system, Carbon Manag., 5, 131–144,
https://doi.org/10.1080/17583004.2014.912863, 2014.
Seto, K. C., Guneralp, B., and Hutyra, L. R.: Global forecasts of urban
expansion to 2030 and direct impacts on biodiversity and carbon pools,
P. Natl. Acad. Sci. USA, 109, 16083–16088, https://doi.org/10.1073/pnas.1211658109, 2012.
Shahmohamadi, P., Che-Ani, A. I., Ramly, A., Maulud, K. N. A., and Mohd-Nor,
M. F. I.: Reducing urban heat island effects: A systematic review to achieve
energy consumption balance, Int. J. Phys. Sci., 5,
626–636, 2010.
Sharratt, B., Feng, G., and Wendling, L.: Loss of soil and PM10 from
agricultural fields associated with high winds on the Columbia Plateau,
Earth Surf. Proc. Land., 32, 621–630, https://doi.org/10.1002/esp.1425,
2007.
Shashua-Bar, L. and Hoffman, M. E.: Vegetation as a climatic component in
the design of an urban street. An empirical model for predicting the cooling
effect of urban green areas with trees, Energ. Buildings, 31, 221–235,
2000.
Shen, S. and Leclerc, Y. M.: How large must surface inhomogeneities be
before they influence the convective boundary layer structure? A case study,
Q. J. Roy. Meteor. Soc., 121, 1209–1228, 1995.
Shepherd, J. M.: A review of current investigations of urban-induced
rainfall and recommendations for the future, Earth Interact., 9, 1–27, 2005.
Shepherd, J. M., Pierce, H., and Negri, A. J.: Rainfall modification by major
urban areas: observations from spaceborne rain radar on the TRMM satellite,
J. Appl. Meteorol., 41, 689–701, 2002.
Shriar, A. J.: Agricultural intensity and its measurement in frontier
regions, Agroforest. Syst., 49, 301–318, https://doi.org/10.1023/A:1006316131781,
2000.
Shukla, J., Nobre, C., and Sellers, P.: Amazon deforestation and climate
change, Science, 247, 1322–1325, 1990.
Silva, S. J., Heald, C. L., Geddes, J. A., Austin, K. G., Kasibhatla, P. S., and Marlier, M. E.: Impacts of current and projected oil palm plantation expansion on air quality over Southeast Asia, Atmos. Chem. Phys., 16, 10621–10635, https://doi.org/10.5194/acp-16-10621-2016, 2016.
Singh, H. B., Cai, C., Kaduwela, A., Weinheimer, A., and Wisthaler, A.:
Interactions of fire emissions and urban pollution over California: Ozone
formation and air quality simulations, Atmos. Environ., 56, 45–51,
https://doi.org/10.1016/j.atmosenv.2012.03.046, 2012.
Sini, J. F., Anquetin, S., and Mestayer, P. G.: Pollutant dispersion and
thermal effects in urban street canyons, Atmos. Environ., 30, 2659–2677, https://doi.org/10.1016/1352-2310(95)00321-5, 1996.
Sitz, L. E., Di Sante, F., Farneti, R., Fuentes-Franco, R., Coppola, E.,
Mariotti, L., Reale, M., Sannino, G., Barreiro, M., Nogherotto, R.,
Giuliani, G., Graffino, G., Solidoro, C., Cossarini, G., and Giorgi, F.:
Description and evaluation of the Earth System Regional Climate Model (Reg
CM-ES): THE REGCM-ES MODEL, J. Adv. Model. Earth Sy.,
9, 1863–1886, https://doi.org/10.1002/2017MS000933, 2017.
Smith, P., Cotrufo, M. F., Rumpel, C., Paustian, K., Kuikman, P. J., Elliott, J. A., McDowell, R., Griffiths, R. I., Asakawa, S., Bustamante, M., House, J. I., Sobocká, J., Harper, R., Pan, G., West, P. C., Gerber, J. S., Clark, J. M., Adhya, T., Scholes, R. J., and Scholes, M. C.: Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils, SOIL, 1, 665–685, https://doi.org/10.5194/soil-1-665-2015, 2015.
Smith, P., House, J. I., Bustamante, M., Sobocká, J., Harper, R., Pan,
G., West, P. C., Clark, J. M., Adhya, T., Rumpel, C., Paustian, K., Kuikman,
P., Cotrufo, M. F., Elliott, J. A., McDowell, R., Griffiths, R. I., Asakawa,
S., Bondeau, A., Jain, A. K., Meersmans, J., and Pugh, T. A. M.: Global
change pressures on soils from land use and management, Glob. Change
Biol., 22, 1008–1028, https://doi.org/10.1111/gcb.13068, 2016.
Snyder, P. K., Delire, C., and Foley, J. A.: Evaluating the influence of
different vegetation biomes on the global climate, Clim. Dynam., 23,
279–302, 2004.
Song, J.: Phenological influences on the albedo of prairie grassland and
crop fields, Int. J. Biometeorol., 42, 153–157, 1999.
Soussana, J.-F., Loiseau,
P., Vuichard, N., Ceschia, E., Balesdent, J., Chevallier, T., and Arrouays, D.: Carbon cycling
and sequestration opportunities in temperate grasslands, Soil Use Manage., 20,
219–230, https://doi.org/10.1111/j.1475-2743.2004.tb00362.x, 2006.
Spracklen, D. V. and Garcia-Carreras, L.: The impact of Amazonian
deforestation on Amazon basin rainfall, Geophys. Res. Lett., 42,
9546–9552, 2015.
Stathopoulou, E., Mihalakakou, G., Santamouris, M., and Bagiorgas, H. S.: On
the impact of temperature on tropospheric ozone concentration levels in
urban environments, J. Earth Syst. Sci., 117, 227–236, 2008.
Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Van Roozendael, M., Guenther, A., Wild, M., and Xia, X.: Isoprene emissions over Asia 1979–2012: impact of climate and land-use changes, Atmos. Chem. Phys., 14, 4587–4605, https://doi.org/10.5194/acp-14-4587-2014, 2014.
Stéfanon, M., Schindler, S., Drobinski, P., de Noblet-Ducoudré, N., and
D'Andrea, F.: Simulating the effect of anthropogenic vegetation land cover
on heatwave temperatures over central France, Clim. Res., 60, 133–146, 2014.
Stella, P., Loubet, B., de Berranger, C., Charrier, X., Ceschia, E., Gerosa,
G., Finco, A., Lamaud, E., Serça, D., George, C., and Ciuraru, R.: Soil
ozone deposition: Dependence of soil resistance to soil texture, Atmos.
Environ., 199, 202–209, https://doi.org/10.1016/j.atmosenv.2018.11.036, 2019.
Sterner, R. W., Elser, J. J., and Vitousek, P. M.: Ecological Stoichiometry:
The Biology of Elements from Molecules to the Biosphere,
https://doi.org/10.1515/9781400885695, 2017.
Stohlgren, T. J., Chase, T. N., Pielke, R. A., Kittel, T. G., and Baron, J.:
Evidence that local land use practices influence regional climate,
vegetation, and stream flow patterns in adjacent natural areas, Glob. Change
Biol., 4, 495–504, 1998.
Stone, B. and Norman, J. M.: Land use planning and surface heat island
formation: A parcel-based radiation flux approach, Atmos. Environ.,
40, 3561–3573, 2006.
Stone, E.: The impact of timber harvest on soils and water, Report of the
President's Advisory Panel on timber and the environment, US
Government Printing Office, Washington, DC, 427–467, 1973.
Stone, E.: Nutrient removals by intensive harvest – some research gaps and
opportunities, in: Proceedings on the symposium on impacts of intensive
harvesting on forest nutrient cycling, edited by: Leaf, A., 366–386,
State University of New York, Syracuse, NY, 1979.
Strandberg, G. and Kjellström, E.: Climate Impacts from Afforestation
and Deforestation in Europe, Earth Interact., 23, 1–27,
https://doi.org/10.1175/EI-D-17-0033.1, 2019.
Sugimoto, S., Takahashi, H. G., and Sekiyama, H.: Modification
of Near-Surface Temperature Over East Asia Associated With Local-Scale Paddy Irrigation,
J. Geophys. Res.-Atmos., 124, 2665–2676,
https://doi.org/10.1029/2018JD029434, 2019.
Suni, T., Guenther, A., Hansson, H. C., Kulmala, M., Andreae, M. O., Arneth,
A., Artaxo, P., Blyth, E., Brus, M., Ganzeveld, L., Kabat, P., de
Noblet-Ducoudré, N., Reichstein, M., Reissell, A., Rosenfeld, D., and
Seneviratne, S.: The significance of land-atmosphere interactions in the
Earth system – iLEAPS achievements and perspectives, Anthropocene, 12,
69–84, https://doi.org/10.1016/j.ancene.2015.12.001, 2015.
Sutton, M. A. (Ed.): The European nitrogen assessment: sources, effects, and
policy perspectives, Cambridge University Press, Cambridge, UK, New York,
2011.
Sutton, M. A., Simpson, D., Levy, P. E., Smith, R. I., Reis, S., van
Oijen, M., and de Vries, W.: Uncertainties in the relationship between atmospheric nitrogen
deposition and forest carbon sequestration, Glob. Change Biol., 14, 2057–2063,
https://doi.org/10.1111/j.1365-2486.2008.01636.x, 2008.
Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A.,
Greenfelt, P., Grizetti, B., Dise, N. B., and Van Grinsven, H.: Nitrogen as a threat to European
terrestrial biodiversity, in: The European nitrogen assessment, edited by: Sutton, M. A., Howard, C. M., Erisman, J. W., and
Bleeker, A., 463–494, Cambridge University Press, Cambridge, UK, 2011.
Swift, M. J., Izac, A.-M. N., and van Noordwijk, M.: Biodiversity and
ecosystem services in agricultural landscapes – are we asking the right
questions?, Agr. Ecosyst. Environ., 104, 113–134,
https://doi.org/10.1016/j.agee.2004.01.013, 2004.
Taha, H.: Modelling impacts of increased urban vegetation on ozone air
quality in the South Coast Air Basin, Atmos. Environ., 30, 3423–3430, 1996.
Taha, H.: Urban climates and heat islands: albedo, evapotranspiration, and
anthropogenic heat, Energ. Buildings, 25, 99–103, 1997.
Taha, H., Wilkinson, J., Bornstein, R., Xiao, Q., McPherson, G., Simpson,
J., Anderson, C., Lau, S., Lam, J., and Blain, C.: An urban-forest control
measure for ozone in the Sacramento, CA Federal Non-Attainment Area (SFNA),
Sustainable Cities and Society, 21, 51–65, https://doi.org/10.1016/j.scs.2015.11.004,
2016.
Tam, B. Y., Gough, W. A., and Mohsin, T.: The impact of urbanization and the
urban heat island effect on day to day temperature variation, Urban Climate,
12, 1–10, https://doi.org/10.1016/j.uclim.2014.12.004, 2015.
Teuling, A. J., Seneviratne, S. I., Stöckli, R., Reichstein, M., Moors,
E., Ciais, P., and Wohlfahrt, G.: Contrasting response of European forest and
grassland energy exchange to heatwaves, Nat. Geosci., 3, 722–727, 2010.
Thiery, W., Davin, E. L., Lawrence, D. M., Hirsch, A. L., Hauser, M., and
Seneviratne, S. I.: Present-day irrigation mitigates heat extremes:
irrigation mitigates heat extremes, J. Geophys. Res.-Atmos., 122, 1403–1422, https://doi.org/10.1002/2016JD025740, 2017.
Thies, C., Roschewitz, I., and Tscharntke, T.: The landscape context of
cereal aphid–parasitoid interactions, P. Roy. Soc. B,
272, 203–210, https://doi.org/10.1098/rspb.2004.2902, 2005.
Thomaz, E. L., Antoneli, V., and Doerr, S. H.: Effects of fire on the
physicochemical properties of soil in a slash-and-burn agriculture, Catena,
122, 209–215, https://doi.org/10.1016/j.catena.2014.06.016, 2014.
Thornes, J., Bloss, W., Bouzarovski, S., Cai, X., Chapman, L., Clark, J.,
Dessai, S., Du, S., van der Horst, D., Kendall, M., Kidd, C., and Randalls,
S.: Communicating the value of atmospheric services, Meteorol.
Appl., 17, 243–250, https://doi.org/10.1002/met.200, 2010.
Tillman, D., Cassman, K. G., Matson, P. A., Naylor, R., and Polasky, S.:
Agricultural sustainability and intensive production practices, Nature, 418,
671–677, https://doi.org/10.1038/nature01014, 2002.
Townsend, A. R., Cleveland, C. C., Houlton, B. Z., Alden, C. B., and White,
J. W.: Multi-element regulation of the tropical forest carbon cycle,
Front. Ecol. Environ., 9, 9–17, https://doi.org/10.1890/100047,
2011.
Trail, M., Tsimpidi, A. P., Liu, P., Tsigaridis, K., Hu, Y., Nenes, A.,
Stone, B., and Russell, A. G.: Reforestation and crop land conversion impacts
on future regional air quality in the Southeastern U.S., Agr.
Forest Meteorol., 209, 209–210, 2015.
Trentmann, J., Andreae, M. O., and Graf, H.-F.: Chemical processesin a young
biomass-burning plume, J. Geophys. Res., 108, 4705–4715, 2003.
Turner, B. L.: Toward Integrated Land-Change Science – Advances in 1.5
Decades of Sustained International Research on Land-Use and Land-Cover
Change, in: Advances in Global Environmental Change Research, edited by:
Steffen, W., 21–26, Springer Verlag, Berlin, New York, 2002.
Turner, B. L., Skole, D., Sanderson, S., Fischer, G., Fresco, L., and
Leemans, R.: Land-Use and Land-Cover Change Science/Research Plan, Joint
publication of the International Geosphere-Biosphere Programme (Report No.
35) and the Human Dimensions of Global, Stockholm, 1995.
United Nations: World Urbanization Prospects: The 2014 Revision,
Highlights, 2014.
Usowicz, B., Lipiec, J., Łukowski, M., Marczewski, W., and Usowicz, J.: The
effect of biochar application on thermal properties and albedo of loess soil
under grassland and fallow, Soil Tillage Res., 164, 45–51,
https://doi.org/10.1016/j.still.2016.03.009, 2016.
Vahmani, P. and Hogue, T. S.: Urban irrigation effects on WRF-UCM summertime
forecast skill over the Los Angeles metropolitan area: URBAN IRRIGATION AND
WRF-UCM MODELING, J. Geophys. Res.-Atmos., 120,
9869–9881, https://doi.org/10.1002/2015JD023239, 2015.
Vahmani, P., Sun, F., Hall, A., and Ban-Weiss, G.: Investigating the climate
impacts of urbanization and the potential for cool roofs to counter future
climate change in Southern California, Environ. Res. Lett., 11,
124027, https://doi.org/10.1088/1748-9326/11/12/124027, 2016.
Val Martin, M., Heald, C. L., Lamarque, J.-F., Tilmes, S., Emmons, L. K., and Schichtel, B. A.: How emissions, climate, and land use change will impact mid-century air quality over the United States: a focus on effects at national parks, Atmos. Chem. Phys., 15, 2805–2823, https://doi.org/10.5194/acp-15-2805-2015, 2015.
Vandermeer, J., Van Noordwijk, M., Anderson, J., Ong, C., and Perfecto, I.:
Global change and multi-species agroecosystems: Concepts and issues,
Agr. Ecosyst. Environ., 67, 1–22,
https://doi.org/10.1016/S0167-8809(97)00150-3, 1998.
van Hulzen, J. B., Van Soelen, J., and Bouma, T. J.: Morphological
variation and habitat modification are strongly correlated for the autogenic
ecosystem engineerSpartina anglica (common cordgrass), Estuar. Coast.,
30, 3–11, 2007.
Veldkamp, A., Altvorst, A. C., Eweg, R., Jacobsen, E., Kleef, A.,
Latesteijn, H., Mager, S., Mommaas, H., Smeets, P. J. A. M., Spaans, L., and
Trijp, J. C. M.: Triggering transitions towards sustainable development of
the Dutch agricultural sector: TransForum's approach, Agron.
Sustain. Dev., 29, 87–96, https://doi.org/10.1051/agro:2008022, 2009.
Verbeke, T., Lathière, J., Szopa, S., and de Noblet-Ducoudré, N.: Impact of future land-cover changes on HNO3 and O3 surface dry deposition, Atmos. Chem. Phys., 15, 13555–13568, https://doi.org/10.5194/acp-15-13555-2015, 2015.
Verburg, P. H., Neumann, K., and Nol, L.: Challenges in using land use and
land cover data for global change studies: LAND USE AND LAND COVER DATA FOR
GLOBAL CHANGE STUDIES, Glob. Change Biol., 17, 974–989,
https://doi.org/10.1111/j.1365-2486.2010.02307.x, 2011.
Verma, S. and Jayakumar, S.: Impact of forest fire on physical, chemical and
biological properties of soil: A review, Proceedings of the International
Academy of Ecology and Environmental Sciences, 2, 168, 2012.
Vico, G., Revelli, R., and Porporato, A.: Ecohydrology of street trees:
design and irrigation requirements for sustainable water use, Ecohydrology,
7, 508–523, https://doi.org/10.1002/eco.1369, 2014.
Vinatier, F., Gosme, M., and Valantin-Morison, M.: A tool for testing
integrated pest management strategies on a tritrophic system involving
pollen beetle, its parasitoid and oilseed rape at the landscape scale,
Landscape Ecol., 27, 1421–1433, https://doi.org/10.1007/s10980-012-9795-3, 2012.
Vitousek, P. M. and Denslow, J. S.: Nitrogen and
phosphorus availability in treefall gaps of a lowland tropical rainforest, J.
Ecol., 74, 1167–1178, 1986.
Vitousek, P. M. and Matson, P. A.: Disturbance, Nitrogen Availability, and
Nitrogen Losses in an Intensively Managed Loblolly Pine Plantation, Ecology,
66, 1360–1376, https://doi.org/10.2307/1939189, 1985.
Vollhardt, I. M. G., Tscharntke, T., Wäckers, F. L., Bianchi, F. J. J.
A., and Thies, C.: Diversity of cereal aphid parasitoids in simple and
complex landscapes, Agr. Ecosyst. Environ., 126, 289–292,
https://doi.org/10.1016/j.agee.2008.01.024, 2008.
Volo, T. J., Vivoni, E. R., Martin, C. A., Earl, S., and Ruddell, B. L.:
Modelling soil moisture, water partitioning, and plant water stress under
irrigated conditions in desert urban areas, Ecohydrology, 7, 1297–1313,
https://doi.org/10.1002/eco.1457, 2014.
Von Randow, C., Manzi, A. O., Kruijt, B., De Oliveira, P. J., Zanchi, F. B.,
Silva, R. L., Hodnett, M. G., Gash, J. H. C., Elbers, J. A., Waterloo, M.
J., Cardoso, F. L., and Kabat, P.: Comparative measurements and seasonal
variations in energy and carbon exchange over forest and pasture in South
West Amazonia, Theor. Appl. Climatol, 78, 5–26, 2004.
Wagle, R. F. and Kitchen, J. H.: Influence of Fire on Soil Nutrients in a
Ponderosa Pine Type, Ecology, 53, 118–125, https://doi.org/10.2307/1935716, 1972.
Wagner, P. and Schäfer, K.: Influence of mixing layer height on air
pollutant concentrations in an urban street canyon, Urban Climate, 22,
64–79, https://doi.org/10.1016/j.uclim.2015.11.001, 2017.
Wang, J., Bras, R. L., and Eltahir, E. A.: The impact of observed
deforestation on the mesoscale distribution of rainfall and clouds in
Amazonia, J. Hydrometeorol., 1, 267–286, 2000.
Wang, J., Chagnon, F. J., Williams, E. R., Betts, A. K., Renno, N. O.,
Machado, L. A., Bisht, G., Knox, R., and Bras, R. L.: Impact of deforestation
in the Amazon basin on cloud climatology, P. Natl. Acad. Sci. USA, 106,
3670–3674, 2009.
Wang, L., Gao, Z., Miao, S., Guo, X., Sun, T., Liu, M., and Li, D.:
Contrasting characteristics of the surface energy balance between the urban
and rural areas of Beijing, Adv. Atmos. Sci., 32, 505–514, 2015.
Warwick, N. J., Archibald, A. T., Ashworth, K., Dorsey, J., Edwards, P. M., Heard, D. E., Langford, B., Lee, J., Misztal, P. K., Whalley, L. K., and Pyle, J. A.: A global model study of the impact of land-use change in Borneo on atmospheric composition, Atmos. Chem. Phys., 13, 9183–9194, https://doi.org/10.5194/acp-13-9183-2013, 2013.
Weaver, C. P. and Avissar, R.: Atmospheric disturbances caused by human
modification of the landscape, B. Am. Meteorol. Soc., 82, 269–282, 2001.
Westra, D., Steeneveld, G. J., and Holtslag, A. A. M.: Some observational
evidence for dry soils supporting enhanced relative humidity at the
convective boundary layer top, J. Hydrometeorol., 13, 1347–1358, 2012.
Wiegand, T., Moloney, K., Naves, J., and Knauer, F.: Finding the Missing Link
between Landscape Structure and Population Dynamics: A Spatially Explicit
Perspective, Am. Nat., 154, 605–627, https://doi.org/10.1086/303272,
2000.
Wiegand, T., Revilla, E., and Moloney, K. A.: Effects of Habitat Loss and
Fragmentation on Population Dynamics, Conserv. Biology, 19, 108–121,
https://doi.org/10.1111/j.1523-1739.2005.00208.x, 2005.
Wiernga, J.: Representative roughness parameters for homogeneous terrain,
Bound.-Lay. Meteorol., 63, 323–363, https://doi.org/10.1007/BF00705357, 1993.
Wilhelm, M., Davin, E. L., and Seneviratne, S. I.: Climate engineering of
vegetated land for hot extremes mitigation: An Earth system model
sensitivity study, J. Geophys. Res.-Atmos., 120, 2612–2623, 2015.
Wilson, E. and Piper, J.: Spatial planning and climate change, Abingdon/New
York, Routledge, 2010.
Woodwell, G. M., Hobbie, J. E., Houghton, R. A., Melillo, J. M., Moore, B.,
and Peterson, B. J.: Global deforestation: contribution to atmospheric
carbon dioxide, Science, 222, 1081–1086, 1983.
Wright, A. L., Hons, F. M., and Rouquette, F. M.: Long-term management
impacts on soil carbon and nitrogen dynamics of grazed bermudagrass
pastures, Soil Biol. Biochem., 36, 1809–1816, 2004.
Xia, L., Lam, S. K., Wolf, B., Kiese, R., Chen, D., and Butterbach-Bahl, K.:
Trade-offs between soil carbon sequestration and reactive nitrogen losses
under straw return in global agroecosystems, Glob. Change Biol., 24,
5919–5932, https://doi.org/10.1111/gcb.14466, 2018.
Yang, J., McBride, J., Zhou, J., and Sun, Z.: The urban forest in Beijing and
its role in air pollution reduction, Urban Forestry and Urban Greening, 3,
65–78, 2005.
Yang, J. Y., Drury, C. F., Yang, X. M., De Jong, R., Huffman, E. C., and
Campbell, C. A.: Estimating biological N2 fixation in Canadian agricultural
land using legume yields, Agr. Ecosyst. Environ., 137,
192–201, 2010.
Yao, R., Wang, L., Huang, X., Gong, W., and Xia, X.: Greening in Rural Areas
Increases the Surface Urban Heat Island Intensity, Geophys. Res.
Lett., 46, 2204–2212, https://doi.org/10.1029/2018GL081816, 2019.
Yeh, S., Jordaan, S. M., Brandt, A. R., Turetsky, M. R., Spatari, S., and
Keith, D. W.: Land Use Greenhouse Gas Emissions from Conventional Oil
Production and Oil Sands, Environ. Sci. Technol., 44,
8766–8772, https://doi.org/10.1021/es1013278, 2010.
Yevich, R. and Logan, J. A.: An assessment of biofuel use and burning of
agricultural waste in the developing world, Global Biogeochem. Cy., 17, 1095,
https://doi.org/10.1029/2002GB001952, 2003.
Yew, F.-K., Sundram, K., and Basiron, Y.: Estimation of GHG emissions from
peat used for agriculutre with a special refernece to oil palm, Journal of
Oil Palm and The Environment, 17, 2010.
Yokelson, R. J., Bertschi, I. T., Christian, T. J., Hobbs, P. V., Ward, D.
E., and Hao, W. M.: Trace gas measurements in nascent, aged, and cloud
processed smoke from African savanna fires by airborne Fourier transform
infrared spectroscopy (AFTIR), J. Geophys. Res.-Atmos., 108, 8478, https://doi.org/10.1029/2002JD002322, 2003.
Zaehle, S. and Dalmonech, D.: Carbon–nitrogen interactions on
land at global scales: current understanding in modelling climate biosphere feedbacks,
Curr. Opin. Env. Sust., 3, 311–320,
https://doi.org/10.1016/j.cosust.2011.08.008, 2011.
Zampieri, M. and Lionello, P.: Anthropic land use causes summer cooling in
Central Europe, Clim. Res., 46, 255–268, https://doi.org/10.3354/cr00981, 2011.
Zhang, Y., Pang, X., Xia, J., Shao, Q., Yu, E., Zhao, T., She, D., Sun, J.,
Yu, J., Pan, X., and Zhai, X.: Regional Patterns of Extreme Precipitation and
Urban Signatures in Metropolitan Areas, J. Geophys. Res.-Atmos., 124, 641–663, https://doi.org/10.1029/2018JD029718, 2019.
Zhong, S., Qian, Y., Sarangi, C., Zhao, C., Leung, R., Wang, H.,
Yan, H., Yang, T., and Yang, B.: Urbanization Effect on Winter Haze in the Yangtze River
Delta Region of China, Geophys. Res. Lett., 45, 6710–6718,
https://doi.org/10.1029/2018GL077239, 2018.
Zhou, W. Q., Qian, Y. G., Li, X. M., Li, W. F., and Han, L. J.: Relationships
between land cover and the surface urban heat island: seasonal variability
and effects of spatial and thematic resolution of land cover data on
predicting land surface temperatures, Landscape Ecol., 29, 153–167,
https://doi.org/10.1007/s10980-013-9950-5, 2014.
Zhu, L., Henze, D. K., Bash, J. O., Cady-Pereira, K. E., Shephard, M.
W., Luo, M., and Capps, S. L.: Sources and Impacts of Atmospheric NH3: Current
Understanding and Frontiers for Modeling, Measurements, and Remote Sensing in North
America, Curr. Pollution Rep., 1, 95–116, https://doi.org/10.1007/s40726-015-0010-4, 2015.
Zhu, Y., Zhan, Y., Wang, B., Li, Z., Qin, Y., and Zhang, K.: Spatiotemporally
mapping of the relationship between NO2 pollution and urbanization for a megacity in Southwest China during 2005–2016, Chemosphere, 220, 155–162, https://doi.org/10.1016/j.chemosphere.2018.12.095, 2019.
Zinke, P. J.: The Pattern of Influence of Individual Forest Trees on Soil
Properties, Ecology, 43, 130–133, https://doi.org/10.2307/1932049, 1962.
Ziska, L. H. and George, K.: Rising carbon dioxide and invasive, noxious
plants: potential threats and consequences, World Resource Review, 16,
427–447, 2004.
Short summary
Human activities strongly interfere in the land–atmosphere interactions through changes in land use and land cover changes and land management. The objectives of this review are to synthesize the existing experimental and modelling works that investigate physical, chemical, and biogeochemical interactions between land surface and the atmosphere. Greater consideration of atmospheric chemistry, through land–atmosphere interactions, as a decision parameter for land management is essential.
Human activities strongly interfere in the land–atmosphere interactions through changes in land...
Altmetrics
Final-revised paper
Preprint