Articles | Volume 16, issue 11
Biogeosciences, 16, 2409–2421, 2019
https://doi.org/10.5194/bg-16-2409-2019
Biogeosciences, 16, 2409–2421, 2019
https://doi.org/10.5194/bg-16-2409-2019

Research article 14 Jun 2019

Research article | 14 Jun 2019

Multi-year methane ebullition measurements from water and bare peat surfaces of a patterned boreal bog

Elisa Männistö et al.

Related authors

Small spatial variability in methane emission measured from a wet patterned boreal bog
Aino Korrensalo, Elisa Männistö, Pavel Alekseychik, Ivan Mammarella, Janne Rinne, Timo Vesala, and Eeva-Stiina Tuittila
Biogeosciences, 15, 1749–1761, https://doi.org/10.5194/bg-15-1749-2018,https://doi.org/10.5194/bg-15-1749-2018, 2018
Short summary

Related subject area

Biogeochemistry: Wetlands
Global peatlands under future climate – seamless model projections from the Last Glacial Maximum
Jurek Müller and Fortunat Joos
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-80,https://doi.org/10.5194/bg-2021-80, 2021
Revised manuscript accepted for BG
Short summary
High-resolution induced polarization imaging of biogeochemical carbon-turnover hot spots in a peatland
Timea Katona, Benjamin Silas Gilfedder, Sven Frei, Matthias Bücker, and Adrian Flores-Orozco
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-438,https://doi.org/10.5194/bg-2020-438, 2021
Revised manuscript accepted for BG
Factors controlling Carex brevicuspis leaf litter decomposition and its contribution to surface soil organic carbon pool at different water levels
Lianlian Zhu, Zhengmiao Deng, Yonghong Xie, Xu Li, Feng Li, Xinsheng Chen, Yeai Zou, Chengyi Zhang, and Wei Wang
Biogeosciences, 18, 1–11, https://doi.org/10.5194/bg-18-1-2021,https://doi.org/10.5194/bg-18-1-2021, 2021
Short summary
Exploring constraints on a wetland methane emission ensemble (WetCHARTs) using GOSAT observations
Robert J. Parker, Chris Wilson, A. Anthony Bloom, Edward Comyn-Platt, Garry Hayman, Joe McNorton, Hartmut Boesch, and Martyn P. Chipperfield
Biogeosciences, 17, 5669–5691, https://doi.org/10.5194/bg-17-5669-2020,https://doi.org/10.5194/bg-17-5669-2020, 2020
Short summary
Global peatland area and carbon dynamics from the Last Glacial Maximum to the present – a process-based model investigation
Jurek Müller and Fortunat Joos
Biogeosciences, 17, 5285–5308, https://doi.org/10.5194/bg-17-5285-2020,https://doi.org/10.5194/bg-17-5285-2020, 2020
Short summary

Cited articles

Ahti, T., Hämet-Ahti, L., and Jalas, J.: Vegetation zones and their sections in northwestern Europe, Ann. Bot. Fenn., 5, 169–211, 1968. 
Bosse, U. and Frenzel, P.: Activity and Distribution of Methane-Oxidizing Bacteria in Flooded Rice Soil Microcosms and in Rice Plants (Oryza sativa), Appl. Environ. Microb., 63, 1199–1207, 1997. 
Brown, M. G., Humphreys, E. R., Moore, T. R., Roulet, N. T., and Lafleur, P. M.: Evidencefor a nonmonotonic relationship between ecosystem-scale peatland methane emissions and water table depth, J. Geophys. Res.-Biogeo., 119, 826–835, https://doi.org/10.1002/2013JG002576, 2014. 
Bubier, J., Moore, T., Savage, K., and Crill, P.: A comparison of methane flux in a boreal landscape between a dry and a wet year, Global Biogeochem. Cy., 19, GB1023, https://doi.org/10.1029/2004GB002351, 2005. 
Chen, X. and Slater, L.: Gas bubble transport and emissions for shallow peat from a northern peatland: The role of pressure changes and peat structure, Water Resour Res., 51, 151–168, https://doi.org/10.1002/2014WR016268, 2015. 
Download
Short summary
We studied methane emitted as episodic bubble release (ebullition) from water and bare peat surfaces of a boreal bog over three years. There was more ebullition from water than from bare peat surfaces, and it was controlled by peat temperature, water level, atmospheric pressure and the weekly temperature sum. However, the contribution of methane bubbles to the total ecosystem methane emission was small. This new information can be used to improve process models of peatland methane dynamics.
Altmetrics
Final-revised paper
Preprint