Articles | Volume 17, issue 16
https://doi.org/10.5194/bg-17-4355-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-4355-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of reactive surfaces on the abiotic reaction between nitrite and ferrous iron and associated nitrogen and oxygen isotope dynamics
Department of Environmental Sciences, Basel University,
Bernoullistrasse 30, 4056 Basel, Switzerland
Department of Geosciences, Tübingen University,
Hölderlinstrasse 12, 72074 Tübingen, Germany
Scott D. Wankel
Woods Hole Oceanographic Institution, Woods Hole, 360 Woods Hole Rd,
MA 02543, USA
Pascal A. Niklaus
Department of Evolutionary Biology and Environmental Studies,
University of Zurich, Winterthurerstrasse 190, 8057 Zurich,
Switzerland
James M. Byrne
Department of Geosciences, Tübingen University,
Hölderlinstrasse 12, 72074 Tübingen, Germany
Andreas A. Kappler
Department of Geosciences, Tübingen University,
Hölderlinstrasse 12, 72074 Tübingen, Germany
Moritz F. Lehmann
Department of Environmental Sciences, Basel University,
Bernoullistrasse 30, 4056 Basel, Switzerland
Related authors
Jan Maier, Anna-Neva Visser, Christina Martina Schubert, Simon Thomas Wander, and Johannes Arthur Barth
EGUsphere, https://doi.org/10.5194/egusphere-2025-1580, https://doi.org/10.5194/egusphere-2025-1580, 2025
Short summary
Short summary
We present the first large-scale assessment of the dissolved oxygen (DO) budget and δ18ODO across the Danube to distinguish DO sources and sinks, key for biogeochemical cycles. Two highly productive areas in the warm season showed large deviations (+12.1 ‰) from atmospheric equilibrium (+24.6 ‰ ± 0.4 ‰), unusual for large rivers. Critically low DO in the Sava (0.16 mmol/L) and lower Danube (0.2 mmol/L) in late summer resulted from intensified respiration.
Claudia Guidi, Sia Gosheva-Oney, Markus Didion, Roman Flury, Lorenz Walthert, Stephan Zimmermann, Brian J. Oney, Pascal A. Niklaus, Esther Thürig, Toni Viskari, Jari Liski, and Frank Hagedorn
Biogeosciences, 22, 4107–4122, https://doi.org/10.5194/bg-22-4107-2025, https://doi.org/10.5194/bg-22-4107-2025, 2025
Short summary
Short summary
Predicting soil organic carbon (SOC) stocks in forests is crucial to determining the C balance, yet drivers of SOC stocks remain uncertain at large scales. Across a broad environmental gradient in Switzerland, we compared measured SOC stocks with those modeled by Yasso, which is commonly used for greenhouse gas budgets. We show that soil mineral properties and climate are the main controls of SOC stocks, indicating that better accounting of these processes will advance the accuracy of SOC stock predictions.
Johanna Schlögl, Clemens Karwautz, Lena Cramaro, Wolfgang Wanek, Judith Prommer, Theresa Böckle, Andreas Kappler, Stefan B. Haderlein, and Christian Griebler
EGUsphere, https://doi.org/10.5194/egusphere-2025-2577, https://doi.org/10.5194/egusphere-2025-2577, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Climate change enhances the occurrence of summer droughts and heavy rainfall events in Central Europe. We investigated the response of inorganic nitrogen cycling, redox conditions and microbial community composition to an artificial heavy rain event following a drought in shallow arable soil. Redox conditions changed fast with the hydraulic event triggering nitrogen transport and turnover. Microbial communities reacted moderately in terms of composition but exhibited enzyme activity changes.
Jan Maier, Anna-Neva Visser, Christina Martina Schubert, Simon Thomas Wander, and Johannes Arthur Barth
EGUsphere, https://doi.org/10.5194/egusphere-2025-1580, https://doi.org/10.5194/egusphere-2025-1580, 2025
Short summary
Short summary
We present the first large-scale assessment of the dissolved oxygen (DO) budget and δ18ODO across the Danube to distinguish DO sources and sinks, key for biogeochemical cycles. Two highly productive areas in the warm season showed large deviations (+12.1 ‰) from atmospheric equilibrium (+24.6 ‰ ± 0.4 ‰), unusual for large rivers. Critically low DO in the Sava (0.16 mmol/L) and lower Danube (0.2 mmol/L) in late summer resulted from intensified respiration.
Carolina F.M. de Carvalho, Moritz F. Lehmann, and Sarah G. Pati
EGUsphere, https://doi.org/10.5194/egusphere-2025-1193, https://doi.org/10.5194/egusphere-2025-1193, 2025
Short summary
Short summary
Using O2 stable isotope analysis, we determined the isotopic fractionation of biological O2 consumption by 10 flavin-dependent and 6 metalloenzymes. Metalloenzymes displayed a narrower range and lower values of isotopic fractionation than flavin-dependent enzymes. This work expands our understanding of the variability of oxygen isotopic fractionation at the enzyme level, improving the ability to study O2 dynamics from molecular to ecosystem scales.
Guangyi Su, Julie Tolu, Clemens Glombitza, Jakob Zopfi, Moritz F. Lehmann, Mark A. Lever, and Carsten J. Schubert
EGUsphere, https://doi.org/10.5194/egusphere-2025-437, https://doi.org/10.5194/egusphere-2025-437, 2025
Short summary
Short summary
In Lake Geneva, we studied how different types of organic matter affect methane production. Despite varying sources—like algae and land-based materials, both deep and delta areas are significant methane sources and methane was mainly produced through CO2 reduction. Surprisingly, the origin of organic matter didn’t strongly influence methane production rates or pathways. Our findings highlight the need to better understand microbial processes to predict methane emissions from lakes.
Kirstin Dähnke, Tina Sanders, Yoana Voynova, and Scott D. Wankel
Biogeosciences, 19, 5879–5891, https://doi.org/10.5194/bg-19-5879-2022, https://doi.org/10.5194/bg-19-5879-2022, 2022
Short summary
Short summary
Nitrogen is an important macronutrient that fuels algal production in rivers and coastal regions. We investigated the production and removal of nitrogen-bearing compounds in the freshwater section of the tidal Elbe Estuary and found that particles in the water column are key for the production and removal of water column nitrate. Using a stable isotope approach, we pinpointed regions where additional removal of nitrate or input from sediments plays an important role in estuarine biogeochemistry.
Owen A. Sherwood, Samuel H. Davin, Nadine Lehmann, Carolyn Buchwald, Evan N. Edinger, Moritz F. Lehmann, and Markus Kienast
Biogeosciences, 18, 4491–4510, https://doi.org/10.5194/bg-18-4491-2021, https://doi.org/10.5194/bg-18-4491-2021, 2021
Short summary
Short summary
Pacific water flowing eastward through the Canadian Arctic plays an important role in redistributing nutrients to the northwest Atlantic Ocean. Using samples collected from northern Baffin Bay to the southern Labrador Shelf, we show that stable isotopic ratios in seawater nitrate reflect the fraction of Pacific to Atlantic water. These results provide a new framework for interpreting patterns of nitrogen isotopic variability recorded in modern and archival organic materials in the region.
Sigrid van Grinsven, Kirsten Oswald, Bernhard Wehrli, Corinne Jegge, Jakob Zopfi, Moritz F. Lehmann, and Carsten J. Schubert
Biogeosciences, 18, 3087–3101, https://doi.org/10.5194/bg-18-3087-2021, https://doi.org/10.5194/bg-18-3087-2021, 2021
Short summary
Short summary
Lake Lovojärvi is a nutrient-rich lake with high amounts of methane at the bottom, but little near the top. Methane comes from the sediment and rises up through the water but is consumed by microorganisms along the way. They use oxygen if available, but in deeper water layers, no oxygen was present. There, nitrite, iron and humic substances were used, besides a collaboration between photosynthetic organisms and methane consumers, in which the first produced oxygen for the latter.
Yunhua Chang, Yan-Lin Zhang, Sawaeng Kawichai, Qian Wang, Martin Van Damme, Lieven Clarisse, Tippawan Prapamontol, and Moritz F. Lehmann
Atmos. Chem. Phys., 21, 7187–7198, https://doi.org/10.5194/acp-21-7187-2021, https://doi.org/10.5194/acp-21-7187-2021, 2021
Short summary
Short summary
In this study, we integrated satellite constraints on atmospheric NH3 levels and fire intensity, discrete NH3 concentration measurement, and N isotopic analysis of NH3 in order to assess the regional-scale contribution of biomass burning to ambient atmospheric NH3 in the heartland of Southeast Asia. The combined approach provides a valuable cross-validation framework for source apportioning of NH3 in the lower atmosphere and will thus help to ameliorate predictions of biomass burning emissions.
Maitane Iturrate-Garcia, Monique M. P. D. Heijmans, J. Hans C. Cornelissen, Fritz H. Schweingruber, Pascal A. Niklaus, and Gabriela Schaepman-Strub
Biogeosciences, 17, 4981–4998, https://doi.org/10.5194/bg-17-4981-2020, https://doi.org/10.5194/bg-17-4981-2020, 2020
Short summary
Short summary
Changes on plant traits associated with climate warming might alter vegetation–climate interactions. We investigated experimentally the effects of enhanced permafrost thaw and soil nutrients on a wide set of tundra shrub traits. We found a coordinated trait response to some treatments, which suggests a shift in shrub resource, growth and defence strategies. This shift might feed back into permafrost thaw – through mechanisms associated with water demand – and into carbon and energy fluxes.
Cited articles
Anderson, I. C. and Levine, J. S.: Relative Rates of Nitric Oxide and
Nitrous Oxide Production by Nitrifiers, Denitrifiers, and Nitrate Respirers,
Appl. Environ. Microbiol., 51, 938–945, 1986.
Andrews, S. C., Robinson, A. K., Rodriguez-Quinones, F., and
Rodríguez-Quiñones, F.: Bacterial iron homeostasis, FEMS Microbiol.
Rev., 27, 215–237, https://doi.org/10.1016/s0168-6445(03)00055-x, 2003.
Baumgärtner, M. and Conrad, R.: Role of nitrate and nitrite for
production and consumption of nitric oxide during denitrification in soil,
FEMS Microbiol. Lett., 101, 59–65,
https://doi.org/10.1111/j.1574-6968.1992.tb05762.x, 1992.
Braun, V. and Hantke, K.: The Tricky Ways Bacteria Cope with Iron
Limitation, Springer, Dordrecht, 31–66, 2013.
Buchwald, C. and Casciotti, K. L.: Isotopic ratios of nitrite as tracers of
the sources and age of oceanic nitrite, Nat. Geosci., 6, 308–313,
https://doi.org/10.1038/ngeo1745, 2013.
Buchwald, C., Grabb, K., Hansel, C. M., and Wankel, S. D.: Constraining the
role of iron in environmental nitrogen transformations: Dual stable isotope
systematics of abiotic reduction by Fe(II) and its production
of N2O, Geochim. Cosmochim. Ac., 186, 1–12,
https://doi.org/10.1016/j.gca.2016.04.041, 2016.
Casciotti, K. L.: Inverse kinetic isotope fractionation during bacterial
nitrite oxidation, Geochim. Cosmochim. Ac., 73, 2061–2076,
https://doi.org/10.1016/j.gca.2008.12.022, 2009.
Casciotti, K. L. and McIlvin, M. R.: Isotopic analyses of nitrate and
nitrite from reference mixtures and application to Eastern Tropical North
Pacific waters, Mar. Chem., 107, 184–201,
https://doi.org/10.1016/j.marchem.2007.06.021, 2007.
Casciotti, K. L., Boehlke, J. K., McIlvin, M. R., Mroczkowski, S. J.,
and Hannon, J. E.: Oxygen isotopes in nitrite: Analysis, calibration, and
equilibration, Anal. Chem., 79, 2427–2436, https://doi.org/10.1021/ac061598h, 2007.
Chakraborty, A., Roden, E. E., Schieber, J., and Picardal, F.: Enhanced
growth of Acidovorax sp. strain 2AN during nitrate-dependent Fe(II) oxidation in batch
and continuous-flow systems, Appl. Environ. Microbiol., 77, 8548–56,
https://doi.org/10.1128/AEM.06214-11, 2011.
Charlet, L., Wersin, P., and Stumm, W.: Surface charge of MnCO3 and
FeCO3, Geochim. Cosmochim. Ac., 54, 2329–2336,
https://doi.org/10.1016/0016-7037(90)90059-T, 1990.
Chen, D., Liu, T., Li, X., Li, F., Luo, X., Wu, Y., and Wang, Y.: Biological
and chemical processes of microbially mediated nitrate-reducing Fe(II)
oxidation by Pseudogulbenkiania sp. strain 2002, Chem. Geol., 476, 59–69,
https://doi.org/10.1016/j.chemgeo.2017.11.004, 2018.
Choi, P. S., Naal, Z., Moore, C., Casado-Rivera, E., Abruna, H. D., Helmann,
J. D., and Shapleigh, J. P.: Assessing the Impact of Denitrifier-Produced NO
on other bacteria, Appl. Environ. Microbiol., 72, 2200–2205,
https://doi.org/10.1128/aem.72.3.2200-2205.2006, 2006.
Coby, A. J. and Picardal, F. W.: Inhibition of and
reduction by microbial Fe(III) reduction: Evidence of a
reaction between and cell surface-bound Fe2+, Appl.
Environ. Microbiol., 71, 5267–5274, https://doi.org/10.1128/aem.71.9.5267-5274.2005,
2005.
Cornell, R. M. and Schwertmann, U.: The Iron Oxides: Structure, Properties,
Reactions, Occurences and Uses, 2nd Edn., Wiley-VCH, 2003.
Dai, Y.-F., Xiao, Y., Zhang, E.-H., Liu, L.-D., Qiu, L., You, L.-X., Dummi
Mahadevan, G., Chen, B.-L., and Zhao, F.: Effective methods for extracting
extracellular polymeric substances from Shewanella oneidensis MR-1, Water Sci. Technol., 74,
2987–2996, https://doi.org/10.2166/wst.2016.473, 2016.
Delahay, P., Pourbaix, M., and Van Rysselberghe, P.: Potential-pH diagrams,
J. Chem. Educ., available at:
https://pubs.acs.org/doi/pdfplus/10.1021/ed027p683 (last access: 20 April 2018),
1950.
Dhakal, P.: Abiotic nitrate and nitrite reactivity with iron oxide minerals,
University of Kentucky, available at:
https://uknowledge.uky.edu/pss_etds/30 (last access: 23 August 2020), 2013.
Dhakal, P., Matocha, C. J., Huggins, F. E., and Vandiviere, M. M.: Nitrite
Reactivity with Magnetite, Environ. Sci. Technol., 47, 6206–6213,
https://doi.org/10.1021/es304011w, 2013.
Doane, T. A.: The Abiotic Nitrogen Cycle, ACS Earth Sp. Chem., 1,
411–421, https://doi.org/10.1021/acsearthspacechem.7b00059, 2017.
Elsner, M.: Stable isotope fractionation to investigate natural
transformation mechanisms of organic contaminants: principles, prospects and
limitations, J. Environ. Monit., 12, 2005–2031,
2010.
Elsner, M., Schwarzenbach, R. P., and Haderlein, S. B.: Reactivity of
Fe(II)-Bearing Minerals toward Reductive Transformation of Organic
Contaminants, Environ. Sci. Technol., 38, 799–807,
https://doi.org/10.1021/es0345569, 2004.
Expert, D.: Iron, an Element Essential to Life, in Molecular Aspects of Iron
Metabolism in Pathogenic and Symbiotic Plant-Microbe Associations,
Springer, Dordrecht, 1–6, 2012.
Fowle, D. A. and Konhauser, K. O.: Microbial Surface Reactivity,
Springer, Dordrecht, 614–616, 2011.
Frame, C. H. and Casciotti, K. L.: Biogeochemical controls and isotopic
signatures of nitrous oxide production by a marine ammonia-oxidizing
bacterium, Biogeosciences, 7, 2695–2709, https://doi.org/10.5194/bg-7-2695-2010,
2010.
Fry, B.: Stable Isotope Ecology, 3rd Edn., Springer Science+Business Media,
LLC, New York, 2006.
Goretski, J. and Hollocher, T. C.: Trapping of nitric oxide produced during
denitrification by extracellular hemoglobin, J. Biol. Chem., 263,
2316–2323, available at:
http://www.jbc.org/content/263/5/2316.abstract (last access: 23 August 2020), 1988.
Gorski, C. A. and Scherer, M. M.: Fe2+ sorption at the Fe oxide-water
interface: A revised conceptual framework, in: Aquatic Redox Chemistry, Vol.
1071, edited by: Tratnyek, P. G., Grundl, T. J., and Haderlein, S. B.,
ACS Publications, 315–343, 2011.
Grabb, K. C., Buchwald, C., Hansel, C. M., and Wankel, S. D.: A dual nitrite
isotopic investigation of chemodenitrification by mineral-associated Fe(II)
and its production of nitrous oxide, Geochim. Cosmochim. Ac., 196, 388–402,
available at:
https://www.sciencedirect.com/science/article/pii/S0016703716306044
(last access: 28 March 2019), 2017.
Granger, J. and Sigman, D. M.: Removal of nitrite with sulfamic acid for
nitrate N and O isotope analysis with the denitrifier method, Rapid Commun.
Mass Spectrom., 23, 3753–3762, https://doi.org/10.1002/rcm.4307, 2009.
Granger, J., Sigman, D. M., Lehmann, M. F., and Tortell, P. D.: Nitrogen and
oxygen isotope fractionation during dissimilatory nitrate reduction by
denitrifying bacteria, Limnol. Oceanogr., 53, 2533–2545,
https://doi.org/10.4319/lo.2008.53.6.2533, 2008.
Granger, J., Karsh, K. L., Guo, W., Sigman, D. M., and Kritee, K.: The
nitrogen and oxygen isotope composition of nitrate in the environment: The
systematics of biological nitrate reduction, Geochim. Cosmochim. Ac.,
73, A460–A460, 2009.
Halder, S., Yadav, K. K., Sarkar, R., Mukherjee, S., Saha, P., Haldar, S.,
Karmakar, S., and Sen, T.: Alteration of Zeta potential and membrane
permeability in bacteria: a study with cationic agents, Springerplus, 4,
1–4, https://doi.org/10.1186/s40064-015-1476-7, 2015.
He, H., Zhang, S., Zhu, C., and Liu, Y.: Equilibrium and kinetic Si isotope
fractionation factors and their implications for Si isotope distributions in
the Earth's surface environments, Acta Geochim., 35, 15–24,
https://doi.org/10.1007/s11631-015-0079-x, 2016a.
He, S., Tominski, C., Kappler, A. A., Behrens, S., and Roden, E. E.:
Metagenomic analyses of the autotrophic Fe(II)-oxidizing, nitrate-reducing
enrichment culture KS, Appl. Environ. Microbiol., 82, 2656–2668,
https://doi.org/10.1128/AEM.03493-15, 2016b.
Heidelberg, J. F., Paulsen, I. T., Nelson, K. E., Gaidos, E. J., Nelson, W.
C., Read, T. D., Eisen, J. A., Seshadri, R., Ward, N., Methe, B., Clayton,
R. A., Meyer, T., Tsapin, A., Scott, J., Beanan, M., Brinkac, L., Daugherty,
S., DeBoy, R. T., Dodson, R. J., Durkin, A. S., Haft, D. H., Kolonay, J. F.,
Madupu, R., Peterson, J. D., Umayam, L. A., White, O., Wolf, A. M.,
Vamathevan, J., Weidman, J., Impraim, M., Lee, K., Berry, K., Lee, C.,
Mueller, J., Khouri, H., Gill, J., Utterback, T. R., McDonald, L. A.,
Feldblyum, T. V., Smith, H. O., Venter, J. C., Nealson, K. H., and Fraser, C.
M.: Genome sequence of the dissimilatory metal ion–reducing bacterium
Shewanella oneidensis, Nat. Biotechnol., 20, 1118–1123,
https://doi.org/10.1038/nbt749, 2002.
Heil, J., Vereecken, H., and Brüggemann, N.: A review of chemical
reactions of nitrification intermediates and their role in nitrogen cycling
and nitrogen trace gas formation in soil, Eur. J. Soil Sci., 67, 23–39,
https://doi.org/10.1111/ejss.12306, 2016.
Hunkeler, D. and Elsner, M.: Principles and Mechanisms of Isotope
Fractionation, in: Environmental Isotopes in Biodegradation and
Bioremediation, edited by: Aelion, C. M., Höhener, P., Hunkeler, D., and
Aravena, R., CRC Press, 43–76, 2009.
Ilbert, M. and Bonnefoy, V.: Insight into the evolution of the iron
oxidation pathways, Biochim. Biophys. Ac.-Bioenerg., 1827, 161–175,
https://doi.org/10.1016/j.bbabio.2012.10.001, 2013.
Jamieson, J., Prommer, H., Kaksonen, A. H., Sun, J., Siade, A. J., Yusov, A.,
and Bostick, B.: Identifying and Quantifying the Intermediate Processes
during Nitrate-Dependent Iron(II) Oxidation, Environ. Sci. Technol., 52, 5771–5781, https://doi.org/10.1021/acs.est.8b01122, 2018.
Jones, L. C., Peters, B., Lezama Pacheco, J. S., Casciotti, K. L., and
Fendorf, S.: Stable Isotopes and Iron Oxide Mineral Products as Markers of
Chemodenitrification, Environ. Sci. Technol., 49, 3444–3452,
https://doi.org/10.1021/es504862x, 2015.
Kampschreur, M. J., Kleerebezem, R., de Vet, W., and van Loosdrecht, M.:
Reduced iron induced nitric oxide and nitrous oxide emission, Water Res.,
45, 5945–5952, https://doi.org/10.1016/j.watres.2011.08.056,
2011.
Kendall C. and Aravena R.: Nitrate Isotopes in Groundwater Systems, in: Environmental Tracers in Subsurface Hydrology, edited by: Cook, P. G. and Herczeg, A. L., Springer, Boston, MA, https://doi.org/10.1007/978-1-4615-4557-6_9, 2000.
Klueglein, N. and Kappler, A. A.: Abiotic oxidation of Fe(II) by reactive
nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer
Acidovorax sp BoFeN1 – questioning the existence of enzymatic Fe(II)
oxidation, Geobiology, 11, 180–190, https://doi.org/10.1111/gbi.12040, 2013.
Klueglein, N., Zeitvogel, F., Stierhof, Y.-D., Floetenmeyer, M., Konhauser,
K. O., Kappler, A. A., and Obst, M.: Potential Role of Nitrite for Abiotic
Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by
Denitrifying Bacteria, Appl. Environ. Microbiol., 80, 1051–1061,
https://doi.org/10.1128/aem.03277-13, 2014.
Lagarec, K. and Rancourt, D. G.: Extended Voigt-based analytic lineshape
method for determining N-dimensional correlated hyperfine parameter
distributions in Mössbauer spectroscopy, Nucl. Instruments Methods Phys.
Res. Sect. B, 129, 266–280,
https://doi.org/10.1016/S0168-583X(97)00284-X, 1997.
Laufer, K., Røy, H., Jørgensen, B. B., and Kappler, A. A.: Evidence for
the existence of autotrophic nitrate-reducing Fe(II)-oxidizing bacteria in
marine coastal sediment, Appl. Environ. Microbiol., 82, 6120–6131,
https://doi.org/10.1128/AEM.01570-16, 2016.
Li, W., Beard, B. L., and Johnson, C. M.: Exchange and fractionation of Mg
isotopes between epsomite and saturated MgSO4 solution, Geochim.
Cosmochim. Ac., 75, 1814–1828, https://doi.org/10.1016/j.gca.2011.01.023, 2011.
Lies, D. P., Hernandez, M. E., Kappler, A. A., Mielke, R. E., Gralnick, J.
A., and Newman, D. K.: Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at
a distance and by direct contact under conditions relevant for biofilms,
Appl. Environ. Microbiol., 71, 4414–4426,
https://doi.org/10.1128/aem.71.8.4414-4426.2005, 2005.
Liu, J. and Konermann, L.: Irreversible Thermal Denaturation of cytochrome-c
studied by Electrospray Mass Spectrometry, J. Am. Soc. Mass Spectrom.,
20, 819–828, https://doi.org/10.1016/J.JASMS.2008.12.016, 2009.
Liu, J., Wang, Z., Belchik, S. M., Edwards, M. J., Liu, C., Kennedy, D. W.,
Merkley, E. D., Lipton, M. S., Butt, J. N., Richardson, D. J., Zachara, J.
M., Fredrickson, J. K., Rosso, K. M., and Shi, L.: Identification and
Characterization of MtoA: A Decaheme c-Type Cytochrome of the Neutrophilic
Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1, Front. Microbiol., 3, 1–11,
https://doi.org/10.3389/fmicb.2012.00037, 2012.
Liu, T., Chen, D., Luo, X., Li, X., and Li, F.: Microbially mediated
nitrate-reducing Fe(II) oxidation: Quantification of chemodenitrification
and biological reactions, Geochim. Cosmochim. Ac., 256, 97–115,
https://doi.org/10.1016/J.GCA.2018.06.040, 2018.
Lovley, D. R.: Microbial Fe(III) reduction in subsurface environments, FEMS
Microbiol. Rev., 20, 305–313, https://doi.org/10.1111/j.1574-6976.1997.tb00316.x,
1997.
Lovley, D. R.: Electromicrobiology, Annu. Rev. Microbiol., 66, 391–409,
https://doi.org/10.1146/annurev-micro-092611-150104, 2012.
Luan, F., Liu, Y., Griffin, A. M., Gorski, C. A., and Burgos, W. D.:
Iron(III)-Bearing Clay Minerals Enhance Bioreduction of Nitrobenzene by
Shewanella putrefaciens CN32, Env. Sci. Technol., 49, 1418–1476, https://doi.org/10.1021/es504149y, 2015.
Luna-Zaragoza, D., Romero-Guzmán, E. T., and Reyes-Gutiérrez, L. R.:
Surface and Physicochemical Characterization of Phosphates Vivianite and
Hydroxyapatite, J. Miner. Mater. Charact. Eng., 08, 591–609,
https://doi.org/10.4236/jmmce.2009.88052, 2009.
Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux,
A., and Tardieux, P.: Experimental determination of nitrogen kinetic isotope
fractionation: Some principles; illustration for the denitrification and
nitrification processes, Plant Soil, 62, 413–430,
https://doi.org/10.1007/BF02374138, 1981.
Martin, T. S. and Casciotti, K. L.: Paired N and O isotopic analysis of
nitrate and nitrite in the Arabian Sea oxygen deficient zone, Deep-Sea Res.
Pt. I, 121, 121–131, https://doi.org/10.1016/j.dsr.2017.01.002,
2017.
McIlvin, M. R. and Altabet, M. A.: Chemical conversion of nitrate and
nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in
freshwater and seawater, Anal. Chem., 77, 5589–5595,
https://doi.org/10.1021/ac050528s, 2005.
McIlvin, M. R. and Casciotti, K. L.: Fully automated system for stable
isotopic analyses of dissolved nitrous oxide at natural abundance levels,
Limnol. Oceanogr. Method., 8, 54–66, https://doi.org/10.4319/lom.2010.8.54, 2010.
McKnight, G. M., Smith, L. M., Drummond, R. S., Duncan, C. W., Golden, M.,
and Benjamin, N.: Chemical synthesis of nitric oxide in the stomach from
dietary nitrate in humans, BMJ Journals: Gut, 40, 211–214, 1997.
Minguzzi, A., Fan, F.-R. F., Vertova, A., Rondinini, S., and Bard, A. J.:
Dynamic potential – pH diagrams application to electrocatalysts for
wateroxidation, Chem. Sci., 3, 217–229, https://doi.org/10.1039/C1SC00516B, 2012.
Mohn, J., Wolf, B., Toyoda, S., Lin, C.-T., Liang, M.-C., Brüggemann,
N., Wissel, H., Steiker, A. E., Dyckmans, J., Szwec, L., Ostrom, N. E.,
Casciotti, K. L., Forbes, M., Giesemann, A., Well, R., Doucett, R. R.,
Yarnes, C. T., Ridley, A. R., Kaiser, J., and Yoshida, N.: Interlaboratory
assessment of nitrous oxide isotopomer analysis by isotope ratio mass
spectrometry and laser spectroscopy: current status and perspectives, Rapid
Commun. Mass Spectrom., 28, 1995–2007, https://doi.org/10.1002/rcm.6982, 2014.
Muehe, E. M., Gerhardt, S., Schink, B., and Kappler, A.: Ecophysiology and
the energetic benefit of mixotrophic Fe(II) oxidation by various strains of
nitrate-reducing bacteria, FEMS Microbiol. Ecol., 70, 335–343,
https://doi.org/10.1111/j.1574-6941.2009.00755.x, 2009.
Muehe, E. M., Obst, M., Hitchcock, A., Tyliszczak, T., Behrens, S.,
Schröder, C., Byrne, J. M., Michel, F. M., Krämer, U., and Kappler,
A. A.: Fate of Cd during microbial Fe(III) mineral reduction by a novel and
Cd-tolerant geobacter species, Environ. Sci. Technol., 47, 14099–14109,
https://doi.org/10.1021/es403365w, 2013.
Nelson, D. W. and Bremner, J. M.: Factors affecting chemical transformations
of nitrite in soils, Soil Biol. Biochem., 1, 229–239,
https://doi.org/10.1016/0038-0717(69)90023-6, 1969.
Niklaus, P. A., Le Roux, X., Poly, F., Buchmann, N., Scherer-Lorenzen, M.,
Weigelt, A., and Barnard, R. L.: Plant species diversity affects
soil–atmosphere fluxes of methane and nitrous oxide, Oecologia, 181,
919–930, https://doi.org/10.1007/s00442-016-3611-8, 2016.
Nordhoff, M., Tominski, C., Halama, M., Byrne, J. M., Obst, M., Kleindienst,
S., Behrens, S., and Kappler, A. A.: Insights into nitrate-reducing Fe(II)
oxidation mechanisms through analysis of cell-mineral associations, cell
encrustation, and mineralogy in the chemolithoautotrophic enrichment culture
KS, Appl. Environ. Microbiol., 83, e00752-17, https://doi.org/10.1128/AEM.00752-17,
2017.
Ostrom, N. E. and Ostrom, P.: Handbook of Environmental Isotope
Geochemistry, 1st Edn., edited by: Baskaran, M., Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.
Ostrom, N. E. and Ostrom, P. H.: The Isotopomers of Nitrous Oxide:
Analytical Considerations and Application to Resolution of Microbial
Production Pathways, in: Handbook of Environmental Isotope Geochemistry: Vol
I, edited by: Baskaran, M., Springer Berlin Heidelberg, Berlin,
Heidelberg, 453–476, 2012.
Ostrom, N. E., Pitt, A., Sutka, R., Ostrom, P. H., Grandy, A. S., Huizinga,
K. M., and Robertson, G. P.: Isotopologue effects during N2O reduction in
soils and in pure cultures of denitrifiers, J. Geophys. Res., 112, 1–12,
https://doi.org/10.1029/2006jg000287, 2007.
Ostrom, N. E., Gandhi, H., Coplen, T. B., Toyoda, S., Böhlke, J. K.,
Brand, W. A., Casciotti, K. L., Dyckmans, J., Giesemann, A., Mohn, J., Well,
R., Yu, L., and Yoshida, N.: Preliminary assessment of stable nitrogen and
oxygen isotopic composition of USGS51 and USGS52 nitrous oxide reference
gases and perspectives on calibration needs, Rapid Commun. Mass Spectrom.,
32, 1207–1214, https://doi.org/10.1002/rcm.8157, 2018.
Otte, J. M., Blackwell, N., Ruser, R., Kappler, A. A., Kleindienst, S., and
Schmidt, C.: N2O formation by nitrite-induced (chemo)denitrification in
coastal marine sediment, Sci. Rep., 9, 10691,
https://doi.org/10.1038/s41598-019-47172-x, 2019.
Ottley, C. J., Davison, W., and Edmunds, W. M.: Chemical catalysis of nitrate
reduction by iron(II), Geochim. Cosmochim. Ac., 61, 1819–1828, https://doi.org/10.1016/S0016-7037(97)00058-6, 1997.
Pereira, C., Ferreira, N. R., Rocha, B. S., Barbosa, R. M., and Laranjinha,
J.: The redox interplay between nitrite and nitric oxide: From the gut to
the brain, Redox Biol., 1, 276–284,
https://doi.org/10.1016/j.redox.2013.04.004, 2013.
Phillips, R. L., Song, B., McMillan, A. M. S., Grelet, G., Weir, B. S.,
Palmada, T., and Tobias, C.: Chemical formation of hybrid di-nitrogen calls
fungal codenitrification into question, Sci. Rep., 6, 39077,
https://doi.org/10.1038/srep39077, 2016.
Piasecki, W., Szymanek, K., and Charmas, R.: Fe2+ adsorption on iron
oxide: the importance of the redox potential of the adsorption system,
Adsorption, 25, 613–619, https://doi.org/10.1007/s10450-019-00054-0, 2019.
Piepenbrock, A., Dippon, U., Porsch, K., Appel, E., and Kappler, A. A.:
Dependence of microbial magnetite formation on humic substance and
ferrihydrite concentrations, Geochim. Cosmochim. Ac,, 75, 6844–6858,
https://doi.org/10.1016/j.gca.2011.09.007, 2011.
Price, A., Macey, M. C., Miot, J., and Olsson-Francis, K.: Draft Genome
Sequences of the Nitrate-Dependent Iron-Oxidizing Proteobacteria
Acidovorax sp. Strain BoFeN1 and Paracoccus pantotrophus Strain KS1, edited by: J. C. Thrash, Microbiol.
Resour. Announc., 7, e01050-18, https://doi.org/10.1128/mra.01050-18, 2018.
Rakshit, S., Matocha, C. J., and Coyne, M. S.: Nitrite reduction by siderite,
Soil Sci. Soc. Am. J., 72, 1070–1077, https://doi.org/10.2136/sssaj2007.0296, 2008.
Rancourt, D. G. and Ping, J. Y.: Voigt-based methods for arbitrary-shape
static hyperfine parameter distributions in Mössbauer spectroscopy,
Nucl. Instruments Methods Phys. Res. Sect. B, 58, 85–97, https://doi.org/10.1016/0168-583X(91)95681-3, 1991.
Rivallan, M., Ricchiardi, G., Bordiga, S., and Zecchina, A.: Adsorption and
reactivity of nitrogen oxides (NO2, NO, N2O) on Fe-zeolites, J.
Catal., 264, 104–116, https://doi.org/10.1016/j.jcat.2009.03.012, 2009.
Samarkin, V. A., Madigan, M. T., Bowles, M. W., Casciotti, K. L., Priscu, J.
C., McKay, C. P., and Joye, S. B.: Abiotic nitrous oxide emission from the
hypersaline Don Juan Pond in Antarctica, Nat. Geosci., 3, 341–344,
https://doi.org/10.1038/ngeo847, 2010.
Schaefer, M. V.: Spectroscopic evidence for interfacial Fe(II)-Fe(III)
electron transfer in clay minerals, Iowa Research Online, available
at: http://ir.uiowa.edu/etd/596 (last access:20 March 2018), 2010.
Snyder, L. R. and Adler, H. J.: Dispersion in Segmented Flow through Glass
Tubing in Continuous-Flow Analysis: The Ideal Model, Anal. Chem., 48,
1017–1022, https://doi.org/10.1021/ac60371a013, 1976.
Sorensen, J. and Thorling, L.: Stimulation by Lepidocrocite (Gamma-Feooh) of
Fe(II)-Dependent Nitrite Reduction, Geochim. Cosmochim. Ac., 55,
1289–1294, https://doi.org/10.1016/0016-7037(91)90307-Q, 1991.
Stevenson, F. J., Harrison, R. M., Wetselaar, R., and Leeper, R. A.:
Nitrosation of Soil Organic Matter: III. Nature of Gases Produced by
Reaction of Nitrite with Lignins, Humic Substances, and Phenolic
Constituents Under Neutral and Slightly Acidic Conditions1, Soil Sci. Soc.
Am. J., 34, 430–435, https://doi.org/10.2136/sssaj1970.03615995003400030024x, 1970.
Stookey, L. L.: Ferrozine – A new spectrophotometric reagent for iron, Anal.
Chem., 42, 779–781, https://doi.org/10.1021/ac60289a016, 1970.
Straub, K. L., Benz, M., Schink, B., and Widdel, F.: Anaerobic,
nitrate-dependent microbial oxidation of ferrous iron, Appl. Environ.
Microbiol., 62, 1458–1460, 1996.
Stumm, W. and Sulzberger, B.: The cycling of iron in natural environments:
Considerations based on laboratory studies of heterogeneous redox processes,
Geochim. Cosmochim. Ac., 56, 3233–3257,
https://doi.org/10.1016/0016-7037(92)90301-X, 1992.
Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H.,
Pitt, A. J., and Li, F.: Distinguishing nitrous oxide production from
nitrification and denitrification on the basis of isotopomer abundances,
Appl. Environ. Microbiol., 72, 638–644,
https://doi.org/10.1128/Aem.72.1.638-644.2006, 2006.
Tanford, C.: Protein denaturation: Part C. theoretical models for the
mechanism of denaturation, Adv. Protein Chem., 24, 1–95,
https://doi.org/10.1016/S0065-3233(08)60241-7, 1970.
Taran, Y. A., Kliger, G. A., Cienfuegos, E., and Shuykin, A. N.: Carbon and
hydrogen isotopic compositions of products of open-system catalytic
hydrogenation of CO2: Implications for abiogenic hydrocarbons in
Earth's crust, Geochim. Cosmochim. Ac., 74, 6112–6125,
https://doi.org/10.1016/j.gca.2010.08.012, 2010.
Tian, T., Zhou, K., Xuan, L., Zhang, J.-X., Li, Y.-S., Liu, D.-F., and Yu,
H.-Q.: Exclusive microbially driven autotrophic iron-dependent
denitrification in a reactor inoculated with activated sludge, Water Res.,
170, 115300, https://doi.org/10.1016/j.watres.2019.115300, 2020.
Tiso, M. and Schechter, A. N.: Nitrate reduction to nitrite, nitric oxide
and ammonia by gut bacteria under physiological conditions, PLoS One,
10, e0119712, https://doi.org/10.1371/journal.pone.0119712, 2015.
Tominski, C., Heyer, H., Lösekann-Behrens, T., Behrens, S., and Kappler,
A. A.: Growth and Population Dynamics of the Anaerobic Fe(II)-Oxidizing and
Nitrate-Reducing Enrichment Culture KS, edited by F. E. Löffler, Appl.
Environ. Microbiol., 84, e02173-17, https://doi.org/10.1128/AEM.02173-17, 2018.
Toyoda, S. and Yoshida, N.: Determination of Nitrogen Isotopomers of Nitrous
Oxide on a Modified Isotope Ratio Mass Spectrometer, Anal. Chem.,
71, 4711–4718,
https://doi.org/10.1021/AC9904563, 1999.
Toyoda, S., Mutobe, H., Yamagishi, H., Yoshida, N., and Tanji, Y.:
Fractionation of N2O isotopomers during production by denitrifier, Soil
Biol. Biochem., 37, 1535–1545, https://doi.org/10.1016/j.soilbio.2005.01.009, 2005.
Van Cleemput, O. and Samater, A.: Nitrite in soils: accumulation and role in
the formation of gaseous N compounds, Fertil. Res., 45, 81–89,
https://doi.org/10.1007/BF00749884, 1995.
Veeramani, H., Alessi, D. S., Suvorova, E. I., Lezama-Pacheco, J. S.,
Stubbs, J. E., Sharp, J. O., Dippon, U., Kappler, A. A., Bargar, J. R., and
Bernier-Latmani, R.: Products of abiotic U(VI) reduction by biogenic
magnetite and vivianite, Geochim. Cosmochim. Ac., 75, 2512–2528,
https://doi.org/10.1016/j.gca.2011.02.024, 2011.
Wankel, S. D., Ziebis, W., Buchwald, C., Charoenpong, C., De Beer, Di.,
Dentinger, J., Xu, Z., and Zengler, K.: Evidence for fungal and
chemodenitrification based N2O flux from nitrogen impacted coastal
sediments, Nat. Commun., 8, 15595, https://doi.org/10.1038/ncomms15595, 2017.
Weber, K. A., Hedrick, D. B., Peacock, A. D., Thrash, J. C., White, D. C.,
Achenbach, L. A., and Coates, J. D.: Physiological and taxonomic description
of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002, Appl.
Microbiol. Biotechnol., 83, 555–565, https://doi.org/10.1007/s00253-009-1934-7,
2009.
Well, R. and Flessa, H.: Isotopologue signatures of N2O produced by
denitrification in soils, J. Geophys. Res., 114, https://doi.org/10.1029/2008jg000804,
2009.
Wenk, C. B., Frame, C. H., Koba, K., Casciotti, K. L., Veronesi, M.,
Niemann, H., Schubert, C. J., Yoshida, N., Toyoda, S., Makabe, A., Zopfi, J.,
and Lehmann, M. F.: Differential N2O dynamics in two oxygen-deficient
lake basins revealed by stable isotope and isotopomer distributions, Limnol.
Oceanogr., 61, 1735–1749, https://doi.org/10.1002/lno.10329, 2016.
White, G. F., Edwards, M. J., Gomez-Perez, L., Richardson, D. J., Butt, J.
N., and Clarke, T. A.: Mechanisms of Bacterial Extracellular Electron
Exchange, Adv. Microbial Physiol., 68, 87–138, 2016.
Widdel, F. and Pfennig, N.: Studies on dissimilatory Sulfate-reducing
Bacteria that decompose Fatty-Acids – 1. Isotolation of New Sulfate-reducing
Bacteria enriched with Acetate from saline Environments – Description of
Desulfobacter postgatei gen. nov. sp. nov., Arch. Microbiol., 129-,
395–400, https://doi.org/10.1007/bf00406470, 1981.
Widdel, F., Kohring, G.-W., and Mayer, F.: Studies on Dissimilatory
Sulfate-Reducing Bacteria that Decompose Fatty Acids, Arch. Microbiol., 134,
286–294, 1983.
Wilson, W. W., Wade, M. M., Holman, S. C., and Champlin, F. R.: Status of
methods for assessing bacterial cell surface charge properties based on zeta
potential measurements, J. Microbiol. Method., 43, 153–164,
https://doi.org/10.1016/S0167-7012(00)00224-4, 2001.
Winther, M., Balslev-Harder, D., Christensen, S., Priemé, A., Elberling,
B., Crosson, E., and Blunier, T.: Continuous measurements of nitrous oxide
isotopomers during incubation experiments, Biogeosciences, 15, 767–780,
https://doi.org/10.5194/bg-15-767-2018, 2018.
Wunderlin, P., Lehmann, M. F., Siegrist, H., Tuzson, B., Joss, A.,
Emmenegger, L., and Mohn, J.: Isotope Signatures of N2O in a Mixed
Microbial Population System: Constraints on N2O Producing Pathways in
Wastewater Treatment, Environ. Sci. Technol., 43, 1339–1348,
https://doi.org/10.1021/es303174x, 2013.
Ye, R. W., Averill, B. A., and Tiedje, J. M.: Denitrification: production and
consumption of nitric oxide, Appl. Environ. Microbiol., 60, 1053–1058, 1994.
Zeitvogel, F., Burkhardt, C. J., Schroeppel, B., Schmid, G., Ingino, P., and
Obst, M.: Comparison of Preparation Methods of Bacterial Cell-Mineral
Aggregates for SEM Imaging and Analysis Using the Model System of
Acidovorax sp. BoFeN1, Geomicrobiol. J., 34, 317–327,
https://doi.org/10.1080/01490451.2016.1189467, 2017.
Zhu-Barker, X., Cavazos, A. R., Ostrom, N. E., Horwath, W. R., and Glass, J.
B.: The importance of abiotic reactions for nitrous oxide production,
Biogeochemistry, 126, 251–267, https://doi.org/10.1007/s10533-015-0166-4, 2015.
Zumft, W. G.: Cell biology and molecular basis of denitrification,
Microbiol. Mol. Biol. Rev., 61, 533–616, available at:
http://www.ncbi.nlm.nih.gov/pubmed/9409151 (last access: 19 February 2018),
1997.
Zweier, J. L., Samouilov, A., and Kuppusamy, P.: Non-enzymatic nitric oxide
synthesis in biological systems, Biochim. Biophys. Acta-Bioenerg.,
1411, 250–262, https://doi.org/10.1016/S0005-2728(99)00018-3, 1999.
Short summary
This study focuses on the chemical reaction between Fe(II) and nitrite, which has been reported to produce high levels of the greenhouse gas N2O. We investigated the extent to which dead biomass and Fe(II) minerals might enhance this reaction. Here, nitrite reduction was highest when both additives were present but less pronounced if only Fe(II) minerals were added. Both reaction systems show distinct differences, rather low N2O levels, and indicated the abiotic production of N2.
This study focuses on the chemical reaction between Fe(II) and nitrite, which has been reported...
Altmetrics
Final-revised paper
Preprint