Articles | Volume 17, issue 16
https://doi.org/10.5194/bg-17-4355-2020
https://doi.org/10.5194/bg-17-4355-2020
Research article
 | 
28 Aug 2020
Research article |  | 28 Aug 2020

Impact of reactive surfaces on the abiotic reaction between nitrite and ferrous iron and associated nitrogen and oxygen isotope dynamics

Anna-Neva Visser, Scott D. Wankel, Pascal A. Niklaus, James M. Byrne, Andreas A. Kappler, and Moritz F. Lehmann

Related authors

Nitrogen isotopes reveal a particulate-matter-driven biogeochemical reactor in a temperate estuary
Kirstin Dähnke, Tina Sanders, Yoana Voynova, and Scott D. Wankel
Biogeosciences, 19, 5879–5891, https://doi.org/10.5194/bg-19-5879-2022,https://doi.org/10.5194/bg-19-5879-2022, 2022
Short summary
Stable isotope ratios in seawater nitrate reflect the influence of Pacific water along the northwest Atlantic margin
Owen A. Sherwood, Samuel H. Davin, Nadine Lehmann, Carolyn Buchwald, Evan N. Edinger, Moritz F. Lehmann, and Markus Kienast
Biogeosciences, 18, 4491–4510, https://doi.org/10.5194/bg-18-4491-2021,https://doi.org/10.5194/bg-18-4491-2021, 2021
Short summary
Methane oxidation in the waters of a humic-rich boreal lake stimulated by photosynthesis, nitrite, Fe(III) and humics
Sigrid van Grinsven, Kirsten Oswald, Bernhard Wehrli, Corinne Jegge, Jakob Zopfi, Moritz F. Lehmann, and Carsten J. Schubert
Biogeosciences, 18, 3087–3101, https://doi.org/10.5194/bg-18-3087-2021,https://doi.org/10.5194/bg-18-3087-2021, 2021
Short summary
Convergent evidence for the pervasive but limited contribution of biomass burning to atmospheric ammonia in peninsular Southeast Asia
Yunhua Chang, Yan-Lin Zhang, Sawaeng Kawichai, Qian Wang, Martin Van Damme, Lieven Clarisse, Tippawan Prapamontol, and Moritz F. Lehmann
Atmos. Chem. Phys., 21, 7187–7198, https://doi.org/10.5194/acp-21-7187-2021,https://doi.org/10.5194/acp-21-7187-2021, 2021
Short summary
Plant trait response of tundra shrubs to permafrost thaw and nutrient addition
Maitane Iturrate-Garcia, Monique M. P. D. Heijmans, J. Hans C. Cornelissen, Fritz H. Schweingruber, Pascal A. Niklaus, and Gabriela Schaepman-Strub
Biogeosciences, 17, 4981–4998, https://doi.org/10.5194/bg-17-4981-2020,https://doi.org/10.5194/bg-17-4981-2020, 2020
Short summary

Related subject area

Biogeochemistry: Environmental Microbiology
Differentiation of cognate bacterial communities in thermokarst landscapes: implications for ecological consequences of permafrost degradation
Ze Ren, Shudan Ye, Hongxuan Li, Xilei Huang, and Luyao Chen
Biogeosciences, 20, 4241–4258, https://doi.org/10.5194/bg-20-4241-2023,https://doi.org/10.5194/bg-20-4241-2023, 2023
Short summary
A multi-phase biogeochemical model for mitigating earthquake-induced liquefaction via microbially induced desaturation and calcium carbonate precipitation
Caitlyn A. Hall, Andre van Turnhout, Edward Kavazanjian Jr., Leon A. van Paassen, and Bruce Rittmann
Biogeosciences, 20, 2903–2917, https://doi.org/10.5194/bg-20-2903-2023,https://doi.org/10.5194/bg-20-2903-2023, 2023
Short summary
Characteristics of bacterial and fungal communities and their associations with sugar compounds in atmospheric aerosols at a rural site in North China
Mutong Niu, Shu Huang, Wei Hu, Yajie Wang, Wanyun Xu, Wan Wei, Qiang Zhang, Zihan Wang, Donghuan Zhang, Rui Jin, Libin Wu, Junjun Deng, Fangxia Shen, and Pingqing Fu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-93,https://doi.org/10.5194/bg-2023-93, 2023
Revised manuscript accepted for BG
Short summary
Responses of globally important phytoplankton groups to olivine dissolution products and implications for carbon dioxide removal via ocean alkalinity enhancement
David A. Hutchins, Fei-Xue Fu, Shun-Chung Yang, Seth G. John, Stephen J. Romaniello, M. Grace Andrews, and Nathan G. Walworth
EGUsphere, https://doi.org/10.1101/2023.04.08.536121,https://doi.org/10.1101/2023.04.08.536121, 2023
Short summary
Phosphorus regulates ectomycorrhizal fungi biomass production in a Norway spruce forest
Juan Pablo Almeida, Lorenzo Menichetti, Alf Ekblad, Nicholas P. Rosenstock, and Håkan Wallander
Biogeosciences, 20, 1443–1458, https://doi.org/10.5194/bg-20-1443-2023,https://doi.org/10.5194/bg-20-1443-2023, 2023
Short summary

Cited articles

Anderson, I. C. and Levine, J. S.: Relative Rates of Nitric Oxide and Nitrous Oxide Production by Nitrifiers, Denitrifiers, and Nitrate Respirers, Appl. Environ. Microbiol., 51, 938–945, 1986. 
Andrews, S. C., Robinson, A. K., Rodriguez-Quinones, F., and Rodríguez-Quiñones, F.: Bacterial iron homeostasis, FEMS Microbiol. Rev., 27, 215–237, https://doi.org/10.1016/s0168-6445(03)00055-x, 2003. 
Baumgärtner, M. and Conrad, R.: Role of nitrate and nitrite for production and consumption of nitric oxide during denitrification in soil, FEMS Microbiol. Lett., 101, 59–65, https://doi.org/10.1111/j.1574-6968.1992.tb05762.x, 1992. 
Braun, V. and Hantke, K.: The Tricky Ways Bacteria Cope with Iron Limitation, Springer, Dordrecht, 31–66, 2013. 
Buchwald, C. and Casciotti, K. L.: Isotopic ratios of nitrite as tracers of the sources and age of oceanic nitrite, Nat. Geosci., 6, 308–313, https://doi.org/10.1038/ngeo1745, 2013. 
Download
Short summary
This study focuses on the chemical reaction between Fe(II) and nitrite, which has been reported to produce high levels of the greenhouse gas N2O. We investigated the extent to which dead biomass and Fe(II) minerals might enhance this reaction. Here, nitrite reduction was highest when both additives were present but less pronounced if only Fe(II) minerals were added. Both reaction systems show distinct differences, rather low N2O levels, and indicated the abiotic production of N2.
Altmetrics
Final-revised paper
Preprint