Articles | Volume 17, issue 22
https://doi.org/10.5194/bg-17-5809-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5809-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ideas and perspectives: A strategic assessment of methane and nitrous oxide measurements in the marine environment
University of Hawai'i at Manoa, Daniel K. Inouye Center for Microbial
Oceanography: Research and Education (C-MORE), Honolulu, Hawai'i, USA
Alia N. Al-Haj
Department of Earth and Environment, Boston University, Boston, Massachusetts,
USA
Annie Bourbonnais
University of South Carolina, School of the Earth, Ocean and
Environment, Columbia, South Carolina, USA
Claudia Frey
Department of Environmental Science, University of Basel, Basel,
Switzerland
Robinson W. Fulweiler
Department of Earth and Environment, Boston University, Boston, Massachusetts,
USA
Department of Biology, Boston University, Boston, Massachusetts, USA
John D. Kessler
Department of Earth and Environmental
Science, University of Rochester, Rochester, New York, USA
Hannah K. Marchant
Department of
Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
Jana Milucka
Department of
Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
Nicholas E. Ray
Department of Biology, Boston University, Boston, Massachusetts, USA
Parvadha Suntharalingam
School of Environmental Sciences, University of East Anglia, Norwich, UK
Brett F. Thornton
Department of Geological Sciences and Bolin
Centre for Climate Research, Stockholm University, Stockholm, Sweden
Robert C. Upstill-Goddard
School of Natural and Environmental Sciences, Newcastle University,
Newcastle upon Tyne, UK
Thomas S. Weber
Department of Earth and Environmental
Science, University of Rochester, Rochester, New York, USA
Damian L. Arévalo-Martínez
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, 24105 Kiel, Germany
Hermann W. Bange
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, 24105 Kiel, Germany
Heather M. Benway
Woods Hole Oceanographic Institution, Marine Chemistry and
Geochemistry, Boston, Massachusetts, USA
Daniele Bianchi
Department of Atmospheric and
Oceanic Sciences, University of California Los Angeles, Los Angeles, California, USA
Alberto V. Borges
University of Liège, Chemical Oceanography Unit, Liège,
Belgium
Bonnie X. Chang
University of Washington, Joint Institute for the Study of the
Atmosphere and Ocean, Seattle, Washington, USA
National Oceanic and Atmospheric Administration, Pacific Marine
Environmental Laboratory, Seattle, Washington, USA
Patrick M. Crill
Department of Geological Sciences and Bolin
Centre for Climate Research, Stockholm University, Stockholm, Sweden
Daniela A. del Valle
University of Southern Mississippi, Division of Marine Science, Hattiesburg,
Mississippi, USA
Laura Farías
Department of Oceanography and Center
for Climate Research and Resilience (CR2), University of Concepción, Concepción, Chile
Samantha B. Joye
Department of Marine Sciences, Georgia, University of Georgia, Athens, USA
Annette Kock
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, 24105 Kiel, Germany
Jabrane Labidi
Department of Earth,
Planetary, and Space Sciences, University of California Los Angeles, Los Angeles, California, USA
Cara C. Manning
Department of Earth, Ocean and
Atmospheric Sciences, University of British Columbia, British Columbia, Vancouver, Canada
current address: Plymouth Marine Laboratory, Plymouth, UK
John W. Pohlman
U.S. Geological Survey, Woods Hole Coastal and Marine Science Center,
Woods Hole, USA
Gregor Rehder
Leibniz Institute for Baltic Sea Research Warnemünde, Rostock,
Germany
Katy J. Sparrow
Department of Earth, Ocean, and Atmospheric
Science, Florida State University, Tallahassee, Florida, USA
Philippe D. Tortell
Department of Earth, Ocean and
Atmospheric Sciences, University of British Columbia, British Columbia, Vancouver, Canada
Tina Treude
Department of Atmospheric and
Oceanic Sciences, University of California Los Angeles, Los Angeles, California, USA
Department of Earth,
Planetary, and Space Sciences, University of California Los Angeles, Los Angeles, California, USA
David L. Valentine
Department of Earth Science, University of California Santa Barbara, Santa Barbara,
California, USA
Bess B. Ward
Geoscience Department, Princeton University, Princeton, New Jersey, USA
Simon Yang
Department of Atmospheric and
Oceanic Sciences, University of California Los Angeles, Los Angeles, California, USA
Leonid N. Yurganov
Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
Related authors
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Joachim Schönfeld, Hermann W. Bange, Helmke Hepach, and Svenja Reents
EGUsphere, https://doi.org/10.5194/egusphere-2025-2672, https://doi.org/10.5194/egusphere-2025-2672, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The current state of intertidal waters at Bottsand lagoon on the Baltic Sea coast, and on the mudflats off Schobüll on the North Sea coast of Schleswig-Holstein, Germany was assessed with a 36-month time series of water level, temperature, and salinity measurements. Periods of strong precipitation, high Elbe river discharge, and high solar radiation caused a higher data variability as compared to the off shore monitoring stations Boknis Eck in the Baltic and Sylt Roads in the North Sea.
Thomas Bauduin, Nathalie Gypens, and Alberto V. Borges
Biogeosciences, 22, 3785–3805, https://doi.org/10.5194/bg-22-3785-2025, https://doi.org/10.5194/bg-22-3785-2025, 2025
Short summary
Short summary
To investigate if greenhouse gases (GHG) emissions from ponds vary among clear-water ponds with macrophytes and turbid-water ponds with phytoplankton, we measured CO2, CH4, and N2O concentrations and emissions in two clear- and two turbid-water urban ponds in the city of Brussels from June 2021 to December 2023. Differences in CH4 ebullitive emissions were observed between clear- and turbid-water ponds but none for CO2 and N2O emissions.
Daniel L. Pönisch, Henry C. Bittig, Martin Kolbe, Ingo Schuffenhauer, Stefan Otto, Peter Holtermann, Kusala Premaratne, and Gregor Rehder
Biogeosciences, 22, 3583–3614, https://doi.org/10.5194/bg-22-3583-2025, https://doi.org/10.5194/bg-22-3583-2025, 2025
Short summary
Short summary
Rewetted peatlands exhibit natural spatiotemporal biogeochemical heterogeneity, influenced by water level and vegetation. This study investigated the variability of greenhouse gas distribution in a peatland rewetted with brackish water. Two innovative sensor-equipped platforms were used to measure a wide range of marine physicochemical variables at high temporal resolution. The measurements revealed strong fluctuations in CO2 and CH4, expressed as multi-day, diurnal, and event-based variability.
Pratirupa Bardhan, Claudia Frey, Gregor Rehder, and Hermann W. Bange
EGUsphere, https://doi.org/10.5194/egusphere-2025-2518, https://doi.org/10.5194/egusphere-2025-2518, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Nitrous oxide (N2O), a potent greenhouse gas, is released from coastal seas & estuaries, yet we don't fully understand how it is formed and consumed. In this study we collected water from several sites in the central Baltic Sea. N2O came from ammonia in oxic waters. Deep waters with low to no oxygen noted more active N2O cycling. The seafloor was a source in some areas. Typically N2O is produced by bacteria, but our results indicate possibility of other players like fungi or chemical reactions.
Sara M. Defratyka, Julianne M. Fernandez, Getachew A. Adnew, Guannan Dong, Peter M. J. Douglas, Daniel L. Eldridge, Giuseppe Etiope, Thomas Giunta, Mojhgan A. Haghnegahdar, Alexander N. Hristov, Nicole Hultquist, Iñaki Vadillo, Josue Jautzy, Ji-Hyun Kim, Jabrane Labidi, Ellen Lalk, Wil Leavitt, Jiawen Li, Li-Hung Lin, Jiarui Liu, Lucia Ojeda, Shuhei Ono, Jeemin Rhim, Thomas Röckmann, Barbara Sherwood Lollar, Malavika Sivan, Jiayang Sun, Gregory T. Ventura, David T. Wang, Edward D. Young, Naizhong Zhang, and Tim Arnold
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-41, https://doi.org/10.5194/essd-2025-41, 2025
Preprint under review for ESSD
Short summary
Short summary
Measurement of methane’s doubly substituted isotopologues at natural abundances holds promise for better constraining the Earth’s atmospheric CH4 budget. We compiled 1475 measurements from field samples and laboratory experiments, conducted since 2014, to facilitate the differentiation of CH4 formation pathways and processes, to identify existing gaps limiting application of Δ13CH3D and Δ12CH2D2, and to develop isotope ratio source signature inputs for global CH4 flux modelling.
Vao Fenotiana Razanamahandry, Alberto Vieira Borges, Liesa Brosens, Cedric Morana, Tantely Razafimbelo, Tovonarivo Rafolisy, Gerard Govers, and Steven Bouillon
Biogeosciences, 22, 2403–2424, https://doi.org/10.5194/bg-22-2403-2025, https://doi.org/10.5194/bg-22-2403-2025, 2025
Short summary
Short summary
A comprehensive survey of the biogeochemistry of the Lake Alaotra system showed that the lake and surrounding wetlands acted as a substantial source of new organic carbon (OC), which was exported downstream. Marsh vegetation was the main source of dissolved OC, while phytoplankton contributed to the particulate OC pool. The biogeochemical functioning of Lake Alaotra differs from most East African lakes studied, likely due to its large surface area, shallow water depth, and surrounding wetlands.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Gesa Schulz, Kirstin Dähnke, Tina Sanders, Jan Penopp, Hermann W. Bange, Rena Czeschel, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2025-1660, https://doi.org/10.5194/egusphere-2025-1660, 2025
Short summary
Short summary
Oxygen minimum zones (OMZs) are low-oxygen ocean areas that deplete nitrogen, a key marine nutrient. Understanding nitrogen cycling in OMZs is crucial for the global nitrogen cycle. This study examined nitrogen cycling in the OMZ of the Bay of Bengal and East Equatorial Indian Ocean, revealing limited mixing between both regions. Surface phytoplankton consumes nitrate, while deeper nitrification recycles nitrogen. In the BoB’s OMZ (100–300 m), nitrogen loss likely occurs via anammox.
Jenna Alyson Lee, Joseph H. Vineis, Mathieu A. Poupon, Laure Resplandy, and Bess B. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-871, https://doi.org/10.5194/egusphere-2025-871, 2025
Short summary
Short summary
Concurrent sampling of environmental parameters, productivity rates, photopigments, and DNA were used to analyze a 24–L estuarine diatom bloom microcosm. Biogeochemical data and an ecological model indicated that the bloom was terminated by grazing. Comparisons to previous studies revealed (1) additional community and diversity complexity using 18S amplicon vs. traditional pigment–based analyses, and (2) a potential global productivity–diversity relationship using 18S and carbon transport rates.
Yayla Sezginer, Kate Schuler, Emily Speciale, Adrian Marchetti, Claire Till, Ralph Till, and Philippe Tortell
EGUsphere, https://doi.org/10.5194/egusphere-2024-3812, https://doi.org/10.5194/egusphere-2024-3812, 2025
Short summary
Short summary
We recorded three metrics of photosynthesis in the California Current. Real-time observations of microalgae physiology and productivity revealed signs of iron limitation where the continental shelf rapidly dropped off. Iron limitation influenced how efficiently light was absorbed and used for carbon fixation but did not appear to affect net photosynthetic oxygen production. Our results offer useful insights towards efforts to model carbon fixation rates from microalgae optical properties.
Johnathan Daniel Maxey, Neil D. Hartstein, Hermann W. Bange, and Moritz Müller
Biogeosciences, 21, 5613–5637, https://doi.org/10.5194/bg-21-5613-2024, https://doi.org/10.5194/bg-21-5613-2024, 2024
Short summary
Short summary
The distribution of N2O in fjord-like estuaries is poorly described in the Southern Hemisphere. Our study describes N2O distribution and its drivers in one such system in Macquarie Harbour, Tasmania. Water samples were collected seasonally in 2022 and 2023. Results show the system removes atmospheric N2O when river flow is high, whereas the system emits N2O when the river flow is low. N2O generated in basins is intercepted by the surface water and exported to the ocean during high river flow.
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024, https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary
Short summary
The BiOeconomic mArine Trophic Size-spectrum (BOATSv2) model dynamically simulates global commercial fish populations and their coupling with fishing activity, as emerging from environmental and economic drivers. New features, including separate pelagic and demersal populations, iron limitation, and spatial variation of fishing costs and management, improve the accuracy of high seas fisheries. The updated model code is available to simulate both historical and future scenarios.
Nathaniel B. Weston, Cynthia Troy, Patrick J. Kearns, Jennifer L. Bowen, William Porubsky, Christelle Hyacinthe, Christof Meile, Philippe Van Cappellen, and Samantha B. Joye
Biogeosciences, 21, 4837–4851, https://doi.org/10.5194/bg-21-4837-2024, https://doi.org/10.5194/bg-21-4837-2024, 2024
Short summary
Short summary
Nitrous oxide (N2O) is a potent greenhouse and ozone-depleting gas produced largely from microbial nitrogen cycling processes, and human activities have resulted in increases in atmospheric N2O. We investigate the role of physical and chemical disturbances to soils and sediments in N2O production. We demonstrate that physicochemical perturbation increases N2O production, microbial community adapts over time, and initial perturbation appears to confer resilience to subsequent disturbance.
Silvie Lainela, Erik Jacobs, Stella-Theresa Luik, Gregor Rehder, and Urmas Lips
Biogeosciences, 21, 4495–4519, https://doi.org/10.5194/bg-21-4495-2024, https://doi.org/10.5194/bg-21-4495-2024, 2024
Short summary
Short summary
We evaluate the variability of carbon dioxide and methane in the surface layer of the north-eastern basins of the Baltic Sea in 2018. We show that the shallower coastal areas have considerably higher spatial variability and seasonal amplitude of surface layer pCO2 and cCH4 than measured in the offshore areas of the Baltic Sea. Despite this high variability, caused mostly by coastal physical processes, the average annual air–sea CO2 fluxes differed only marginally between the sub-basins.
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024, https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary
Short summary
Our research is the first to measure dissolved NO concentrations in temperate estuarine waters, providing insights into its distribution under varying conditions and enhancing our understanding of its production processes. Dissolved NO was supersaturated in the Elbe Estuary, indicating that it is a source of atmospheric NO. The observed distribution of dissolved NO most likely resulted from nitrification.
Colette L. Kelly, Nicole M. Travis, Pascale Anabelle Baya, Claudia Frey, Xin Sun, Bess B. Ward, and Karen L. Casciotti
Biogeosciences, 21, 3215–3238, https://doi.org/10.5194/bg-21-3215-2024, https://doi.org/10.5194/bg-21-3215-2024, 2024
Short summary
Short summary
Nitrous oxide, a potent greenhouse gas, accumulates in regions of the ocean that are low in dissolved oxygen. We used a novel combination of chemical tracers to determine how nitrous oxide is produced in one of these regions, the eastern tropical North Pacific Ocean. Our experiments showed that the two most important sources of nitrous oxide under low-oxygen conditions are denitrification, an anaerobic process, and a novel “hybrid” process performed by ammonia-oxidizing archaea.
Weiyi Tang, Jeff Talbott, Timothy Jones, and Bess B. Ward
Biogeosciences, 21, 3239–3250, https://doi.org/10.5194/bg-21-3239-2024, https://doi.org/10.5194/bg-21-3239-2024, 2024
Short summary
Short summary
Wastewater treatment plants (WWTPs) are known to be hotspots of greenhouse gas emissions. However, the impact of WWTPs on the emission of the greenhouse gas N2O in downstream aquatic environments is less constrained. We found spatially and temporally variable but overall higher N2O concentrations and fluxes in waters downstream of WWTPs, pointing to the need for efficient N2O removal in addition to the treatment of nitrogen in WWTPs.
Xuefeng Peng, David J. Yousavich, Annie Bourbonnais, Frank Wenzhöfer, Felix Janssen, Tina Treude, and David L. Valentine
Biogeosciences, 21, 3041–3052, https://doi.org/10.5194/bg-21-3041-2024, https://doi.org/10.5194/bg-21-3041-2024, 2024
Short summary
Short summary
Biologically available (fixed) nitrogen (N) is a limiting nutrient for life in the ocean. Under low-oxygen conditions, fixed N is either removed via denitrification or retained via dissimilatory nitrate reduction to ammonia (DNRA). Using in situ incubations in the Santa Barbara Basin, which undergoes seasonal anoxia, we found that benthic denitrification was the dominant nitrate reduction process, while nitrate availability and organic carbon content control the relative importance of DNRA.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
De'Marcus Robinson, Anh L. D. Pham, David J. Yousavich, Felix Janssen, Frank Wenzhöfer, Eleanor C. Arrington, Kelsey M. Gosselin, Marco Sandoval-Belmar, Matthew Mar, David L. Valentine, Daniele Bianchi, and Tina Treude
Biogeosciences, 21, 773–788, https://doi.org/10.5194/bg-21-773-2024, https://doi.org/10.5194/bg-21-773-2024, 2024
Short summary
Short summary
The present study suggests that high release of ferrous iron from the seafloor of the oxygen-deficient Santa Barabara Basin (California) supports surface primary productivity, creating positive feedback on seafloor iron release by enhancing low-oxygen conditions in the basin.
David J. Yousavich, De'Marcus Robinson, Xuefeng Peng, Sebastian J. E. Krause, Frank Wenzhöfer, Felix Janssen, Na Liu, Jonathan Tarn, Franklin Kinnaman, David L. Valentine, and Tina Treude
Biogeosciences, 21, 789–809, https://doi.org/10.5194/bg-21-789-2024, https://doi.org/10.5194/bg-21-789-2024, 2024
Short summary
Short summary
Declining oxygen (O2) concentrations in coastal oceans can threaten people’s ways of life and food supplies. Here, we investigate how mats of bacteria that proliferate on the seafloor of the Santa Barbara Basin sustain and potentially worsen these O2 depletion events through their unique chemoautotrophic metabolism. Our study shows how changes in seafloor microbiology and geochemistry brought on by declining O2 concentrations can help these mats grow as well as how that growth affects the basin.
Henry C. Bittig, Erik Jacobs, Thomas Neumann, and Gregor Rehder
Earth Syst. Sci. Data, 16, 753–773, https://doi.org/10.5194/essd-16-753-2024, https://doi.org/10.5194/essd-16-753-2024, 2024
Short summary
Short summary
We present a pCO2 climatology of the Baltic Sea using a new approach to extrapolate from individual observations to the entire Baltic Sea. The extrapolation approach uses (a) a model to inform on how data at one location are connected to data at other locations, together with (b) very accurate pCO2 observations from 2003 to 2021 as the base data. The climatology can be used e.g. to assess uptake and release of CO2 or to identify extreme events.
John Prytherch, Sonja Murto, Ian Brown, Adam Ulfsbo, Brett F. Thornton, Volker Brüchert, Michael Tjernström, Anna Lunde Hermansson, Amanda T. Nylund, and Lina A. Holthusen
Biogeosciences, 21, 671–688, https://doi.org/10.5194/bg-21-671-2024, https://doi.org/10.5194/bg-21-671-2024, 2024
Short summary
Short summary
We directly measured methane and carbon dioxide exchange between ocean or sea ice and the atmosphere during an icebreaker-based expedition to the central Arctic Ocean (CAO) in summer 2021. These measurements can help constrain climate models and carbon budgets. The methane measurements, the first such made in the CAO, are lower than previous estimates and imply that the CAO is an insignificant contributor to Arctic methane emission. Gas exchange rates are slower than previous estimates.
Sacchidanandan Viruthasalam Pillai, M. Angelica Peña, Brandon J. McNabb, William J. Burt, and Philippe D. Tortell
EGUsphere, https://doi.org/10.5194/egusphere-2023-2851, https://doi.org/10.5194/egusphere-2023-2851, 2023
Preprint archived
Short summary
Short summary
We investigated how hyperspectral optical data collected in the North Pacific can be used to determine the phytoplankton community composition. We used the optically derived infomation of the phytoplankton community to examine the phytoplankton sizes, oceanographic controls and links to other biogeochemical variables. This work was motivated by the upcoming launch of the PACE satellite by NASA and the increased availability of hyperspectral optical measurements in oceanographic studies.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Sebastian J. E. Krause, Jiarui Liu, David J. Yousavich, DeMarcus Robinson, David W. Hoyt, Qianhui Qin, Frank Wenzhöfer, Felix Janssen, David L. Valentine, and Tina Treude
Biogeosciences, 20, 4377–4390, https://doi.org/10.5194/bg-20-4377-2023, https://doi.org/10.5194/bg-20-4377-2023, 2023
Short summary
Short summary
Methane is a potent greenhouse gas, and hence it is important to understand its sources and sinks in the environment. Here we present new data from organic-rich surface sediments below an oxygen minimum zone off the coast of California (Santa Barbara Basin) demonstrating the simultaneous microbial production and consumption of methane, which appears to be an important process preventing the build-up of methane in these sediments and the emission into the water column and atmosphere.
Michael P. Cartwright, Richard J. Pope, Jeremy J. Harrison, Martyn P. Chipperfield, Chris Wilson, Wuhu Feng, David P. Moore, and Parvadha Suntharalingam
Atmos. Chem. Phys., 23, 10035–10056, https://doi.org/10.5194/acp-23-10035-2023, https://doi.org/10.5194/acp-23-10035-2023, 2023
Short summary
Short summary
A 3-D chemical transport model, TOMCAT, is used to simulate global atmospheric carbonyl sulfide (OCS) distribution. Modelled OCS compares well with satellite observations of OCS from limb-sounding satellite observations. Model simulations also compare adequately with surface and atmospheric observations and suitably capture the seasonality of OCS and background concentrations.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Gesa Schulz, Tina Sanders, Yoana G. Voynova, Hermann W. Bange, and Kirstin Dähnke
Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, https://doi.org/10.5194/bg-20-3229-2023, 2023
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas. However, N2O emissions from estuaries underlie significant uncertainties due to limited data availability and high spatiotemporal variability. We found the Elbe Estuary (Germany) to be a year-round source of N2O, with the highest emissions in winter along with high nitrogen loads. However, in spring and summer, N2O emissions did not decrease alongside lower nitrogen loads because organic matter fueled in situ N2O production along the estuary.
John C. Tracey, Andrew R. Babbin, Elizabeth Wallace, Xin Sun, Katherine L. DuRussel, Claudia Frey, Donald E. Martocello III, Tyler Tamasi, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 20, 2499–2523, https://doi.org/10.5194/bg-20-2499-2023, https://doi.org/10.5194/bg-20-2499-2023, 2023
Short summary
Short summary
Nitrogen (N) is essential for life; thus, its availability plays a key role in determining marine productivity. Using incubations of seawater spiked with a rare form of N measurable on a mass spectrometer, we quantified microbial pathways that determine marine N availability. The results show that pathways that recycle N have higher rates than those that result in its loss from biomass and present new evidence for anaerobic nitrite oxidation, a process long thought to be strictly aerobic.
Daniele Bianchi, Daniel McCoy, and Simon Yang
Geosci. Model Dev., 16, 3581–3609, https://doi.org/10.5194/gmd-16-3581-2023, https://doi.org/10.5194/gmd-16-3581-2023, 2023
Short summary
Short summary
We present NitrOMZ, a new model of the oceanic nitrogen cycle that simulates chemical transformations within oxygen minimum zones (OMZs). We describe the model formulation and its implementation in a one-dimensional representation of the water column before evaluating its ability to reproduce observations in the eastern tropical South Pacific. We conclude by describing the model sensitivity to parameter choices and environmental factors and its application to nitrogen cycling in the ocean.
Guanlin Li, Damian L. Arévalo-Martínez, Riel Carlo O. Ingeniero, and Hermann W. Bange
EGUsphere, https://doi.org/10.5194/egusphere-2023-771, https://doi.org/10.5194/egusphere-2023-771, 2023
Preprint archived
Short summary
Short summary
Dissolved carbon monoxide (CO) surface concentrations were first measured at 14 stations in the Ria Formosa Lagoon system in May 2021. Ria Formosa was a source of atmospheric CO. Microbial consumption accounted for 83 % of the CO production. The results of a 48-hour irradiation experiment with aquaculture effluent water indicated that aquaculture facilities in the Ria Formosa Lagoon seem to be a negligible source of atmospheric CO.
Hanna I. Campen, Damian L. Arévalo-Martínez, and Hermann W. Bange
Biogeosciences, 20, 1371–1379, https://doi.org/10.5194/bg-20-1371-2023, https://doi.org/10.5194/bg-20-1371-2023, 2023
Short summary
Short summary
Carbon monoxide (CO) is a climate-relevant trace gas emitted from the ocean. However, oceanic CO cycling is understudied. Results from incubation experiments conducted in the Fram Strait (Arctic Ocean) indicated that (i) pH did not affect CO cycling and (ii) enhanced CO production and consumption were positively correlated with coloured dissolved organic matter and nitrate concentrations. This suggests microbial CO uptake to be the driving factor for CO cycling in the Arctic Ocean.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Daniel L. Pönisch, Anne Breznikar, Cordula N. Gutekunst, Gerald Jurasinski, Maren Voss, and Gregor Rehder
Biogeosciences, 20, 295–323, https://doi.org/10.5194/bg-20-295-2023, https://doi.org/10.5194/bg-20-295-2023, 2023
Short summary
Short summary
Peatland rewetting is known to reduce dissolved nutrients and greenhouse gases; however, short-term nutrient leaching and high CH4 emissions shortly after rewetting are likely to occur. We investigated the rewetting of a coastal peatland with brackish water and its effects on nutrient release and greenhouse gas fluxes. Nutrient concentrations were higher in the peatland than in the adjacent bay, leading to an export. CH4 emissions did not increase, which is in contrast to freshwater rewetting.
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022, https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary
Short summary
Marine ecosystem models are usually constrained by the elements nitrogen and phosphorus and consider carbon in organic matter in a fixed ratio. Recent observations show a substantial deviation from the simulated carbon cycle variables. In this study, we present a marine ecosystem model for the Baltic Sea which allows for a flexible uptake ratio for carbon, nitrogen, and phosphorus. With this extension, the model reflects much more reasonable variables of the marine carbon cycle.
Sonja Gindorf, Hermann W. Bange, Dennis Booge, and Annette Kock
Biogeosciences, 19, 4993–5006, https://doi.org/10.5194/bg-19-4993-2022, https://doi.org/10.5194/bg-19-4993-2022, 2022
Short summary
Short summary
Methane is a climate-relevant greenhouse gas which is emitted to the atmosphere from coastal areas such as the Baltic Sea. We measured the methane concentration in the water column of the western Kiel Bight. Methane concentrations were higher in September than in June. We found no relationship between the 2018 European heatwave and methane concentrations. Our results show that the methane distribution in the water column is strongly affected by temporal and spatial variabilities.
Mhlangabezi Mdutyana, Tanya Marshall, Xin Sun, Jessica M. Burger, Sandy J. Thomalla, Bess B. Ward, and Sarah E. Fawcett
Biogeosciences, 19, 3425–3444, https://doi.org/10.5194/bg-19-3425-2022, https://doi.org/10.5194/bg-19-3425-2022, 2022
Short summary
Short summary
Nitrite-oxidizing bacteria in the winter Southern Ocean show a high affinity for nitrite but require a minimum (i.e., "threshold") concentration before they increase their rates of nitrite oxidation significantly. The classic Michaelis–Menten model thus cannot be used to derive the kinetic parameters, so a modified equation was employed that also yields the threshold nitrite concentration. Dissolved iron availability may play an important role in limiting nitrite oxidation.
Priscilla Le Mézo, Jérôme Guiet, Kim Scherrer, Daniele Bianchi, and Eric Galbraith
Biogeosciences, 19, 2537–2555, https://doi.org/10.5194/bg-19-2537-2022, https://doi.org/10.5194/bg-19-2537-2022, 2022
Short summary
Short summary
This study quantifies the role of commercially targeted fish biomass in the cycling of three important nutrients (N, P, and Fe), relative to nutrients otherwise available in water and to nutrients required by primary producers, and the impact of fishing. We use a model of commercially targeted fish biomass constrained by fish catch and stock assessment data to assess the contributions of fish at the global scale, at the time of the global peak catch and prior to industrial fishing.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Brandon J. McNabb and Philippe D. Tortell
Biogeosciences, 19, 1705–1721, https://doi.org/10.5194/bg-19-1705-2022, https://doi.org/10.5194/bg-19-1705-2022, 2022
Short summary
Short summary
The trace gas dimethyl sulfide (DMS) plays an important role in the ocean sulfur cycle and can also influence Earth’s climate. Our study used two statistical methods to predict surface ocean concentrations and rates of sea–air exchange of DMS in the northeast subarctic Pacific. Our results show improved predictive power over previous approaches and suggest that nutrient availability, light-dependent processes, and physical mixing may be important controls on DMS in this region.
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, https://doi.org/10.5194/bg-19-701-2022, 2022
Short summary
Short summary
We present here, for the first time, simultaneously measured dimethylsulfide (DMS) seawater concentrations and DMS atmospheric mole fractions from the Peruvian upwelling region during two cruises in December 2012 and October 2015. Our results indicate low oceanic DMS concentrations and atmospheric DMS molar fractions in surface waters and the atmosphere, respectively. In addition, the Peruvian upwelling region was identified as an insignificant source of DMS emissions during both periods.
Wangwang Ye, Hermann W. Bange, Damian L. Arévalo-Martínez, Hailun He, Yuhong Li, Jianwen Wen, Jiexia Zhang, Jian Liu, Man Wu, and Liyang Zhan
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-334, https://doi.org/10.5194/bg-2021-334, 2022
Manuscript not accepted for further review
Short summary
Short summary
CH4 is the second important greenhouse gas after CO2. We show that CH4 consumption and sea-ice melting influence the CH4 distribution in the Ross Sea (Southern Ocean), causing undersaturation and net uptake of CH4 during summertime. This study confirms the capability of surface water in the high-latitude Southern Ocean regions to take up atmospheric CH4 which, in turn, will help to improve predictions of how CH4 release/uptake from the ocean will develop when sea-ice retreats in the future.
Martti Honkanen, Jens Daniel Müller, Jukka Seppälä, Gregor Rehder, Sami Kielosto, Pasi Ylöstalo, Timo Mäkelä, Juha Hatakka, and Lauri Laakso
Ocean Sci., 17, 1657–1675, https://doi.org/10.5194/os-17-1657-2021, https://doi.org/10.5194/os-17-1657-2021, 2021
Short summary
Short summary
The exchange of carbon dioxide (CO2) between the sea and the atmosphere is regulated by the gradient of CO2 partial pressure (pCO2) between the sea and the air. The daily variation of the seawater pCO2 recorded at the fixed station Utö in the Baltic Sea was found to be mainly biologically driven. Calculation of the annual net exchange of CO2 between the sea and atmosphere based on daily measurements of pCO2 carried out using the same sampling time every day could introduce a bias of up to 12 %.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
McKenzie A. Kuhn, Ruth K. Varner, David Bastviken, Patrick Crill, Sally MacIntyre, Merritt Turetsky, Katey Walter Anthony, Anthony D. McGuire, and David Olefeldt
Earth Syst. Sci. Data, 13, 5151–5189, https://doi.org/10.5194/essd-13-5151-2021, https://doi.org/10.5194/essd-13-5151-2021, 2021
Short summary
Short summary
Methane (CH4) emissions from the boreal–Arctic region are globally significant, but the current magnitude of annual emissions is not well defined. Here we present a dataset of surface CH4 fluxes from northern wetlands, lakes, and uplands that was built alongside a compatible land cover dataset, sharing the same classifications. We show CH4 fluxes can be split by broad land cover characteristics. The dataset is useful for comparison against new field data and model parameterization or validation.
Patryk Łakomiec, Jutta Holst, Thomas Friborg, Patrick Crill, Niklas Rakos, Natascha Kljun, Per-Ola Olsson, Lars Eklundh, Andreas Persson, and Janne Rinne
Biogeosciences, 18, 5811–5830, https://doi.org/10.5194/bg-18-5811-2021, https://doi.org/10.5194/bg-18-5811-2021, 2021
Short summary
Short summary
Methane emission from the subarctic mire with heterogeneous permafrost status was measured for the years 2014–2016. Lower methane emission was measured from the palsa mire sector while the thawing wet sector emitted more. Both sectors have a similar annual pattern with a gentle rise during spring and a decrease during autumn. The highest emission was observed in the late summer. Winter emissions were positive during the measurement period and have a significant impact on the annual budgets.
Kun Jia, Cara C. M. Manning, Ashlee Jollymore, and Roger D. Beckie
Hydrol. Earth Syst. Sci., 25, 4983–4993, https://doi.org/10.5194/hess-25-4983-2021, https://doi.org/10.5194/hess-25-4983-2021, 2021
Short summary
Short summary
The effect of soluble reduced iron, Fe(II), on fluorescence data (excitation–emission matrix spectra parsed using parallel factor analysis) is difficult to quantitatively assign. We added varying quantities of Fe(II) into groundwater from an anaerobic aquifer. We showed that the overall fluorescence intensity decreased nonlinearly as Fe(II) increased from 1 to 306 mg L-1 but that the parallel factor analysis component distribution was relatively insensitive to Fe(II) concentration.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Zhaohui Chen, Parvadha Suntharalingam, Andrew J. Watson, Ute Schuster, Jiang Zhu, and Ning Zeng
Biogeosciences, 18, 4549–4570, https://doi.org/10.5194/bg-18-4549-2021, https://doi.org/10.5194/bg-18-4549-2021, 2021
Short summary
Short summary
As the global temperature continues to increase, carbon dioxide (CO2) is a major driver of this global warming. The increased CO2 is mainly caused by emissions from fossil fuel use and land use. At the same time, the ocean is a significant sink in the carbon cycle. The North Atlantic is a critical ocean region in reducing CO2 concentration. We estimate the CO2 uptake in this region based on a carbon inverse system and atmospheric CO2 observations.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Josué Bock, Martine Michou, Pierre Nabat, Manabu Abe, Jane P. Mulcahy, Dirk J. L. Olivié, Jörg Schwinger, Parvadha Suntharalingam, Jerry Tjiputra, Marco van Hulten, Michio Watanabe, Andrew Yool, and Roland Séférian
Biogeosciences, 18, 3823–3860, https://doi.org/10.5194/bg-18-3823-2021, https://doi.org/10.5194/bg-18-3823-2021, 2021
Short summary
Short summary
In this study we analyse surface ocean dimethylsulfide (DMS) concentration and flux to the atmosphere from four CMIP6 Earth system models over the historical and ssp585 simulations.
Our analysis of contemporary (1980–2009) climatologies shows that models better reproduce observations in mid to high latitudes. The models disagree on the sign of the trend of the global DMS flux from 1980 onwards. The models agree on a positive trend of DMS over polar latitudes following sea-ice retreat dynamics.
Erik Jacobs, Henry C. Bittig, Ulf Gräwe, Carolyn A. Graves, Michael Glockzin, Jens D. Müller, Bernd Schneider, and Gregor Rehder
Biogeosciences, 18, 2679–2709, https://doi.org/10.5194/bg-18-2679-2021, https://doi.org/10.5194/bg-18-2679-2021, 2021
Short summary
Short summary
We use a unique data set of 8 years of continuous carbon dioxide (CO2) and methane (CH4) surface water measurements from a commercial ferry to study upwelling in the Baltic Sea. Its seasonality and regional and interannual variability are examined. Strong upwelling events drastically increase local surface CO2 and CH4 levels and are mostly detected in late summer after long periods of impaired mixing. We introduce an extrapolation method to estimate regional upwelling-induced trace gas fluxes.
Trystan Sanders, Jörn Thomsen, Jens Daniel Müller, Gregor Rehder, and Frank Melzner
Biogeosciences, 18, 2573–2590, https://doi.org/10.5194/bg-18-2573-2021, https://doi.org/10.5194/bg-18-2573-2021, 2021
Short summary
Short summary
The Baltic Sea is expected to experience a rapid drop in salinity and increases in acidity and warming in the next century. Calcifying mussels dominate Baltic Sea seafloor ecosystems yet are sensitive to changes in seawater chemistry. We combine laboratory experiments and a field study and show that a lack of calcium causes extremely slow growth rates in mussels at low salinities. Subsequently, climate change in the Baltic may have drastic ramifications for Baltic seafloor ecosystems.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Yanan Zhao, Cathleen Schlundt, Dennis Booge, and Hermann W. Bange
Biogeosciences, 18, 2161–2179, https://doi.org/10.5194/bg-18-2161-2021, https://doi.org/10.5194/bg-18-2161-2021, 2021
Short summary
Short summary
We present a unique and comprehensive time-series study of biogenic sulfur compounds in the southwestern Baltic Sea, from 2009 to 2018. Dimethyl sulfide is one of the key players regulating global climate change, as well as dimethylsulfoniopropionate and dimethyl sulfoxide. Their decadal trends did not follow increasing temperature but followed some algae group abundances at the Boknis Eck Time Series Station.
Anna Rose Canning, Peer Fietzek, Gregor Rehder, and Arne Körtzinger
Biogeosciences, 18, 1351–1373, https://doi.org/10.5194/bg-18-1351-2021, https://doi.org/10.5194/bg-18-1351-2021, 2021
Short summary
Short summary
The paper describes a novel, fully autonomous, multi-gas flow-through set-up for multiple gases that combines established, high-quality oceanographic sensors in a small and robust system designed for use across all salinities and all types of platforms. We describe the system and its performance in all relevant detail, including the corrections which improve the accuracy of these sensors, and illustrate how simultaneous multi-gas set-ups can provide an extremely high spatiotemporal resolution.
Meike Becker, Are Olsen, Peter Landschützer, Abdirhaman Omar, Gregor Rehder, Christian Rödenbeck, and Ingunn Skjelvan
Biogeosciences, 18, 1127–1147, https://doi.org/10.5194/bg-18-1127-2021, https://doi.org/10.5194/bg-18-1127-2021, 2021
Short summary
Short summary
We developed a simple method to refine existing open-ocean maps towards different coastal seas. Using a multi-linear regression, we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (the North Sea, the Baltic Sea, the Norwegian Coast and the Barents Sea) covering a time period from 1998 to 2016. Based on this fCO2 map, we calculate trends in surface ocean fCO2, pH and the air–sea gas exchange.
Jordyn E. Moscoso, Andrew L. Stewart, Daniele Bianchi, and James C. McWilliams
Geosci. Model Dev., 14, 763–794, https://doi.org/10.5194/gmd-14-763-2021, https://doi.org/10.5194/gmd-14-763-2021, 2021
Short summary
Short summary
This project was created to understand the across-shore distribution of plankton in the California Current System. To complete this study, we used a quasi-2-D dynamical model coupled to an ecosystem model. This paper is a preliminary study to test and validate the model against data collected by the California Cooperative Oceanic Fisheries Investigations (CalCOFI). We show the solution of our model solution compares well to the data and discuss our model as a tool for further model development.
Shirley W. Leung, Thomas Weber, Jacob A. Cram, and Curtis Deutsch
Biogeosciences, 18, 229–250, https://doi.org/10.5194/bg-18-229-2021, https://doi.org/10.5194/bg-18-229-2021, 2021
Short summary
Short summary
A global model is constrained with empirical relationships to quantify how shifts in sinking-particle sizes modulate particulate organic carbon export production changes in a warming ocean. Including the effect of dynamic particle sizes on remineralization reduces the magnitude of predicted 100-year changes in export production by ~14 %. Projections of future export could thus be improved by considering dynamic phytoplankton and particle-size-dependent remineralization depths.
Amal Jayakumar and Bess B. Ward
Biogeosciences, 17, 5953–5966, https://doi.org/10.5194/bg-17-5953-2020, https://doi.org/10.5194/bg-17-5953-2020, 2020
Short summary
Short summary
Diversity and community composition of nitrogen-fixing microbes in the three main oxygen minimum zones of the world ocean were investigated using nifH clone libraries. Representatives of three main clusters of nifH genes were detected. Sequences were most diverse in the surface waters. The most abundant OTUs were affiliated with Alpha- and Gammaproteobacteria. The sequences were biogeographically distinct and the dominance of a few OTUs was commonly observed in OMZs in this (and other) studies.
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020, https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Short summary
Methane (CH4) is a strong greenhouse gas that can accelerate climate change and offset mitigation efforts. A key assumption embedded in many large-scale climate models is that ecosystem CH4 emissions can be estimated by fixed temperature relations. Here, we demonstrate that CH4 emissions cannot be parameterized by emergent temperature response alone due to variability driven by microbial and abiotic interactions. We also provide mechanistic understanding for observed CH4 emission hysteresis.
Roger Seco, Thomas Holst, Mikkel Sillesen Matzen, Andreas Westergaard-Nielsen, Tao Li, Tihomir Simin, Joachim Jansen, Patrick Crill, Thomas Friborg, Janne Rinne, and Riikka Rinnan
Atmos. Chem. Phys., 20, 13399–13416, https://doi.org/10.5194/acp-20-13399-2020, https://doi.org/10.5194/acp-20-13399-2020, 2020
Short summary
Short summary
Northern ecosystems exchange climate-relevant trace gases with the atmosphere, including volatile organic compounds (VOCs). We measured VOC fluxes from a subarctic permafrost-free fen and its adjacent lake in northern Sweden. The graminoid-dominated fen emitted mainly isoprene during the peak of the growing season, with a pronounced response to increasing temperatures stronger than assumed by biogenic emission models. The lake was a sink of acetone and acetaldehyde during both periods measured.
Cédric Morana, Steven Bouillon, Vimac Nolla-Ardèvol, Fleur A. E. Roland, William Okello, Jean-Pierre Descy, Angela Nankabirwa, Erina Nabafu, Dirk Springael, and Alberto V. Borges
Biogeosciences, 17, 5209–5221, https://doi.org/10.5194/bg-17-5209-2020, https://doi.org/10.5194/bg-17-5209-2020, 2020
Short summary
Short summary
A growing body of studies challenges the paradigm that methane (CH4) production occurs only under anaerobic conditions. Our field experiments revealed that oxic CH4 production is closely related to phytoplankton metabolism and is indeed a common feature in five contrasting African lakes. Nevertheless, we found that methanotrophic activity in surface waters and CH4 emissions to the atmosphere were predominantly fuelled by CH4 generated in sediments and physically transported to the surface.
Cited articles
Al-Haj, A. N. and Fulweiler, R. W.: A synthesis of methane emissions from
shallow vegetated coastal ecosystems, Glob. Change Biol., 26, 2988–3005,
https://doi.org/10.1111/gcb.15046, 2020.
Anderson, B., Bartlett, K., Frolking, S., Hayhoe, K., Jenkins, J., and Salas,
W.: Methane and nitrous oxide emissions from natural sources, Office of
Atmospheric Programs, US EPA, EPA 430-R-10-001, Washington DC, USA, 2010.
Arévalo-Martínez, D. L., Beyer, M., Krumbholz, M., Piller, I., Kock, A., Steinhoff, T., Körtzinger, A., and Bange, H. W.: A new method for continuous measurements of oceanic and atmospheric N2O, CO and CO2: performance of off-axis integrated cavity output spectroscopy (OA-ICOS) coupled to non-dispersive infrared detection (NDIR), Ocean Sci., 9, 1071–1087, https://doi.org/10.5194/os-9-1071-2013, 2013.
Arevalo–Martínez, D. L., Kock, A., Löscher, C. R., Schmitz, R. A.,
and Bange, H. W.: Massive nitrous oxide emissions from the tropical South
Pacific Ocean, Nat. Geosci., 8, 530, https://doi.org/10.1038/ngeo2469, 2015.
Arévalo-Martínez, D. L., Kock, A., Steinhoff, T., Brandt, P.,
Dengler, M., Fischer, T., Körtzinger, A., and Bange, H. W.: Nitrous oxide
during the onset of the Atlantic cold tongue, J. Geophys. Res.: Oceans,
122, 171–184, 2017.
Babbin, A. R., Bianchi, D., Jayakumar, A., and Ward, B. B.: Rapid nitrous
oxide cycling in the suboxic ocean, Science, 348, 1127–1129, 2015.
Babbin, A. R., Boles, E. L., Mühle, J., and Weiss, R. F.: On the natural
spatio-temporal heterogeneity of South Pacific nitrous oxide, Nat. Commun.,
11, 1–9, 2020.
Bahlmann, E., Weinberg, I., Lavrič, J. V., Eckhardt, T., Michaelis, W., Santos, R., and Seifert, R.: Tidal controls on trace gas dynamics in a seagrass meadow of the Ria Formosa lagoon (southern Portugal), Biogeosciences, 12, 1683–1696, https://doi.org/10.5194/bg-12-1683-2015, 2015.
Bakker, D. C. E., Bange, H. W., Gruber, N., Johannessen, T.,
Upstill-Goddard, R. C., Borges, A. V., Delille, B., Loscher, C. R., Naqvi,
S. W. A., Omar, A. M., and Santana-Casiano, M.: Air-sea interactions of
natural long-lived greenhouse gases (CO2, N2O, CH4) in a
changing climate, in: Ocean-Atmosphere Interactions of Gases and Particles, edited by: Liss, P. and Johnson, M., Springer-Verlag, Berlin, Germany, 113–169, 2014.
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016
Bange, H. W., Bartell, U. H., Rapsomanikis, S., and Andreae, M. O.: Methane
in the Baltic and North Seas and a reassessment of the marine emissions of
methane, Global Biogeochem. Cy., 8, 465–480, 1994.
Bange, H. W., Rapsomanikis, S., and Andreae, M. O.: Nitrous oxide in coastal
waters, Global Biogeochem. Cy., 10, 197–207, 1996.
Bange, H. W., Bell, T. G., Cornejo, M., Freing, A., Uher, G.,
Upstill-Goddard, R. C., and Zhang, G.: MEMENTO: a proposal to develop a
database of marine nitrous oxide and methane measurements, Environ. Chem.,
6, 195–197, 2009.
Bange, H. W., Arévalo-Martínez, D. L., de la Paz, M., Farías,
L., Kaiser, J., Kock, A., Law, C. S., Rees, A. P., Rehder, G., Tortell, P.
D., Upstill-Goddard, R. C., and Wilson, S. T.: A harmonized nitrous oxide
(N2O) ocean observation network for the 21st Century, Front. Mar. Sci.,
6, 157, https://doi.org/10.3389/fmars.2019.00157, 2019.
Barnes, J. and Upstill-Goddard, R. C.: N2O seasonal distributions and
air-sea exchange in UK estuaries: Implications for the tropospheric N2O
source from European coastal waters, J. Geophys. Res.-Biogeo., 116, G01006, https://doi.org/10.1029/2009JG001156,
2011.
Battaglia, G. and Joos, F.: Marine N2O emissions from nitrification and
denitrification constrained by modern observations and projected in
multimillennial global warming simulations, Global Biogeochem. Cy., 32,
92–121, https://doi.org/10.1002/2017GB005671, 2018.
Berchet, A., Pison, I., Crill, P. M., Thornton, B., Bousquet, P., Thonat, T., Hocking, T., Thanwerdas, J., Paris, J.-D., and Saunois, M.: Using ship-borne observations of methane isotopic ratio in the Arctic Ocean to understand methane sources in the Arctic, Atmos. Chem. Phys., 20, 3987–3998, https://doi.org/10.5194/acp-20-3987-2020, 2020.
Biastoch, A., Treude, T., Rüpke, L. H., Riebesell, U., Roth, C., Burwicz,
E. B., Park, W., Latif, M., Böning, C. W., Madec, G., and Wallmann, K.:
Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean
acidification, Geophys. Res. Lett., 38, L08602, https://doi.org/10.1029/2011GL047222,
2011.
Bižić, M., Klintzsch, T., Ionescu, D., Hindiyeh, M. Y., Gunthel, M.,
Muro-Pastor, A. M., Eckert, W., Urich, T., Keppler, F., and Grossart, H.-P.:
Aquatic and terrestrial cyanobacteria produce methane, Sci. Adv., 6,
eaax5343, https://doi.org/10.1126/sciadv.aax5343, 2020.
Bodelier, P. L. and Steenbergh, A. K.: Interactions between methane and the
nitrogen cycle in light of climate change, Curr. Opin. Environ. Sustain., 9,
26–36, 2014.
Bonaglia, S., Brüchert, V., Callac, N., Vicenzi, A., Fru, E. C., and
Nascimento, F. J. A.: Methane fluxes from coastal sediments are enhanced by
macrofauna, Sci. Rep.-UK, 7, 1–10, 2017.
Boetius, A. and Wenzhöfer, F.: Seafloor oxygen consumption fuelled by
methane from cold seeps, Nat. Geosci., 6, 725–734, 2013.
Borges A. V. and Abril, G.: Carbon dioxide and methane dynamics in
estuaries, in: Treatise on Estuarine and
Coastal Science, Vol. 5, Biogeochemistry, edited by: Wolanski, E. and McLusky, D., Academic Press, Waltham, 119–161,2011.
Borges, A. V., Champenois, W., Gypens, N., Delille, B., and Harlay, J.:
Massive marine methane emissions from near-shore shallow coastal areas, Sci.
Rep.-UK, 6, 27908, https://doi.org/10.1038/srep27908, 2016.
Borges A. V., Speeckaert, G., Champenois, W., Scranton, M. I., and Gypens N.:
Productivity and temperature as drivers of seasonal and spatial variations
of dissolved methane in the Southern Bight of the North Sea, Ecosystems, 21,
583–599, https://doi.org/10.1007/s10021-017-0171-7, 2018.
Borges, A. V., Royer, C., Lapeya Martin, J., Champenois, W., and Gypens, N.:
Response to the European 2018 heatwave of marine methane emission in the
Southern North Sea, Cont. Shelf Res., 190, 104004, https://doi.org/10.1016/j.csr.2019.104004, 2019.
Bourbonnais, A., Letscher, R. T., Bange, H. W., Echevin, V., Larkum, J.,
Mohn, J., Yoshida, N., and Altabet, M. A.: N2O production and
consumption from stable isotopic and concentration data in the Peruvian
coastal upwelling system, Global Biogeochem. Cy., 31, 678–698,
https://doi.org/10.1002/2016GB005567, 2017.
Brase, L., Bange, H. W., Lendt, R., Sanders, T., and Dähnke, K.: High
resolution measurements of nitrous oxide (N2O) in the Elbe Estuary,
Front. Mar. Sci., 4, 162, https://doi.org/10.3389/fmars.2017.00162, 2017.
Breider, F., Yoshikawa, C., Makabe, A., Toyoda, S., Wakita, M., Matsui, Y.,
Kawagucci, S., Fujiki, T., Harada, N., and Yoshida, N.: Response of N2O
production rate to ocean acidification in the western North Pacific, Nat.
Clim. Change, 9, 954–958, 2019.
Buchwald, C., Grabb, K., Hansel, C. M., and Wankel, S. D.: Constraining the
role of iron in environmental nitrogen transformations: Dual stable isotope
systematics of abiotic NO reduction by Fe (II) and its
production of N2O, Geochim. Cosmochim. Ac., 186, 1–12, 2016.
Buitenhuis, E. T., Suntharalingam, P., and Le Quéré, C.: Constraints
on global oceanic emissions of N2O from observations and models,
Biogeosciences, 15, 2161–2175, https://doi.org/10.5194/bg-15-2161-2018, 2018.
Bullister, J. L., Wisegarver, D. P., and Wilson, S. T.: The production of
Methane and Nitrous Oxide Gas Standards for Scientific Committee on Ocean
Research (SCOR) Working Group #143, pp. 1–9, 2016.
Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J.,
and Otto-Bliesner, B. L.: Pliocene and Eocene provide best analogs for
near-future climates, P. Natl. Acad. Sci. USA, 115, 13288–13293, 2018.
Call, M., Maher, D. T., Santos, I. R., Ruiz-Halpern, S., Mangion, P.,
Sanders, C. J., Erler, D. V., Oakes, J. M., Rosentreter, J., Murray, R., and
Eyre, B. D.: Spatial and temporal variability of carbon dioxide and methane
fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove
creek, Geochim. Cosmochim. Ac., 150, 211–225, 2015.
Caranto, J. D. and Lancaster, K. M.: Nitric oxide is an obligate bacterial
nitrification intermediate produced by hydroxylamine oxidoreductase, P.
Natl. Acad. Sci. USA, 114, 8217–8222, 2017.
Carini, P., White, A. E., Campbell, E .O., and Giovannoni, S. J.: Methane
production by phosphate-starved SAR11 chemoheterotrophic marine bacteria,
Nat. Commun., 5, 1–7, 2014.
Carini, P., Dupont, C. L., and Santoro, A. E.: Patterns of thaumarchaeal
gene expression in culture and diverse marine environments, Environ.
Microbiol., 20, 2112–2124, https://doi.org/10.1111/1462-2920.14107, 2018.
Casciotti, K. L., Forbes, M., Vedamati, J., Peters, B., Martin, T., and
Mordy, C. W.: Nitrous oxide cycling in the Eastern Tropical South Pacific as
inferred from isotopic and isotopomeric data, Deep Sea Res. Pt. II, 156,
155–167, https://doi.org/10.1016/J.DSR2.2018.07.014, 2018.
Chan, E. W., Shiller, A. M., Joung D. J., Arrington, E. C., Valentine, D.
L., Redmond, M. C., Breier, A., Socolofsky, A., and Kessler J. D.:
Investigations of aerobic methane oxidation in two marine seep environments:
Part 1 – Chemical Kinetics, J. Geophys. Res.-Oceans, 12, 8852–8868,
https://doi.org/10.1029/2019jc015594, 2019.
Charpentier, J., Farías, L., and Pizarro, O.: Nitrous oxide fluxes in
the central and eastern South Pacific, Global Biogeochem. Cy., 24, GB3011,
https://doi.org/10.1029/2008GB003388, 2010.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C.,
Quéré, C. Le, Myneni, R. B., Piao, S., and Thornton, P.: Carbon and
other biogeochemical cycles, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P., Cambridge University Press, Cambridge, UK, New York, NY, 2013.
Conthe, M., Lycus, P., Arntzen, M. Ø., da Silva, A. R., Frostegård,
Å., Bakken, L. R., and van Loosdrecht, M. C.: Denitrification as an N2O sink, Water Res., 151, 381–387, 2019.
Damm, E., Thoms, S., Beszczynska-Möller, A., Nöthig, E. M., and
Kattner, G.: Methane excess production in oxygen-rich polar water and a
model of cellular conditions for this paradox, Polar Sci., 9, 327–334,
2015.
de la Paz, M., García-Ibáñez, M. I., Steinfeldt, R., Ríos,
A. F., and Pérez, F. F.: Ventilation versus biology: What is the
controlling mechanism of nitrous oxide distribution in the North Atlantic?,
Global Biogeochem. Cyc., 31, 745–760, https://doi.org/10.1002/2016GB005507, 2017.
Dickey, T. D.: Emerging ocean observations for interdisciplinary data
assimilation systems, J. Mar. Sys., 40, 5–48, 2003.
Dickson, A. G., Sabine, C. L. and Christian, J. R.: Guide to Best
Practices for Ocean CO2 Measurements, PICES Special Publication, North Pacific Marine Science Organization, Sidney, Canada, 2007.
Dickson, A.G.: Standards for ocean measurements, Oceanogr., 23, 34–47,
2010.
Dore, J. E. and Karl, D. M.: Nitrification in the euphotic zone as a source
for nitrite, nitrate, and nitrous oxide at Station ALOHA, Limnol. Oceanogr.,
41, 1619–1628, 1996.
Douglas, P. M. J., Stolper, D. A., Smith, D. A., Anthony, K. W., Paull, C.
K., Dallimore, S., Wik, M., Crill, P. M., Winterdahl, M., Eiler, J. M., and
Sessions, A. L.: Diverse origins of Arctic and Subarctic methane point
source emissions identified with multiply-substituted isotopologues,
Geochim. Cosmochim. Ac., 188, 163–188, 2016.
Douglas, P. M., Stolper, D. A., Eiler, J. M., Sessions, A. L., Lawson, M.,
Shuai, Y., Bishop, A., Podlaha, O. G., Ferreira, A. A., Neto, E. V. S., and
Niemann, M.: Methane clumped isotopes: Progress and potential for a new
isotopic tracer, Organic Geochem., 113, 262–282, 2017.
Erler, D. V., Duncan, T. M., Murray, R., Maher, D. T., Santos, I. R.,
Gatland, J. R., Mangion, P., and Eyre, B. D.: Applying cavity ring-down
spectroscopy for the measurement of dissolved nitrous oxide concentrations
and bulk nitrogen isotopic composition in aquatic systems: Correcting for
interferences and field application, Limnol. Oceanogr.-Meth,, 13,
391–401, 2015.
Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S.,
Kuypers, M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., and
Gloerich, J.: Nitrite-driven anaerobic methane oxidation by oxygenic
bacteria, Nature, 464, 543–548, 2010.
Ettwig, K. F., Zhu, B., Speth, D., Keltjens, J. T., Jetten, M. S., and
Kartal, B.: Archaea catalyze iron-dependent anaerobic oxidation of methane,
P. Natl. Acad. Sci. USA, 113, 12792–12796, 2016.
Farías, L., Besoain, V., and García-Loyola, S.: Presence of
nitrous oxide hotspots in the coastal upwelling area off central Chile: an
analysis of temporal variability based on ten years of a biogeochemical time
series, Environ. Res. Lett., 10, 044017, https://doi.org/10.1088/1748-9326/10/4/044017, 2015.
Fenwick, L., Capelle, D., Damm, E., Zimmermann, S., Williams, W. J., Vagle,
S., and Tortell, P. D.: Methane and nitrous oxide distributions across the
North American Arctic Ocean during summer, 2015, J. Geophys. Res.-Ocean.,
122, 390–412, https://doi.org/10.1002/2016JC012493, 2017.
Ferrón, S., Ortega, T., Gómez-Parra, A., and Forja, J. M.: Seasonal
study of dissolved CH4, CO2 and N2O in a shallow tidal system
of the bay of Cádiz (SW Spain), J. Mar. Sys., 66, 244–257, 2007.
Foster, S. Q. and Fulweiler, R. W.: Estuarine sediments exhibit dynamic and
variable biogeochemical responses to hypoxia, J. Geophys.
Res.-Biogeosci., 124, 737–758, 2019.
Foucher, J. P., Westbrook, G. K., Boetius, A. N., Ceramicola, S. I.,
Dupré, S., Mascle, J., Mienert, J., Pfannkuche, O., Pierre, C., and Praeg
D.: Structure and drivers of cold seep ecosystems, Oceanography, 22,
92–109, 2009.
Frame, C. H. and Casciotti, K. L.: Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium, Biogeosciences, 7, 2695–2709, https://doi.org/10.5194/bg-7-2695-2010, 2010.
Frame, C. H., Deal, E., Nevison, C. D., and Casciotti, K. L.: N2O
production in the eastern South Atlantic: Analysis of N2O stable
isotopic and concentration data, Global Biogeochem. Cyc., 28, 1262–1278,
2014.
Frey, C., Bange, H. W., Achterberg, E. P., Jayakumar, A., Löscher, C. R., Arévalo-Martínez, D. L., León-Palmero, E., Sun, M., Sun, X., Xie, R. C., Oleynik, S., and Ward, B. B.: Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru, Biogeosciences, 17, 2263–2287, https://doi.org/10.5194/bg-17-2263-2020, 2020.
Fuchsman, C. A., Devol, A. H., Saunders, J. K., McKay, C., and Rocap, G.:
Niche partitioning of the N cycling microbial community of an offshore
oxygen deficient zone, Front. Microbiol., 8, 2384,
https://doi.org/10.3389/fmicb.2017.02384, 2017.
Ganesan, A. L., Schwietzke, S., Poulter, B., Arnold, T., Lan, X., Rigby, M., Vogel, F. R., van der Werf, G. R., Janssens-Maenhout,
5 G., Boesch, H., Pandey, S., Manning, A. J., Jackson, R. B., Nisbet, E. G., and Manning, M. R.: Advancing Scientific Understanding of the Global Methane Budget in Support of the Paris Agreement, Global Biogeochem. Cy., 33, 1475–1512,
https://doi.org/10.1029/2018GB006065, 2019.
Ganesan, A. L., Manizza, M., Morgan, E. J., Harth, C. M., Kozlova, E., Lueker, T., Manning, A. J., Lunt, M. F., Mühle, J., Lavric, J. V., and Heimann, M.:
Marine nitrous oxide emissions from three Eastern Boundary Upwelling Systems
inferred from atmospheric observations, Geophys. Res. Lett., 47, e2020GL087822, https://doi.org/10.1029/2020GL087822, 2020.
Ganesh, S., Parris, D. J., DeLong, E. F., and Stewart, F. J.: Metagenomic
analysis of size-fractionated picoplankton in a marine oxygen minimum zone,
ISME J., 8, 187–211, 2014.
Garcia-Tigreros, F. and Kessler, J. D.: Limited acute influence of aerobic
methane oxidation on ocean carbon dioxide and pH in Hudson Canyon, northern
US Atlantic margin, J. Geophys. Res.-Biogeosci., 123, 2135–2144, 2018.
Gelesh, L., Marshall, K., Boicourt, W., and Lapham, L.: Methane
concentrations increase in bottom waters during summertime anoxia in the
highly eutrophic estuary, Chesapeake Bay, USA, Limnol. Oceanogr., 61,
S253–S266, 2016.
Goreau, T. J., Kaplan, W. A., Wofsy, S. C., McElroy, M. B., Valois, F. W.,
and Watson, S.W.: Production of NO and N2O by nitrifying
bacteria at reduced concentrations of oxygen, Appl. Environ. Microbiol., 40,
526–532, 1980.
Gülzow, W., Rehder, G., Schneider, B., Schneider, J., Deimling, V., and
Sadkowiak, B.: A new method for continuous measurement of methane and carbon
dioxide in surface waters using off-axis integrated cavity output
spectroscopy (ICOS): An example from the Baltic Sea, Limnol. Oceanogr.
Method., 9, 176–184, 2011.
Gülzow, W., Rehder, G., Schneider von Deimling, J., Seifert, S., and Tóth, Z.: One year of continuous measurements constraining methane emissions from the Baltic Sea to the atmosphere using a ship of opportunity, Biogeosciences, 10, 81–99, https://doi.org/10.5194/bg-10-81-2013, 2013.
Gutiérrez-Loza, L., Wallin, M. B., Sahlée, E., Nilsson, E., Bange,
H. W., Kock, A., and Rutgersson, A.: Measurement of air-sea methane fluxes in
the Baltic Sea using the eddy covariance method, Front. Earth Sci., 7, 93,
https://doi.org/10.3389/feart.2019.00093, 2019.
Hallin, S., Philippot, L., Löffler, F. E., Sanford, R. A., and Jones, C.
M.: Genomics and ecology of novel N2O-reducing microorganisms, Trends
Microbiol., 26, 43–55, 2018.
Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P.,
Yuan, Z., and Tyson, G. W.: Anaerobic oxidation of methane coupled to nitrate
reduction in a novel archaeal lineage, Nature, 500, 567–570,
https://doi.org/10.1038/nature12375, 2013.
Harris, S. J., Liisberg, J., Xia, L., Wei, J., Zeyer, K., Yu, L., Barthel, M., Wolf, B., Kelly, B. F. J., Cendón, D. I., Blunier, T., Six, J., and Mohn, J.: N2O isotopocule measurements using laser spectroscopy: analyzer characterization and intercomparison, Atmos. Meas. Tech., 13, 2797–2831, https://doi.org/10.5194/amt-13-2797-2020, 2020.
Hink, L., Lycus, P., Gubry-Rangin, C., Frostegård, Å., Nicol, G. W.,
Prosser, J. I., and Bakken, L. R.: Kinetics of NH3-oxidation,
NO-turnover, N2O-production and electron flow during oxygen depletion
in model bacterial and archaeal ammonia oxidizers, Environ. Microbiol., 19,
4882–4896, 2017.
Ho, D. T., Schlosser, P., and Orton, P. M.: On factors controlling air–water
gas exchange in a large tidal river, Estuar. Coasts, 34, 1103–1116, 2011.
Hofman, T.: Oceanic nitrous oxide and methane, 6 min video, Publicly available via the German National Library of Science and Technology (TIB) with the DOI https://doi.org/10.5446/50062, available at: https://www.youtube.com/watch?v=0DyMyIVs4Qs&t=266s (last access: 20 November 2020), 2019.
Hopkins, F. E., Suntharalingam, P., Gehlen, M., Andrews, O., Archer, S. D.,
Bopp, L., Buitenhuis, E., Dadou, I., Duce, R., Goris, N., and Jickells, T.:
The impacts of ocean acidification on marine trace gases and the
implications for atmospheric chemistry and climate, Proc. R. Soc. A, 476,
20190769, https://doi.org/10.1098/rspa.2019.0769, 2020.
Huang, J., Luo, M., Liu, Y., Zhang, Y., and Tan, J.: Effects of tidal
scenarios on the methane emission dynamics in the subtropical tidal marshes
of the Min River Estuary in Southeast China, Internat. J. Environ. Res.
Publ. Health, 16, 2790, https://doi.org/10.3390/ijerph16152790, 2019.
IPCC: In Climate Change: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change 2013, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex ,V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
IPCC: Summary for Policymakers, in: IPCC Special Report on the Ocean
and Cryosphere in a Changing Climate, edited by: Pörtner,H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K.,
Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N., 2019.
James, R. H., Bousquet, P., Bussmann, I., Haeckel, M., Kipfer, R., Leifer,
I., Niemann, H., Ostrovsky, I., Piskozub, J., Rehder, G., and Treude, T.:
Effects of climate change on methane emissions from seafloor sediments in
the Arctic Ocean: A review, Limnol. Oceanogr., 61, S283–S299, 2016.
Jeffrey, L. C., Maher, D. T., Santos, I. R., Call, M., Reading, M. J.,
Holloway, C., and Tait, D. R.: The spatial and temporal drivers of pCO2,
pCH4 and gas transfer velocity within a subtropical estuary, Estuar.
Coast Shelf Sci., 208, 83–95, 2018.
Ji, Q. and Ward, B. B.: Nitrous oxide production in surface waters of the
mid-latitude North Atlantic Ocean, J. Geophys. Res.-Ocean., 122,
2612–2621, https://doi.org/10.1002/2016JC012467, 2017.
Ji, Q., Babbin, A. R., Jayakumar, A., Oleynik, S., and Ward, B. B.: Nitrous
oxide production by nitrification and denitrification in the Eastern
Tropical South Pacific oxygen minimum zone, Geophys. Res. Lett., 42,
10–755, 2015.
Ji, Q., Buitenhuis, E., Suntharalingam, P., Sarmiento, J. L., and Ward, B.
B.: Global nitrous oxide production determined by oxygen sensitivity of
nitrification and denitrification, Global Biogeochem. Cy., 32, 1790–1802,
https://doi.org/10.1029/2018GB005887, 2018.
Jordan, S. F., Treude, T., Leifer, I., Janßen, R., Werner, J.,
Schulz-Vogt, H., and Schmale, O.: Bubble-mediated transport of benthic
microorganisms into the water column: Identification of methanotrophs and
implication of seepage intensity on transport efficiency, Sci.
Rep.-UK, 10, 1–15, 2020.
Karl, D. M., Beversdorf, L., Björkman, K. M., Church, M. J., Martinez,
A., and Delong, E. F.: Aerobic production of methane in the sea, Nat.
Geosci., 1, 473–478, 2008.
Kessler, J. D. and Reeburgh, W. S.: Preparation of natural methane samples
for stable isotope and radiocarbon analysis, Limnol. Oceanogr.-Meth., 3,
408–418, https://doi.org/10.4319/lom.2005.3.408, 2005.
Kessler, J. D., Reeburgh, W. S., Valentine, D. L., Kinnaman, F. S., Peltzer,
E. T., Brewer, P. G., Southon, J., and Tyler, S. C.: A survey of methane
isotope abundance (14C, 13C, 2H) from five nearshore marine
basins that reveals unusual radiocarbon levels in subsurface waters, J.
Geophys. Res.-Oceans, 113, C12021, https://doi.org/10.1029/2008jc004822, 2008.
Klintzsch, T., Langer, G., Nehrke, G., Wieland, A., Lenhart, K., and Keppler, F.: Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment, Biogeosciences, 16, 4129–4144, https://doi.org/10.5194/bg-16-4129-2019, 2019.
Kock, A. and Bange, H. W.: Counting the ocean's greenhouse gas emissions,
Eos, 96, 10–13, https://doi.org/10.1029/2015EO023665, 2015.
Kodovska, F. G. T., Sparrow, K. J., Yvon-Lewis, S. A., Paytan, A., Dimova,
N. T., Lecher, A., and Kessler, J. D.: Dissolved methane and carbon dioxide
fluxes in Subarctic and Arctic regions: Assessing measurement techniques and
spatial gradients, Earth Planet. Sci. Lett., 436, 43–55, 2016.
Kosmach, D. A., Sergienko, V. I., Dudarev, O. V., Kurilenko, A. V.,
Gustafsson, O., Semiletov, I. P., and Shakhova, N. E.: Methane in the
surface waters of Northern Eurasian marginal seas, Doklady Chemistry,
465, 281–285, 2015.
Kremer, J. N., Reischauer, A., and D'Avanzo, C.: Estuary-specific variation in the air–water gas exchange coefficient for oxygen, Estuaries, 26, 829–836, 2003.
Labidi, J., Young, E. D., Giunta, T., Kohl, I. E., Seewald, J., Tang, H.,
Lilley, M. D., and Fruh-Green, G. L.: Methane thermometry in deep-sea
hydrothermal systems: evidence for re-ordering of doubly-substituted
isotopologues during fluid cooling, Geochim. Cosmochim. Ac., 88, 248–261,
2020.
Lan, X., Tans, P., Sweeney, C., Andrews, A., Dlugokencky, E., Schwietzke,
S., Kofler, J., McKain, K., Thoning, K., Crotwell, M., and Montzka, S.:
Long-term measurements show little evidence for large increases in total
U.S. methane emissions over the past decade, Geophys. Res. Lett., 46,
4991–4999, https://doi.org/10.1029/2018GL081731, 2019.
Lancaster, K. M., Caranto, J. D., Majer, S. H., and Smith, M. A.:
Alternative bioenergy: Updates to and challenges in nitrification
metalloenzymology, Joule, 2, 421–441,
https://doi.org/10.1016/j.joule.2018.01.018, 2018.
Landolfi, A., Somes, C. J., Koeve, W., Zamora, L. M., and Oschlies, A.:
Oceanic nitrogen cycling and N2O flux perturbations in the
Anthropocene, Global Biogeochem. Cy., 31, 1236–1255,
https://doi.org/10.1002/2017GB005633, 2017.
Lapham, L., Wilson, R., Riedel, M., Paull, C. K., and Holmes, M. E.: Temporal
variability of in situ methane concentrations in gas hydrate-bearing
sediments near Bullseye Vent, Northern Cascadia Margin, Geochem. Geophy.
Geosy., 14, 2445–2459, 2013.
Lapham, L., Marshall, K., Magen, C., Lyubchich, V., Cooper, L. W., and
Grebmeier, J. M.: Dissolved methane concentrations in the water column and
surface sediments of Hanna Shoal and Barrow Canyon, Northern Chukchi Sea,
Deep. Sea. Res., 144, 92–103, 2017.
Leonte, M., Kessler, J. D., Kellermann, M. Y., Arrington, E. C., Valentine,
D. L., and Sylva, S. P.: Rapid rates of aerobic methane oxidation at the
feather edge of gas hydrate stability in the waters of Hudson Canyon, US
Atlantic Margin, Geochim. Cosmochim. Ac., 204, 375–387,
https://doi.org/10.1016/j.gca.2017.01.009, 2017.
Leonte, M., Wang, B., Socolofsky, S. A., Mau, S., Breier, J. A., and
Kessler, J. D.: Using carbon isotope fractionation to constrain the extent
of methane dissolution into the water column surrounding a natural
hydrocarbon gas seep in the Northern Gulf of Mexico, Geochem. Geophy.
Geosy., 19, 4459–4475, https://doi.org/10.1029/2018gc007705, 2018.
Leonte, M., Ruppel, C. D., Ruiz-Angulo, A., and Kessler, J. D.: Surface
methane concentrations along the Mid-Atlantic Bight driven by aerobic
subsurface production rather than seafloor gas seeps, J. Geophys. Res.-Oceans, 125, e2019JC015989, https://doi.org/10.1029/2019JC015989, 2020.
Li, Y., Fichot, C. G., Geng, L., Scarratt, M. G., and Xie, H.: The contribution of methane photoproduction to the oceanic methane paradox, Geophys. Res. Lett., 47, e2020GL088362, https://doi.org/10.1029/2020GL088362, 2020.
Lohrberg, A., Schmale, O., Ostrovsky, I., Niemann, H., Held, P., and
Schneider von Deimling, J.: Discovery and quantification of a widespread
methane ebullition event in a coastal inlet (Baltic Sea) using a novel sonar
strategy, Sci. Rep.-UK, 10, 4393, https://doi.org/10.1038/s41598-020-60283-0, 2020.
Lorenson, T. D., Greinert, J., and Coffin, R. B.: Dissolved methane in the
Beaufort Sea and the Arctic Ocean, 1992–2009; sources and atmospheric flux,
Limnol. Oceanogr., 61, S300–S323, 2016.
Löscher, C. R., Kock, A., Könneke, M., LaRoche, J., Bange, H. W., and Schmitz, R. A.: Production of oceanic nitrous oxide by ammonia-oxidizing archaea, Biogeosciences, 9, 2419–2429, https://doi.org/10.5194/bg-9-2419-2012, 2012.
Lycus, P., Bøthun, K. L., Bergaust, L., Shapleigh, J. P., Bakken, L. R.,
and Frostegård, Å.: Phenotypic and genotypic richness of
denitrifiers revealed by a novel isolation strategy, ISME J., 11,
2219–2232, 2017.
Ma, X., Lennartz, S. T., and Bange, H. W.: A multi-year observation of nitrous oxide at the Boknis Eck Time Series Station in the Eckernförde Bay (southwestern Baltic Sea), Biogeosciences, 16, 4097–4111, https://doi.org/10.5194/bg-16-4097-2019, 2019.
Maher, D. T., Cowley, K., Santos, I. R., Macklin, P., and Eyre, B. D.:
Methane and carbon dioxide dynamics in a subtropical estuary over a diel
cycle: Insights from automated in situ radioactive and stable isotope
measurements, Mar. Chem., 168, 69–79, 2015.
Maher, D. T., Drexl, M., Tait, D. R., Johnston, S. G., and Jeffrey, L. C.:
iAMES: An inexpensive automated methane ebullition sensor, Environ. Sci.
Technol., 53, 6420–6426, 2019.
Manning, C. C., Preston, V. L., Jones, S. F., Michel, A. P. M., Nicholson,
D. P., Duke, P. J., Ahmed, M. M. M., Manganini, K., Else, B. G. T., and
Tortell, P. D.: River inflow dominates methane emissions in an Arctic
coastal system, Geophys. Res. Lett., 47, e2020GL087669,
https://doi.org/10.1029/2020GL087669, 2020
Marchant, H. K., Ahmerkamp, S., Lavik, G., Tegetmeyer, H. E., Graf, J.,
Klatt, J. M., Holtappels, M., Walpersdorf, E., and Kuypers, M. M.:
Denitrifying community in coastal sediments performs aerobic and anaerobic
respiration simultaneously, ISME J., 11, 1799–1812, 2017.
Marchant, H. K., Tegetmeyer, H. E., Ahmerkamp, S., Holtappels, M., Lavik G.,
Graf, J., Schreiber, F., Mussmann, M., Strous M., and Kuypers M. M. M.:
Metabolic specialization of denitrifiers in permeable sediments controls
N2O emissions, Environ. Microbiol., 20, 4486–4502, https://doi.org/10.1111/1462-2920.14385, 2018.
Mau, S., Heintz, M. B., and Valentine, D. L.: Quantification of CH4
loss and transport in dissolved plumes of the Santa Barbara Channel,
California, Cont. Shelf Res., 32, 110–120, https://doi.org/10.1016/j.csr.2011.10.016,
2012.
McDermitt, D., Burba, G., Xu, L., Anderson, T., Komissarov, A., Riensche,
B., Schedlbauer, J., Starr, G., Zona, D., Oechel, W., Oberbauer, S., and
Hastings, S.: A new low-power, open-path instrument for measuring methane
flux by eddy covariance, Appl. Phys. B, 102, 391–405, 2011
Molstad, L., Dörsch, P., and Bakken, L. R.: Robotized incubation system
for monitoring gases (O2, NO, N2O N2) in denitrifying
cultures, J. Microbiol. Methods, 71, 202–211, 2007.
Montzka, S. A., Dlugokencky, E. J., and Butler, J. H.: Non-CO2
greenhouse gases and climate change, Nature, 476, 43–50, 2011.
Müller, D., Bange, H. W., Warneke, T., Rixen, T., Müller, M., Mujahid, A., and Notholt, J.: Nitrous oxide and methane in two tropical estuaries in a peat-dominated region of northwestern Borneo, Biogeosciences, 13, 2415–2428, https://doi.org/10.5194/bg-13-2415-2016, 2016.
Murray, R. H., Erler, D. V., and Eyre, B. D.: Nitrous oxide fluxes in
estuarine environments: response to global change, Glob. Change Biol., 21,
3219–3245, 2015.
Murray, R., Erler, D. V., Rosentreter, J., Wells, N. S., and Eyre, B. D.:
Seasonal and spatial controls on N2O concentrations and emissions in
low-nitrogen estuaries: Evidence from three tropical systems, Mar. Chem.,
103779, https://doi.org/10.1016/j.marchem.2020.103779, 2020.
Nemitz, E., Mammarella, I., Ibrom, A., Aurela, M., Burba, G. G., Dengel, S.,
Gielen, B., Grelle, A., Heinesch, B., Herbst, M., Hörtnagl, L.,
Klemedtsson, L., Lindroth, A., Lohila, A., McDermitt, D. K., Meier, P.,
Merbold, L., Nelson, D., Nicolini, G., Nilsson, M. B., Peltola. O., Rinne,
J., and Zahniser, M.: Standardisation of eddy-covariance flux measurements
of methane and nitrous oxide, Int. Agrophys., 32, 517–549, 2018.
Nicholson, D. P., Michel, A. P., Wankel, S. D., Manganini, K., Sugrue, R.
A., Sandwith, Z. O., and Monk, S. A.: Rapid mapping of dissolved methane and
carbon dioxide in coastal ecosystems using the ChemYak autonomous surface
vehicle, Environ. Sci. Tech., 52, 13314–13324, 2018.
Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S.,
Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.: In situ evaluation
of air-sea gas exchange parameterizations using novel conservative and
volatile tracers, Global Biogeochem. Cy., 14, 373–387, 2000.
NOAA Earth System Research Laboratory: Global Monitoring Division: Monthly averaged flask measurements of CH4 and N2O atmospheric concentrations. available at: https://www.esrl.noaa.gov/gmd/dv/data/, last access: 1 November 2020.
Novick, K. A., Biederman, J. A., Desai, A. R., Litvak, M. E., Moore, D. J.,
Scott, R. L., and Torn, M. S.: The AmeriFlux network: A coalition of the
willing, Agr. Forest Meteorol., 249, 444–456, 2018.
Ostrom, N. E., Gandhi, H., Trubl, G., and Murray, A. E.:
Chemodenitrification in the cryoecosystem of Lake Vida, Victoria Valley,
Antarctica, Geobiol., 14, 575–587, 2016.
Pack, M. A., Heintz, M. B., Reeburgh, W. S., Trumbore, S. E., Valentine, D.
L., Xu, X., and Druffel, E. R.: A method for measuring methane oxidation
rates using low levels of 14C-labeled methane and accelerator mass
spectrometry, Limnol. Oceanogr.-Method., 9, 245–260,
https://doi.org/10.4319/lom.2011.9.245, 2011.
Pankratova, N., Belikov, I., Skorokhod, A., Belousov, V., Artamonov, A.,
Repina, I., and Shishov, E.: Measurements and data processing of atmospheric
CO2, CH4, H2O and δ13C-CH4 mixing ratio
during the ship campaign in the East Arctic and the Far East seas in autumn
2016, Earth Environ. Sci., 231, 012041,
https://doi.org/10.1088/1755-1315/231/1/012041, 2019.
Pfeiffer-Herbert, A. S., Prahl, F. G., Peterson, T. D., and Wolhowe, M.:
Methane dynamics associated with tidal processes in the Lower Columbia
River, Estuar. Coast., 42, 1249–1264, 2019.
Podgrajsek, E., Sahlee, E., Bastviken, D., Natchimuthu, S., Kljun, N.,
Chmiel, H. E., Klemedtsson, L., and Rutgersson, A.: Methane fluxes from a small
boreal lake measured with the eddy covariance method, Limnol. Oceanogr., 61,
S41–S50, 2016.
Pohlman, J. W., Kaneko, M., Heuer, V. B., Coffin, R. B., and Whiticar, M.:
Methane sources and production in the northern Cascadia margin gas hydrate
system, Earth Planetary Sci. Lett., 287, 504–512, 2009.
Pohlman, J. W., Bauer, J. E., Waite, W. F., Osburn, C. L., and Chapman, N.
R.: Methane hydrate-bearing seeps as a source of aged dissolved organic
carbon to the oceans, Nat. Geosci., 4, 37–41, 2011.
Pohlman, J. W., Greinert, J., Ruppel, C., Silyakova, A., Vielstädte, L.,
Casso, M., Mienert, J., and Bünz, S.: Enhanced CO2 uptake at a
shallow Arctic Ocean seep field overwhelms the positive warming potential of
emitted methane, P. Natl. Acad. Sci. USA, 114, 5355–5360, 2017.
Prosser, J. I., Hink, L., Gubry-Rangin, C., and Nicol, G. W.: Nitrous oxide
production by ammonia oxidizers: Physiological diversity, niche
differentiation and potential mitigation strategies, Glob. Change Biol., 26,
103–118, 2020.
Qin, W., Meinhardt, K. A., Moffett, J. W., Devol, A. H., Armbrust, E.V.,
Ingalls, A. E., and Stahl, D. A:. Influence of oxygen availability on the
activities of ammonia-oxidizing archaea, Environ. Microbiol. Reports, 9,
250–256, 2017.
Ray, N. E., Maguire, T. J., Al-Haj, A. N., Henning, M. C., and Fulweiler, R.
W.: Low greenhouse gas emissions from oyster aquaculture, Environ. Sci.
Technol., 53, 9118–9127, 2019.
Raymond, P. A. and Cole, J. J.: Gas exchange in rivers and estuaries:
Choosing a gas transfer velocity, Estuaries, 24, 312–317, 2001.
Reading, M. J., Tait, D. R., Maher, D. T., Jeffrey, L. C., Looman, A.,
Holloway, C., Shishaye, H. A., Barron, S., and Santos, I. R.: Land use
drives nitrous oxide dynamics in estuaries on regional and global scales,
Limnol. Oceanogr., 65, 1903–1920, https://doi.org/10.1002/lno.11426, 2020.
Reeburgh, W. S.: Oceanic methane biogeochemistry, Chem. Rev., 107, 486–513,
2007.
Repeta, D. J., Ferrón, S., Sosa, O. A., Johnson, C. G., Repeta, L. D.,
Acker, M., DeLong, E. F., and Karl, D. M.: Marine methane paradox explained
by bacterial degradation of dissolved organic matter, Nat. Geosci., 9,
884–887, 2016.
Romanovskii, N. N., Hubberten, H. W., Gavrilov, A. V., Eliseeva, A. A., and
Tipenko, G. S.: Offshore permafrost and gas hydrate stability zone on the
shelf of East Siberian Seas, Geo.-Mar. Lett., 25, 167–182, 2005.
Rosentreter, J. A., Maher, D. T., Ho, D. T., Call, M., Barr, J. G., and
Eyre, B. D.: Spatial and temporal variability of CO2 and CH4 gas
transfer velocities and quantification of the CH4 microbubble flux in
mangrove dominated estuaries, Limnol. Oceanogr., 62, 561–578, 2017.
Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H., and Eyre, B.
D.: Methane emissions partially offset “blue carbon” burial in mangroves,
Science advances 4, eaao4985, https://doi.org/10.1126/sciadv.aao4985, 2018.
Ruppel, C. D. and Kessler, J. D.: The interaction of climate change and
methane hydrates, Rev. Geophys., 55, 126–168, https://doi.org/10.1002/2016RG000534,
2017.
Santoro, A. E., Casciotti, K. L., and Francis, C. A.: Activity, abundance
and diversity of nitrifying archaea and bacteria in the central California
Current, Environ. Microbiol., 12, 1989–2006, 2010.
Santoro, A. E., Buchwald, C., McIlvin, M. R., and Casciotti, K. L.: Isotopic
signature of N2O produced by marine ammonia-oxidizing archaea, Science,
333, 1282–1285, 2011.
Sapart, C. J., Shakhova, N., Semiletov, I., Jansen, J., Szidat, S., Kosmach, D., Dudarev, O., van der Veen, C., Egger, M., Sergienko, V., Salyuk, A., Tumskoy, V., Tison, J.-L., and Röckmann, T.: The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis, Biogeosciences, 14, 2283–2292, https://doi.org/10.5194/bg-14-2283-2017, 2017.
Schmale, O., Wage, J., Mohrholz, V., Wasmund, N., Grawe, U., Rehder, G.,
Labrenz, M., and Loick-Wilde, N.: The contribution of zooplankton to methane
supersaturation in the oxygenated upper waters of the central Baltic Sea,
Limnol. Oceanogr., 63, 412–430, 2018.
Schmidt, H. L., Werner, R. A., Yoshida, N., and Well, R.: Is the isotopic
composition of nitrous oxide an indicator for its origin from nitrification
or denitrification? A theoretical approach from referred data and
microbiological and enzyme kinetic aspects, Rapid Comm. Mass Spec., 18,
2036–2040, 2004.
Seitzinger, S. P. and Kroeze, C.: Global distribution of nitrous oxide
production and N inputs in freshwater and coastal marine ecosystems, Global
Biogeochem. Cy., 12, 93–113, 1998.
Shakhova, N., Semiletov, I., Leifer, I., Salyuk, A., Rekant, P., and
Kosmach, D.: Geochemical and geophysical evidence of methane release over
the East Siberian Arctic Shelf, J. Geophys. Res-Oceans, 115, C08007,
https://doi.org/10.1029/2009JC005602, 2010.
Sosa, O. A., Burrell, T. J., Wilson, S. T., Foreman, R. K., Karl, D. M., and
Repeta, D. J.: Phosphonate cycling supports methane and ethylene production
and supersaturation in the phosphate-depleted western North Atlantic Ocean,
Limnol. Oceanogr., 65, 2443–2459, https://doi.org/10.1002/lno.11463, 2020.
Sparrow, K. J. and Kessler, J. D.: Efficient collection and preparation of
methane from low concentration waters for natural abundance radiocarbon
analysis, Limnol. Oceanogr.-Method., 15, 601–617, https://doi.org/10.1002/lom3.10184,
2017.
Sparrow, K. J., Kessler, J. D., Southon, J. R., Garcia-Tigreros, F.,
Schreiner, K. M., Ruppel, C. D., Miller, J. B., Lehman, S. J., and Xu, X.:
Limited contribution of ancient methane to surface waters of the U.S.
Beaufort Sea shelf, Sci. Adv., 4, eaao4842, https://doi.org/10.1126/sciadv.aao4842, 2018.
Stahl, D. A. and de la Torre, J. R.: Physiology and diversity of
ammonia-oxidizing archaea, Annu. Rev. Microbiol., 66, 83–101, 2012.
Stein, L. Y. and Yung, Y. L.: Production, isotopic composition, and
atmospheric fate of biologically produced nitrous oxide, Annu. Rev. Earth
Planet. Sci., 31, 329–356, 2003.
Steinle, L., Graves, C. A., Treude, T., Ferré, B., Biastoch, A.,
Bussmann, I., Berndt, C., Krastel, S., James, R. H., Behrens, E., and
Böning, C. W.: Water column methanotrophy controlled by a rapid
oceanographic switch, Nat. Geosci., 8, 378–382, 2015.
Stewart, F. J., Dalsgaard, T., Young, C. R., Thamdrup, B., Revsbech, N. P.,
Ulloa, O., Canfield, D. E., and DeLong, E. F.: Experimental incubations
elicit profound changes in community transcription in OMZ bacterioplankton,
Plos One, 7, e37118, https://doi.org/10.1371/journal.pone.0037118, 2012.
Stieglmeier, M., Mooshammer, M., Kitzler, B., Wanek, W.,
Zechmeister-Boltenstern, S., Richter, A., and Schleper, C.: Aerobic nitrous
oxide production through N-nitrosating hybrid formation in ammonia-oxidizing
archaea, ISME J., 8, 1135–1146, 2014.
Stolper, D. A., Sessions, A. L., Ferreira, A. A., Neto, E. S., Schimmelmann,
A., Shusta, S. S., Valentine, D. L., and Eiler, J. M.: Combined 13C–D
and D–D clumping in methane: methods and preliminary results, Geochim.
Cosmochim. Ac., 126, 169–191, 2014.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding
oxygen-minimum zones in the tropical oceans, Science, 320, 655–658, 2008.
Suess, E.: Marine cold seeps, in: Handbook of Hydrocarbon and Lipid
Microbiology, edited by: Timmis, K. N., Springer, Berlin, 187–203, 2010.
Sun, X., Jayakumar, A., and Ward, B. B.: Community composition of nitrous
oxide consuming bacteria in the oxygen minimum zone of the Eastern Tropical
South Pacific, Front. Microbiol., 8, 1183, https://doi.org/10.3389/fmicb.2017.01183, 2017.
Suntharalingam, P., Buitenhuis, E., Le Quere, C., Dentener, F., Nevison, C.,
Butler, J. H., Bange, H. W., and Forster, G.: Quantifying the impact of
anthropogenic nitrogen deposition on oceanic nitrous oxide, Geophys. Res.
Lett., 39, L07605, https://doi.org/10.1029/2011gl050778, 2012.
Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H.,
Pitt, A. J., and Li, F.: Distinguishing nitrous oxide production from
nitrification and denitrification on the basis of isotopomer abundances,
Appl. Environ. Microbiol., 72, 638–644, 2006.
Tait, D. R., Maher, D. T., Wong, W., Santos, I. R., Sadat-Noori, M.,
Holloway, C., and Cook, P. L.: Greenhouse gas dynamics in a salt–wedge
estuary revealed by high resolution cavity ring–down spectroscopy
observations, Environ. Sci. Technol., 51, 13771–13778, 2017.
Thonat, T., Saunois, M., Pison, I., Berchet, A., Hocking, T., Thornton, B. F., Crill, P. M., and Bousquet, P.: Assessment of the theoretical limit in instrumental detectability of northern high-latitude methane sources using δ13CCH4 atmospheric signals, Atmos. Chem. Phys., 19, 12141–12161, https://doi.org/10.5194/acp-19-12141-2019, 2019.
Thornton, B. F., Geibel, M. C., Crill, P. M., Humborg, C., and Mörth,
C.-M.: Methane fluxes from the sea to the atmosphere across the Siberian
shelf seas, Geophys. Res. Letts., 43, 5869–5877, https://doi.org/10.1002/2016GL068977, 2016a.
Thornton, B. F., Wik, M., and Crill, P. M.: Double-counting challenges the
accuracy of high-latitude methane inventories, Geophys. Res. Lett.,
43, 12569–12577, https://doi.org/10.1002/2016GL071772, 2016b.
Thornton, B. F., Prytherch, J., Andersson, K., Brooks, I. M., Salisbury, D.,
Tjernström, M., and Crill, P. M.: Shipborne eddy covariance observations
of methane fluxes constrain Arctic sea emissions, Sci. Adv., 6, eaay7934,
https://doi.org/10.1126/sciadv.aay7934, 2020.
Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B., Janssens-Maenhout, G., and Prather, M. J.: A comprehensive quantification of
global nitrous oxide sources and sinks, Nature, 586, 248–256, 2020.
Tohjima, Y., Zeng, J., Shirai, T., Niwa, Y., Ishidoya, S., Taketani, F.,
Sasano, D., Kosugi, N., Kameyama, S., Takashima, H., and Nara, H.: Estimation
of CH4 emissions from the East Siberian Arctic Shelf based on
atmospheric observations aboard the R/V Mirai during fall cruises from 2012
to 2017, Polar Sci., 100571, https://doi.org/10.1016/j.polar.2020.100571, 2020.
Torn, M. S., Biraud, S., Agarwal, D., Keenan, T. F., Chan, S., Christianson,
D.S., Chu, H., McNicol, G., Papale, D., Pastorello, G., and Stover, D. B.:
AmeriFlux: Flux Synthesis and the Year of Methane, Abstract, American
Geophysical Union Fall Meeting, San Francisco, TH13H, 2019.
Trimmer, M., Chronopoulou, P. M., Maanoja, S. T., Upstill-Goddard, R. C.,
Kitidis, V., and Purdy, K. J.: Nitrous oxide as a function of oxygen and
archaeal gene abundance in the North Pacific, Nat. Commun., 7, 1–10, 2016.
Upstill-Goddard, R. C.: Air-sea gas exchange in the coastal zone, Est.,
Coastal Shelf Sci., 70, 388–404, 2006.
Upstill-Goddard, R. C. and Barnes, J.: Methane emissions from UK estuaries:
Re-evaluating the estuarine source of tropospheric methane from Europe, Mar.
Chem., 180, 14–23, 2016.
Valentine, D. L.: Emerging topics in marine methane biogeochemistry, Annu.
Rev. Mar. Sci., 3, 147–171, 2011.
Vieillard, A. M. and Fulweiler, R. W.: Tidal pulsing alters nitrous oxide
fluxes in a temperate intertidal mudflat, Ecology, 95, 1960–1971, 2014.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr.-Meth., 12, 351–362, 2014.
Wang, D. T., Gruen, D. S., Lollar, B. S., Hinrichs, K. U., Stewart, L. C.,
Holden, J. F., Hristov, A. N., Pohlman, J. W., Morrill, P. L., Könneke,
M., and Delwiche, K. B.: Nonequilibrium clumped isotope signals in microbial
methane, Science, 348, 428–431, 2015.
Wankel, S. D., Ziebis, W., Buchwald, C., Charoenpong, C., de Beer, D.,
Dentinger, J., Xu, Z., and Zengler, K.: Evidence for fungal and
chemodenitrification based N2O flux from nitrogen impacted coastal
sediments, Nat. Commun., 8, 1–11, 2017.
Ward, B. B., Olson, R. J., and Perry, M. J.: Microbial nitrification rates
in the primary nitrite maximum off southern-California, Deep-Sea Res.,
29, 247–255, 1982.
Weber, T., Wiseman, N. A., and Kock, A.: Global ocean methane emissions
dominated by shallow coastal waters, Nat. Commun., 10, 1–10, 2019.
Weinstein, A., Navarrete, L., Ruppel, C., Weber, T. C., Leonte, M.,
Kellermann, M. Y., Arrington, E. C., Valentine, D. L., Scranton, M. I., and
Kessler, J. D.: Determining the flux of methane into Hudson Canyon at the
edge of methane clathrate hydrate stability, Geochem. Geophy. Geosy., 17,
3882–3892, https://doi.org/10.1002/2016gc006421, 2016.
Weiss, R. F., Von Woy, F. A., and Salameh, P. K.: Surface water and
atmospheric carbon dioxide and nitrous oxide Observations by shipboard
automated gas chromatography: Results from expeditions between 1977 and
1990, Rep. S/0 92–11, Carbon Dioxide lnf. Anal. Cent., Oak Ridge Natl.
Lab., Oak Ridge, Tennessee, USA, 1992.
Wells, N. S., Maher, D. T., Erler, D. V., Hipsey, M., Rosentreter, J. A., and
Eyre, B. D.: Estuaries as sources and sinks of N2O across a land use
gradient in subtropical Australia, Global Biogeochem. Cy., 32, 877–894,
2018.
Whiticar, M. J.: Carbon and hydrogen isotope systematics of bacterial
formation and oxidation of methane, Chem. Geology, 161, 291–314, 1999.
Wilson, S. T., Ferrón, S., and Karl, D. M.: Interannual variability of
methane and nitrous oxide in the North Pacific Subtropical Gyre, Geophys.
Res. Lett., 44, 9885–9892, https://doi.org/10.1002/2017GL074458, 2017.
Wilson, S. T., Bange, H. W., Arévalo-Martínez, D. L., Barnes, J., Borges, A. V., Brown, I., Bullister, J. L., Burgos, M., Capelle, D. W., Casso, M., de la Paz, M., Farías, L., Fenwick, L., Ferrón, S., Garcia, G., Glockzin, M., Karl, D. M., Kock, A., Laperriere, S., Law, C. S., Manning, C. C., Marriner, A., Myllykangas, J.-P., Pohlman, J. W., Rees, A. P., Santoro, A. E., Tortell, P. D., Upstill-Goddard, R. C., Wisegarver, D. P., Zhang, G.-L., and Rehder, G.: An intercomparison of oceanic methane and nitrous oxide measurements, Biogeosciences, 15, 5891–5907, https://doi.org/10.5194/bg-15-5891-2018, 2018.
Wyman, M., Hodgson, S., and Bird, C.: Denitrifying alphaproteobacteria from
the Arabian Sea that express nosZ, the gene encoding nitrous oxide
reductase, in oxic and suboxic waters, Appl. Environ. Microbiol., 79,
2670–2681, 2013.
Yang, M., Bell, T. G., Hopkins, F. E., Kitidis, V., Cazenave, P. W., Nightingale, P. D., Yelland, M. J., Pascal, R. W., Prytherch, J., Brooks, I. M., and Smyth, T. J.: Air–sea fluxes of CO2 and CH4 from the Penlee Point Atmospheric Observatory on the south-west coast of the UK, Atmos. Chem. Phys., 16, 5745–5761, https://doi.org/10.5194/acp-16-5745-2016, 2016.
Yang, W.-B., Yuan, C.-S., Huang, B.-Q., Tong, C., and Yang, L.: Emission
characteristics of greenhouse gases and their correlation with water quality
at an estuarine mangrove ecosystem-the application of an in situ on-site
NDIR monitoring technique, Wetlands, 38, 723–738, 2018.
Yang, S., Chang, B. X., Warner, M., Weber, T. S., Bourbonnais, A., Santoro,
A. E., Kock, A., Sonnerup, R., Bullister, J., Wilson, S. T., and Bianchi D.:
New global reconstruction reduces the uncertainty of oceanic nitrous oxide
emissions and reveals a vigorous seasonal cycle, P. Natl. Acad. Sci. USA, 117, 11954–11960,
https://doi.org/10.1073/pnas.1921914117, 2020.
Yoshida, N. and Toyoda, S.: Constraining the atmospheric N2O budget
from intramolecular site preference in N2O isotopomers, Nature, 405,
330–334, 2000.
Young, E. D., Kohl, I. E., Lollar, B. S., Etiope, G., Rumble III, D., Li,
S., Haghnegahdar, M. A., Schauble, E. A., McCain, K. A., Foustoukos, D. I.,
and Sutclife, C.: The relative abundances of resolved l2CH2D2
and 13CH3D and mechanisms controlling isotopic bond ordering in
abiotic and biotic methane gases, Geochim. Cosmochim. Ac., 203, 235–264,
2017.
Yu, L., Harris, E., Lewicka-Szczebak, D., Barthel, M., Blomberg, M. R.,
Harris, S. J., Johnson, M. S., Lehmann, M. F., Liisberg, J., Müller, C.,
Ostrom, N. E., Six, J., Toyoda, S., Yoshida, N., and Mohn, J.: What can we
learn from N2O isotope data? – Analytics, processes and modelling, Rapid
Comms. Mass Spec., 34, e8858, https://doi.org/10.1002/rcm.8858, 2020.
Yurganov L., Muller-Karger F., and Leifer I.: Methane increase over the
Barents and Kara Seas after the autumn pycnocline breakdown: satellite
observations, Adv. Polar Sci., 30, 382–390. https://doi.org/10.13679/j.advps.2019.0024, 2019.
Zamora, L. M. and Oschlies, A.: Surface nitrification: A major uncertainty
in marine N2O emissions, Geophys. Res. Lett., 41, 4247–4253, https://doi.org/10.1002/2014gl060556, 2014.
Zappa, C. J., Raymond, P. A., Terray, E. A., and McGillis, W. T.: Variation
in surface turbulence and the gas transfer velocity over a tidal cycle in a
macro-tidal estuary, Estuaries, 26, 1401–1415, 2003.
Zhang, G., Zhang, J., Liu, S., Ren, J., Xu, J., and Zhang, F.: Methane in
the Changjiang (Yangtze River) Estuary and its adjacent marine area:
riverine input, sediment release and atmospheric fluxes, Biogeochemistry,
91, 71–84, 2008.
Zhang, J., Zhan, L., Chen, L., Li, Y., and Chen, J.: Coexistence of nitrous
oxide undersaturation and oversaturation in the surface and subsurface of
the western Arctic Ocean, J. Geophys. Res., 120, 8392–8401,
https://doi.org/10.1002/2015JC011245, 2015.
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
The oceans are a net source of the major greenhouse gases; however there has been little...
Altmetrics
Final-revised paper
Preprint