Articles | Volume 17, issue 23
https://doi.org/10.5194/bg-17-5953-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5953-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Diversity and distribution of nitrogen fixation genes in the oxygen minimum zones of the world oceans
Department of Geosciences,
Princeton University,
Princeton, NJ 08544, USA
Bess B. Ward
Department of Geosciences,
Princeton University,
Princeton, NJ 08544, USA
Related authors
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Jenna A. Lee, Joseph H. Vineis, Mathieu A. Poupon, Laure Resplandy, and Bess B. Ward
Biogeosciences, 22, 4743–4761, https://doi.org/10.5194/bg-22-4743-2025, https://doi.org/10.5194/bg-22-4743-2025, 2025
Short summary
Short summary
Concurrent sampling of environmental parameters, productivity rates, photopigments, and DNA was used to analyze 24 L estuarine diatom bloom microcosms. Biogeochemical data and an ecological model indicated that the bloom was terminated by grazing. Comparisons to previous studies revealed (1) additional community and diversity complexity using 18S amplicon vs. traditional pigment–based analyses and (2) a potential global productivity–diversity relationship using 18S and carbon transport rates.
Colette L. Kelly, Nicole M. Travis, Pascale Anabelle Baya, Claudia Frey, Xin Sun, Bess B. Ward, and Karen L. Casciotti
Biogeosciences, 21, 3215–3238, https://doi.org/10.5194/bg-21-3215-2024, https://doi.org/10.5194/bg-21-3215-2024, 2024
Short summary
Short summary
Nitrous oxide, a potent greenhouse gas, accumulates in regions of the ocean that are low in dissolved oxygen. We used a novel combination of chemical tracers to determine how nitrous oxide is produced in one of these regions, the eastern tropical North Pacific Ocean. Our experiments showed that the two most important sources of nitrous oxide under low-oxygen conditions are denitrification, an anaerobic process, and a novel “hybrid” process performed by ammonia-oxidizing archaea.
Weiyi Tang, Jeff Talbott, Timothy Jones, and Bess B. Ward
Biogeosciences, 21, 3239–3250, https://doi.org/10.5194/bg-21-3239-2024, https://doi.org/10.5194/bg-21-3239-2024, 2024
Short summary
Short summary
Wastewater treatment plants (WWTPs) are known to be hotspots of greenhouse gas emissions. However, the impact of WWTPs on the emission of the greenhouse gas N2O in downstream aquatic environments is less constrained. We found spatially and temporally variable but overall higher N2O concentrations and fluxes in waters downstream of WWTPs, pointing to the need for efficient N2O removal in addition to the treatment of nitrogen in WWTPs.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
John C. Tracey, Andrew R. Babbin, Elizabeth Wallace, Xin Sun, Katherine L. DuRussel, Claudia Frey, Donald E. Martocello III, Tyler Tamasi, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 20, 2499–2523, https://doi.org/10.5194/bg-20-2499-2023, https://doi.org/10.5194/bg-20-2499-2023, 2023
Short summary
Short summary
Nitrogen (N) is essential for life; thus, its availability plays a key role in determining marine productivity. Using incubations of seawater spiked with a rare form of N measurable on a mass spectrometer, we quantified microbial pathways that determine marine N availability. The results show that pathways that recycle N have higher rates than those that result in its loss from biomass and present new evidence for anaerobic nitrite oxidation, a process long thought to be strictly aerobic.
Mhlangabezi Mdutyana, Tanya Marshall, Xin Sun, Jessica M. Burger, Sandy J. Thomalla, Bess B. Ward, and Sarah E. Fawcett
Biogeosciences, 19, 3425–3444, https://doi.org/10.5194/bg-19-3425-2022, https://doi.org/10.5194/bg-19-3425-2022, 2022
Short summary
Short summary
Nitrite-oxidizing bacteria in the winter Southern Ocean show a high affinity for nitrite but require a minimum (i.e., "threshold") concentration before they increase their rates of nitrite oxidation significantly. The classic Michaelis–Menten model thus cannot be used to derive the kinetic parameters, so a modified equation was employed that also yields the threshold nitrite concentration. Dissolved iron availability may play an important role in limiting nitrite oxidation.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Cited articles
Bentzon-Tilia, M., Traving, S. J., Mantikci, M., Knudsen-Leerbeck, H.,
Hansen, J. L. S., Markager, S., and Riemann, L.: Significant N-2 fixation by
heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two
temperate estuaries, Isme J., 9, 273–285, https://doi.org/10.1038/ismej.2014.119, 2015.
Bird, C. and Wyman, M.: Transcriptionally active heterotrophic diazotrophs
are widespread in the upper water column of the Arabian Sea, Fems
Microbiol. Ecol., 84, 189–200, https://doi.org/10.1111/1574-6941.12049, 2013.
Bonnet, S., Dekaezemacker, J., Turk-Kubo, K. A., Moutin, T., Hamersley, R.
M., Grosso, O., Zehr, J. P., and Capone, D. G.: Aphotic N-2 Fixation in the
Eastern Tropical South Pacific Ocean, Plos One, 8, e81265, https://doi.org/10.1371/journal.pone.0081265, 2013.
Chang, B. X., Jayakumar, A., Widner, B., Bernhardt, P., Mordy, C. M.,
Mulholland, M. R., and Ward, B. B.: Low rates of dinitrogen fixation in the
eastern tropical South Pacific, Limnol. Oceanogr., 64, 1913–1923, https://doi.org/10.1002/lno.11159, 2019.
Cheung, S. Y., Xia, X. M., Guoand, C., and Liu, H. B.: Diazotroph community
structure in the deep oxygen minimum zone of the Costa Rica Dome, J.
Plankton Res., 38, 380–391, https://doi.org/10.1093/plankt/fbw003, 2016.
Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N., and Dunne, J. P.:
Spatial coupling of nitrogen inputs and losses in the ocean, Nature, 445,
163–167, 2007.
Fernandez, C., Farias, L., and Ulloa, O.: Nitrogen Fixation in Denitrified
Marine Waters, Plos One, 6, e20539, https://doi.org/10.1371/journal.pone.0020539, 2011.
Fernandez, C., Lorena Gonzalez, M., Munoz, C., Molina, V., and Farias, L.:
Temporal and spatial variability of biological nitrogen fixation off the
upwelling system of central Chile (35–38.5∘ S), J.
Geophys. Res.-Ocean., 120, 3330–3349, https://doi.org/10.1002/2014jc010410, 2015.
Gaby, J. C., Rishishwar, L., Valderrama-Aguirre, L. C., Green, S. J.,
Valderrama-Aguirre, A., Jordan, I. L., and Kostka, J. E.: Diazotroph
community characterization via a high-throughput nifH amplicon sequencing
and analysis pipeline, Appl. Environ. Microbiol., 84,
1512–01517, https://doi.org/10.1128/AEM.01512-17, 2018.
Großkopf, T. and LaRoche, J.: Direct and indirect costs of dinitrogen
fixation in Crocosphaera watsonii WH8501 and possible implications for the
nitrogen cycle, Front. Microbiol., 3, 236, https://doi.org/10.3389/fmicb.2012.00236,
2012.
Hamersley, M. R., Turk, K. A., Leinweber, A., Gruber, N., Zehr, J. P.,
Gunderson, T., and Capone, D. G.: Nitrogen fixation within the water column
associated with two hypoxic basins in the Southern California Bight, Aquat.
Microb. Ecol., 63, 193–205, 2011.
Jayakumar, A., O'Mullan, G. D., Naqvi, S. W. A., and Ward, B. B.:
Denitrifying bacterial community composition changes associated with stages
of denitrification in oxygen minimum zones, Microbiol. Ecol., 58, 350–362,
2009.
Jayakumar, A., Al-Rshaidat, M. M. D., Ward, B. B., and Mulholland, M. R.:
Diversity, distribution, and expression of diazotroph nifH genes in
oxygen-deficient waters of the Arabian Sea, Fems Microbiol. Ecol., 82,
597–606, 2012.
Jayakumar, A., Chang, B. N. X., Widner, B., Bernhardt, P., Mulholland, M.
R., and Ward, B. B.: Biological nitrogen fixation in the oxygen-minimum
region of the eastern tropical North Pacific ocean, Isme J., 11,
2356–2367, https://doi.org/10.1038/ismej.2017.97, 2017.
Krotzky, A. and Werner, D.: Nitrogen fixation in Pseudomonas stutzeri,
Arch. Microbiol., 147, 48–57, https://doi.org/10.1007/bf00492904, 1987.
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K.: MEGA X: Molecular
Evolutionary Genetics Analysis across Computing Platforms, Mol. Biol.
Evol., 35, 1547–1549, https://doi.org/10.1093/molbev/msy096, 2018.
Langlois, R., Grokopf, T., Mills, M., Takeda, S., and LaRoche, J.:
Widespread Distribution and Expression of Gamma A (UMB), an Uncultured,
Diazotrophic, gamma-Proteobacterial nifH Phylotype, Plos One, 10, e0128912, https://doi.org/10.1371/journal.pone.0128912, 2015.
Letunic, I. and Bork, P.: Interactive tree of life (iTOL) v3: an online
tool for the display and annotation of phylogenetic and other trees, Nucl.
Acids Res., 44, W242–W245, https://doi.org/10.1093/nar/gkw290, 2016.
Loescher, C. R., Grosskopf, T., Desai, F. D., Gill, D., Schunck, H., Croot,
P. L., Schlosser, C., Neulinger, S. C., Pinnow, N., Lavik, G., Kuypers, M.
M. M., LaRoche, J., and Schmitz, R. A.: Facets of diazotrophy in the oxygen
minimum zone waters off Peru, Isme J., 8, 2180–2192, https://doi.org/10.1038/ismej.2014.71, 2014.
Loescher, C. R., Bange, H. W., Schmitz, R. A., Callbeck, C. M., Engel, A.,
Hauss, H., Kanzow, T., Kiko, R., Lavik, G., Loginova, A., Melzner, F.,
Meyer, J., Neulinger, S. C., Pahlow, M., Riebesell, U., Schunck, H.,
Thomsen, S., and Wagner, H.: Water column biogeochemistry of oxygen minimum
zones in the eastern tropical North Atlantic and eastern tropical South
Pacific oceans, Biogeosciences, 13, 3585–3606, https://doi.org/10.5194/bg-13-3585-2016,
2016.
Moisander, P. H., Beinart, R. A., Hewson, I., White, A. E., Johnson, K. S.,
Carlson, C. A., Montoya, J. P., and Zehr, J. P.: Unicellular Cyanobacterial
Distributions Broaden the Oceanic N-2 Fixation Domain, Science, 327,
1512–1514, https://doi.org/10.1126/science.1185468, 2010.
Moisander, P. H., Serros, T., Paerl, R. W., Beinart, R. A., and Zehr, J. P.:
Gammaproteobacterial diazotrophs and nifH gene expression in surface waters
of the South Pacific Ocean, ISME J., 8, 1962–1973, 2014.
Moisander, P. H., Benavides, M., Bonnet, S., Berman-Frank, I., White, A. E.,
and Riemann, L.: Chasing after Non-cyanobacterial Nitrogen Fixation in
Marine Pelagic Environments, Front. Microbiol., 8, 1736, https://doi.org/10.3389/fmicb.2017.01736, 2017.
Schloss, P. D. and Handlesman, J.: Introducing DOTUR, a computer program
for defining operational taxonomic units and estimating species richness,
Appl. Environ. Microbiol., 71, 1501–1506, 2009.
Stecher, G., Tamura, K., and Kumar, S.: Molecular Evolutionary Genetics
Analysis (MEGA) for macOS, Mol. Biol. Evol., 37, 1237–1239, https://doi.org/10.1093/molbev/msz312, 2020.
Turk-Kubo, K. A., Karamchandani, M., Capone, D. G., and Zehr, J. P.: The
paradox of marine heterotrophic nitrogen fixation: abundances of
heterotrophic diazotrophs do not account for nitrogen fixation rates in the
Eastern Tropical South Pacific, Environ. Microbiol., 16, 3095–3114, https://doi.org/10.1111/1462-2920.12346, 2014.
Zehr, J. P. and McReynolds, L. A.: Use of degenerate oligonucleotides for
amplification of the nifH gene from the marine cyanobacterium Trichodesmium theiebautii, Appl.
Environ. Microbiol., 55, 2522–2526, 1989.
Zehr, J. P., Mellon, M. T., and Zani, S.: New nitrogen-fixing microorganisms
detected in oligotrophic oceans by amplification of nitrogenase (nifH)
genes, Appl. Environ. Microbiol., 6, 3444–3450, 1998.
Zehr, J. P., Crumbliss, L. L., Church, M. J., Omoregie, E. O., and Jenkins,
B. D.: Nitrogenase genes in PCR and RT-PCR reagents: implications for
studies of diversity of functional genes, Biotechniques, 35, 996–1005, 2003.
Short summary
Diversity and community composition of nitrogen-fixing microbes in the three main oxygen minimum zones of the world ocean were investigated using nifH clone libraries. Representatives of three main clusters of nifH genes were detected. Sequences were most diverse in the surface waters. The most abundant OTUs were affiliated with Alpha- and Gammaproteobacteria. The sequences were biogeographically distinct and the dominance of a few OTUs was commonly observed in OMZs in this (and other) studies.
Diversity and community composition of nitrogen-fixing microbes in the three main oxygen minimum...
Altmetrics
Final-revised paper
Preprint