Articles | Volume 17, issue 23
https://doi.org/10.5194/bg-17-6185-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-6185-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Landsat near-infrared (NIR) band and ELM-FATES sensitivity to forest disturbances and regrowth in the Central Amazon
Robinson I. Negrón-Juárez
CORRESPONDING AUTHOR
Climate Sciences Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
Jennifer A. Holm
Climate Sciences Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
Boris Faybishenko
Climate Sciences Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
Daniel Magnabosco-Marra
Max Planck Institute for Biogeochemistry, Hans-Knoell Str. 10, 07745 Jena, Germany
National Institute of Amazonian Research (INPA), Av
André Araújo 2936, 690060-001, Manaus, Brazil
Rosie A. Fisher
National Center for Atmospheric Research (NCAR), 1850 Table Mesa Dr., Boulder, CO 80305, USA
Centre Européen de Recherche et de Formation Avencée en Calcul
Scientifique (CERFACS), Toulouse, France
Jacquelyn K. Shuman
National Center for Atmospheric Research (NCAR), 1850 Table Mesa Dr., Boulder, CO 80305, USA
Alessandro C. de Araujo
Embrapa Amazonia Oriental, Tv. Dr. Enéas Piheiro, s/n, Marco, CEP 66095-903, Caixa postal 48, Belem-Para, Brazil
William J. Riley
Climate Sciences Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
Jeffrey Q. Chambers
Climate Sciences Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
Related authors
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025, https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary
Short summary
Understanding horizontal groundwater flow is important for understanding how water moves through the ground. Current climate models often simplify this process because they do not have information about the land surface that is detailed enough. Our study developed a new model that divides the land surface into hillslopes to better represent how groundwater flows. This model can help improve predictions of water availability and how it affects ecosystems.
Luciano Emmert, Susan Trumbore, Joaquim dos Santos, Adriano Lima, Niro Higuchi, Robinson Negrón-Juárez, Cléo Dias-Júnior, Tarek El-Madany, Olaf Kolle, Gabriel Ribeiro, and Daniel Marra
EGUsphere, https://doi.org/10.5194/egusphere-2024-3234, https://doi.org/10.5194/egusphere-2024-3234, 2024
Preprint archived
Short summary
Short summary
For the first time, we documented wind gusts with the potential to damage trees in a forest in the Central Amazon. We used meteorological data collected at crown height over 24 months. We recorded 424 gusts, which occur more frequently and intensely in higher elevated areas and during the transition from the dry to the wet season. More intense rains showed the strongest relationship with extreme winds, highlighting the role of extreme events in tree mortality.
Raquel Fernandes Araujo, Samuel Grubinger, Carlos Henrique Souza Celes, Robinson I. Negrón-Juárez, Milton Garcia, Jonathan P. Dandois, and Helene C. Muller-Landau
Biogeosciences, 18, 6517–6531, https://doi.org/10.5194/bg-18-6517-2021, https://doi.org/10.5194/bg-18-6517-2021, 2021
Short summary
Short summary
Our study contributed to improving the understanding of temporal variation and climate correlates of canopy disturbances mainly caused by treefalls and branchfalls. We used a unique dataset of 5 years of approximately monthly drone-acquired RGB (red–green–blue) imagery for 50 ha of mature tropical forest on Barro Colorado Island, Panama. We found that canopy disturbance rates were highly temporally variable, were higher in the wet season, and were related to extreme rainfall events.
Jaan Pärn, Kaido Soosaar, Thomas Schindler, Katerina Machacova, Waldemar Alegría Muñoz, Lizardo Fachín, José Luis Jibaja Aspajo, Robinson I. Negron-Juarez, Martin Maddison, Jhon Rengifo, Danika Journeth Garay Dinis, Adriana Gabriela Arista Oversluijs, Manuel Calixto Ávila Fucos, Rafael Chávez Vásquez, Ronal Huaje Wampuch, Edgar Peas García, Kristina Sohar, Segundo Cordova Horna, Tedi Pacheco Gómez, Jose David Urquiza Muñoz, Rodil Tello Espinoza, and Ülo Mander
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-46, https://doi.org/10.5194/bg-2021-46, 2021
Manuscript not accepted for further review
Short summary
Short summary
Despite alarming forecasts for the Amazonian peat swamp forests, greenhouse gas emissions from the different peat environments have rarely been compared. We measured CO2, CH4 and N2O emissions from the soil in 3 sites around Iquitos, Peru: a pristine swamp forest, a young forest and a slash-and-burn manioc field. We saw a devastating effect on global climate from a slight water-table drawdown in the peat swamp forests, while the manioc field emitted moderate amounts of the greenhouse gases.
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025, https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary
Short summary
Understanding horizontal groundwater flow is important for understanding how water moves through the ground. Current climate models often simplify this process because they do not have information about the land surface that is detailed enough. Our study developed a new model that divides the land surface into hillslopes to better represent how groundwater flows. This model can help improve predictions of water availability and how it affects ecosystems.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Elsa Abs, Christoph Keuschnig, Pierre Amato, Chris Bowler, Eric Capo, Alexander Chase, Luciana Chavez Rodriguez, Abraham Dabengwa, Thomas Dussarrat, Thomas Guzman, Linnea Honeker, Jenni Hultman, Kirsten Küsel, Zhen Li, Anna Mankowski, William Riley, Scott Saleska, and Lisa Wingate
EGUsphere, https://doi.org/10.5194/egusphere-2025-1716, https://doi.org/10.5194/egusphere-2025-1716, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Meta-omics technologies offer new tools to understand how microbial and plant functional diversity shape biogeochemical cycles across ecosystems. This perspective explores how integrating omics data with ecological and modeling approaches can improve our understanding of greenhouse gas fluxes and nutrient dynamics, from soils to clouds, and from the past to the future. We highlight challenges and opportunities for scaling omics insights from local processes to Earth system models.
Jinyun Tang and William J. Riley
Biogeosciences, 22, 1809–1819, https://doi.org/10.5194/bg-22-1809-2025, https://doi.org/10.5194/bg-22-1809-2025, 2025
Short summary
Short summary
A new mathematical formulation of the dynamic energy budget model is presented for the growth of biological organisms. This new formulation combines mass conservation law and chemical kinetics theory and is computationally faster than the standard formulation of dynamic energy budget models. In simulating the growth of Thalassiosira weissflogii in a nitrogen-limiting chemostat, the new model is as good as the standard dynamic energy budget model using almost the same parameter values.
Carlos A. Sierra, Ingrid Chanca, Meinrat Andreae, Alessandro Carioca de Araújo, Hella van Asperen, Lars Borchardt, Santiago Botía, Luiz Antonio Candido, Caio S. C. Correa, Cléo Quaresma Dias-Junior, Markus Eritt, Annica Fröhlich, Luciana V. Gatti, Marcus Guderle, Samuel Hammer, Martin Heimann, Viviana Horna, Armin Jordan, Steffen Knabe, Richard Kneißl, Jost Valentin Lavric, Ingeborg Levin, Kita Macario, Juliana Menger, Heiko Moossen, Carlos Alberto Quesada, Michael Rothe, Christian Rödenbeck, Yago Santos, Axel Steinhof, Bruno Takeshi, Susan Trumbore, and Sönke Zaehle
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-151, https://doi.org/10.5194/essd-2025-151, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We present here a unique dataset of atmospheric observations of greenhouse gases and isotopes that provide key information on land-atmosphere interactions for the Amazon forests of central Brazil. The data show a relatively large level of variability, but also important trends in greenhouse gases, and signals from fires as well as seasonal biological activity.
Ashley Brereton, Zelalem Mekonnen, Bhavna Arora, William Riley, Kunxiaojia Yuan, Yi Xu, Yu Zhang, Qing Zhu, Tyler Anthony, and Adina Paytan
EGUsphere, https://doi.org/10.5194/egusphere-2025-361, https://doi.org/10.5194/egusphere-2025-361, 2025
Short summary
Short summary
Wetlands absorb carbon dioxide (CO2), helping slow climate change, but they also release methane, a potent warming gas. We developed a collection of AI-based models to estimate magnitudes of CO2 and methane exchanged between the land and the atmosphere, for wetlands on a regional scale. This approach helps to inform land-use planning, restoration, and greenhouse gas accounting, while also creating a foundation for future advancements in prediction accuracy.
Sarah Camelo da Silva, Bárbara Bomfim, Jeffrey Quintin Chambers, Regison Costa de Oliveira, Cacilda Adélia Sampaio de Souza, Marcelo Nunes Vilas-Boas, Adriano José Nogueira Lima, Niro Higuchi, and Bruno Oliva Gimenez
EGUsphere, https://doi.org/10.5194/egusphere-2025-391, https://doi.org/10.5194/egusphere-2025-391, 2025
Short summary
Short summary
Tropical forest soils are known for low fertility, but support vegetation with high species diversity and biomass. Nutrients and carbon essential for forest functioning are stored in the soil and biomass. The region’s topographic gradient, with variations in soil texture and water table depth, influences species distribution. This study quantified macronutrients and carbon in trunks, leaves, and soil of generalist and specialist species across different soil types.
Ingrid Chanca, Ingeborg Levin, Susan Trumbore, Kita Macario, Jost Lavric, Carlos Alberto Quesada, Alessandro Carioca de Araújo, Cléo Quaresma Dias Júnior, Hella van Asperen, Samuel Hammer, and Carlos A. Sierra
Biogeosciences, 22, 455–472, https://doi.org/10.5194/bg-22-455-2025, https://doi.org/10.5194/bg-22-455-2025, 2025
Short summary
Short summary
Assessing the net carbon (C) budget of the Amazon entails considering the magnitude and timing of C absorption and losses through respiration (transit time of C). Radiocarbon-based estimates of the transit time of C in the Amazon Tall Tower Observatory (ATTO) suggest a change in the transit time from 6 ± 2 years and 18 ± 4 years within 2 years (October 2019 and December 2021, respectively). This variability indicates that only a fraction of newly fixed C can be stored for decades or longer.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Kamal Nyaupane, Umakant Mishra, Feng Tao, Kyongmin Yeo, William J. Riley, Forrest M. Hoffman, and Sagar Gautam
Biogeosciences, 21, 5173–5183, https://doi.org/10.5194/bg-21-5173-2024, https://doi.org/10.5194/bg-21-5173-2024, 2024
Short summary
Short summary
Representing soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key source of uncertainty in predicting carbon–climate feedbacks. Using machine learning, we develop and compare predictive relationships in observations (Obs) and ESMs. We find different relationships between environmental factors and SOC stocks in Obs and ESMs. SOC prediction in ESMs may be improved by representing the functional relationships of environmental controllers in a way consistent with observations.
Luciano Emmert, Susan Trumbore, Joaquim dos Santos, Adriano Lima, Niro Higuchi, Robinson Negrón-Juárez, Cléo Dias-Júnior, Tarek El-Madany, Olaf Kolle, Gabriel Ribeiro, and Daniel Marra
EGUsphere, https://doi.org/10.5194/egusphere-2024-3234, https://doi.org/10.5194/egusphere-2024-3234, 2024
Preprint archived
Short summary
Short summary
For the first time, we documented wind gusts with the potential to damage trees in a forest in the Central Amazon. We used meteorological data collected at crown height over 24 months. We recorded 424 gusts, which occur more frequently and intensely in higher elevated areas and during the transition from the dry to the wet season. More intense rains showed the strongest relationship with extreme winds, highlighting the role of extreme events in tree mortality.
Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 24, 11883–11910, https://doi.org/10.5194/acp-24-11883-2024, https://doi.org/10.5194/acp-24-11883-2024, 2024
Short summary
Short summary
We show the average height distribution of separately observed aldehydes and ketones over a day and discuss their rainforest-specific sources and sinks as well as their seasonal changes above the Amazon. Ketones have much longer atmospheric lifetimes than aldehydes and thus different implications for atmospheric chemistry. However, they are commonly observed together, which we overcome by measuring with a NO+ chemical ionization mass spectrometer for the first time in the Amazon rainforest.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Hella van Asperen, Thorsten Warneke, Alessandro Carioca de Araújo, Bruce Forsberg, Sávio José Filgueiras Ferreira, Thomas Röckmann, Carina van der Veen, Sipko Bulthuis, Leonardo Ramos de Oliveira, Thiago de Lima Xavier, Jailson da Mata, Marta de Oliveira Sá, Paulo Ricardo Teixeira, Julie Andrews de França e Silva, Susan Trumbore, and Justus Notholt
Biogeosciences, 21, 3183–3199, https://doi.org/10.5194/bg-21-3183-2024, https://doi.org/10.5194/bg-21-3183-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is regarded as an important indirect greenhouse gas. Soils can emit and take up CO, but, until now, uncertainty remains as to which process dominates in tropical rainforests. We present the first soil CO flux measurements from a tropical rainforest. Based on our observations, we report that tropical rainforest soils are a net source of CO. In addition, we show that valley streams and inundated areas are likely additional hot spots of CO in the ecosystem.
Jacquelyn K. Shuman, Rosie A. Fisher, Charles Koven, Ryan Knox, Lara Kueppers, and Chonggang Xu
Geosci. Model Dev., 17, 4643–4671, https://doi.org/10.5194/gmd-17-4643-2024, https://doi.org/10.5194/gmd-17-4643-2024, 2024
Short summary
Short summary
We adapt a fire behavior and effects module for use in a size-structured vegetation demographic model to test how climate, fire regime, and fire-tolerance plant traits interact to determine the distribution of tropical forests and grasslands. Our model captures the connection between fire disturbance and plant fire-tolerance strategies in determining plant distribution and provides a useful tool for understanding the vulnerability of these areas under changing conditions across the tropics.
Jinyun Tang and William J. Riley
Biogeosciences, 21, 1061–1070, https://doi.org/10.5194/bg-21-1061-2024, https://doi.org/10.5194/bg-21-1061-2024, 2024
Short summary
Short summary
A chemical kinetics theory is proposed to explain the non-monotonic relationship between temperature and biochemical rates. It incorporates the observed thermally reversible enzyme denaturation that is ensured by the ceaseless thermal motion of molecules and ions in an enzyme solution and three well-established theories: (1) law of mass action, (2) diffusion-limited chemical reaction theory, and (3) transition state theory.
Junyan Ding, Polly Buotte, Roger Bales, Bradley Christoffersen, Rosie A. Fisher, Michael Goulden, Ryan Knox, Lara Kueppers, Jacquelyn Shuman, Chonggang Xu, and Charles D. Koven
Biogeosciences, 20, 4491–4510, https://doi.org/10.5194/bg-20-4491-2023, https://doi.org/10.5194/bg-20-4491-2023, 2023
Short summary
Short summary
We used a vegetation model to investigate how the different combinations of plant rooting depths and the sensitivity of leaves and stems to drying lead to differential responses of a pine forest to drought conditions in California, USA. We found that rooting depths are the strongest control in that ecosystem. Deep roots allow trees to fully utilize the soil water during a normal year but result in prolonged depletion of soil moisture during a severe drought and hence a high tree mortality risk.
Allen G. Hunt, Muhammad Sahimi, Boris Faybishenko, Markus Egli, Zbigniew J. Kabala, Behzad Ghanbarian, and Fang Yu
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2023-21, https://doi.org/10.5194/esd-2023-21, 2023
Manuscript not accepted for further review
Short summary
Short summary
Relative stability of Earth’s climate system is considered an emergent property of coupled ecosystems. We apply a spatio-temporal scaling relation for root growth to couple bacterial/fungal/vegetational response to climate crises triggered by land plant invasion and predict an absolute time scale to reach homeostasis. The predicted time is 33 % larger than required for the biosphere to emerge from associated Paleozoic ice ages. We propose a basis for understanding the biosphere and critical zone.
Adriana Simonetti, Raquel Fernandes Araujo, Carlos Henrique Souza Celes, Flávia Ranara da Silva e Silva, Joaquim dos Santos, Niro Higuchi, Susan Trumbore, and Daniel Magnabosco Marra
Biogeosciences, 20, 3651–3666, https://doi.org/10.5194/bg-20-3651-2023, https://doi.org/10.5194/bg-20-3651-2023, 2023
Short summary
Short summary
We combined 2 years of monthly drone-acquired RGB (red–green–blue) imagery with field surveys in a central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Biomass losses were partially controlled by gap area, with branch fall and snapping contributing the least and greatest relative values, respectively. Our study highlights the potential of drone images for monitoring canopy dynamics in dense tropical forests.
Amelie U. Schmitt, Felix Ament, Alessandro C. de Araújo, Marta Sá, and Paulo Teixeira
Atmos. Chem. Phys., 23, 9323–9346, https://doi.org/10.5194/acp-23-9323-2023, https://doi.org/10.5194/acp-23-9323-2023, 2023
Short summary
Short summary
Tall vegetation in forests affects the exchange of heat and moisture between the atmosphere and the land surface. We compared measurements from the Amazon Tall Tower Observatory to results from a land surface model to identify model shortcomings. Our results suggest that soil temperatures in the model could be improved by incorporating a separate canopy layer which represents the heat storage within the forest.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, https://doi.org/10.5194/bg-20-2117-2023, 2023
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts on ecosystems. We present a road map of how dynamic vegetation models can explore extreme drought and climate change and assess ecological processes to measure and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explore specific plant responses that reflect knowledge gaps.
Fa Li, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James T. Randerson
Geosci. Model Dev., 16, 869–884, https://doi.org/10.5194/gmd-16-869-2023, https://doi.org/10.5194/gmd-16-869-2023, 2023
Short summary
Short summary
We developed an interpretable machine learning model to predict sub-seasonal and near-future wildfire-burned area over African and South American regions. We found strong time-lagged controls (up to 6–8 months) of local climate wetness on burned areas. A skillful use of such time-lagged controls in machine learning models results in highly accurate predictions of wildfire-burned areas; this will also help develop relevant early-warning and management systems for tropical wildfires.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Yitong Yao, Emilie Joetzjer, Philippe Ciais, Nicolas Viovy, Fabio Cresto Aleina, Jerome Chave, Lawren Sack, Megan Bartlett, Patrick Meir, Rosie Fisher, and Sebastiaan Luyssaert
Geosci. Model Dev., 15, 7809–7833, https://doi.org/10.5194/gmd-15-7809-2022, https://doi.org/10.5194/gmd-15-7809-2022, 2022
Short summary
Short summary
To facilitate more mechanistic modeling of drought effects on forest dynamics, our study implements a hydraulic module to simulate the vertical water flow, change in water storage and percentage loss of stem conductance (PLC). With the relationship between PLC and tree mortality, our model can successfully reproduce the large biomass drop observed under throughfall exclusion. Our hydraulic module provides promising avenues benefiting the prediction for mortality under future drought events.
Marco A. Franco, Florian Ditas, Leslie A. Kremper, Luiz A. T. Machado, Meinrat O. Andreae, Alessandro Araújo, Henrique M. J. Barbosa, Joel F. de Brito, Samara Carbone, Bruna A. Holanda, Fernando G. Morais, Janaína P. Nascimento, Mira L. Pöhlker, Luciana V. Rizzo, Marta Sá, Jorge Saturno, David Walter, Stefan Wolff, Ulrich Pöschl, Paulo Artaxo, and Christopher Pöhlker
Atmos. Chem. Phys., 22, 3469–3492, https://doi.org/10.5194/acp-22-3469-2022, https://doi.org/10.5194/acp-22-3469-2022, 2022
Short summary
Short summary
In Central Amazonia, new particle formation in the planetary boundary layer is rare. Instead, there is the appearance of sub-50 nm aerosols with diameters larger than about 20 nm that eventually grow to cloud condensation nuclei size range. Here, 254 growth events were characterized which have higher predominance in the wet season. About 70 % of them showed direct relation to convective downdrafts, while 30 % occurred partly under clear-sky conditions, evidencing still unknown particle sources.
Qing Zhu, Fa Li, William J. Riley, Li Xu, Lei Zhao, Kunxiaojia Yuan, Huayi Wu, Jianya Gong, and James Randerson
Geosci. Model Dev., 15, 1899–1911, https://doi.org/10.5194/gmd-15-1899-2022, https://doi.org/10.5194/gmd-15-1899-2022, 2022
Short summary
Short summary
Wildfire is a devastating Earth system process that burns about 500 million hectares of land each year. It wipes out vegetation including trees, shrubs, and grasses and causes large losses of economic assets. However, modeling the spatial distribution and temporal changes of wildfire activities at a global scale is challenging. This study built a machine-learning-based wildfire surrogate model within an existing Earth system model and achieved high accuracy.
Jinyun Tang, William J. Riley, and Qing Zhu
Geosci. Model Dev., 15, 1619–1632, https://doi.org/10.5194/gmd-15-1619-2022, https://doi.org/10.5194/gmd-15-1619-2022, 2022
Short summary
Short summary
We here describe version 2 of BeTR, a reactive transport model created to help ease the development of biogeochemical capability in Earth system models that are used for quantifying ecosystem–climate feedbacks. We then coupled BeTR-v2 to the Energy Exascale Earth System Model to quantify how different numerical couplings of plants and soils affect simulated ecosystem biogeochemistry. We found that different couplings lead to significant uncertainty that is not correctable by tuning parameters.
Raquel Fernandes Araujo, Samuel Grubinger, Carlos Henrique Souza Celes, Robinson I. Negrón-Juárez, Milton Garcia, Jonathan P. Dandois, and Helene C. Muller-Landau
Biogeosciences, 18, 6517–6531, https://doi.org/10.5194/bg-18-6517-2021, https://doi.org/10.5194/bg-18-6517-2021, 2021
Short summary
Short summary
Our study contributed to improving the understanding of temporal variation and climate correlates of canopy disturbances mainly caused by treefalls and branchfalls. We used a unique dataset of 5 years of approximately monthly drone-acquired RGB (red–green–blue) imagery for 50 ha of mature tropical forest on Barro Colorado Island, Panama. We found that canopy disturbance rates were highly temporally variable, were higher in the wet season, and were related to extreme rainfall events.
Jing Tao, Qing Zhu, William J. Riley, and Rebecca B. Neumann
The Cryosphere, 15, 5281–5307, https://doi.org/10.5194/tc-15-5281-2021, https://doi.org/10.5194/tc-15-5281-2021, 2021
Short summary
Short summary
We improved the DOE's E3SM land model (ELMv1-ECA) simulations of soil temperature, zero-curtain period durations, cold-season CH4, and CO2 emissions at several Alaskan Arctic tundra sites. We demonstrated that simulated CH4 emissions during zero-curtain periods accounted for more than 50 % of total emissions throughout the entire cold season (Sep to May). We also found that cold-season CO2 emissions largely offset warm-season net uptake currently and showed increasing trends from 1950 to 2017.
Maria Prass, Meinrat O. Andreae, Alessandro C. de Araùjo, Paulo Artaxo, Florian Ditas, Wolfgang Elbert, Jan-David Förster, Marco Aurélio Franco, Isabella Hrabe de Angelis, Jürgen Kesselmeier, Thomas Klimach, Leslie Ann Kremper, Eckhard Thines, David Walter, Jens Weber, Bettina Weber, Bernhard M. Fuchs, Ulrich Pöschl, and Christopher Pöhlker
Biogeosciences, 18, 4873–4887, https://doi.org/10.5194/bg-18-4873-2021, https://doi.org/10.5194/bg-18-4873-2021, 2021
Short summary
Short summary
Bioaerosols in the atmosphere over the Amazon rain forest were analyzed by molecular biological staining and microscopy. Eukaryotic, bacterial, and archaeal aerosols were quantified in time series and altitude profiles which exhibited clear differences in number concentrations and vertical distributions. Our results provide insights into the sources and dispersion of different Amazonian bioaerosol types as a basis for a better understanding of biosphere–atmosphere interactions.
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021, https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Short summary
Emergent constraints promise a pathway to the reduction in climate projection uncertainties by exploiting ensemble relationships between observable quantities and unknown climate response parameters. This study considers the robustness of these relationships in light of biases and common simplifications that may be present in the original ensemble of climate simulations. We propose a classification scheme for constraints and a number of practical case studies.
Polly C. Buotte, Charles D. Koven, Chonggang Xu, Jacquelyn K. Shuman, Michael L. Goulden, Samuel Levis, Jessica Katz, Junyan Ding, Wu Ma, Zachary Robbins, and Lara M. Kueppers
Biogeosciences, 18, 4473–4490, https://doi.org/10.5194/bg-18-4473-2021, https://doi.org/10.5194/bg-18-4473-2021, 2021
Short summary
Short summary
We present an approach for ensuring the definitions of plant types in dynamic vegetation models are connected to the underlying ecological processes controlling community composition. Our approach can be applied regionally or globally. Robust resolution of community composition will allow us to use these models to address important questions related to future climate and management effects on plant community composition, structure, carbon storage, and feedbacks within the Earth system.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Wu Ma, Lu Zhai, Alexandria Pivovaroff, Jacquelyn Shuman, Polly Buotte, Junyan Ding, Bradley Christoffersen, Ryan Knox, Max Moritz, Rosie A. Fisher, Charles D. Koven, Lara Kueppers, and Chonggang Xu
Biogeosciences, 18, 4005–4020, https://doi.org/10.5194/bg-18-4005-2021, https://doi.org/10.5194/bg-18-4005-2021, 2021
Short summary
Short summary
We use a hydrodynamic demographic vegetation model to estimate live fuel moisture dynamics of chaparral shrubs, a dominant vegetation type in fire-prone southern California. Our results suggest that multivariate climate change could cause a significant net reduction in live fuel moisture and thus exacerbate future wildfire danger in chaparral shrub systems.
Jessica C. A. Baker, Luis Garcia-Carreras, Manuel Gloor, John H. Marsham, Wolfgang Buermann, Humberto R. da Rocha, Antonio D. Nobre, Alessandro Carioca de Araujo, and Dominick V. Spracklen
Hydrol. Earth Syst. Sci., 25, 2279–2300, https://doi.org/10.5194/hess-25-2279-2021, https://doi.org/10.5194/hess-25-2279-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) is a vital part of the Amazon water cycle, but it is difficult to measure over large areas. In this study, we compare spatial patterns, seasonality, and recent trends in Amazon ET from a water-budget analysis with estimates from satellites, reanalysis, and global climate models. We find large differences between products, showing that many widely used datasets and climate models may not provide a reliable representation of this crucial variable over the Amazon.
Eva Y. Pfannerstill, Nina G. Reijrink, Achim Edtbauer, Akima Ringsdorf, Nora Zannoni, Alessandro Araújo, Florian Ditas, Bruna A. Holanda, Marta O. Sá, Anywhere Tsokankunku, David Walter, Stefan Wolff, Jošt V. Lavrič, Christopher Pöhlker, Matthias Sörgel, and Jonathan Williams
Atmos. Chem. Phys., 21, 6231–6256, https://doi.org/10.5194/acp-21-6231-2021, https://doi.org/10.5194/acp-21-6231-2021, 2021
Short summary
Short summary
Tropical forests are globally significant for atmospheric chemistry. However, the mixture of reactive organic gases emitted by these ecosystems is poorly understood. By comprehensive observations at an Amazon forest site, we show that oxygenated species were previously underestimated in their contribution to the tropical-forest reactant mix. Our results show rain and temperature effects and have implications for models and the understanding of ozone and particle formation above tropical forests.
Hella van Asperen, João Rafael Alves-Oliveira, Thorsten Warneke, Bruce Forsberg, Alessandro Carioca de Araújo, and Justus Notholt
Biogeosciences, 18, 2609–2625, https://doi.org/10.5194/bg-18-2609-2021, https://doi.org/10.5194/bg-18-2609-2021, 2021
Short summary
Short summary
Termites are insects that are highly abundant in tropical ecosystems. It is known that termites emit CH4, an important greenhouse gas, but their absolute emission remains uncertain. In the Amazon rainforest, we measured CH4 emissions from termite nests and groups of termites. In addition, we tested a fast and non-destructive field method to estimate termite nest colony size. We found that termites play a significant role in an ecosystem's CH4 budget and probably emit more than currently assumed.
Jaan Pärn, Kaido Soosaar, Thomas Schindler, Katerina Machacova, Waldemar Alegría Muñoz, Lizardo Fachín, José Luis Jibaja Aspajo, Robinson I. Negron-Juarez, Martin Maddison, Jhon Rengifo, Danika Journeth Garay Dinis, Adriana Gabriela Arista Oversluijs, Manuel Calixto Ávila Fucos, Rafael Chávez Vásquez, Ronal Huaje Wampuch, Edgar Peas García, Kristina Sohar, Segundo Cordova Horna, Tedi Pacheco Gómez, Jose David Urquiza Muñoz, Rodil Tello Espinoza, and Ülo Mander
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-46, https://doi.org/10.5194/bg-2021-46, 2021
Manuscript not accepted for further review
Short summary
Short summary
Despite alarming forecasts for the Amazonian peat swamp forests, greenhouse gas emissions from the different peat environments have rarely been compared. We measured CO2, CH4 and N2O emissions from the soil in 3 sites around Iquitos, Peru: a pristine swamp forest, a young forest and a slash-and-burn manioc field. We saw a devastating effect on global climate from a slight water-table drawdown in the peat swamp forests, while the manioc field emitted moderate amounts of the greenhouse gases.
Guilherme F. Camarinha-Neto, Julia C. P. Cohen, Cléo Q. Dias-Júnior, Matthias Sörgel, José Henrique Cattanio, Alessandro Araújo, Stefan Wolff, Paulo A. F. Kuhn, Rodrigo A. F. Souza, Luciana V. Rizzo, and Paulo Artaxo
Atmos. Chem. Phys., 21, 339–356, https://doi.org/10.5194/acp-21-339-2021, https://doi.org/10.5194/acp-21-339-2021, 2021
Short summary
Short summary
It was observed that friagem phenomena (incursion of cold waves from the high latitudes of the Southern Hemisphere to the Amazon region), very common in the dry season of the Amazon region, produced significant changes in microclimate and atmospheric chemistry. Moreover, the effects of the friagem change the surface O3 and CO2 mixing ratios and therefore interfere deeply in the microclimatic conditions and the chemical composition of the atmosphere above the rainforest.
Katherine Dagon, Benjamin M. Sanderson, Rosie A. Fisher, and David M. Lawrence
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 223–244, https://doi.org/10.5194/ascmo-6-223-2020, https://doi.org/10.5194/ascmo-6-223-2020, 2020
Short summary
Short summary
Uncertainties in land model projections are important to understand in order to build confidence in Earth system modeling. In this paper, we introduce a framework for estimating uncertain land model parameters with machine learning. This method increases the computational efficiency of this process relative to traditional hand tuning approaches and provides objective methods to assess the results. We further identify key processes and parameters that are important for accurate land modeling.
Robbie Ramsay, Chiara F. Di Marco, Matthias Sörgel, Mathew R. Heal, Samara Carbone, Paulo Artaxo, Alessandro C. de Araùjo, Marta Sá, Christopher Pöhlker, Jost Lavric, Meinrat O. Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 20, 15551–15584, https://doi.org/10.5194/acp-20-15551-2020, https://doi.org/10.5194/acp-20-15551-2020, 2020
Short summary
Short summary
The Amazon rainforest is a unique
laboratoryto study the processes which govern the exchange of gases and aerosols to and from the atmosphere. This study investigated these processes by measuring the atmospheric concentrations of trace gases and particles at the Amazon Tall Tower Observatory. We found that the long-range transport of pollutants can affect the atmospheric composition above the Amazon rainforest and that the gases ammonia and nitrous acid can be emitted from the rainforest.
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020, https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Short summary
Methane (CH4) is a strong greenhouse gas that can accelerate climate change and offset mitigation efforts. A key assumption embedded in many large-scale climate models is that ecosystem CH4 emissions can be estimated by fixed temperature relations. Here, we demonstrate that CH4 emissions cannot be parameterized by emergent temperature response alone due to variability driven by microbial and abiotic interactions. We also provide mechanistic understanding for observed CH4 emission hysteresis.
Nina Löbs, David Walter, Cybelli G. G. Barbosa, Sebastian Brill, Rodrigo P. Alves, Gabriela R. Cerqueira, Marta de Oliveira Sá, Alessandro C. de Araújo, Leonardo R. de Oliveira, Florian Ditas, Daniel Moran-Zuloaga, Ana Paula Pires Florentino, Stefan Wolff, Ricardo H. M. Godoi, Jürgen Kesselmeier, Sylvia Mota de Oliveira, Meinrat O. Andreae, Christopher Pöhlker, and Bettina Weber
Biogeosciences, 17, 5399–5416, https://doi.org/10.5194/bg-17-5399-2020, https://doi.org/10.5194/bg-17-5399-2020, 2020
Short summary
Short summary
Cryptogamic organisms, such as bryophytes, lichens, and algae, cover major parts of vegetation in the Amazonian rain forest, but their relevance in biosphere–atmosphere exchange, climate processes, and nutrient cycling is largely unknown.
Over the duration of 2 years we measured their water content, temperature, and light conditions to get better insights into their physiological activity patterns and thus their potential impact on local, regional, and even global biogeochemical processes.
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci., 24, 4971–4996, https://doi.org/10.5194/hess-24-4971-2020, https://doi.org/10.5194/hess-24-4971-2020, 2020
Short summary
Short summary
It is still challenging to apply the quantitative and comprehensive global sensitivity analysis method to complex large-scale process-based hydrological models because of variant uncertainty sources and high computational cost. This work developed a new tool and demonstrate its implementation to a pilot example for comprehensive global sensitivity analysis of large-scale hydrological modelling. This method is mathematically rigorous and can be applied to other large-scale hydrological models.
Cited articles
Adams, J. B. and Gillespie, A. R.: Remote Sensing of Landscapes with
Spectral Images: A Physical Modeling Approach, Cambridge University Press,
Cambridge, UK, 2006.
Alcantara, C. R., Silva Dias, M. A. F., Souza, E. P., and Cohen, J. C. P.:
Verification of the role of the low level jets in Amazon squall lines,
Atmos. Res., 100, 36–44, https://doi.org/10.1016/j.atmosres.2010.12.023, 2011.
Alonzo, M., Van Den Hoek, J., and Ahmed, N.: Capturing coupled riparian and
coastal disturbance from industrial mining using cloud-resilient satellite
time series analysis, Sci. Rep.-UK, 6, 1–12, https://doi.org/10.1038/srep35129, 2016.
Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D.,
Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Hajima, T.,
Ilyina, T., Lindsay, K., Tjiputra, J. F., and Wu, T.: Carbon-Concentration
and Carbon-Climate Feedbacks in CMIP5 Earth System Models, J.
Climate, 26, 5289–5314, https://doi.org/10.1175/jcli-d-12-00494.1, 2013.
Asner, G. P.: Hyperspectral Remote Sensing of Canopy Chemistry, Physiology,
and Biodiversity in Tropical Rainforests, in: Hyperspectral Remote Sensing
of Tropical and Sub-Tropical Forests, edited by: Kalacska, M. and
Sanchez-Azofeita, A., CRC Press, Taylor and Francis Group, Florida, USA,
261–296, 2008.
Badgley, G., Field, C. B., and Berry, J. A.: Canopy near-infrared
reflectance and terrestrial photosynthesis, Sci. Adv., 3, e1602244,
https://doi.org/10.1126/sciadv.1602244, 2017.
Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore,
A., Erwin, T., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S.
L., Lloyd, J., Monteagudo, A., Neill, D. A., Patino, S., Pitman, N. C. A.,
Silva, J. N. M., and Martinez, R. V.: Variation in wood density determines
spatial patterns in Amazonian forest biomass, Global Change Biol., 10,
545–562, 2004.
Bierregaard, R. O., Lovejoy, T. E., Kapos, V., Dossantos, A. A., and
Hutchings, R. W.: The biological dynamics of tropical rainf-forest
fragments, Bioscience, 42, 859–866, https://doi.org/10.2307/1312085, 1992.
Bierregaard, R., Gascon, C., Lovejoy, T., and Mesquita, M. R.: Lessons from
Amazonia: The Ecology and Conservation of a Fragmented Forest, Yale
University Press, New Haven, Connectivut, USA, 496 pp., 2001.
Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the
climate benefits of forests, Science, 320, 1444–1449,
https://doi.org/10.1126/science.1155121, 2008.
Bonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M.,
Reichstein, M., Lawrence, D. M., and Swenson, S. C.: Improving canopy
processes in the Community Land Model version 4 (CLM4) using global flux
fields empirically inferred from FLUXNET data, J. Geophys.
Res.-Biogeo., 116, G02014, 10.1029/2010jg001593, 2011.
Brown, S. and Lugo, A. E.: TROPICAL SECONDARY FORESTS, J. Trop.
Ecol., 6, 1–32, https://doi.org/10.1017/s0266467400003989, 1990.
Carneiro, V. M. C., Lima, A. J. N., Pinto, A. C., Santos, J., Teixeira, L.
M., and Higuchi, N.: Floristic composition and structural analisis of terr
firme forests in Manaus, Amazonas, Brazil, V Congresso FlorestalNacional: A
Floresta e as Gentes, Viseu, Portugal, 16–19 May, 1–12, 2005.
Chambers, J. Q., Tribuzy, E. S., Toledo, L. C., Crispim, B. F., Higuchi, N.,
dos Santos, J., Araujo, A. C., Kruijt, B., Nobre, A. D., and Trumbore, S.
E.: Respiration from a tropical forest ecosystem: Partitioning of sources
and low carbon use efficiency, Ecol. Appl., 14, 72–88, 2004.
Chambers, J. Q., Negron-Juarez, R. I., Magnabosco Marra, D., Di Vittorio,
A., Tews, J., Roberts, D., Ribeiro, G. H. P. M., Trumbore, S. E., and
Higuchi, N.: The steady-state mosaic of disturbance and succession across an
old-growth Central Amazon forest landscape, P. Natl.
Acad. Sci. USA, 110, 3949–3954,
https://doi.org/10.1073/pnas.1202894110, 2013.
Chapin III, F. S., Matson, P. A., and Mooney, H. A.: Principles of
Terrestrial Ecosystem Ecology, Choice: Current Reviews for Academic
Libraries, Springer, New York, ISBN: 0-387-95439-2, 5, 847 pp., 2003.
Chavana-Bryant, C., Malhi, Y., Wu, J., Asner, G. P., Anastasiou, A.,
Enquist, B. J., Caravasi, E. G. C., Doughty, C. E., Saleska, S. R., Martin,
R. E., and Gerard, F. F.: Leaf aging of Amazonian canopy trees as revealed
by spectral and physiochemical measurements, New Phytol., 214,
1049–1063, https://doi.org/10.1111/nph.13853, 2017.
Chazdon, R. L.: Second Growth: The promise of tropical forest regeneration
in an age og deforestation, The University of Chicago Press, Chicago, USA, 2014.
Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M. A., Bongers, F.,
Zambrano, A. M. A., Aide, T. M., Balvanera, P., Becknell, J. M., Boukili,
V., Brancalion, P., Craven, D., Almeida-Cortez, J. S., Cabral, G. A., de
Jong, B., Denslow, J. S., Dent, D. H., DeWalt, S., Dupuy, J., Durán, S.,
Espírito-Santo, M., Fandino, M., César, R., Hall, J. S.,
Hernández-Stefanoni, J., Jakovac, C., Junqueira, A., Kennard, D.,
Letcher, S. G., Lohbeck, M., Martínez-Ramos, M., Massoca, P., Meave, J.
A., Mesquita, R., Mora, F., Muñoz, R., Muscarella, R., Nunes, Y.,
Ochoa-Gaona, S., Orihuela-Belmonte, E., Peña-Claros, M.,
Pérez-García, E., Piotto, D., Powers, J., Rodríguez-Velazquez,
J., Romero-Pérez, I., Ruíz, J., Saldarriaga, J. G.,
Sanchez-Azofeifa, A., Schwartz, N., Steininger, M., Swenson, N. G., Uriarte,
M., van Breugel, M., van der Wal, H., Veloso, M., Vester, H., Vieira, I.,
Bentos, T., Williamson, G. B., and Poorter, L.: Carbon sequestration
potential of second-growth forest regeneration in the Latin American
tropics, Sci. Adv., 2, e1501639, https://doi.org/10.1126/sciadv.1501639, 2016.
Claverie, M., Vermote, E. F., Franch, B., and Masek, J. G.: Evaluation of
the Landsat-5 TM and Landsat-7 ETM + surface reflectance products, Remote
Sens. Environ., 169, 390–403, https://doi.org/10.1016/j.rse.2015.08.030, 2015.
Cohen, W. B. and Goward, S. N.: Landsat's role in ecological applications
of remote sensing, Bioscience, 54, 535–545,
https://doi.org/10.1641/0006-3568(2004)054[0535:lrieao]2.0.co;2, 2004.
Dantas de Paula, M., Groeneveld, J., and Huth, A.: Tropical forest
degradation and recovery in fragmented landscapes – Simulating changes in
tree community, forest hydrology and carbon balance, Global Ecology and
Conservation, 3, 664–677, https://doi.org/10.1016/j.gecco.2015.03.004, 2015.
Da Silva, R. P.: Allometry, storage and biomass dynamics of primary and
secondary forests in the Manaus Region (AM) [in Portuguese], PhD thesis,
Universidade Federal do Amazonas, Manaus, Brazil, 135 pp., 2007.
da Silva, R. P., dos Santos, J., Tribuzy, E. S., Chambers, J. Q., Nakamura,
S., and Higuchi, N.: Diameter increment and growth patterns for individual
tree growing in Central Amazon, Brazil, Forest Ecol. Manag., 166,
295–301, 2002.
de Araujo, A. C., Nobre, A. D., Kruijt, B., Elbers, J. A., Dallarosa, R.,
Stefani, P., von Randow, C., Manzi, A. O., Culf, A. D., Gash, J. H. C.,
Valentini, R., and Kabat, P.: Comparative measurements of carbon dioxide
fluxes from two nearby towers in a central Amazonian rainforest: The Manaus
LBA site, J. Geophys. Res.-Atmos., 107, D208090,
https://doi.org/10.1029/2001jd000676, 2002.
Denslow, J. S.: Patterns of plant-species diversity during succession under
different disturbancs regimes, Oecologia, 46, 18–21, https://doi.org/10.1007/bf00346960,
1980.
DeVries, B., Decuyper, M., Verbesselt, J., Zeileis, A., Herold, M., and
Joseph, S.: Tracking disturbance-regrowth dynamics in tropical forests using
structural change detection and Landsat time series, Remote Sens.
Environ., 169, 320–334, https://doi.org/10.1016/j.rse.2015.08.020, 2015.
Dolan, K., Masek, J. G., Huang, C. Q., and Sun, G. Q.: Regional forest
growth rates measured by combining ICESat GLAS and Landsat data, J. Geophys. Res.-Biogeo., 114, G00E05, https://doi.org/10.1029/2008jg000893, 2009.
Dolan, K. A., Hurtt, G. C., Flanagan, S. A., Fisk, J. P., Sahajpal, R.,
Huang, C. Q., Le Page, Y., Dubayah, R., and Masek, J. G.: Disturbance
Distance: quantifying forests' vulnerability to disturbance under current
and future conditions, Environ. Res. Lett., 12, 114015,
https://doi.org/10.1088/1748-9326/aa8ea9, 2017.
FAO: Food and Agriculture Organization of the United Nations. Global Forest
Resources Assessment, FAO, 163, Rome, ISBN: 978-92-5-106654-6, available at: http://www.fao.org/3/a-i1757e.pdf (last access: 2 December 2020), 2010.
Farquhar, G. D., Caemmerer, S. V., and Berry, J. A.: A biochemical-model of
photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78–90,
https://doi.org/10.1007/bf00386231, 1980.
Farrior, C. E., Bohlman, S. A., Hubbell, S., and Pacala, S. W.: Dominance of
the suppressed: Power-law size structure in tropical forests, Science, 351,
155–157, https://doi.org/10.1126/science.aad0592, 2016.
Fauset, S., Gloor, M., Fyllas, N. M., Phillips, O. L., Asner, G. P., Baker,
T. R., Bentley, L. P., Brienen, R. J. W., Christoffersen, B. O., del
Aguila-Pasquel, J., Doughty, C. E., Feldpausch, T. R., Galbraith, D. R.,
Goodman, R. C., Girardin, C. A. J., Coronado, E. N. H., Monteagudo, A.,
Salinas, N., Shenkin, A., Silva-Espejo, J. E., van der Heijden, G., Vasquez,
R., Alvarez-Davila, E., Arroyo, L., Barroso, J. G., Brown, F., Castro, W.,
Valverde, F. C., Cardozo, N. D., Di Fiore, A., Erwin, T.,
Huamantupa-Chuquimaco, I., Vargas, P. N., Neill, D., Camacho, N. P.,
Gutierrez, A. P., Peacock, J., Pitman, N., Prieto, A., Restrepo, Z., Rudas,
A., Quesada, C. A., Silveira, M., Stropp, J., Terborgh, J., Vieira, S. A.,
and Malhi, Y.: Individual-Based Modeling of Amazon Forests Suggests That
Climate Controls Productivity While Traits Control Demography, Front.
Earth Sci., 7, 83, https://doi.org/10.3389/feart.2019.00083, 2019.
Ferraz, J., Oht, S., and Salles, P. C.: Distribuição dos solos ao
longo de dois transectos em floresta primária ao norte de Manaus (AM),
in: Pesquisas Florestais para a Conservação da Floresta e
Reabilitação de Áreas Degradadas da Amazônia, edited by:
Higuchi, N., Campos, M. A. A., Sampaio, P. T. B., and Santos, J., INPA,
Manaus, brazil, 111–143, 1998.
Figueiredo, E. O., d'Oliveira, M. V. N., Braz, E. M., Papa, D. D., and
Fearnside, P. M.: LIDAR-based estimation of bole biomass for precision
management of an Amazonian forest: Comparisons of ground-based and remotely
sensed estimates, Remote Sens. Environ., 187, 281–293,
https://doi.org/10.1016/j.rse.2016.10.026, 2016.
Fisher, R. A., McDowell, N., Purves, D., Moorcroft, P., Sitch, S., Cox, P.,
Huntingford, C., Meir, P., and Woodward, F. I.: Assessing uncertainties in a
second-generation dynamic vegetation model caused by ecological scale
limitations, New Phytol., 187, 666–681,
https://doi.org/10.1111/j.1469-8137.2010.03340.x, 2010.
Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., Knox, R. G., Koven, C., Holm, J., Rogers, B. M., Spessa, A., Lawrence, D., and Bonan, G.: Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED), Geosci. Model Dev., 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, 2015.
Fisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B., Dietze,
M. C., Farrior, C. E., Holm, J., Hurtt, G., Knox, R., Lawrence, P. J.,
Lichstein, J. W., Longo, M., Matheny, A. M., Medvigy, D., Muller-Landau, H.
C., Powell, T., Serbin, S. P., Sato, H., Shuman, J. K., Smith, B., Trugman,
A. T., Viskari, T., Verbeeck, H., Weng, E., Xu, C., Xu, X., Zhang, T., and
Moorcroft, P.: Vegetation demographics in Earth System Models: A review of
progress and priorities, Global Change Biol., 24, 35–54,
https://doi.org/10.1111/gcb.13910, 2018.
Fisher, R. A., Wieder, W. R., Sanderson, B. M., Koven, C., Oleson, K., Xu,
C., Fisher, J. B., Shi, M., Walker, A. P., and Lawrence, D.: Parametric
Controls on Vegetation Responses to Biogeochemical Forcing in the CLM5,
J. Adv. Model. Earth Sy., 11, 2879–2895, https://doi.org/10.1029/2019MS001609, 2019.
Fisk, J.: Net effects of disturbance: spatial, temporal, and societal
dimensions of forest disturbance and recovery on terrestrial carbon balance,
PhD thesis, University of New Hampshire, USA, 74 pp., 2015.
Foley, J. A., Asner, G. P., Costa, M. H., Coe, M. T., DeFries, R., Gibbs, H.
K., Howard, E. A., Olson, S., Patz, J., Ramankutty, N., and Snyder, P.:
Amazonia revealed: forest degradation and loss of ecosystem goods and
services in the Amazon Basin, Front. Ecol. Environ., 5,
25–32, https://doi.org/10.1890/1540-9295(2007)5[25:arfdal]2.0.co;2, 2007.
Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A.,
Liddicoat, S. K., and Knutti, R.: Uncertainties in CMIP5 Climate Projections
due to Carbon Cycle Feedbacks, J. Climate, 27, 511–526,
https://doi.org/10.1175/jcli-d-12-00579.1, 2014.
Frolking, S., Palace, M. W., Clark, D. B., Chambers, J. Q., Shugart, H. H.,
and Hurtt, G. C.: Forest disturbance and recovery: A general review in the
context of spaceborne remote sensing of impacts on aboveground biomass and
canopy structure, J. Geophys. Res.-Biogeo., 114, GE00E02,
https://doi.org/10.1029/2008jg000911, 2009.
Fyllas, N. M., Gloor, E., Mercado, L. M., Sitch, S., Quesada, C. A., Domingues, T. F., Galbraith, D. R., Torre-Lezama, A., Vilanova, E., Ramírez-Angulo, H., Higuchi, N., Neill, D. A., Silveira, M., Ferreira, L., Aymard C., G. A., Malhi, Y., Phillips, O. L., and Lloyd, J.: Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1), Geosci. Model Dev., 7, 1251–1269, https://doi.org/10.5194/gmd-7-1251-2014, 2014.
Ganey, J. and Block, W.: Technical Note: A Comparison of Two Techniques for
Measuring Canopy Closure, West. J. Appl. For., 9, 21–23,
https://doi.org/10.1093/wjaf/9.1.21, 1994.
Ganguly, S., Nemani, R. R., Zhang, G., Hashimoto, H., Milesi, C., Michaelis,
A., Wang, W. L., Votava, P., Samanta, A., Melton, F., Dungan, J. L.,
Vermote, E., Gao, F., Knyazikhin, Y., and Myneni, R. B.: Generating global
Leaf Area Index from Landsat: Algorithm formulation and demonstration,
Remote Sens. Environ., 122, 185–202, https://doi.org/10.1016/j.rse.2011.10.032,
2012.
Garstang, M., White, S., Shugart, H. H., and Halverson, J.: Convective cloud
downdrafts as the cause of large blowdowns in the Amazon rainforest,
Meteorol. Atmos. Phys., 67, 199–212, 1998.
Gerber, F.: Package `gapfill', R: A language and environment for statistical
computing, R Foundation for Statistical Computing, Vienna, Austria, available at: https://cran.r-project.org/web/packages/gapfill/gapfill.pdf (last access: 2 December 2020), 2018.
Gorchov, D. L., Cornejo, F., Ascorra, C., and Jaramillo, M.: The role of seed dispersal in the natural regeneration of rain forest after strip-cutting in the Peruvian Amazon, Vegetatio, 108, 339–349, 1993.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Gu, C.: General Smoothing Splines, 61, available at: https://cran.r-project.org/web/packages/gss/gss.pdf (last access: 2 December 2020), 2018.
Hallik, L., Kuusk, A., Lang, M., and Kuusk, J.: Reflectance Properties of
Hemiboreal Mixed Forest Canopies with Focus on Red Edge and Near Infrared
Spectral Regions, Remote Sens.-Basel, 11, 1–22, https://doi.org/10.3390/rs11141717,
2019.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A.,
Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R.,
Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R.:
High-resolution global maps of 21st-century forest cover change, Science,
342, 850–853, https://doi.org/10.1126/science.1244693, 2013.
Higuchi, F. G., Siqueira, J. D. P., Lima, A. J. N., Figueiredo, A., and
Higuchi, N.: The effect of plot size on the precision of the Weibull
distribution of diameters in the primary forest of the central Amazon,
Floresta, 2, 599–606, 2012.
Higuchi, N., Dos Santos, J., Ribeiro, R. J., Freitas, J. V., Vieira, G., and
Cornic, A.: Crescimento e Incremento de uma Floresta Amazônica de
Terra-Firme Manejada Experimentalmente, INPA, Manaus, Brazil, 89–132, in: MCT-INPA, Biomassa e nutrientes florestais- Bionte, 345 pp., available at: https://repositorio.inpa.gov.br/handle/1/36085 (last access: 2 December 2020), 1997.
Higuchi, N., Chambers, J. Q., Santos, J., Ribeiro, R. J., Pinto, A. C.,
Silva, R. P., Rocha, R. M., and Tribuzy, E. S.: Carbon balance and dynamics
of primary vegetation in the central Amazon, Floresta, 34, 295–304, 2004.
Holm, J., Knox, R., Zhu, Q., Fisher, R., Koven, C., Lima, A. J. N., Riley,
W., Longo, M., Negrón Juárez, R., Araujo, A. C., Kueppers, L. M.,
Moorcroft, P., Higuchi, N., and Chambers, J. Q.: Modeling the Central Amazon
forest carbon sink and forest dynamics under current and rising atmospheric
carbon dioxide, Ecological Society of America (ESA) Meeting, Portland, Oregon, USA, 6–11 August 2017, COS 148-8, 2017.
Holm, J., Knox, R., Zhu, Q., Fisher, R., Koven, C., Lima, A. J. N., Riley,
W., Longo, M., Negrón Juárez, R., De Araujo, A. C., Kueppers, L. M.,
Moorcroft, P., Higuchi, N., and Chambers, J.: The Central Amazon biomass
sink under current and future atmospheric CO2: Predictions from big-leaf and
demographic vegetation models, J. Geophys. Res.-Biogeo., 125, e2019JG005500, https://doi.org/10.1029/2019JG005500, 2020.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L.
G.: Overview of the radiometric and biophysical performance of the MODIS
vegetation indices, Remote Sens. Environ., 83, 195–213,
https://doi.org/10.1016/s0034-4257(02)00096-2, 2002.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J. F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model A Framework for
Collaborative Research, B. Am. Meteorol. Soc., 94,
1339–1360, https://doi.org/10.1175/bams-d-12-00121.1, 2013.
Hurtt, G. C., Frolking, S., Fearon, M. G., Moore, B., Shevliakova, E.,
Malyshev, S., Pacala, S. W., and Houghton, R. A.: The underpinnings of
land-use history: three centuries of global gridded land-use transitions,
wood-harvest activity, and resulting secondary lands, Global Change Biol.,
12, 1208–1229, https://doi.org/10.1111/j.1365-2486.2006.01150.x, 2006.
Jakovac, A. C. C., Bentos, T. V., Mesquita, R. C. G., and Williamson, G. B.:
Age and light effects on seedling growth in two alternative secondary
successions in central Amazonia, Plant Ecol. Divers., 7, 349–358,
https://doi.org/10.1080/17550874.2012.716088, 2014.
Jennings, S. B., Brown, N. D., and Sheil, D.: Assessing forest canopies and
understorey illumination: canopy closure, canopy cover and other measures,
Forestry, 72, 59–73, https://doi.org/10.1093/forestry/72.1.59, 1999.
Johnson, D. J., Needham, J., Xu, C. G., Massoud, E. C., Davies, S. J.,
Anderson-Teixeira, K. J., Bunyavejchewin, S., Chambers, J. Q., Chang-Yang,
C. H., Chiang, J. M., Chuyong, G. B., Condit, R., Cordell, S., Fletcher, C.,
Giardina, C. P., Giambelluca, T. W., Gunatilleke, N., Gunatilleke, S.,
Hsieh, C. F., Hubbell, S., Inman-Narahari, F., Kassim, A. R., Katabuchi, M.,
Kenfack, D., Litton, C. M., Lum, S., Mohamad, M., Nasardin, M., Ong, P. S.,
Ostertag, R., Sack, L., Swenson, N. G., Sun, I. F., Tan, S., Thomas, D. W.,
Thompson, J., Umana, M. N., Uriarte, M., Valencia, R., Yap, S., Zimmerman,
J., McDowell, N. G., and McMahon, S. M.: Climate sensitive size-dependent
survival in tropical trees, Nat. Ecol. Evol., 2, 1436–1442,
https://doi.org/10.1038/s41559-018-0626-z, 2018.
Kammesheidt, L., Kohler, P., and Huth, A.: Simulating logging scenarios in
secondary forest embedded in a fragmented neotropical landscape, Forest
Ecol. Manag., 170, 89–105, https://doi.org/10.1016/s0378-1127(01)00783-6, 2002.
Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A.,
and Lindquist, E.: Dynamics of global forest area: Results from the FAO
Global Forest Resources Assessment 2015, Forest Ecol. Manag., 352,
9–20, https://doi.org/10.1016/j.foreco.2015.06.014, 2015.
Kennedy, R. E., Cohen, W. B., and Schroeder, T. A.: Trajectory-based change
detection for automated characterization of forest disturbance dynamics,
Remote Sens. Environ., 110, 370–386, https://doi.org/10.1016/j.rse.2007.03.010,
2007.
Kennedy, R. E., Yang, Z., and Cohen, W. B.: Detecting trends in forest
disturbance and recovery using yearly Landsat time series: 1. LandTrendr –
Temporal segmentation algorithms, Remote Sens. Environ., 114,
2897–2910, https://doi.org/10.1016/j.rse.2010.07.008, 2010.
Kennedy, R. E., Yang, Z. Q., Cohen, W. B., Pfaff, E., Braaten, J., and
Nelson, P.: Spatial and temporal patterns of forest disturbance and regrowth
within the area of the Northwest Forest Plan, Remote Sens. Environ.,
122, 117–133, https://doi.org/10.1016/j.rse.2011.09.024, 2012.
Kim, D. H., Sexton, J. O., Noojipady, P., Huang, C. Q., Anand, A., Channan,
S., Feng, M., and Townshend, J. R.: Global, Landsat-based forest-cover
change from 1990 to 2000, Remote Sens. Environ., 155, 178–193,
https://doi.org/10.1016/j.rse.2014.08.017, 2014.
Laurance, S. G. W., Laurance, W. F., Andrade, A., Fearnside, P. M., Harms,
K. E., Vicentini, A., and Luizao, R. C. C.: Influence of soils and
topography on Amazonian tree diversity: a landscape-scale study, J. Veg. Sci., 21, 96–106, https://doi.org/10.1111/j.1654-1103.2009.01122.x, 2010.
Laurance, W. F.: Hyperdynamism in fragmented habitats, J. Veg.
Sci., 13, 595–602, https://doi.org/10.1111/j.1654-1103.2002.tb02086.x, 2002.
Laurance, W. F., Nascimento, H. E. M., Laurance, S. G., Andrade, A., Ewers,
R. M., Harms, K. E., Luizao, R. C. C., and Ribeiro, J. E.: Habitat
Fragmentation, Variable Edge Effects, and the Landscape-Divergence
Hypothesis, PloS one, 2, e1017, https://doi.org/10.1371/journal.pone.0001017, 2007.
Laurance, W. F., Camargo, J. L. C., Luizao, R. C. C., Laurance, S. G., Pimm,
S. L., Bruna, E. M., Stouffer, P. C., Williamson, G. B., Benitez-Malvido,
J., Vasconcelos, H. L., Van Houtan, K. S., Zartman, C. E., Boyle, S. A.,
Didham, R. K., Andrade, A., and Lovejoy, T. E.: The fate of Amazonian forest
fragments: A 32-year investigation, Biol. Conserv., 144, 56–67,
https://doi.org/10.1016/j.biocon.2010.09.021, 2011.
Laurance, W. F., Camargo, J. L. C., Fearnside, P. M., Lovejoy, T. E.,
Williamson, G. B., Mesquita, R. C. G., Meyer, C. F. J., Bobrowiec, P. E. D.,
and Laurance, S. G. W.: An Amazonian rainforest and its fragments as a
laboratory of global change, Biol. Rev., 93, 223–247,
https://doi.org/10.1111/brv.12343, 2018.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C.,
Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D.,
Kluzek, E., Lawrence, P. J., Li, F., Li, H. Y., Lombardozzi, D., Riley, W.
J., Sacks, W. J., Shi, M. J., Vertenstein, M., Wieder, W. R., Xu, C. G.,
Ali, A. A., Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A.,
Burns, S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B.,
Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoffman, F.,
Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb,
W. H., Lu, Y. Q., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J.
T., Ricciuto, D. M., Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J.
Y., Thomas, R. Q., Martin, M. V., and Zeng, X. B.: The Community Land Model
Version 5: Description of New Features, Benchmarking, and Impact of Forcing
Uncertainty, J. Adv. Model. Earth Sy., 11, 4245–4287,
https://doi.org/10.1029/2018ms001583, 2019.
Lewis, S. L., Edwards, D. P., and Galbraith, D.: Increasing human dominance
of tropical forests, Science, 349, 827–832, https://doi.org/10.1126/science.aaa9932, 2015.
Lima, A. J. N., Teixeira, L. M., Carneiro, V. M. C., Santos, J., and
Higuchi, N.: Biomass stock and structural analysis of a secondary forest in
Manaus (AM) region, ten years after clear cutting followed by fire, Acta
Amazon., 37, 49–54, 2007.
Longo, M., Knox, R. G., Levine, N. M., Swann, A. L. S., Medvigy, D. M., Dietze, M. C., Kim, Y., Zhang, K., Bonal, D., Burban, B., Camargo, P. B., Hayek, M. N., Saleska, S. R., da Silva, R., Bras, R. L., Wofsy, S. C., and Moorcroft, P. R.: The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 2: Model evaluation for tropical South America, Geosci. Model Dev., 12, 4347–4374, https://doi.org/10.5194/gmd-12-4347-2019, 2019.
Longworth, J. B., Mesquita, R. C., Bentos, T. V., Moreira, M. P., Massoca,
P. E., and Williamson, G. B.: Shifts in Dominance and Species Assemblages
over Two Decades in Alternative Successions in Central Amazonia, Biotropica,
46, 529–537, https://doi.org/10.1111/btp.12143, 2014.
Lovejoy, T. E., Bierregaard, R., Rylands, A., Malcolm, J., Quintela, C.,
Harper, L., Brown, K., Powell, A., Powell, G., Schubart, H., and Hays, M.:
Edge and other effects of isolation on Amazon forest fragments, in: Conservation biology: the science of scarcity and diversity, edited by: Soule, M. E., Sinauer Associates, Sunderland, Massachusetts, USA, Conserv. Biol., 257–285, 1986.
Lovejoy, T. E. and Bierregaard, R.: Central Amazonian forests and the
minimum critical size of ecosystem project, in: Four neotropical
rainforests, edited by: Gentry, A., Yale University Press, New Haven, USA, 60–71,
1990.
Loveland, T. R. and Dwyer, J. L.: Landsat: Building a strong future, Remote
Sens. Environ., 122, 22–29, https://doi.org/10.1016/j.rse.2011.09.022, 2012.
Lu, D.: Aboveground biomass estimation using Landsat TM data in the
Brazilian Amazon, Int. J. Remote Sens., 26, 2509–2525,
https://doi.org/10.1080/01431160500142145, 2005.
Lu, D. and Batistella, M.: Exploring TM image texture and its relationships
with biomass estimation in Rondonia, Brazilian Amazon, Acta Amazon., 35,
249–257, 2005.
Lucas, R. M., Honzak, M., Amaral, I. D., Curran, P. J., and Foody, G. M.:
Forest regeneration on abandoned clearances in central Amazonia,
Int. J. Remote Sens., 23, 965–988,
https://doi.org/10.1080/01431160110069791, 2002.
Magnabosco Marra, D., Chambers, J. Q., Higuchi, N., Trumbore, S. E.,
Ribeiro, G. H. P. M., dos Santos, J., Negron-Juarez, R. I., Reu, B., and
Wirth, C.: Large-Scale Wind Disturbances Promote Tree Diversity in a Central
Amazon Forest, PloS one, 9, e103711, https://doi.org/10.1371/journal.pone.0103711, 2014.
Magnabosco Marra, D.: Effects of windthrows on the interaction between tree
species composition, forest dynamics and carbon balance in Central Amazon,
PhD thesis, Institute of Biology, Leipzig University, Leipzig, Germany, 210 pp.,
2016.
Magnabosco Marra, D., Trumbore, S. E., Higuchi, N., Ribeiro, G. H. P. M.,
Negron-Juarez, R. I., Holzwarth, F., Rifai, S. W., Dos Santos, J., Lima, A.
J. N., Kinupp, V. F., Chambers, J. Q., and Wirth, C.: Windthrows control
biomass patterns and functional composition of Amazon forests, Global Change
Biol., 24, 5867–5881, https://doi.org/10.1111/gcb.14457, 2018.
Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G.,
Huemmrich, K. F., Gao, F., Kutler, J., and Lim, T. K.: A Landsat surface
reflectance dataset for North America, 1990–2000, IEEE Geosci. Remote
S., 3, 68–72, https://doi.org/10.1109/lgrs.2005.857030, 2006.
Masek, J. G., Huang, C., Wolfe, R., Cohen, W., Hall, F., Kutler, J., and
Nelson, P.: North American forest disturbance mapped from a decadal Landsat
record, Remote Sens. Environ., 112, 2914–2926,
https://doi.org/10.1016/j.rse.2008.02.010, 2008.
Masek, J. G., Vermote, E., Saleous, N. E., Wolfe, R., Hall, F. G.,
Huemmrich, F., Gao, F., Kutler, J., and Lim, T. K.: LEDAPS Landsat
Calibration, Reflectance, Atmospheric Correction Preprocessing Code, Model
product, Oak Ridge National
Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA,
https://doi.org/10.3334/ORNLDAAC/1080, 2012.
Masek, J. G., Goward, S. N., Kennedy, R. E., Cohen, W. B., Moisen, G. G.,
Schleeweis, K., and Huang, C.: United States Forest Disturbance Trends
Observed Using Landsat Time Series, Ecosystems, 16, 1087–1104,
https://doi.org/10.1007/s10021-013-9669-9, 2013.
Massoca, P. E., Jakovac, A. C. C., Bentos, T., Williamson, G. B., and
Mesquita, R. C.: Dynamics and trajectories of secondary succession in
Central Amazonia, Bol. Mus. Para. Emílio Goeldi. Cienc. Nat., 7,
235–250, 2012.
Mazzei, L., Sist, P., Ruschel, A., Putz, F. E., Marco, P., Pena, W., and
Ferreira, J. E. R.: Above-ground biomass dynamics after reduced-impact
logging in the Eastern Amazon, Forest Ecol. Manag., 259, 367–373,
https://doi.org/10.1016/j.foreco.2009.10.031, 2010.
McDowell, N. G., Coops, N. C., Beck, P. S. A., Chambers, J. Q.,
Gangodagamage, C., Hicke, J. A., Huang, C.-Y., Kennedy, R., Krofcheck, D.
J., Litvak, M., Meddens, A. J. H., Muss, J., Negron-Juarez, R., Peng, C.,
Schwantes, A. M., Swenson, J. J., Vernon, L. J., Williams, A. P., Xu, C.,
Zhao, M., Running, S. W., and Allen, C. D.: Global satellite monitoring of
climate-induced vegetation disturbances, Trends Plant Sci., 20,
114–123, https://doi.org/10.1016/j.tplants.2014.10.008, 2015.
Mesquita, R. C. G., Delamonica, P., and Laurance, W. F.: Effect of
surrounding vegetation on edge-related tree mortality in Amazonian forest
fragments, Biol. Conserv., 91, 129–134,
https://doi.org/10.1016/s0006-3207(99)00086-5, 1999.
Mesquita, R. C. G., Ickes, K., Ganade, G., and Williamson, G. B.:
Alternative successional pathways in the Amazon Basin, J. Ecol.,
89, 528–537, https://doi.org/10.1046/j.1365-2745.2001.00583.x, 2001.
Mesquita, R. D. G., Massoca, P. E. D., Jakovac, C. C., Bentos, T. V., and
Williamson, G. B.: Amazon Rain Forest Succession: Stochasticity or Land-Use
Legacy?, Bioscience, 65, 849–861, https://doi.org/10.1093/biosci/biv108, 2015.
Mitchell, S. J.: Wind as a natural disturbance agent in forests: a
synthesis, Forestry, 86, 147–157, https://doi.org/10.1093/forestry/cps058, 2013.
Moorcroft, P. R., Hurtt, G. C., and Pacala, S. W.: A method for scaling
vegetation dynamics: The ecosystem demography model (ED), Ecological
Monographs, 71, 557–585, https://doi.org/10.1890/0012-9615(2001)071[0557:amfsvd]2.0.co;2,
2001.
Negrón-Juárez, R. I., Chambers, J. Q., Zeng, H., and Baker, D. B.:
Hurricane driven changes in land cover create biogeophysical climate
feedbacks, Geophys. Res. Lett., 35, L23401, https://doi.org/10.1029/2008gl035683, 2008.
Negrón-Juárez, R. I., Baker, D. B., Zeng, H., Henkel, T. K., and
Chambers, J. Q.: Assessing hurricane-induced tree mortality in U.S. Gulf
Coast forest ecosystems, J. Geophys. Res.-Biogeo.,
115, G04030, https://doi.org/10.1029/2009jg001221, 2010a.
Negrón-Juárez, R. I., Chambers, J. Q., Guimaraes, G., Zeng, H.,
Raupp, C. F. M., Magnabosco Marra, D., Ribeiro, G. H. P. M., Saatchi, S. S.,
Nelson, B. W., and Higuchi, N.: Widespread Amazon forest tree mortality from
a single cross-basin squall line event, Geophys. Res. Lett., 37,
L16701, https://doi.org/10.1029/2010gl043733, 2010b.
Negrón-Juárez, R. I., Chambers, J. Q., Magnabosco Marra, D.,
Ribeiro, G. H. P. M., Rifai, S. W., Higuchi, N., and Roberts, D.: Detection
of subpixel treefall gaps with Landsat imagery in Central Amazon forests,
Remote Sens. Environ., 115, 3322–3328, https://doi.org/10.1016/j.rse.2011.07.015,
2011.
Negrón-Juárez, R. I., Jenkins, H. S., Raupp, C. F. M., Riley, W. J.,
Kueppers, L. M., Magnabosco Marra, D., Ribeiro, G., Monteiro, M. T. F.,
Candido, L. A., Chambers, J. Q., and Higuchi, N.: Windthrow Variability in
Central Amazonia, Atmosphere, 8, 28, https://doi.org/10.3390/atmos8020028, 2017.
Negrón-Juárez, R. I., Holm, J. A., Magnabosco Marra, D., Rifai, S.
W., Riley, W. J., Chambers, J. Q., Koven, C. D., Knox, R. G., McGroddy, M.
E., Di Vittorio, A., Urquiza-Muñoz, J. D., Tello-Espinoza, R.,
Alegria-Muñoz, W., Ribeiro, G. H. P. M., and Higuchi, N.: Vulnerability
of Amazon forests to storm-driven tree mortality, Environ. Res.
Lett., 13, 054021, https://doi.org/10.1088/1748-9326/aabe9f 2018.
Nelson, B. W. and Amaral, I.: Destructive wind efects detected in TM images
of the Amazon Basin, Int. Soc. Photogramme, 30, 339–343, 1994.
Nelson, B. W., Kapos, V., Adams, J. B., Oliveira, W., and Braun, O.: Forest
disturbance by large blowdowns in the Brazilian Amazon, Ecology, 75,
853–858, https://doi.org/10.2307/1941742, 1994.
Neter, J., Wasserman, W., and Whitmore, G. A.: Applied Statistics, 3rd
Edn., Allyn and Bacon Press, Boston, 1988.
Nobre, C. A., Sampaio, G., Borma, L. S., Castilla-Rubio, J. C., Silva, J.
S., and Cardoso, M.: Land-use and climate change risks in the Amazon and the
need of a novel sustainable development paradigm, P. Natl. Acad. Sci. USA, 113, 10759–10768,
https://doi.org/10.1073/pnas.1605516113, 2016.
Norman, J. M.: Modeling the complete crop canopy, in: Modification of the
aerial environment of plant, edited by: Barfield, B. J. and Gerber, J. F.,
American Society of Agricultural Engineers, St. Joseph, USA, 249–277, 1979.
Oleson, K. W., Lawrence, D., Bonan, G. B., Drewniak, B., Huang, M., Koven,
C. D., Levis, S., Li, F., Riley, W. J., Subin, Z., Swenson, S. C., and
Thornton, P. E.: Technical Description of version 4.5 of the Community Land
Model (CLM), National Center for Atmospheric Research, Boulder, Colorado,
NCAR Technical Note, 420, 2013.
Ollinger, S. V.: Sources of variability in canopy reflectance and the
convergent properties of plants, New Phytol., 189, 375–394,
https://doi.org/10.1111/j.1469-8137.2010.03536.x, 2011.
Paletto, A. and Tosi, V.: Forest canopy cover and canopy closure:
comparison of assessment techniques, Eur. J. For. Res.,
128, 265–272, https://doi.org/10.1007/s10342-009-0262-x, 2009.
Pereira, J., Chuvieco, E., Beaudoin, A., and Desbois, N.: Remote sensing of
burned areas: A review., in: A review of remote sensing methods for the
study of large wildland fires, edited by: Chuvieco, E.,
Universidad de Alcala, Alcalá de Henares, Spain, 127–184, 1997.
Pickell, P. D., Hermosilla, T., Frazier, R. J., Coops, N. C., and Wulder, M.
A.: Forest recovery trends derived from Landsat time series for North
American boreal forests, Int. J. Remote Sens., 37,
138–149, https://doi.org/10.1080/2150704x.2015.1126375, 2016.
Powell, S. L., Cohen, W. B., Healey, S. P., Kennedy, R. E., Moisen, G. G.,
Pierce, K. B., and Ohmann, J. L.: Quantification of live aboveground forest
biomass dynamics with Landsat time-series and field inventory data: A
comparison of empirical modeling approaches, Remote Sens. Environ.,
114, 1053–1068, https://doi.org/10.1016/j.rse.2009.12.018, 2010.
Powell, T. L., Galbraith, D. R., Christoffersen, B. O., Harper, A.,
Imbuzeiro, H. M. A., Rowland, L., Almeida, S., Brando, P. M., Lola da Costa,
A. C., Costa, M. H., Levine, N. M., Malhi, Y., Saleska, S. R., Sotta, E.,
Williams, M., Meir, P., and Moorcroft, P. R.: Confronting model predictions
of carbon fluxes with measurements of Amazon forests subjected to
experimental drought, New Phytol., 200, 350–364, https://doi.org/10.1111/nph.12390,
2013.
Powell, T. L., Koven, C. D., Johnson, D. J., Faybishenko, B., Fisher, R. A.,
Knox, R. G., McDowell, N. G., Condit, R., Hubbell, S. P., Wright, S. J.,
Chambers, J. Q., and Kueppers, L. M.: Variation in hydroclimate sustains
tropical forest biomass and promotes functional diversity, New Phytol.,
219, 932–946, https://doi.org/10.1111/nph.15271, 2018.
Purves, D. W., Lichstein, J. W., Strigul, N., and Pacala, S. W.: Predicting
and understanding forest dynamics using a simple tractable model,
P. Natl. Acad. Sci. USA, 105, 17018–17022, https://doi.org/10.1073/pnas.0807754105, 2008.
Putz, S., Groeneveld, J., Henle, K., Knogge, C., Martensen, A. C., Metz, M.,
Metzger, J. P., Ribeiro, M. C., de Paula, M. D., and Huth, A.: Long-term
carbon loss in fragmented Neotropical forests, Nat. Commun., 5, 5037,
https://doi.org/10.1038/ncomms6037, 2014.
Quesada, C. A., Lloyd, J., Anderson, L. O., Fyllas, N. M., Schwarz, M., and Czimczik, C. I.: Soils of Amazonia with particular reference to the RAINFOR sites, Biogeosciences, 8, 1415–1440, https://doi.org/10.5194/bg-8-1415-2011, 2011.
Renno, C. D., Nobre, A. D., Cuartas, L. A., Soares, J. V., Hodnett, M. G.,
Tomasella, J., and Waterloo, M. J.: HAND, a new terrain descriptor using
SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia, Remote
Sens. Environ., 112, 3469–3481, https://doi.org/10.1016/j.rse.2008.03.018, 2008.
Riebeek, H.: Why is that Forest Red and that Cloud Blue? How to Interpret a
False-Color Satellite Image, availabe at:
https://earthobservatory.nasa.gov/Features/FalseColor/printall.php (last access: 1 May 2020), 2014.
Riley, W. J., Zhu, Q., and Tang, J. Y.: Weaker land-climate feedbacks from
nutrient uptake during photosynthesis-inactive periods, Nat. Clim.
Change, 8, 1002, https://doi.org/10.1038/s41558-018-0325-4, 2018.
R package: R: A Language and Environment for Statistical Computing, R Foundation for
Statistical Computing, availabe at: https://www.R-project.org (last access: 1 May 2020), 2017.
Roberts, D. A., Nelson, B. W., Adams, J. B., and Palmer, F.: Spectral
changes with leaf aging in Amazon caatinga, Trees-Struct. Funct.,
12, 315–325, https://doi.org/10.1007/s004680050157, 1998.
Roberts, D. A., Ustin, S. L., Ogunjemiyo, S., Greenberg, J., Dobrowski, S.
Z., Chen, J. Q., and Hinckley, T. M.: Spectral and structural measures of
northwest forest vegetation at leaf to landscape scales, Ecosystems, 7,
545–562, https://doi.org/10.1007/s10021-004-0144-5, 2004.
Rocha, G. P. E., Vieira, D. L. M., and Simon, M. F.: Fast natural
regeneration in abandoned pastures in southern Amazonia, Forest Ecol.
Manag., 370, 93–101, https://doi.org/10.1016/j.foreco.2016.03.057, 2016.
Rosenvald, R. and Lohmus, A.: For what, when, and where is green-tree
retention better than clear-cutting? A review of the biodiversity aspects,
Forest Ecol. Manag., 255, 1–15, https://doi.org/10.1016/j.foreco.2007.09.016,
2008.
Rouse, J. W., Hass, R. H., Schell, J. A., and Deering, D. W.: Monitoring
vegetation systems in the great plains with ERTS, Proceedings of the 3rd Earth ResourceTechnology Satellite (ERTS) Symposium, Washington, DC,
USA, 10–14 December 1973, 309–317, 1973.
Rozendaal, D. M. A. and Chazdon, R. L.: Demographic drivers of tree biomass
change during secondary succession in northeastern Costa Rica, Ecol.
Appl., 25, 506–516, https://doi.org/10.1890/14-0054.1, 2015.
Ruiz, J., Fandino, M. C., and Chazdon, R. L.: Vegetation structure,
composition, and species richness across a 56-year chronosequence of dry
tropical forest on Providencia island, Colombia, Biotropica, 37, 520–530,
https://doi.org/10.1111/j.1744-7429.2005.00070.x, 2005.
Sakschewski, B., von Bloh, W., Boit, A., Rammig, A., Kattge, J., Poorter,
L., Penuelas, J., and Thonicke, K.: Leaf and stem economics spectra drive
diversity of functional plant traits in a dynamic global vegetation model,
Glob. Change Biol., 21, 2711–2725, https://doi.org/10.1111/gcb.12870, 2015.
Saldarriaga, J. G., West, D. C., and Tharp, M. L.: Forest succession in the
Upper Rio Negro of Colombia and Venezuela, United States, https://doi.org/10.2172/7109527, 1986.
Saldarriaga, J. G., West, D. C., Tharp, M. L., and Uhl, C.: Long-term
chronosequence of forest succession in the upper rio Negro of Colombia and
Venezuela, J. Ecol., 76, 938–958, https://doi.org/10.2307/2260625, 1988.
Saldarriaga, J. G. and Luxmoore, R. J.: Solar-energy conversion
efficiencies during succession of a tropical rain-forest in Amazonia,
J. Trop. Ecol., 7, 233–242, 1991.
Schmidt, G., Jenkerson, C., Masek, J. G., Vermote, E., and Gao, F.: Landsat
Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm
Description, US Department of the Interior, Reston, Virginia, Open-File Report 2013-1057, 17 pp., available at: http://pubs.usgs.gov/of/2013/1057/ (last access: 2 December 2020), 2013.
Schroeder, T. A., Wulder, M. A., Healey, S. P., and Moisen, G. G.: Mapping
wildfire and clearcut harvest disturbances in boreal forests with Landsat
time series data, Remote Sens. Environ., 115, 1421–1433,
https://doi.org/10.1016/j.rse.2011.01.022, 2011.
Schwartz, N. B., Uriarte, M., DeFries, R., Bedka, K. M., Fernandes, K.,
Gutierrez-Velez, V., and Pinedo-Vasquez, M. A.: Fragmentation increases wind
disturbance impacts on forest structure and carbon stocks in a western
Amazonian landscape, Ecol. Appl., 27, 1901–1915,
https://doi.org/10.1002/eap.1576, 2017.
Shimabukuro, Y. E., Arai, E., Duarte, V., Jorge, A., dos Santos, E. G.,
Gasparini, K. A. C., and Dutra, A. C.: Monitoring deforestation and forest
degradation using multi-temporal fraction images derived from Landsat sensor
data in the Brazilian Amazon, Int. J.Remote Sens., 40,
5475–5496, https://doi.org/10.1080/01431161.2019.1579943, 2019.
Shugart, H. H. and West, D. C.: Forest succesion models, Bioscience, 30,
308–313, https://doi.org/10.2307/1307854, 1980.
Silverio, D., Brando, P., Bustamante, M. C., Putz, F. E., Magnabosco Marra,
D., Levick, S. R., and Trumbore, S.: Fire, fragmentation, and windstorms: A
recipe for tropical forest degradation, J. Ecol., 107, 656–667,
https://doi.org/10.1111/1365-2745.13076, 2018.
Sombroek, W.: Spatial and temporal patterns of Amazon rainfall –
Consequences for the planning of agricultural occupation and the protection
of primary forests, Ambio, 30, 388–396,
https://doi.org/10.1639/0044-7447(2001)030[0388:satpoa]2.0.co;2, 2001.
Steininger, M. K.: Satellite estimation of tropical secondary forest
above-ground biomass: data from Brazil and Bolivia, Int. J. Remote Sens., 21, 1139–1157, https://doi.org/10.1080/014311600210119, 2000.
Swaine, M. D. and Whitmore, T. C.: On the definition of ecological species groups in tropical rain forests, Vegetatio, 75, 81–86, https://doi.org/10.1007/bf00044629,
1988.
Terborgh, J., Zhu, K., Loayza, P. A., and Valverde, F. C.: Seed limitation
in an Amazonian floodplain forest, Ecology, 100, e02642, https://doi.org/10.1002/ecy.2642, 2019.
Tollefson, J.: Forest ecology: Splinters of the Amazon. Nature, 496, 286–289, 2013.
Trumbore, S., Brando, P., and Hartmann, H.: Forest health and global change,
Science, 349, 814–818, https://doi.org/10.1126/science.aac6759, 2015.
Tucker, C. J.: Red and photographic infrared linear combinations for
monitoring vegetation, Remote Sens. Environ., 8, 127–150,
https://doi.org/10.1016/0034-4257(79)90013-0, 1979.
Tucker, C. J.: A critical review of remote sensing and other methods for
nondestructive estimation of standing crop biomass, Grass and Forage,
Science, 35, 177–182, https://doi.org/10.1111/j.1365-2494.1980.tb01509.x, 1980.
USGS: US Geological Survey Surface Refelctance Produc Guide, availabe at: https://www.usgs.gov/media/files/)(last access: 17 February 2017), 2017.
Valencia, G. M., Anaya, J. A., and Caro-Lopera, F. J.: Implementation and
evaluation of the Landsat Ecosystem Disturbance Adaptive Processing Systems
(LEDAPS) model: a case study in the Colombian Andes, Revista de
Teledeteccion, 46, 83–101, https://doi.org/10.4995/raet.2016.3582, 2016.
van Doninck, J. and Tuomisto, H.: A Landsat composite covering all Amazonia
for applications in ecology and conservation, Remote Sens. Ecol. Conserv., 4, 197–210, https://doi.org/10.1002/rse2.77, 2018.
Vermote, E. F., Tanre, D., Deuze, J. L., Herman, M., and Morcrette, J. J.:
Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An
Overview, IEEE T. Geosci. Remote, 35, 675–686,
1997.
Vermote, E., Justice, C., Claverie, M., and Franch, B.: Preliminary analysis
of the performance of the Landsat 8/OLI land surface reflectance product,
Remote Sens. Environ., 185, 46–56, https://doi.org/10.1016/j.rse.2016.04.008, 2016.
Vieira, I. C. G., de Almeida, A. S., Davidson, E. A., Stone, T. A., de
Carvalho, C. J. R., and Guerrero, J. B.: Classifying successional forests
using Landsat spectral properties and ecological characteristics in eastern
Amazonia, Remote Sens. Environ., 87, 470–481,
https://doi.org/10.1016/j.rse.2002.09.002, 2003.
Vieira, S., de Camargo, P. B., Selhorst, D., da Silva, R., Hutyra, L.,
Chambers, J. Q., Brown, I. F., Higuchi, N., dos Santos, J., Wofsy, S. C.,
Trumbore, S. E., and Martinelli, L. A.: Forest structure and carbon dynamics
in Amazonian tropical rain forests, Oecologia, 140, 468–479,
https://doi.org/10.1007/s00442-004-1598-z, 2004.
Walker, A. P., Beckerman, A. P., Gu, L., Kattge, J., Cernusak, L. A.,
Domingues, T. F., Scales, J. C., Wohlfahrt, G., Wullschleger, S. D., and
Woodward, F. I.: The relationship of leaf photosynthetic traits – Vcmax and
Jmax – to leaf nitrogen, leaf phosphorus, and specific leaf area: a
meta-analysis and modeling study, Ecol. Evol., 4, 3218–3235,
https://doi.org/10.1002/ece3.1173, 2014.
Williamson, G. B., Bentos, T. V., Longworth, J. B., and Mesquita, R. C. G.:
Convergence and divergence in alternative successional pathways in Central
Amazonia, Plant Ecol. Divers., 7, 341–348,
https://doi.org/10.1080/17550874.2012.735714, 2014.
Winter, K. and Lovelock, C. E.: Growth responses of seedlings of early and
late successional tropical forest trees to elevated atmospheric CO2, Flora,
194, 221–227, https://doi.org/10.1016/s0367-2530(17)30900-3, 1999.
Woodcock, C. E., Allen, R., Anderson, M., Belward, A., Bindschadler, R.,
Cohen, W., Gao, F., Goward, S. N., Helder, D., Helmer, E., Nemani, R.,
Oreopoulos, L., Schott, J., Thenkabail, P. S., Vermote, E. F., Vogelmann,
J., Wulder, M. A., and Wynne, R.: Free access to Landsat
imagery, Science, 320, 1011–1011, 2008.
Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R., and Woodcock, C.
E.: Opening the archive: How free data has enabled the science and
monitoring promise of Landsat, Remote Sens. Environ., 122, 2–10,
https://doi.org/10.1016/j.rse.2012.01.010, 2012.
Xiao, Y. F., Zhao, W. J., Zhou, D. M., and Gong, H. L.: Sensitivity Analysis
of Vegetation Reflectance to Biochemical and Biophysical Variables at Leaf,
Canopy, and Regional Scales, IEEE T. Geosci. Remote, 52, 4014–4024, https://doi.org/10.1109/tgrs.2013.2278838, 2014.
Zeileis, A., Grothendieck, G., Ryan, J., Ulrich, J., and Andrews, F.: S3
Infrastructure for Regular and Irregular Time Series (Z's Ordered
Observations), 73, available at: https://cran.r-project.org/web/packages/zoo/index.html (last access: 2 December 2020), 2018.
Zhu, Q., Riley, W. J., Tang, J. Y., Randerson, J. R., Collier, N., Hoffman,
F. M., Yang, X., and Bisht, G.: Representing nitrogen, carbon, and
phosphorus interactions in the ELMv1-ECA Land Model: Model development and
global benchmarking, J. Adv. Model. Earth Sy.,
https://doi.org/10.1029/2018MS001571, 2019.
Short summary
The temporal variability in the Landsat satellite near-infrared (NIR) band captured the dynamics of forest regrowth after disturbances in Central Amazon. This variability was represented by the dynamics of forest regrowth after disturbances were properly represented by the ELM-FATES model (Functionally Assembled Terrestrial Ecosystem Simulator (FATES) in the Energy Exascale Earth System Model (E3SM) Land Model (ELM)).
The temporal variability in the Landsat satellite near-infrared (NIR) band captured the dynamics...
Altmetrics
Final-revised paper
Preprint